
Concepts for Enhanced Energy Absorption Using 
Hollow Micro-Lattices

Citation
Evans, A. G., M. Y. He, V. S. Deshpande, John W. Hutchinson, A. J. Jacobsen, and W. Barvosa-
Carter. 2010. Concepts for enhanced energy absorption using hollow micro-lattices. 
International Journal of Impact Engineering 37(9): 947-959.

Published Version
doi:10.1016/j.ijimpeng.2010.03.007

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:4211042

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:4211042
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Concepts%20for%20Enhanced%20Energy%20Absorption%20Using%20Hollow%0D%0AMicro-Lattices&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=c5f6e582d41cc0665934f6ae5b584425&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility


        Concepts for Enhanced Energy Absorption Using Hollow 
Micro-Lattices 

 
A. G. Evans, M. Y. He, 

Materials Department, College of Engineering, UCSB, CA, 93106 
 

V. S. Deshpande, 
Engineering Department, Cambridge University, Trumpington St, Cambridge, CB2 

1PZ, UK 
 

J. W. Hutchinson, 
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 

02138 
 

A. J. Jacobsen, W. Barvosa-Carter, 
HRL Laboratories, Malibu, CA, 90265 

 
Abstract 
 
We present a basic analysis that establishes the metrics affecting the energy absorbed by 
multilayer cellular media during irreversible compaction on either a mass or volume 
basis. The behaviors at low and high impulse levels are distinguished through the energy 
dissipated in the shock. The overall mass of an energy absorbing system (comprising a 
cellular medium and a buffer) is minimized by maximizing the non-dimensional 
dissipation per unit mass parameter for the cellular medium, /m s YU    , where Um  is 

the dissipation per unit mass of the cellular medium, ascertained from the area under the 
quasi-static compressive stress/strain curve, Y  the yield strength of the constituent 
material and s  the density of the material used in the medium. Plots of   against the 
non-dimensional stress transmitted through the medium,  tr /Y  demonstrate the relative 
energy absorbing characteristics of foams and prismatic media, such as honeycombs. 
Comparisons with these benchmark systems are used to demonstrate the superior 
performance of micro-lattices, especially those with hollow truss members. Numerical 
calculations demonstrate the relative densities and geometric configurations wherein the 
lattices offer benefit. Experimental results obtained for a Ni micro-lattice with hollow 
members not only affirm the benefits, but also demonstrate energy absorption levels 
substantially exceeding those predicted by analysis. This assessment highlights the new 
opportunities that tailored micro-lattices provide for unprecedented levels of energy 
absorption for protection from impulsive loads. 
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Nomenclature 
 
E Young’s modulus 
Et tangent modulus after plastic yielding 
D  strain at densification 
Y  yield strain for the constituent material 

h  thickness of the crushable medium 
hmin  minimum thickness of the cellular medium 

KE kinetic energy 
I impulse per area 
Itrans  transmitted impulse per unit area 

  non-dimensional dissipation per mass parameter 
M momentum per area 
mb  mass per area of the planar buffer 

mtotal
min  minimum mass 

n exponent in the crushing strength formula 
p0 overpressure  with associated impulse per area, I 
 

/s D bh m    

 Ratio of the mass of the cellular medium to that for the buffer 
 relative density of the cellular material.   
s  density of the material used in the medium 
 peak  initial peak stress, associated with member buckling 

 pl  unidirectional crushing stress,  pl , with strain at densification, D  

tr  stress transmitted through the medium 

th  damage threshold 

Y  yield strength of the constituent material 
Um  quasi-static energy absorbed per unit mass of the cellular medium 
Vtotal  volume of the system 

 
 plmb

2

M 2s
 Ratio of the static to the dynamic strength of the cellular medium 

 
The HRL micro-lattice 
 
A cross-sectional area of pyramidal truss members 
L length of members 
R radius of members 
t thickness of members 
 included angle between member and base 
 



1. Introduction 
 
Concepts for protecting structures from impulsive loads are of current interest. The 
prototypical threat comprises a shock in air characterized by an overpressure p0 with 
associated impulse/area, I. For protection against the overpressure, an intervening 
medium is required that reduces the pressure from p0  to a level below a damage 

threshold, th . To achieve this, the medium must be capable of large volume decrease at 

constant pressure (Figure 1) [1, 2] (thereupon extending the impulse duration). Dense 
solids and fluids are not suitable because they are nearly incompressible. Appropriate 
materials include low-density cellular solids such as reticulated polymers [3], metal 
foams [1], pre-crushed honeycombs [3] and lattice solids [4], all with relative density, , 
in the 0.1-10% range and densification strains preferably exceeding 80%. Rectification is 
required by means of a planar buffer, mass/area mb , positioned to face the shock (with 
the compressible medium attached) [1, 2]. The buffer acquires a momentum per area, M, 
equal to the transmitted impulse per unit area, Itrans , with associated kinetic energy/area, 

KE  M 2 / 2mb  [1]. This kinetic energy must either be dissipated by plastic deformation 
or stored elastically in the medium. The research objective in this area is to seek a 
medium that dissipates this KE at lowest possible mass/area, while not transmitting a 
stress greater than th  —a design constraint dictated by the nature of the structure being 

protected.  We examine the potential of all known classes of cellular materials for 
attaining this objective and reveal a new regime wherein energy absorption per unit mass 
is maximized by using hollow micro-lattices, a consequence of their favorable 
topological characteristics. 
 
