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We address the problem that occurs when inferences about counterfactuals—predictions,
“what-if” questions, and causal effects—are attempted far from the available data. The
danger of these extreme counterfactuals is that substantive conclusions drawn from statis-
tical models that fit the data well turn out to be based largely on speculation hidden in
convenient modeling assumptions that few would be willing to defend. Yet existing statistical
strategies provide few reliable means of identifying extreme counterfactuals. We offer a proof
that inferences farther from the data allow more model dependence and then develop easy-
to-apply methods to evaluate how model dependent our answers would be to specified
counterfactuals. These methods require neither sensitivity testing over specified classes of
models nor evaluating any specific modeling assumptions. If an analysis fails the simple
tests we offer, then we know that substantive results are sensitive to at least some modeling
choices that are not based on empirical evidence. Free software that accompanies this
article implements all the methods developed.

1 Introduction

As recently as a half decade ago, most quantitative political scientists were still presenting
statistical results in tables of hard-to-decipher coefficients from logit, probit, event count,
duration, and other analyses. These and other models are still in widespread use, but most
authors now also compute and present quantities of genuine interest from these models,
such as predicted values, expected counts, first differences, causal effects, risk ratios, etc.

Authors’ note: Easy-to-use software to implement the methods introduced here, called “Whatlf: Software for
Evaluating Counterfactuals,” is available at http://GKing.Harvard.Edu/whatif. At the encouragement of the
editors, we wrote a companion piece that overlaps this article; it excludes the mathematical proofs and other
technical material and has less general notation, but it includes additional examples and more pedagogically
oriented material. See “When Can History Be Our Guide? The Pitfalls of Counterfactual Inference,” Interna-
tional Studies Quarterly, forthcoming (available at http://GKing.Harvard.edu/files/abs/counterf-abs.shtml).
Thanks to Jim Alt, Scott Ashworth, Neal Beck, Jack Goldstone, Craig Gotsman, Sander Greenland, Kosuke
Imai, Orit Kedar, Walter Mebane, Joe Mitchell, Maurizio Pisati, Kevin Quinn, Jas Sekhon, and Simon Jackman
for helpful discussions, and to the National Institutes of Aging (PO1AG17625-01), the National Science Foun-
dation (SES-0318275, 11S-9874747), and the Weatherhead Initiative for research support.
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Whether such effects are calculated via analytical derivation or what is now the more
common approach of statistical simulation (King et al. 2000), political scientists have
made much progress in learning how to make sophisticated methods speak directly to their
substantive research questions. Although this represents considerable progress in reducing
the barriers between technique and substance, we address here a crucial remaining dis-
connect, one that threatens to undermine the validity of a considerable body of important
research. This is the problem of extreme counterfactuals—predictions, what-if questions,
and causal inferences that are so far from the data that inferences wind up being drawn on
the basis of minor model specification choices no one would like to defend, rather than
empirical evidence. The result in these situations is such a high degree of model depen-
dence, even among models that fit well, that, unbeknownst to the authors or readers,
analyses can turn out to be theoretical exercises masquerading as empirical estimation.

For example, with a sample of U.S. time series data, we could reasonably ask how much
U.S. presidential approval would drop if inflation increased by 2 percentage points, and we
could generate a fairly certain answer. However, to take an absurdly extreme alternative for
the sake of clarity, we should not expect to get a precise empirically based answer from the
same data, given any model, if we asked how much approval would drop if inflation
increased by 200 percentage points. Any good data analyst would know not to ask this
question of the available U.S. data, but exactly what is the principle underlying this de-
cision and how can we learn how to apply the principle in cases where the counterfactual is
not so absurdly far from the data? Is it reasonable to ask of the same data what would
happen to approval if inflation today increased to 10%? 20%? 30%? Where is the cutoff?

The problem with extreme counterfactuals is that whatever statistical model we used to
compute the 2% counterfactual inference could also be used to compute the 200% one.
Our confidence interval for counterfactuals farther from the data are wider, but the in-
ference may be considerably more uncertain than the confidence interval indicates. The
confidence interval is not wrong: if the other assumptions of the model are correct, it
accurately portrays the uncertainties, conditional on the model. The problem is that we
have little reason to assume the model is right when the counterfactual is so far from the
data. In other words, the 200% inference is far more model dependent than the first.
Figure 1 illustrates this, where two alternative models, a linear and a quadratic model,
are not distinguishable within the range of the data, but the quadratic falls far outside the
confidence intervals of the linear model for counterfactuals (i.e., values of X) farther from
the data. Thus, if the true data-generating process at a location far from the observed data is
actually quadratic, the linear model’s prediction would be far from the truth, and even the
wide confidence interval would not contain the true value.

The key question, however, is how to tell how model dependent inferences are when the
counterfactual is not so obviously extreme or when it involves more than one explanatory
variable. Extreme counterfactuals are not always easy to spot, especially given the rela-
tively few quantitative approaches to this problem. The answer to this question does not
come from the model-based quantities we normally compute, such as standard errors,
confidence intervals, coefficients, likelihood ratios, predicted values, test statistics, first
differences, p values, etc. To understand how far from the facts are our counterfactual
inferences, and thus how model dependent are our inferences, we need to look elsewhere.
At present, scholars study model dependence primarily via sensitivity analyses: changing
the model and assessing how much conclusions change. If the changes are substantively
large for models in a particular class, then inferences are deemed model dependent and
thus unreliable. This is a fine approach, but it is insufficient in circumstances where the
class of possible models cannot be easily formalized and identified or where the models
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Fig. 1 Model dependence with good in-sample fit.

within a particular class cannot feasibly be enumerated and run, i.e., most of the time. In
practice, the class of models chosen are those that are convenient—such as those with
different control variables under the same functional form. Moreover, the identified class
of models normally excludes at least some models that have a reasonable probability of
returning different substantive conclusions. Most often, this approach is skipped entirely.

We provide several easy-to-apply methods that reveal the degree of model dependence,
without having to run all the models. The methods apply to the class of nearly all models,
whether or not they are formalized, enumerated, and run, and for the class of all possible
dependent variables, conditional only on the choice of a set of explanatory variables. If an
analysis fails our tests then we know it will fail a sensitivity test too, but without being in
the impossible position of having to run all possible models to find out.

Section 2 shows more specifically how to identify questions about the future and
“what-if” scenarios that cannot be answered well in given data sets. This section introduces
several approaches for assessing how based in factual evidence is a given counterfactual. It
also proves formally, apparently for the first time, that inferences about counterfactuals
farther from the data are more model dependent. In addition, via a solution to a difficult
problem in computational geometry, we are able, also apparently for the first time, to make
practical the use of what was a computationally infeasible but conceptually intuitive and
widely recognized criterion for identifying counterfactuals that are “too far” from the data.