While cellular materials such as stochastic foams and honeycomb are readily available, 
fabrication of appropriate micro-lattice structures has been challenging.  As a 
consequence, experimental investigation of their energy absorption capability has been 
limited to solid truss geometries [5] or hollow-tube geometries [6] with discontinuous 
node connectivity. Recent developments have provided a new fabrication capability for 
realizing micro-lattices with unit cells in the 0.1 to > 10 mm range (Figure 2a) [7-9]. 
These structures have nearly-ideal, truss-like geometries with linear truss members, well 
connected nodes and smooth surfaces. Subsequent electro-deposition and removal of the 
base polymer allows conversion to metallic hollow tube geometries (Figure 2b). This 
method allows for relatively straightforward formation of ~1-2 cm thick structures.   
Herein, such media are referred to as HRL micro-lattices. Given the beneficial post-
buckling response of hollow (rather than solid) tubes [10-16], the ensuing energy 
absorption assessment emphasizes the attributes of hollow micro-truss lattices. 
 
For ranking micro-lattices relative to other cellular media, a set of metrics is required. 
These are presented in the next section. They are based on the minimum thickness of the 
cellular medium, hmin , needed to absorb the KE of the buffer which, in turn, dictates the 

minimum mass, mtotal
min , or volume Vtotal of the system. This assessment is followed by 

benchmark results for well-characterized conventional systems comprising foams and 
prismatic lattices, such as honeycombs [3]. Thereafter, the potential for superior 



performance is examined by analyzing the response of micro-lattices. While the 
assessment is strictly applicable to multilayer cellular media that experience layer-by-
layer sequential dynamic crushing, some of the energy absorption mechanisms are 
elucidated through simulations and measurements conducted on single layer micro-
lattices. 
 
2.  Metrics.  
 
The Minimum Thickness of the Cellular Medium. The objective is to provide an 
analysis of the dynamic crushing of a cellular medium attached to a buffer. The medium 
is presumed to deform with “ideal” mechanical response (Figures 1 and 3a), 
characterized by a constant unidirectional crushing stress,  pl , with strain at 

densification, D . The major features governing the minimum thickness of the cellular 
medium, hmin , are presented in detail in the Appendix and with two non-dimensional 
parameters governing the response: 
 

 Ratio of the mass of the cellular medium to that for the buffer, /s D bh m   , 

where h is the thickness of the crushable medium 

 Ratio of the static to the dynamic strength of the cellular medium,  
 plmb

2

M 2s
 

 
where s  is the density of the parent material and   the relative density of the cellular 
material.  Based on the analysis, two regimes have been ascertained based on  : 
regime I is essentially quasi-static while regime II is dynamic (Figure 4).  
 
Regime I: When   2 , shock effects in the medium are minimal, and the maximum 
dissipation/area is quasi-static, with U   plDh . Equating the dissipation to the kinetic 

energy gives the minimum thickness to arrest the buffer as: 
 

    hmin 
M 2

2mb plD

                                                             (1a) 

 
or, in terms of the foregoing non-dimensional parameters,  
 
                            min 1 / 2                                                                                      (1b) 
 
where min min /s D bh m   . 

 
Provided that the actual thickness, h, exceeds hmin , the pressure imparted to the structure 
does not exceed  pl . Accordingly, by choosing  pl  th  the structure is protected. When 

h  hmin , the medium densifies before the buffer arrests and much larger pressures are 
transmitted when the buffer “slaps” into the structure. In regime I, the minimum 



thickness decreases as the buffer mass/area increases (1a) leading to a minimum in the 
total mass, elaborated below. 
 
Regime II. When   2 , a shock develops in the medium. Because of the density and 
stress discontinuity across the shock, additional energy is absorbed [8, 9]. The minimum 
thickness (Figure 4) is smaller than that estimated by extrapolating from regime I and 
given by 
 

                        min  1 /                                                                                            (2a) 
 
or, in dimensional terms: 
 

                      hmin 
M

s plD

                                                                                     (2b) 

 
Now, the minimum thickness of the cellular medium is independent of the mass per unit 
area of the buffer as elaborated below and in the Appendix. 
 
The Minimum Mass for the System. The system mass is dependent on the impulse in 
accordance with the foregoing two regimes. In regime I, a minimum exists in the total 
(buffer and cellular medium) mass per area to mitigate the overpressure (Appendix) given 
by: 
   

                 

mtotal
min  M

2s

 plD

 M
2

Um

                                                                                          (3) 

                                                                                     
where Um  plD / s  is the quasi-static energy absorbed per unit mass of the cellular 

medium. At higher impulse levels, in regime II, the total mass is (Appendix) 
 

mtotal  mb  M 1 /Um                                                                                                     (4) 

 
While there is no minimum, if the buffer mass is selected to satisfy the inequality 
 

mb  ( 2 1)M 1 /Um                                                                                                    (5) 

the lowest weight system resides in regime II. Accordingly, maximizing Um  always 
minimizes the overall weight. This is achieved by selecting constituents with lowest 
possible density, configured within architectures that experience “ideal” plateau response 
up to large densification strains. 
 



Non-Ideal Crushing. Among the available cellular media, many compress with an initial 
peak,  peak , associated with member buckling, followed by an oscillating stress/strain 

response as the medium compresses (Figure 3b) [3]. This response is undesirable because 
the stress transmitted through the medium is  peak , while the dissipation occurs at a lower 

stress. Consequently, the objective is to seek media with lowest possible density, s , 
that compress to a large densification strain, D  without a significant initial peak.  
 
Media with Yield Governed Crushing. When members yield before buckling, the non-
dimensional dissipation/mass parameter that distinguishes the topology from the material 
properties is: 
 

 
Ums

Y


 pl

Y

.
D


                                                                                                     (6) 

 
with Y  the yield strength of the constituent material. The preferred topology is that 
providing the requisite  pl /Y  at the lowest relative density. Expressing the crushing 

strength through a generalized power law [3]; 
 
 pl /Y   n                                                                                                                 (7a) 

 
(with n between 1 and 2), the dissipation becomes 
 
 D

n1                                                                                                                    (7b) 
 
Thus, the smaller the exponent, n, the greater the energy absorbed/mass. This 
straightforward principle rationalizes the trends in energy absorption among different 
topologies. Note that, for lattice topologies with n=1,   is essentially independent of the 
relative density. 
 
By equating the loads required for elastic buckling and yielding, it has been demonstrated 
that truss-based cellular media are yield (rather than buckling) dominated at relative 
densities that approximately satisfy [3],  
 
  36Y

2                                                                                                                           (8) 
 
where Y is the yield strain for the constituent material. For metals (with Y  103 ) 

yielding invariably predominates. Moreover, even for polymers  (Y  102  101 ), only 
systems with exceptionally low  are buckling limited.  
 
3.  Benchmarks  
 
Stochastic media such as foams are relatively isotropic. Those whose cell walls yield by 
plastic bending before elastically buckling have a plateau stress that scales as [3]: 



 
  pl /Y  0.3 3/2                                                                                                            (9a) 

 
giving non-dimensional dissipation/mass:  
 
  0.31/2 (11.4) .                                                                                                     (9b) 
 
where we have taken 1 1.4D   . 

 
A cross plot of   against the non-dimensional transmitted stress,  pl /Y , characterizes 

all foams at all viable relative densities (Figure 5). Each   is represented by a single 
point on the curve, as indicated on the Figure.  
 
Prismatic systems are anisotropic. Honeycombs are illustrative. In the transverse 
orientation, the plateau stress is [3]: 
 
 pl /Y  0.52                                                                                                            (10a) 

 
such that (Figure 5) 
 
  0.5(11.4)                                                                                                        (10b) 
 
Relative to foams, because of the larger exponent n, the energy absorbed at specified 
transmitted stress is lower.  
 
In the axial direction, the peak stress is [3, 12]: 
 
 peak /Y  5.2 5 /3              (11) 

 
This peak is followed by oscillations at lower average stress,  peak , such that the energy 

absorption has the form: 
 
  5.2 2 /3(11.4)                                                                                                   (11d) 
 
Results for   1 / 3  are plotted on Figure 5. The extreme anisotropy limits the use of 
prismatic structures when off-axis loadings are likely. 
 
4. Analysis of Micro-Lattices. 
 
Configurations and Geometric Variables. The HRL micro-lattice (Figure 2a) consists of 
an ensemble of pyramidal truss members of radius R, wall thickness t, length L with an 
included angle,   600  (see Fig. 2), attached at the nodes. Because the response to 
compression is characterized by the post-buckling deformation, the following geometric 



parameters are important: (i) The aspect ratio A / L2  (with L the member length and A the 
cross-sectional area). (ii) The relative wall thickness, R/t. (iii) The orientation of the truss 
relative to the crush axis,  .  For a system with   600 , the relative density is given by 
 

2

16

3
where 2

A

L

A Rt








                                                                                                             (12) 

 
Methods and Preliminary Assessments: For tractability the analysis is restricted to a 
single layer lattice, with the understanding that the results can be used to predict the 
behavior of a multilayer by using a shock propagation analysis (Appendix). Several unit 
cell configurations and numerical techniques have been explored (Figure 6). Beam 
elements (Figure 6a) are unable to capture local plastic buckling (wrinkling). 
Consequently, unit cells with 3D shell elements (exemplified by the pyramidal truss 
Figure 6c) have been used, as well as a single member of the pyramid (Figure 6b) with 
symmetry boundary conditions. The commercial finite element code, ABAQUS/Explicit 
is used for the finite element simulations.  A convergence study shows a mesh of 5000 
3D shell elements (S4R, 64 (hoop) x 80 (axial)) for a single tube gives accurate results. 
 
The calculations are conducted for a material with properties resembling Al 7076 T6: 
albeit that the normalizations render universality. The material is assigned bilinear stress 
versus strain response, with moderate strain hardening (tangent modulus, ET / E  0.01 ), 

yield strain, Y  6x103  and Young’s modulus, E  70GPa . In all calculations the truss 
members are loaded in axial compression with fixed ends. The calculations are continued 
to large strains to capture densification. 
 