Section 3 discusses the connection between using extreme counterfactuals in prediction
and what-if questions, and that in causal inferences. It also provides a new decomposition
of the bias in estimating causal effects using observational data more suited to the prob-
lems most prevalent in political science than the best available decomposition in the
literature. This decomposition enables us to identify causal questions without good causal
answers in given data sets and shows how to narrow these questions in some cases to those
that can be answered more decisively. We also show how the new results introduced in
section 2 are useful for identifying which counterfactuals in causal inference will be model
dependent and thus not sufficiently based on the evidence to draw reasonably valid con-
clusions, something to which existing approaches, most based on the propensity score, are
not well suited.
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2 Forecasts and ‘“What-If”” Questions

Although statistical technology sometimes differs for making forecasts and estimating the
answers to what-if questions (e.g., Gelman and King 1994), the logic is sufficiently similar
that we consider them together here. In regression-type models, including least squares,
logit, probit, event counts, duration models, and most others used in the social sciences, we
usually compute forecasts and answers to what-if questions using the model-based con-
ditional expected value of ¥, the dependent variable, given a chosen vector of values x of
the explanatory variables, X." (Thus x is the same dimensions as a row of X.) The model
typically includes a specification for (i.e., assumption about) the conditional expectation
function (CEF):

E(Y | X) =g(X,B), (1)

where g(-) is some specified parametric functional form and B is a vector of parameters to
be estimated. To make a forecast, we plug the specified vector of values x, and the point
estimate of P, which we denote B, into this CEF and compute the estimated CEF or
predicted value:

E(Y | x) = g(x, B). (2)

The estimated CEF for the familiar linear regression model, for example, is
xP =B+ Px1 + - + Brx; the logit model is [1 +¢#]7'; the exponential duration
model is e=*P; count models are usually specified as e'P, etc.?

Interestingly, each of these CEFs can be computed for any (real) values of x. The model
never complains, and exactly the same calculation can be applied for any value of x.
However, even if the model fits the data we have in our sample well, a vector x far from
any rows in the matrix X is not likely to produce accurate forecasts. If a linear model
indicates that one more year of education will earn you an extra $1,000 in annual income,
the model also implies that 10 more years of education will get you $10,000 in extra annual
income. In fact, it also says that 50 years more of education will raise your salary by
$50,000. At 50 years of education, the counterfactual is so far from the data that it is
downright silly. But somewhere past one year, but well before the question becomes
obviously silly, comes a distance from the data at which inferences become sufficiently
model dependent that conclusions become based more on small modeling assumptions
than on the data. This article is devoted to understanding this gradation. The key is that
even though no statistical assumption may be violated as a result of the choice of any set of
real numbers for x, the model obviously produces better forecasts (and what-if evaluations)
for some values of x than others, but no measure produced by standard statistics packages
helps guide research in choosing reasonable counterfactuals. Predictive confidence inter-
vals for forecasts farther from the data are usually larger, but confidence intervals com-
puted in the usual way still assume the veracity of the model no matter how far the
counterfactual is from the data.

'For notational convenience we also use ¥ and X to denote the observed data matrix of the dependent and
explanatory variables when the context is clear.

*More generally, we are interested in the full conditional density, P(Y |x)=[P(Y |x,B)P(B|Y)dB. All our
methods apply in this situation as well, but for expository purposes we continue to focus on the CEF in
Eq. (1). Eq. (2) is included only to fix ideas, since our methods do not require an estimate of the CEF or
a specification of the model. Normally a better way of computing the estimated CEF recognizes the uncertainty

in B:E(Y | x):‘['g(x,[g)P(B)dB, where P(ﬁ) is the posterior density of B.
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A key point is that more careful model choice will not help here, since far away from
the observed data we simply have no empirical evidence to test or with which to compare
models. Other models will not do verifiably better with the same data, and evaluating the
evidence to see which model, among those that fit, is “better” cannot help with a counter-
factual not near the data being used for evaluation. So searching for a better model, without
better data, better theory, or a different counterfactual question, in this case is simply futile.
We merely need to recognize that some questions cannot be answered from some data sets.
Our linearity (or other functional form assumptions) are written globally—for any value of
x—but in fact are verifiable only locally—in or near our observed data. In this article, we
seek to provide some tools to help ascertain where “local” ends and “global” begins. For
forecasting and analyzing what-if questions, our task comes down to seeing how “far” the
point x is from the observed data matrix X.

2.1 Model Dependence as a Function of Distance from the Data

Before turning to the tools, we prove formally in this section that counterfactual inferences
farther from the data are more model dependent. In our proof we do not assume knowledge
of specific functional forms, models, estimators, or dependent variables, or a specific
definition of “distance” from the data. We do make assumptions, but it turns out that
much less restrictive assumptions are sufficient.

To put model-based inferences in context, consider first a model-free inference. When
many rows of X contain replicas of the exact posited counterfactual question, x, model-free
inference is possible. To estimate the CEF E(Y | X = x) at the point x, in this situation, we
simply take the average of the observed Y values among observations for which X = x.
If other standard assumptions are met, then no assumption about the functional form is
required and model dependence is not a risk.

In most situations, however, the data X contain no values (or too few values) that
correspond exactly to the counterfactual x. Finding a country just like the United States
in all measured respects except with very low GDP or observing presidential approval for
a year that has not yet occurred are simple examples of such counterfactuals. In these
situations, inference is made possible via modeling assumptions, so model dependence
then becomes a risk. Indeed, if we make no assumptions at all about the true CEF, then
except in special cases learning about counterfactuals other than those that are coincident
with the data points X (the “factuals”) is impossible.

For simplicity in this section, we define model dependence at point x as the difference,
or distance, between the predicted outcome values from any two plausible alternative
models. (One model might be logit and the other probit, or one linear the other quadratic,
etc.) By “plausible” alternative models, we mean models that fit the data reasonably well
and, in particular, they fit about equally well around either the “center” of the data (such as
a multivariate mean or median) or the center of a sufficiently large cluster of data nearest
the counterfactual x of interest. It is easy to generate model dependence when the model
does not even fit the data, but this is easy to avoid, as many current data analysis techniques
are designed to detect and correct poorly fitting models.

Predictions are typically obtained by evaluating the conditional expectation functions
of the two models, g;(x) and g-(x), at x. Model dependence at point x is thus the distance
from g;(x) to g-(x), or the norm ||g1(x) — g>(x)|| (which is the distance from the vector to 0).
We do not restrict the types of distance measures in the proof. It could be defined simply as
the absolute or Euclidean distance between the two, but any other distance measures
suitable for a given application would work too. In all cases, of course, the distance
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induced by the normed space is greater than or equal to zero, is exactly zero only when
g1(x) = g»(x), and has the other mathematical properties that qualify it as a proper distance
(including symmetry and the triangle inequality).

Denoting X* as a location in the data that represents the center of the entire data set or
a sufficiently large portion of the data near our counterfactual, our assumption is that the
two functions evaluated at this point give about the same value for the CEF:

181 (X*) — g2(X*)[| ~ 0. (3)

Our assumption is not restrictive. We do not assume that either of the functional forms
fit well by any absolute standard, but only that neither fits much better than the other where
data are plenty.