Eigenmodes. Before proceeding, an eigenvalue analysis has been used to delineate the 
buckling modes. The analysis is elastic. Its purpose is to reveal the various competing 
shapes of the plastic buckling modes and not provide an estimate of the load carrying 
capacity. Moreover, imperfections in the shape of these eigenmodes are introduced in the 
analysis to ensure that realistic load-deflection behavior is triggered. Three classifications 
emerge: (i) global buckling, (ii) axi-symmetric and (iii) non-axisymmetric local buckling 
(wrinkling).  These modes for the plastic buckling of tubes have previously been 
classified in accordance with the mechanism map depicted on Figure 7 [16]. 
 
Slender trusses:  characterized by A / L2  0.01, R/t=3 (for   900) and by  = 2%, 

A / L2  0.0015 , R/t = 5 (for   600). The lowest two eigenmodes involve global 
buckling (Figure 8a, Figure 9 top): followed by axi-symmetric local buckling (Tables 1 
and 2).  



 
 

A / L2  = 0.01, R/t = 3 Eigen 
modes 

mode  bk / E  

1 global buckling 0.071 
2 global buckling 0.109 
3 non-axisymmetric 

local buckling 
0.133 

4 non-axisymmetric 
local buckling 

0.163 

5 axisymmetric local 
buckling 

0.172 

6 axisymmetric local 
buckling 

0.177 

 
Table 1a.  Eigenvalues for o90  hollow trusses 
 
 

A / L2 = 0.05, R/t = 5  
Eigen 
modes mode 

 
 bk / E  

1 non-axisymmetric 
local buckling 

0.092 

2 non-axisymmetric 
local buckling 

0.104 

3 axisymmetric local 
buckling 

0.113 

4 non-axisymmetric 
local buckling 

0.130 

5 axisymmetric local 
buckling 

0.135 

6 non-axisymmetric 
local buckling 

0.160 

 
Table 1b.  Eigenvalues for o90   hollow trusses  



  
Table 2a.  Eigenvalues for the pyramidal unit cell  

 
 

Unit Cell 
 

 Single member Eigen 
Modes 

mode  bk / E  mode  bk / E 
1 global buckling 0.049 global buckling 0.049 
2 non-

axisymmetric 
local buckling 

0.060 non-
axisymmetric 
local buckling 

0.059 

3 non-
axisymmetric 
local buckling 

0.063 non-
axisymmetric 
local buckling 

0.064 

 
Table 2b.  Comparison of Unit Cell with Single Member,  = 5 % 
 
 
Stubby trusses: characterized by A / L2  0.05 , R/t = 5 (for   900), and  = 5% and  = 

10%, A / L2  0.0075 , R/t = 5 (for   600). The lowest two eigenmodes correspond to 
non-axi-symmetric local buckling, followed closely by axi-symmetric modes (Figure 8b, 
Figure 9 bottom). The lowest mode ascertained for the pyramidal cell (Figure 9) is 
consistent with that found upon testing a polymer micro-lattice (Figure 10). A 
comparison among the eigenmodes for the pyramidal truss unit cell and the single 
member (Figure 11) affirms that the buckling stresses and the modes are essentially the 
same.  
 
Imperfections. To obtain viable predictions of plastic buckling, imperfections must be 
incorporated. The procedure adopted is based on that previously used for predicting the 
buckling of sandwich panel cores [17]. The first thirty eigenmodes are ascertained and 
initial imperfections are introduced to ensure that both global and local buckling effects 
are captured. For most of the calculations presented below, the imperfections have 
amplitude 1/10th the shell thickness, max / 0.1w t   , where maxw  is the maximum 

imperfection amplitude. 
 

  = 2 %   = 10 % Eigen 
Modes mode  bk / E  mode  bk / E 

1 global buckling 0.023 non-axisymmetric 
local buckling 

0.062 

2 global buckling 0.041 non-axisymmetric 
local buckling 

0.066 

3 non-axisymmetric 
local buckling 

0.059 non-axisymmetric 
local buckling 

0.071 



Basis for Assessment. Extensive work on the energy absorption capabilities of cylindrical 
metal tubes in the post-buckling range has been reported [10-15] with application to 
automotive crashworthiness.  The relevance of this prior work to the lattice cores is 
limited because, in the HRL lattice, most core members are not aligned perpendicular to 
the crush direction. Depending on stubbiness and R / t , core members display axial 
modes in the early stages of buckling (not unlike that experienced by a tube designed for 
energy absorption in normal crush) but this mode inevitably gives way to lateral buckling 
[16]. Design of the core members to sustain energy absorption capabilities during lateral 
buckling is central to the identification of effective micro-truss structures.  
 
Truss Deformations:   900 . The stress/strain curves have the general form depicted on 
Figure 12, comprising four primary phenomena, consistent with prior assessments [16].  
 
(i) The members yield at stress,  
 
 / Y  1.                                                                                                                    (13) 
 
(ii) Strain hardening ensues followed by the onset of plastic buckling. The peak in non-
dimensional stress is slightly larger than unity:  peak / Y  1.2 . 

(iii) Plastic buckling is followed by softening at rate d / d  that depends sensitively on 
the slenderness. 
(iv) For stubbier members, contact occurs at intermediate strain levels, as the tube 
crushes, causing a rise in the stress.  
(v) Once the system begins to densify, an effective densification strain, D , is reached 
(Figure 3b).  
 
Calculations have been conducted for slenderness in the range, 0.0015  A / L2  0.01, 
wall thickness, 3  R / t  10 , and imperfection amplitudes 0    0.2 . A basic set of 
results is presented on Figures 13 and 14. The effects of the wall thickness, R/t, and of the 
imperfection amplitude are quite small over the range assessed. Conversely, slenderness 
substantially affects the response. The differing effects are evident in the deformations, in 
conjunction with the associated stress/strain curves. When the members are relatively 
stubby (Figure 13), a short wavelength shell mode is induced. The ensuing wrinkles 
have a characteristic wavelength smaller than the tube diameter, so that several occur 
over the length. Absent imperfections, axi-symmetric modes prevail (Figures 13a and 
13b), but become non-axi-symmetric when imperfections are introduced (Figures 13c and 
13d). These buckles develop by circumferential plastic stretching, dissipating substantial 
energy, and resulting in low softening rates. The softening is somewhat imperfection 
dependent because the non-axi-symmeteric modes reduce the requirement for plastic 
stretching, increasing the softening rate.  The more slender tubes experience global 
buckling over the range of wall thickness and imperfections examined (Figure 14). The 
associated large-scale bending leads to rapid softening. The stresses rise again only when 
contact begins, at strains of order 70%. 
 



The forgoing stress/strain curves have been converted into estimates of the energy 
absorbed per unit mass, by ascertaining the areas under the curves, in the manner 
depicted on Figure 3. The results are superimposed on Figure 5. The energies are 
essentially invariant with the transmitted stress, for the reason anticipated by (7b): 
namely, for these lattices, the peak stress sales linearly with the relative density. Note 
that, in the absence of softening after plastic buckling, (7b) and (13) give the upper 
bound: 
 
  D  0.8                                                                                                                    (14)  
 
Truss Deformations:   600 . The general stress/strain response is similar to that for the 
slender members at   900 . The principal difference is that the initial peak occurs at a 
lower axial stress,  peak / Y  0.75 , with minimal strain hardening (Figure 15). The 

subsequent softening is quite extensive, and a strong function of the relative density 
(Figure 15), as well as the wall thickness. The deformation patterns at low relative 
density (  2% ), for imperfection amplitude (ratio of amplitude to shell thickness), 

  0.1, reveal the factors that govern the response (Figure 16). Initially, the columns 
yield uniformly. Then, at strains of ~5%, just beyond the stress peak, the members buckle 
in accordance with eigenmode 1 (Figure 9). Upon further straining, lateral buckling 
occurs and kinks form at the region of highest curvature, resulting in rapid softening. In 
some cases, at strains of order 50-60%, the kinked regions make contact causing a small 
elevation in the stress. The softening rate diminishes appreciably as the relative density of 
the tubes increases (Figure 15), because the mode changes from global buckling at low   
to local buckling at higher   (Figure 9). The energy absorbed per mass is plotted on 
Figure 5 as a function of the relative density. Now, unlike the 900 response, the energy 
absorbed becomes   dependent, because of the associated change in buckling mode.  
 
Rate Effects: To assess the influence of inertial stabilization [17], the foregoing 
calculations have been repeated for compaction velocities of 100m/s. Results obtained for 
slender 900 members highlight the primary effect (Figure 17). Namely, global buckling is 
suppressed and replaced by wrinkling. The consequent energy absorption is thereby 
increased, as plotted on Figure 5. There is a caveat regarding the overall energy 
absorption in a multilayer lattice. That is, the energy elevation is a part of the extra 
dissipation at the shock front (Figure 4, Appendix) and should not be viewed as an 
additional contribution. Further evaluation of these dynamic phenomena will be 
addressed in continuing assessments. 
 
 
5. Experimental Methods and Measurements 
 
Polymer micro-lattice template fabrication:  Basic polymer micro-lattices were fabricated 
from an interconnected pattern of self-propagating photopolymer waveguides [7-9].  A 
mask with a square pattern of circular apertures was placed over the photo-monomer and 
exposed to four collimated beams, generated from a mercury arc lamp.  Each collimated 



beam had a 40° incident angle, rotated 90° about the normal. A pyramidal unit cell was 
formed by choosing a depth of photomonomer coincident with the first nodal point.   
 
Hollow Ni micro-lattice fabrication: The polymer micro-lattices were used as direct 
templates for electro-deposition of Ni. Initially, a conductive seed layer (~200Å Ti 
followed by ~ 2000Å Au) was deposited by using an evaporator. The Ni was then 
electrodeposited within a commercial electroforming solution. A platinum/rhodium wire, 
threaded on the outer edge, formed the electrode connection.  The plating was performed 
at 50°C and ~8.5 mA/cm2. To achieve different coating thicknesses, two different 
samples were plated for 6 and 12h, respectively. After electro-deposition, the top and 
bottom surfaces were removed to expose the underlying polymer at each node, as well as 
along the outer edges in contact with the electrode wire. The polymer was chemically 
etched in a base solution (3M NaOH at 60C), creating the hollow tube Ni micro-lattice 
samples used for the mechanical measurements.  
 