To prove that model dependence is a function of distance from the data (in the specific
sense that its lowest, or “sharpest,” upper bound available is a function of the distance from
the data), we make only one other assumption, that the conditional expectation functions of
alternative models behave reasonably well in the sense of satisfying a strong continuity
condition named the Lipschitz condition, on a convex set containing both the observed data
X and the counterfactual x, so that for any two points on this set, and in particular x and X*,

lg1(x) = g1 (X*)[| < L[ — X*] (4)

182(x) — g2(X*)[| < Lallx — X*|| (5)

where L and L, are finite positive constants. This is a quite weak assumption, which requires
continuity plus bounded slopes. Thus it rules out discontinuous functions such as step func-
tions (but not when the discontinuity is coded in the explanatory variables) and func-
tions that veer off to infinity between two points a finite difference apart, but it easily
includes the vast majority of the functional forms regularly specified in the journals through-
out the social sciences. Having bounded derivatives is sufficient but not necessary for
Lipschitz continuity to hold, since Lipschitz continuous functions need not be differentiable.

One way to understand the Lipschitz condition is in the case in which X contains only
a single column. In this case, the condition can be written as

g1(x) — g1(X*)

x — X* <L

and similarly for g,. This expression means that the slope of the line joining any two points
on the graph (in particular x and X*) is bounded.

Under these assumptions, we derive an expression for the degree of model dependence
at counterfactual point x as a function of the distance from x to the data X*:

181(x) = g2(0) [ = [[[g1 (%) — &1 (X*)] — [g2(x) — g2(X*)] + [g1 (X*) — &2(X*)][|  (6)
< llg1(x) — g1(X*)[| + llg2(x) — g2(X*)[| + [|81(X*) — g2(X*)|| (7)
< (Lo Lo)lbe = X + [ler (X*) = g2(X) (8)

~ (Li + Ly)[lx — X*| ©)
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where Eq. (6) holds by adding and subtracting g,(X*) and g,(X*), Eq. (7) holds by the
properties of norms, Eq. (8) substitutes in the definition in Egs. (4) and collects terms, and
Eq. (9) applies Eq. (3).”

Equation (9) is highly informative. It shows that for two models that fit about as well as
each other, the maximum degree of model dependence is in effect solely a function of the
distance from the counterfactual point to the data. Thus the farther the counterfactual point
is from the data, defined as X*, the more likely our inferences are to be model dependent.
Finally, we note that this is a quite general result since it holds for any two alternative
models whose conditional expectation functions g and g, satisfy the Lipschitz condition
and fit the data approximately as well, not only those we might think to check.

2.2 Measuring Distance from the Data

We now offer tools that measure how “far” a counterfactual is from the data. We begin
with a general distance measure in this section. Section 2.3 then simplifies by introducing
a dichotomous criterion. Both are useful in practice with variables of any type.

Our goal here is some measure of the fraction of observations (rows) in X “near” the
counterfactual x. To create this measure, we begin with a measure of distance between two
points (or rows) x; and x; based on Gower’s (1966, 1971) measure. This is only one
possible choice, but it is a reasonable one that applies to most data types, including discrete
and continuous variables. It is defined simply as the average absolute distance between the
elements of the two points, divided by the range of the data:

1 |X' — Xj |
2 ik ik
ij Kk ] ) 3 ( )

where the range is r, = max(X;) — min(X ;) and the min and max functions return the
smallest and largest elements, respectively, in the set including the kth element of the
explanatory variables X. Thus the elements of the measure are normalized for each vari-
able to range between zero and one, and then averaged. The measure is designed to apply
to all types of variables, including both continuous and discrete data.* If G> = 0, then x and
the row in question of X are identical, and the larger G2 the more different the two rows
are. We interpret G2 as the distance between the two pomts as a proportion of the distance
across the data, X.5 So G? = 0.3 means that to get from one point to the other, one needs to
travel the equivalent distance as 30% of the way across the data set.

With G* applied to our problem, we need to summarize n numbers, the distances between
x and each row in X. If space permits, we suggest presenting a cumulative frequency plot
of G* portraying the fraction of rows in X with G* values less than the given value on
the horizontal axis. If space is short, such as would happen if many counterfactuals need

3If assumptions can be added in an application to narrow the range of functions allowed further than the Lipschitz
condition, then model dependence can be shown to depend even more strongly or in specific ways on the distance
between the counterfactual and observed data (see, for example, Madych and Nelson 1992; Wu and Schaback
1993; and Shaback 1996). The same qualitative conclusion would, of course, still hold.

*Ordinal explanatory variables are typically assumed interval or coded as a set of dichotomous variables, and
Gower’s measure follows that practice. Nominal multichotomous variables are also coded as a set of dichoto-
mous variables. Some versions also include weights, but we exclude those here. We recommend choosing r; from
the sampling design if X was selected by stratification or experimental manipulation, or as above if X was
randomly sampled. Gower (1971) shows that G satisfies the triangle inequality, so his measure and our simple
modifications of it therefore have metric interpretations.

Technically speaking, G is the measure shown to satisfy the mathematical properties of a “distance,” but we use
the word qualitatively to apply to G which has a more intuitive substantive interpretation.
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to be evaluated, any fixed point on this graph could be used as a one-number summary. Our
recommendation for a rule of thumb in defining observations that are sufficiently close to the
counterfactual to make for reasonable inferences is to use the fraction (or number) of
observations in the data with distances (values of G?) less than the “geometric variability”
(GV) of X—which is roughly the average distance among all pairs of observations in the
data.® We interpret the resulting measure—based on the observations less than one GV away
from the counterfactual—as the fraction of the observed data near the counterfactual. We
have found this rule of thumb to be useful in practice for determining the effective number of
observations available to make inferences without high levels of model dependence.

Observations farther than one GV away from the counterfactual normally have little
empirical content for inference about the counterfactual and can produce considerable
model dependence. Researchers should consider downweighting or even discarding these
observations from the data, unless they are in the unusual situation of being certain that
their model specification is correct.’

2.3 Interpolation versus Extrapolation

We now offer a simpler summary measure of how far the counterfactual is from the data. This
is the distinction between whether computing the counterfactual E(Y | x) would involve in-
terpolation or extrapolation. Perhaps the most intuitive definition of extrapolation is one
based on the concept of the convex hull: questions that involve interpolation are values of
the vector x that fall in the convex hull of X, and those involving extrapolation are outside of
the hull. This distinction is well known and accepted in the statistical literature, but it has not
been used in real applications with more than an explanatory variable or two (e.g., Kuo 2001;
Hastie et al. 2001) due to computational difficulties in finding the convex hull for high-
dimensional data and determining whether points fall in it. Below we first explain the intuitive
meaning of the convex hull criterion, then discuss the computational issues and a solution.

2.3.1 Convex Hull

The convex hull for one variable is bounded by the maximum and minimum data points:
any counterfactual question between those points requires interpolation; points outside
involve extrapolation. For two explanatory variables, the convex hull is given by a polygon
with extreme data points as vertices such that for any two points in the polygon, all points
that are on the line segment connecting them are also in the polygon (i.e., the polygon is
a convex set). This is easiest to see graphically, such as via the example in Fig. 2, given
simulated data. A counterfactual question x that appears outside the polygon requires
extrapolation. Anything inside involves interpolation.