Base properties of electroformed Ni: The Ni used for fabricating the lattices had a density of 
8.9g/cc. Nano-hardness tests conducted on the walls gave a Young’s modulus, 
E=200GPa. Micro-hardness measurements gave an inferred yield strength, 
Y  300MPa .  
 
Compression Measurements. Based on their mass and dimensions, samples plated for 6 
and 12h had relative density,   0.007  and   0.014 , respectively. The top and bottom 
surfaces were bonded to thick steel face-sheets using a fast-setting epoxy to constrain the 
nodes from lateral displacement. Quasi-static compression tests were conducted using an 
MTS hydraulic load frame at a strain rate of 7x10-4 s-1. The compressive stress-strain 
responses for the two hollow Ni micro-lattice samples are shown in Figure 18, indicating 
behavior similar to that presented on Figure 3b: comprising an initial stress peak, 
followed by stress oscillations prior to densification at D  0.8 . Based in the preceding 
estimate of the yield strength and of the relative densities, the stress peak occurs at, 
 peak / Y  1.2 , slightly larger (by 20 to 30%) than that predicted by the simulations. 

More significantly, the softening rate beyond the peak is much less severe than in the 
simulations, at the equivalent relative density. The consequence is that the energy 
absorbed/mass,   1(beyond the scale of Figure 5), is about a factor 2 larger than that 
determined by simulation at the equivalent transmitted stress,  tr /Y  102 (  0.4 ). 
The implication is that the actual lattices have plastic dissipation mechanisms not 
elucidated in the simulations. To search for possibilities, partially compressed lattices 
have been imaged (Figure 19). The images reveal that, while some members exhibit 
lateral buckling modes similar to predictions, a complementary local mode develops at 
some of the nodes. The associated local wrinkling is similar to the concertina mode 
identified in an earlier study [16] but remains to be understood. It is tentatively attributed 
to a larger R/t at the nodes. Given the implications for much greater energy absorption, 
this mode will be emphasized future assessments.  
 
 
 



6.  Concluding remarks 
 
Through a combination of simulations and experiments a metallic hollow wall micro-
lattice has been identified that absorbs an unusually large energy per unit mass. The 
energy absorption is governed by the plastic deformations that occur subsequent to plastic 
buckling. In the simulations, conducted with walls of uniform thickness, the lattice 
members exhibit lateral buckling and kinking, with ensuing (relatively) rapid softening.  
Nevertheless, relative to other cellular media having isotropic response, such as foams, 
the hollow wall micro-lattices absorb more than twice the energy per unit mass. More 
dramatically, experimental measurements performed on such lattices exhibit yet larger 
energy absorption than the simulated lattices, by another factor of two (more than 4 to 5 
times that for foams). Preliminary observations performed on the compressed lattices 
indicate a local wrinkling mode in the vicinity of the nodes where R/t is larger. The 
associated concertina mode is surmised to be the source of the extra energy absorption. 
This exciting new development is the subject of ongoing research. 

 
Appendix: Analysis of shock effects and design metrics 
 
We seek to determine the minimum thickness minhh   of a multilayer cellular medium 

needed to dissipate the kinetic energy 2
0)2/1( vmb  of the buffer. The medium has initial 

density   and the compressive stress/strain characteristic (under uniaxial straining) as 

sketched in Fig. A1a:  with a constant plateau stress pl  and a nominal densification strain 

D . A plastic shock enters the medium from the impact face and travels at a speed )(tc . 

The incident portion, downstream of the shock, attains a velocity  tv  (Fig. A1b).  The 
distal portion, upstream, is at rest.  At any instant, the medium is non-deforming except for 
a jump in compressive strain (magnitude D ) across the shock. After time t, the shock has 
traveled distance s , as measured in the un-deformed configuration. We proceed to analyze 
the shock employing a Lagrangian framework wherein all velocities and accelerations are 
measured with respect to a stationary reference frame. For this one-dimensional situation 
(with zero plastic Poisson ratio), the Cauchy and nominal stresses are identical and the 
equation of motion is: 

2

2

t

u

X 




 

      (A. 1) 

 
where X is the position of material point in the un-deformed configuration, u is 
displacement, and   the stress.  Integrating (A. 1) over the range sX 0  and noting 
that the medium (and buffer) are rigid, gives the acceleration v  downstream of the shock 
as: 
     
                                              db vsm   )(      (A. 2) 

 
Immediately upstream the stress is pl . Momentum conservation across the shock 

dictates that [10] 



     cvpld       (A. 3) 

 
Furthermore, mass conservation implies that [10] 
 
     s  c  v / D      (A. 4) 
 
Combining (A. 2) to (A. 4) gives the overall governing ODE for the deformation as 
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The initial conditions are 0s  and Dvs /0  at time 0t .  When the deformation 

arrests, at time, plMt / , then finalss   and we define min finalh s . 

 
The non-dimensional groups are 
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Substituting into (A. 5), the governing ODE becomes 
     
                                            2 2/ / Ds s s s                      (A. 7a) 

 
with initial conditions, 0s  and s  1 / D  at 0t . One of the associated non-
dimensional parameters is the mass ratio for the cellular medium to the buffer  

   
bm

h
        (A. 7b) 

while the other is the ratio of the static to dynamic strength of the medium 
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       (A. 7c) 

The response is completely specified given the non-dimensional quantities,  ,   and 
D . We iteratively solve (A. 7) for min  such that 1s , when s  first attains zero. The 
numerical values are plotted on Fig.4 as a function of  . Two regimes emerge. 
 