Although Fig. 2 only portrays the convex hull for two explanatory variables, the con-
cept is well defined for any number of dimensions. For three explanatory variables, and

5The geometric variability is also known as the generalized variance (Cuadras and Fortiana 1995; Cuadras et al.
1997) and is what we would refer to as the squared generalized standard deviation. It is a generalized version of
the usual variance definition in that for Euclidean distances (which are inappropriate with binary data, for
example), it equals the regular variance for one explanatory variable, or in general the trace of the covariance
matrix of X. For other measures of distance, such as used in Eq. (10), the geometric variability is a generalized
measure of dispersion of X.

7Of course, this is only a rule of thumb and so more data-conserving rules could be applied (such as discarding
data only 1.5 or 2 GVs away from the counterfactual), as could rules that tolerate even less model dependence,
depending on how much confidence one puts in the chosen model. The advice in this paragraph to discard data
that make inferences model dependent applies only in the usual situation in which the model is not known. In
these situations, the estimator will not normally be “self-efficient” and so the usual “more data are better” rule
does not apply. See Meng and Romero (2003).
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Fig.2 Interpolation vs. extrapolation: The convex hull of X is the smallest convex set that contains
the data. Inference on points inside the convex hull requires interpolation; inference outside it
requires extrapolation.

thus three dimensions, the convex hull could be found by “shrink wrapping” the fixed
points in three-dimensional space (e.g., see the animation at http://gking.harvard.edu/
whatif). The shrink-wrapped surface encloses counterfactual questions requiring interpo-
lation; those falling outside require extrapolation. For four or more explanatory variables,
the convex hull is more difficult to visualize, but the mathematical conceptualization is
straightforward. The general mathematical definition of the convex hull of a set of points is
the smallest convex set that contains them.®

Intuitively, counterfactuals outside the convex hull of the observed data are generally
farther away from the data. Thus, by the proof in section 2.1, answering a question in-
volving extrapolation is generally more model dependent and thus more hazardous than
one involving interpolation. If we learn that a counterfactual question involves extrapo-
lation, we still might wish to proceed if the question is sufficiently important, but we would
be aware of how much more model dependent our answers would be. With this definition,
and the software we offer, researchers can easily check whether a particular question
requires extrapolation.9

8A set is convex if, for any two elements in the set, the convex combinations of them are also in the set. A point is
a convex combination of two other points if it lies on the line segment between the two points, i.e., it is a linear
combination of the two points with coefficients that are each between zero and one and together sum to one.
See Valentine (1964, p. 13ff).
°An alternative formal definition of extrapolation is an inference that occurs at x that is off the support of X
(that is, the values of the X that have nonzero density), so that there is zero probability of having observations
within some neighborhood of x in repeated sampling. Manski (1995, p. 16) uses this definition and shows that
for continuous functions, interpolation enables nonparametric identification of the conditional distribution
P(Y | X = x), (and therefore the CEF at x), while extrapolation requires additional assumptions. Unfortunately,
estimating the support of X from sample data is difficult or infeasible for more than a few explanatory variables
(and is not required for regression-type models that condition on X), so in this article we focus on our definition
using the convex hull, which leads to easy verification. For finite samples, the convex hull of X and the support of
X are closely but qualitatively related; there is no universal quantitative relationship. As more and more
observations on X are drawn from the same population, the convex hull either equals the support of X or contains
it as a subset and so can be seen as a conservative approach.
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Since the Gower distance described in section 2.2 is measured as a proportion of the
distance across the data, if the Gower distance between x and any row in X is greater than 1,
then x lies outside the convex hull of X. The reverse does not necessarily hold. Although
counterfactuals outside of the hull are generally farther away from the data, there can be
exceptions, as in the case in which most data lie close to the boundary of the hull and the
counterfactual lies in a void in the middle. For this reason the distance measure is a useful
complement of the convex hull criterion.

Before turning to computational issues, we note that using extrapolation to detect
counterfactuals too far from the data is conditional on a specific choice for X, just as is
the case in most social science regression-type models. Thus we need make no special
accommodations for nonlinearities or interactions. Similarly, we assume outliers are re-
moved as part of the important data preprocessing procedures normally used in standard
statistical modeling.'”

2.3.2 Computational Geometry Problems and Solutions

Unfortunately, there is a serious computational problem with our plan to use convex hull
membership as a way to evaluate counterfactuals in practice: Algorithms to identify the
convex hull from a set of input data X are enormously time consuming even on very fast
computers. The core problem is that the number of facets (or “hyperfacets”) a high-
dimensional convex hull can have is on the order of n** for k variables and n observations
(Klee 1980), so even listing all the facets would be impractical. Problems with more than
eight or nine variables appear to have been attempted only rarely, if ever. Of course,
restricting ourselves in this way would rule out numerous social science analyses, which
often have many more covariates.

Moreover, once we have identified the hull we still need to determine whether the
counterfactual point x falls within it. In computational geometry, this problem is known
as “point location,” and in two dimensions it is equivalent to an algorithm that takes the
latitude and longitude coordinates of a point on a map and returns the country in which this
point falls. Unfortunately, “in more than two dimensions, the point location problem is still
essentially open” (de Berg et al. 1998 p. 144).

Perhaps the enormous computational complexity of finding the hull and the problem of
point location in higher dimensions accounts for why, although many scholars in the
statistical community talk about using the convex hull to define extrapolation, we have
found no research that uses it for the kinds of high-dimensional practical problems that
commonly occur in social science research. Moreover, no statistical software we have

1%In the inadvisable situation in which a researcher ignores the problem and persists with checking whether the
counterfactual is outside the convex hull, outliers in X would make this extrapolation-detection method overly
conservative in identifying counterfactuals that require extrapolation. That is, some counterfactuals x would be
identified as requiring interpolation even though they would really involve extrapolation. However, if this
method identified a counterfactual as requiring extrapolation, then the suspicion of outliers in X would only
make the finding more solid. Similarly, if specific forms of nonlinearity and interactions (such as squared terms
or products of existing variables) are known to be present in the CEF, explicitly using them as additional input
variables will result in a CEF that is a smoother function of the larger set of inputs. As a result, counterfactual
inference within the convex hull of this larger data matrix X will be more accurate, so the results of the test we
propose will be more informative about the approximation error in making interpolations. Identification of
“features” of the original data such as squared terms or interactions that may be present in the CEF is part of the
routine data ‘pre-processing’ step that political scientists often perform. For a rigorous treatment of this topic
see, for example, Bishop (1995, chap. 8). However, researchers should not include these extra terms in their
input data X unless they know they belong in the CEF; putting them in when they do not belong could cause one
to conclude incorrectly that a counterfactual requires extrapolation.
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found includes a procedure to ascertain whether a counterfactual is outside a high-
dimensional convex hull and therefore requiring extrapolation.

To make the convex hull criterion of use in practical research, we derived our own
solution to the convex hull membership check problem (see Appendix A). The result with
even very large numbers of variables is an algorithm that finishes in seconds. The key to
our approach is a way to determine whether the counterfactual x falls within the convex
hull of of the data X without ever characterizing the convex hull itself. This strategy thus
eliminates the most time-consuming part of the problem. In addition, we show how the
remaining (implicit) point location problem can be expressed as a linear programming
exercise, making it possible to take advantage of existing well-developed algorithms
designed for other purposes to speed up the result. We also offer easy-to-use software,
“Whatlf: Software for Evaluating Counterfactuals,” that automates our algorithm and
implements the other methods discussed in this article (see Stoll et al. 2005).11

2.4 Democracy Counterfactuals

We now apply these methods of evaluating counterfactuals to address one of the most
asked questions in political science: what is the effect of a democratic form of government
(as compared to less democratic forms)? We study counterfactuals relating to the degree of
democracy using data collected by the State Failure Task Force (Esty et al. 1998). See
King and Zeng (2002) for an independent evaluation.

This dataset is among the best ever collected in this area. The task force’s dependent
variable is the onset of state failure, but our analyses apply to all dependent variables.
“What would happen if more of the world were democratic” is a question that underlies
much other work in comparative politics and international relations over the last half
century as well as a good deal of American foreign policy. After extensive searches Esty
et al. (1998) predicted state failure with trade openness (as a proxy for economic con-
ditions and government effectiveness), the infant mortality rate, and democracy. Democ-
racy is coded as two dummy variables representing autocracy, partial democracy, and full
democracy. King and Zeng (2002) added to these the fraction of the population in the
military, population density, and legislative effectiveness.

To see how widely our analyses apply, we began collecting other articles in the field that
use a set of explanatory variables with a fair degree of overlap with the set used here, and
stopped at 20 after searching only the last few years. The methods presented in this section
would need to be repeated to draw more certain conclusions from each of these other
articles, but the overlap was sufficient to infer that the results presented here will likely
apply without modification to a large number of articles in our field.

We begin our empirical analyses with four clear examples, the first two obviously
extrapolations and the second two obviously interpolations, and then move to averages
of many other cases of more substantive interest. Before turning to empirically reasonable
counterfactuals, we begin with examples that are deliberately extreme. Extreme examples
are of course useful for ensuring expository clarity, but they are also useful here since,

" After developing our approach and distributing our paper, we learned that there exists an obscure note by Kallay
(1986) that offers a related alternative solution to this problem (our thanks to Joe Mitchell for pointing this out).
Kallay’s article deserves to be better known; it does not appear in textbook reviews of computational geometry
((de Berg et al. 1998; O’Rourke 1998)), has only once in the 20 years since its publication been cited in
a research article (according to Google Scholar, accessed on September 4, 2005), and apparently is completely
unknown to the statistics community. Our solution is simpler than Kallay’s, formulates the problem in terms
closer to the statistical issue we are studying, and, since we were able to express the linear programming
problem with a degenerate objective function, should usually be about twice as fast on average.
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although almost no serious researcher would expect the data to provide information about
such counterfactuals if intentionally asked, almost all empirical analysts estimating the
effects of democracy have implicitly asked precisely these questions. This is always the
case when all observations are used in the estimation and causal effect evaluation, as is
typical in the literature. So although the two examples we now introduce are obviously
extreme, we show that many questions actually asked in the literature are in fact also quite
extreme.

We begin by asking what would have happened if Canada in 1996 had become an
autocracy, but its values on other variables had remained at their actual values. We find, as
we would expect, that this extreme counterfactual is outside the convex hull of the ob-
served data and therefore requires extrapolation. In other words, we can ask what would
have happened if Canada had become autocratic in 1996, but we cannot use history as our
guide, since the world (and therefore our data) includes no examples of autocracies that are
similar enough to Canada on other measured characteristics. Similarly, if we ask what
would have happened if Saudi Arabia in 1996 had become a full democracy, we would also
be required to make an extrapolation, since it too falls outside the convex hull.

We now ask two counterfactual questions that are as obviously reasonable as the last
two were unreasonable. We ask what would have happened if Poland had become an
autocracy in 1990 (i.e., just after it became a democracy). From qualitative information
available about Poland, this counterfactual is quite plausible, and many even thought (and
worried) about it actually occurring at the time. Our analysis confirms the plausibility of
this suspicion since this question falls within the convex hull; analyzing it would require
interpolation and thus not much model dependence. In other words, the world has included
examples of autocracies that are like Poland in other respects, so history can be our guide.
Another reasonable counterfactual is to ask what would have happened had Hungary
become a full democracy in 1989 (i.e., just before it actually did become a democracy).
This question is also in the convex hull and would require only interpolation to produce
specific estimates.

We now further analyze these four counterfactuals using our modified Gower distance
measure. The question is how far the counterfactual x is from each row in the observed
data set X, so the distance measure applied to the entire data set gives n numbers. We
summarize these numbers, without loss of information, in the cumulative frequency plots
in Fig. 3. The left plot includes counterfactuals that change from autocracies to democra-
cies, and the right plot is the reverse. The dark line in each graph refers to a counterfactual
within the convex hull and the dashed line is for a counterfactual outside the hull. Each line
gives the cumulative distribution of our modified Gower distance measures. Take, for
example, the value of G* (given horizontally) and our rule of thumb of one geometric
variability. In this case, this is approximately 0.1, which is an average distance of 10% from
the minimum to the maximum values on each variable in X.'? Essentially no real country-
years are within 0.10 or less of this counterfactual for changing Saudi Arabia to a de-
mocracy, but about 25% of the data are within this distance for Hungary. Similarly, just
a few observations in the data are within even 0.15 of Canada changing to an autocracy,
although about a quarter of the country-years are within this distance for Poland. Of course,
the full cumulative densities in the figure provide more information than this one point.

We now examine a larger set of counterfactuals all at once with more convenient
numerical summaries along the lines of our verbal description of Fig. 3. We start with
all variables set at their actual values and then ask what would happen to all autocracies if

">The exact geometric variability in the data is 0.1176.
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Fig. 3 Distance to four counterfactuals: Cumulative frequencies of modified Gower distances.
Countries in the left graph are changed from autocracies to democracies, and the reverse in the
right graph. Dashed lines are outside the convex hull of observed data; solid lines are within it.

they became full democracies, and to all full democracies if they became autocracies. This
analysis includes 5,814 country-years, with 1,775 full democracies and 4,039 autocracies.
What we found was that only 28.4% of the country-years in this widely examined coun-
terfactual fell within the convex hull of the observed data. This means that to analyze this
counterfactual in practice, 71.6% of the country-years would require extrapolation and
would thus risk a high level of model dependence regardless of the model applied or
dependent variable analyzed. As Table 1 summarizes, the result is not symmetric: Among
the full democracies switched to autocracies, 53% require interpolation, whereas among
the autocracies switched to full democracies, only 17% are interpolation problems.
Unfortunately, little discussion in the literature reflects these facts.

The last two columns of the table provide the fraction of countries within a modified
Gower distance of 0.1 of a counterfactual, averaged over all counterfactuals for a given
type of change in democracy. For example, across the 4,039 country-years where we could
hypothetically change autocracies to partial democracies, an average of only 4.2% of the
data points are this close to the counterfactual. This is of course considerably better than
0%, but it effectively reduces the real empirical content of the data in making this coun-
terfactual inference to only a small number of observations. The Gower distance test then
reveals that 95.8% of the original data are of little help in drawing inferences.