Regime I (  1):  wherein Eq. (A. 7) can be approximated as 
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                 (A. 8a) 

 
This ODE can be solved analytically (with the foregoing initial conditions) to obtain  
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Enforcing the condition that 1s when 0s , we obtain 
     
                                               min  1 / 2       (A. 8c) 
 
or, equivalently 

    

Dbpl m

M
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2

2
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In this regime the buffer is much heaver than the cellular medium, whereupon inertial 
effects can be neglected and the quasi-static energy balance equation holds: 
 
     plDhmin  (1 / 2)mbv0

2                  (A. 9) 

 
The minimum medium thickness decreases with increasing mass bm  of the buffer 

because the kinetic energy it acquires varies as, M 2 / 2mb . 
 
Regime II (  1): wherein Eq. (A. 7) can be approximated as 
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2
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with initial conditions s 1 /  and  s  1 / D at 0t . These modified initial conditions 

ensure that, 
s  ( / D

2 )  1  at 0t , consistent with Eq. (A. 7).  Again, Eq. (A. 10) 

can be solved analytically to give  
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Substituting the condition that, when 0s , 1s  we obtain 
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1
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Recalling that this solution only holds for 1  , it is sufficient to approximate as 
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or equivalently 

    hmin 
M

 plD

              (A. 13b) 

 
In this regime the buffer has lower weight than the cellular medium, whereupon inertial 
effects are significant. The energy absorbed significantly exceeds the quasi-static 
dissipation. This extra dissipation can be traced to the very high strain rates across the 
shock that give rise to, among other things: changes in the collapse mode of the 
individual cells, inertial stabilization of the struts, a change in the collapse mode from 
bending/buckling to axial stretching of the struts. 
 
Equations (A. 3) and (A. 4) together specify that 
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    (A. 14) 

Thus, the ratio   of the energy absorption under dynamic and quasi-static ( 00 v ) 

conditions is 
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2
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                (A. 15) 

Namely, the energy absorption increases quadratic ally with increasing 0v . A 

consequence is that, unlike regime I, minh  is independent of bm , because the increased 

energy absorption compensates for the increased kinetic energy of the buffer. 
 
The asymptotic solutions, included in Fig.4, affirm that Eqs. (A. 8c) and (A. 13a) are a 
good approximation for the full numerical solution in the ranges, 2min   and 

2min  .   
 
Optimization of the protection system. It is of interest to minimize either the mass or 
volume of the entire protection system comprising the cellular medium and buffer. For 
this purpose, the buffer mass/thickness is treated as the free variable and we employ the 
analytical solutions for minh . 
 
Minimum mass systems. The total mass/area of the protection system is 
      
                                                     mtotal  mb  hmin             (A. 16) 
 
Regime I:  Substituting for minh  from Eq. (A. 8d) we obtain 

    mtotal  mb 
M 2

2 plmbD

           (A. 17) 

Minimizing mtotal  with respect to bm , gives the minimum mass of the total system as 

    mtotal
min  M

2
 plD

            (A. 18) 



with 1min   at the optimum.  Recall that this regime applies when 2min  . 
 
Regime II:  Substituting for minh  from Eq. (14b) we obtain 

    mtotal  mb  M


 plD

               (A. 19) 

As minh  is independent of bm , there is no minimum for mtotal .  Recalling that Eq. (A. 13) 

is only valid for 2min  , gives the restriction that bm  satisfy 
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To ensure that the minimum mass solutions are lighter than those for regime I we restrict 
solutions to the range 
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Whereupon, the overall minimum mass solution always lies in regime II and given by Eq. 
(A. 19) with bm  specified by Eq. (A. 21). 

 
Minimum volume systems. In some applications it may be necessary to minimize the 
volume of the protection system. The volume/area (or equivalently, the thickness) is 
given by  

    Vtotal 
mb

b

 hmin                          (A. 22) 

where b  is the density of the buffer material.  We minimize Vtotal  with respect to bm . 

 
Regime I:  Substituting for minh  from Eq. (10b) we obtain 
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M 2

2 plmbD

              (A. 23) 

Minimizing Vtotal  with respect to bm  gives the minimum volume as 

    Vtotal
min  M

2
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                        (A. 24a) 

with  
                            min   / b                (A. 24b) 
 
Thus, the minimum volume solution is only valid for the choice, b /   2 . This, 
constraint is practical, as we anticipate the density of most buffer plate materials to be 
more than twice that of the backing foam. 
 
Regime II:  In this regime the volume of the protection system is given by 
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25) 
Since minh  is independent of bm , there is no minimum for Vtotal . 

 
The global minimum must ensure that the minimum Vtotal  is less than or equal to the 
volume specified by Eq. (A. 24a), giving the additional constraint 
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Combining with Eqn (A. 20) gives the constraints on bm  as 
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However, in most cases, it is impractical to obtain a material combination with  2b . 