The overall picture in this table is striking. Studying the effects of changes in democ-
racy has been a major project within comparative politics and international relations for at
least half a century. This table applies to almost every such analysis with democracy as an
explanatory variable in any field with the same or similar control variables, regardless of
the choice of dependent variable. Some areas and counterfactuals are less strained than
others, but the results here show that most inferences in these fields (or results on most
countries within each analysis) are highly model dependent, based much more on unverifi-
able assumptions about the model than on empirical data. A large fraction are highly
model-dependent extrapolations, but even those that are interpolations are fairly distant
from available data.

3 Causal Inference

We now turn to counterfactual evaluation as part of causal inference. We start with
a definition of causal effects, then our decomposition of the bias in estimation, and finally
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Table 1 How factual are counterfactuals about democracy?

»

Average % of Data “Nearby

Counterfactuals N % in Hull All In Hull only
Full Democracy to Autocracy 1775 53.1 5.5 8.4%
Autocracy to Full Democracy 4039 17.6 2.4 8.2
Partial Democracy to Autocracy 1376 80.5 12.3 14.7
Autocracy to Partial Democracy 4039 61.8 4.2 6.0

a discussion of the components of bias. We devote the most space to discussing the
component of bias due to extrapolation, during which we show how the techniques in-
troduced in section 2 can also help solve an existing problem in causal inference.

3.1 Causal Effects Definition

To fix ideas, we use a version of the democratic peace hypothesis as a running example,
which states that democratic dyads are less conflictual than other dyads (with our discus-
sion generalizing to all possible dependent variables). Let D denote the “treatment” (or
“key causal”) variable where D = 1 denotes a democratic dyad and D = 0 denotes
a nondemocratic dyad.'® The dependent variable is ¥, the degree of conflict.

To define the causal effect of democracy on conflict, we denote Y, as the degree of
conflict that would be observed if the dyad were democratic and Y, as the degree of conflict
otherwise. Obviously, only either Y, or Y; is observed for any one country at any given
time, but not both, since (in our present simplified formulation) a dyad either is or is not
democratic. That is, we observe only Y = Yy(1 — D) + Y1D.

In principle, the democracy variable can have a different causal effect for every dyad in
the sample. We can then define the causal effect of democracy by averaging over the whole
world, or for the democratic and nondemocratic dyads separately (or for any other subset
of dyads). For democratic dyads, this is known as the “average causal effect among the
treated,” which we define as follows:

0=E(Y, |D=1)—-E(Yy|D=1)
= Factual — Counterfactual (11)

We call the first term factual since Y is observable when D = 1, although the expected
value still may need to be estimated. We refer to the second as counterfactual because Y,
(the degree of conflict that would exist in a dyad if it were not democratic) is not observed
and indeed is unobservable in democratic dyads (D = 1). The causal effect for nondem-
ocratic dyads (D = 0) is directly analogous and also involves factual and counterfactual
terms.

Although medical researchers are almost always interested in 0, political scientists are
also interested in the average causal effect for the entire set of observations,

v=EM) — E(Yo), (12)

3The analysis of treatments with more than two levels follows analogously (e.g., Imai and Dyk 2004; Lechner
1999). We focus on the binary case for expository purposes.
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where both terms have a counterfactual element, since each expectation is taken over all
dyads, but Y is observed only for democratic dyads and Y, only for nondemocratic dyads.
These definitions of causal effects are used in a wide variety of literatures (Rubin 1974;
Holland 1986; King et al. 1994; Robins 1999a, 1999b; Pearl 2000).

A counterfactual x in this context therefore takes the form of some observed data with
only one element changed—for example, the Mexico-Spain dyad with all its attributes fixed
but with the regime type in both changed to autocracy. Of course, we can easily evaluate how
reasonable it is to ask about this counterfactual in one’s data with the methods already
introduced in section 2: by checking whether x falls in the convex hull of the observed X
and computing the distance from x to X. In addition, since x has only one counterfactual
element we show that we can easily consult another criterion, whether x falls on the support
of X, although we discuss some problems with this alternative in section 3.6.'*

In real applications, the true causal effect, 0 or vy, is unknown and needs be estimated,
often from observational data since social experiments are costly or, in the case of our data,
infeasible. In section 3.2, we discuss the sources of potential problems in using observa-
tional data to estimate these causal effects. We focus on 0 there for expository purposes as
is usual in the statistical literature. However, unlike prior literature, we have generalized
our proofs (in Appendix B) to show that our results also hold for the effect on nondemoc-
racies and for the overall average treatment effect, vy, as well. Our empirical examples
analyze the overall average causal effect, which is the usual parameter of interest in
political science. In addition to illuminating sources of potential problems in causal in-
ference, the estimation bias decomposition shows that inference involving counterfactuals
not on the support of X is a critical source of bias, and the present methods of assessing
support are often inadequate to the task.

3.2 Bias Decomposition

We begin with the simplest estimator of 6 using observational data, the difference in means
(or, equivalently, the coefficient on D from a regression of Y on a constant and D):

d=mean(Y | D=1) —mean(Y | D=0)
=mean(Y; | D=1) —mean(Y, | D=0), (13)

where mean (a) = ), a;/n (for any vector a with elements a; for i = 1, ..., n). The first
line is the data-based analogue to Eq. (11), whereas the second recognizes that, for
example, when D = 1, Y = Y;. To identify the sources of potential problems using
observational data in causal inference, we now present a new decomposition of the bias
E(d — 0) of d as an estimator of the causal effect 6. This decomposition generalizes the
three-part decomposition of Heckman, Ichimura, Smith, and Todd (1998). Their decom-
position was applied to a simpler problem that does not adequately represent the full range
of issues in causal inference in political science. Our new version helps to identify key
threats to causal inference in our discipline, as well as to focus on where counterfactual
inference is most at issue. In addition to identifying another key component of bias, we
present the decomposition for both quantities of interest, y and 6, whereas Heckman,

“The support of X is the range of values of X that are possible (i.e., have positive density) whether or not they
occur in our data (see also note 9).
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Ichimura, Smith, and Todd (1998) derived the result only for the latter. Both results appear
in Appendix B. Thus, for 6, we show that

bias=E(d — 0)
=E[mean(Y, | D=1) —mean(Y, | D=0) — 6]
— [E(V, | D=1)—E(¥o | D=0)] — [E(1; | D=1) — E(Y | D=1)]
=E(Yy|D=1)—E(Yy | D=0) (14)

= A, + A, + A+ A, (15)

We derive the last equality and give the mathematical definition of the terms A,, A, A,
and A; in Appendix B. These four terms denote exactly the four sources of bias in using
observational data, with the subscripts being mnemonics for the components (i.e., the
equation is mathematically accurate and not merely an informal analogy). The bias com-
ponents are due to, respectively, omitted variable bias (A), post-treatment bias (A,),
interpolation bias (A;), and extrapolation bias (A,). Briefly, A, is bias due to omitting
relevant variables such as common causes of both the treatment and the outcome variables;
A, is bias due to controlling for the consequences of the treatment; A; is bias that can result
if not properly adjusting for included controls within the region of the observed data; A, is
bias that can occur when extrapolating beyond the range of data in adjusting for included
controls. We now explain and interpret each of these components in more detail with
particular focus on extrapolation bias, including a discussion of how to use the methods we
developed in section 2 to help identify extreme counterfactuals in causal inference.