Accordingly, we anticipate that practical designs will lie in regime I, given by Eq. (A. 24) 
 
Choice of material. The mass of the protection system is minimized by choosing a 
cellular medium that maximizes its quasi-static energy absorption/mass, 
Um  ( plD ) /  , with no constraint on the choice of the buffer material.  The volume of 

the protection system is minimized by choosing a cellular medium that maximizes its 
quasi-static energy absorption/volume ( Dp  / ) and choosing a dense buffer material 

(high b).  
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Figure 1. A schematic showing the impulse from an air blast impinging on a cellular 
medium attached to a solid buffer used for rectification. Also shown is the compression of 
the cellular medium in response to the KE imparted to the buffer and the simplified form 
of the stress/strain response[2].  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 (a). An image of an HRL micro-lattice. (b) An image of a hollow truss Ni micro-
lattice. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Response of cellular solids to compression. (Top) “Ideal” behavior found in 
some foams. (Bottom) Actual behavior found in lattice solids and prismatic systems. 
 

 
 
 
 
 
Figure 4. The minimum thickness of a cellular medium needed to absorb the KE from an 
impulse. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Relationships between the energy absorbed/mass as a function of the stress 
transmitted through the medium: presented in a non-dimensional form that distinguishes 
the effects of topology from the influence of material properties. (Top) Comparison 
between hollow truss microlattices and conventional cellular media. (Bottom).  Results 
for a range of solid and hollow truss lattices: both quasi-static and dynamic. For all the 
hollow truss, R/t = 5.  
 
 
 
 
 
 
 



 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Finite element schemes: (a) beam elements for 4 by 2 cells, (b) 3D shell elements, 
pyramidal truss unit cell, (c) 3D shell elements, single member 1/4 cell. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 7. Failure mechanism map for hollow 900 lattice members tested in compression 
[16]. 



 
Figure 8 The six Eigenmodes with lowest buckling stress for the 900 hollow tube.  The stresses 

are given in table I. (Top) Slender members, A / L2  1% , R/t =3: The two lowest modes refer to 
global buckling. The other four are for local buckling in axi-symmetric and non-axisymmetric 

modes. (Bottom) Stubby members A / L2  5%  R/t=5: all modes involve local buckling.  

 
 

Figure 9. Three lowest Eigenmodes for the pyramidal truss unit cell with R/t=5. The 
corresponding buckling stresses are summarized on table 2. (Top) Low relative density, 

%2 . The lowest two coincide with global buckling, while the third involves non-

axisymmetric local buckling. (Bottom) Higher relative density,   10 % : all three modes 

are local.  

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. The buckling mode for a polymer micro-lattice, showing the correspondence with the 
first mode depicted on figures 9 and 11. 
 

 
 
 

Figure 11. The close correspondence between the Eigenmodes for the pyramidal truss unit 
cell (top) and a single member subject to symmetry boundary conditions (bottom): relative 
density   5 % , R/t=5.   
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Figure 12. A representative stress/strain curve found for hollow truss micro-lattices with 
900 truss orientation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13. Stress/strain response and deformation characteristics for a stubby 900 hollow 
tube, comparing a case without imperfections,   0  (upper left columns, a, b) to a case 

incorporating imperfections (upper right columns, c, d) with amplitude,   0.1 

(described in the text): R/t=5, A / L2  5% . The letters on the lower plots refer to the 
deformation responses shown on the upper figure. Note the circumferential plastic stretch 
at the location of the local buckles. Columns (a and c) show the deformations of the full 
tube.  Columns (b and d) show mid-plane sections through the tube that reveal additional 
detail. 



 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14. Stress/strain response and deformation characteristics for a slender 900 
hollow tube for a case incorporating imperfections with amplitude,   0.1 (described in 

the text): R/t=5, A / L2  1%  
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15. Effects of relative density on the stress/strain response of a 600 pyramidal 
hollow truss lattice: R/t=10. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16. Stress/strain response and deformation characteristics for a slender 600 
hollow micro-lattice for a case incorporating imperfections with amplitude,   0.1: 
R/t=5,   5% . The upper left figures (a) show the deformations of the full tube.  The 
upper right figures (b) show mid-plane sections through the tube that reveal additional 
detail. 



 
 
 

 
 
 
 
Figure 17. Response of a slender 900 hollow truss to compression at 100m/s. Note the 
absence of global buckling because of the inertial stabilization. The left figures show the 
deformations of the full tube.  The right figures show mid-plane sections through the tube 
that reveal additional detail. 
 
 
 



 
 
Figure 18. Experimental measurements for a Ni hollow truss micro-lattice (figure 2b) 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 19. The deformation modes in the Ni hollow truss micro-lattice at 20% 
compression. (Left) Some members exhibit lateral buckling in the manner predicted by 
the simulations (figure 16). (Right) Other members exhibit a concertina-wrinkling mode 
at the nodes but otherwise remain straight. This mode is attributed to a larger R/t near 
the nodes and is suspected as the source of the substantial extra energy dissipation. 
 
 
 
 
 
 
 
 

Relative density, 1.4%  

Hollow Ni Micro-lattice 

Relative density, 0.7%  

1 mm



 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure A1. (a) The stress/strain curve for the cellular medium. (b). The material 
state upstream and downstream from the shock front. 
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