3.3 Omitted Variable Bias

The absence of all bias in estimating 6 with d would be assured if we knew (from
Eq. [14]) that

E(Y,|D=1)=E(Y, | D=0). (16)

Assumption (16) says that it is safe to use the observed control group outcome (Yo | D = 0,
the level of conflict initiated by nondemocracies) in place of the unobserved counter-
factual (Yo |D = 1, the level of conflict initiated by democracies, if they were actually
nondemocracies.)

Since valid inference without controls is rarely the case, we introduce control variables:
Let Z denote a vector of control variables (explanatory variables aside from D), and denote
the set of all explanatory variables as X = {D, Z}. If, after controlling for Z, treatment
assignment of D is random—that is, if we measure and control for the right set of control
variables (such as those that are common causes of D and Y), so that

E(Y,|D=1,Z)=E(Y, | D=0,2) (17)

holds, then from Eq. (27) in Appendix B, the first component of bias vanishes: A, = 0.
Thus this first component of bias, A,, is due to pertinent control variables being omitted
from X so that Eq. (17) is violated. This is the familiar omitted variable bias, which can
plague any model. It can also be due to controlling for irrelevant variables in certain
situations, so Z should be minimally sufficient (Greenland et al. 1999).



The Dangers of Extreme Counterfactuals 147

Since endogeneity bias and selection bias can be written as omitted variable bias, A,
encompasses these problems as well. To be specific, endogeneity bias, selection bias, and
omitted variable bias each cause inferential problems by inducing a correlation between
the explanatory variables and the error term. If we control for the correct variables, then it
is sometimes possible to eliminate these problems. With omitted variable bias, the controls
to include would be omitted variables that are common causes of D and Y. Similarly, we can
avoid the biases due to nonrandom selection if we control for the probability that each unit
is selected into the sample, and we can eliminate endogeneity bias by including in the
controls covariates that eliminate the conditional relationship between X and the error term.

3.4 Post-treatment Bias

The second component of bias in our decomposition, A, deviates from zero when some of
the control variables Z are at least in part consequences of the key causal variable D. If
Z includes these post-treatment variables, then when the key causal variable D changes, the
post-treatment variables may change too. Thus, if we denote Z; and Z; as the values that
Z takes on when D = 1 and D = 0, respectively (components of Z that are strictly pre-
treatment do not change between Z, and Z,), then, as with ¥, either Z; or Z,, but not both,
are observed for any one observation, and the observed Z = Zy(1 — D) + Z,(D) will be
different from the counterfactual Z,, resulting in a nonzero A, in Eq. (24).

As a simple example that illustrates the bias of controlling for post-treatment variables,
suppose we are predicting the vote with partisan identification. If we control for the
intended vote five minutes before walking into the voting booth, our estimate of the effect
of partisan identification would be nearly zero. The reason is that we are inappropriately
controlling for the consequences of our key causal variable, and for most of the effects of
it, thus biasing the overall effect. Yet we certainly should control for a pre-treatment
variable like race that cannot be a consequence of partisan identification but may be
a confounding variable. Thus causal models require separating out the pre- and post-
treatment variables and controlling only for the pre-treatment, background characteristics.

To avoid this component of bias, Ap, we need to ensure that we control for no post-
treatment variables, or at least that the distribution of our post-treatment variables does not
vary with D:

P(Z|D=1)=P(Z | D=0), (18)

so that Zo = Z; = Z. If this assumption holds, then A, = 0 in Eq. (24) vanishes.

Post-treatment variable bias is a large and often overlooked component of bias in esti-
mating causal effects in political science (see King 1991; King et al. 1994, pp. 173ff). It is
known in the statistical literature but is assumed away in most models and decompositions
(Frangakis and Rubin 2002). This decision may be reasonable in other fields, where the
distinction between pre- and post-treatment variables is easier to recognize and avoid, but
in political science, especially comparative politics and international relations, the prob-
lem is often severe. For example, is GDP a consequence or cause of democracy? How
about educational levels? Fertility rates? Infant mortality? Trade levels? Are international
institutions causes or consequences of international cooperation? Many or possibly even
most variables in these literatures are both causes and consequences of whatever is re-
garded as the treatment (or key causal) variable. Thus the fundamental problem with much
research in comparative politics and international relations is not merely the bias induced
by controlling for post-treatment variables. The problem is that even if dropping out these
variables alleviates post-treatment bias, it will likely also induce omitted variable bias.
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In our field, unfortunately, we almost always need to consider both A, and A, together,
and in many situations we cannot fix one without making the other worse. The same is not
true in all fields (which is perhaps the reason the A, component was ignored by Heckman,
Ichimura, and Todd 1998), but it is rampant in ours. Unfortunately, the news gets worse,
since even the methodologist’s last resort—try it both ways and, if it doesn’t make a dif-
ference, ignore the problem—does not work here. Rosenbaum (1984, pp. 664ff) studies
the situation in which we run two analyses, one including and one excluding the variables
that are partly consequences and partly causes of X. He shows that the true effect could be
greater than these two or less than both. It is hard to emphasize sufficiently the seriousness
of this problem and how prevalent it is in comparative politics and international relations.

Although we have no general solution to this problem, we can offer one way to avoid
both A, and A, in the presence of variables that are partially post-treatment. Aside from
choosing better research designs in the first place, of course, our suggestion is to study
multiple-variable causal effects. If we cannot study the effects of democracy controlling
for GDP because higher GDP is in part a consequence of democracy, we may be able to
study the joint causal effect of a change from nondemocracy to democracy and a simul-
taneous increase in GDP. This counterfactual is more realistic, i.e., closer to the data,
because it reflects changes that actually occur in the world and does not require us to
imagine holding variables constant that do not stay constant in nature. If we have specified
a parametric model with both variables, we can study this question by simultaneously
moving both GDP and democracy while holding constant other variables. An alternative
would be to recode the two variables into one on, as much as possible, a single dimension.

If this alternative formulation provides an interesting research question, then it can be
studied without bias due to A, since the joint causal effect will not be affected by post-
treatment bias. Moreover, the multiple-variable causal effect might also have no omitted
variable bias A,, since both variables would be part of the treatment and could not be
potential confounders. Of course, if this question is not of interest and we need to stick
with the original question, then no easy solution exists at present. At that point, we should
recognize that the counterfactual question being posed is too unrealistic and too strained to
provide a reasonable answer using the given data with any statistical model. Either way,
this is a serious problem that needs to move higher on the agenda of political methodology.

3.5 Interpolation Bias

For clarity, we now assume that the two components of bias we have previously discussed
are not an issue, so we have no post-treatment bias, and we have the minimally sufficient
set of pre-treatment variables Z to control for. However, even when A, = 0 and Ap =0, we
still have to control for Z properly. The two remaining components of bias—interpolation
bias and extrapolation bias—both have to do with correctly identifying the necessary
control variables but failing to adjust for them properly. Interpolation bias or A; results
from incorrect adjustment for control variables in regions of interpolation, and extrapo-
lation bias results from improperly adjusting for controls where data are needed but do
not exist.

Interpolation bias may exist in the simple difference in means estimator if the
measured control variables Z are related in any way to the treatment variable, that is, if
the multivariate density of Z for the treatment group differs from that for the control group
(within the region of interpolation). If in addition to these density differences Z also affects
the outcome variable, then interpolation bias will exist if the density differences in Z are
not properly adjusted.
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When using a parametric model to adjust for control variables, this component of bias
arises from controlling for Z with the wrong functional form. For example, in an applica-
tion without post-treatment bias, with all control variables that could cause bias identified,
and where extrapolation is unnecessary, our estimator could still generate bias by choosing
a linear model to adjust for controls if the data were generated from a quadratic. Fortu-
nately, standard regression diagnostics are quite useful for checking model fit within the
range of the data.

Interpolation bias can also be adjusted for without a specified functional form via match-
ing, inverse propensity score weighting, or nonparametric smoothing (e.g., Rosenbaum
and Rubin 1984; Heckman, Ichimura, and Todd 1998; Robins 1999a, 1999b; Winship and
Morgan 1999). Ultimately, whatever method of adjustment is used, the two multivariate
densities of Z for the control and treatment groups need to be the same for interpolation
bias to be eliminated. We provide further insight into interpolation bias during our dis-
cussion of extrapolation bias, to which we now turn.

3.6 Extrapolation Bias

The last component of bias, and the one most related to the central theme of this article,
is extrapolation bias. This component is the second of the two that arise from not adjusting
or improperly adjusting for identified control variables, but since it occurs beyond the
range of the observed data, avoiding extrapolation bias is potentially much more difficult
(and, as we showed above, model dependent) than avoiding interpolation bias.

From Eq. (25), we see that extrapolation bias may arise when the support of the
distribution of Z for the treatment group differs from that of the control group. That
is, there may be certain values of Z that some members of one group take on with
positive probability but no members of the other group possess. For example, we might
observe no full democracies with GDP as low as in some of the autocracies but still
somehow need to control for GDP. Intuitively, these autocracies have no comparables in
the data and so are not readily useful for estimating causal effects. To make causal
inferences in situations with nonoverlapping densities, we must therefore either eliminate
the region outside of common support (as is standard practice in statistics and medicine)
or attempt to extrapolate to the needed data (e.g., autocracies with high GDP), such as by
using a parametric model (as is standard practice in political science and most of the
other social sciences). As we demonstrated in section 2, extrapolation in forecasting
involves considerable model dependence. The same issue applies in causal inference,
as we discuss below. Thus, unless we happen to be in the extraordinary situation in
which a known theory or prior evidence makes it possible to narrow down the possible
models to one, or we happen to guess the right model, we will be left with extrapolation
bias, A, # 0.

We begin with a simple illustration of extrapolation bias in hypothetical data with
a single control variable. We then discuss the idea of and problems with the propensity
score approach commonly used to identify regions of extrapolation in applications with
more than one control variable. Finally, we show how our convex hull approach can be
used to help solve problems with the propensity score approach in many cases and to assist
in others.

3.6.1 Illustration with a Single Control Variable

Figure 4 illustrates some key issues involved in data that generate the need to extrapolation
in causal inference. The figure also illustrates the connection between the problems of
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Fig.4 An illustration of how the degree of extrapolation bias is more severe (and model dependent)
than interpolation bias.

extrapolation in causal inference and extrapolation in forecasting and what-if questions
discussed earlier. Figure 4 plots hypothetical data on the dependent variable vertically and
a single control variable Z horizontally. The treatment and control groups are labeled and
the points are clearly separated in the figure. To estimate the causal effect in these data, we
make comparisons between the treatment and control groups on the vertical axis (which
corresponds to the outcome variable). The key extrapolation problem is that there exist no
treated units for values of Z > 2 where some control data do exist, and so any comparison
between the treated and control groups in this region would be based on extrapolating the
treatment group data from where it is observed to where it is needed. In other words,
a study seeking to estimate a causal inference from data where extrapolation is necessary
has the same problem in that region as not having a treatment (or control) group at all.

As the figure shows, the two models fitted to the treated data, one linear and one qua-
dratic, fit the treated data almost identically, but in the region to which the counterfactual
extrapolations are needed (i.e., where control units exist but treated units do not), the
difference between the models is vast. This illustrates model dependence, of course, but
it also illustrates extrapolation bias, since at least one of the models shown must be false in
the extrapolation region, so if used it would generate bias and make A, # 0. Since we have no
data to test which model is appropriate, or whether both are wrong in the extrapolation
region, we have no means to rule out extrapolation bias based on empirical evidence.

Interpolation bias could be seen in the figure if the different functional forms fitted to
the treated data differed in the sample. If that were the case (and it is not as drawn), then
bias would result if the estimation model were not close to the model that represented the
data. In practice, because model dependence is much less of an issue in areas of interpo-
lation (or on the common support) than in areas of extrapolation, interpolation bias can
often be detected and corrected in ways that extrapolation bias cannot.

If we use the data outside the region of common support, we must extrapolate and will
therefore have some degree of model dependence and thus risk some bias for almost any
model chosen. Alternatively, we can delete nonoverlap data, which eliminates the need to
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extrapolate. Of course, this procedure would fail to produce any estimates at all in appli-
cations where no data lie on the common support, a problem with some prevalence in our
field. If some data do lie within the common support region and the quantity of interest is
the average treatment effect (y in Eq. [12]), dropping observations outside of common
support will produce bias by definition, as it changes the population and thus the quantity
of interest. Similarly, in the situation in which we convince ourselves that we are interested
only in the average treatment effect on the treated (0 in Eq. [11]), dropping treatment units
not on common support will result in bias by changing the population of inference.'”

Although extrapolation bias is hard to correct without access to better data or willing-
ness to change the population of inference (and thus the research questions), identifying
the regions of extrapolation is important in all applications. It may be disappointing, of
course, to know that the desired questions have no good answers in available data, but it is
better to know this than to ignore it.

3.6.2 Identification of Extrapolation Regions

We now turn to the task of identifying regions of extrapolation in causal inference, which
are regions outside of the common support of Z for the treatment and control groups. We
noted earlier that being on the support of X is another criterion for checking the quality of
a counterfactual. It is easy to see that for causal inference, the counterfactual x implied in
the second term of Eq. (11) being on the common support of Z|D = 1 and Z| D = 0 is in
fact equivalent to being on the support of X = {D, Z}. Thus identifying the regions of
common support is also a direct check of the quality of the key counterfactual required for
causal inference (directly analogous to section 2.3). In the simple case in which Z contains
just one variable, we can simply plot both histograms on the same horizontal scale and
compare them. Areas requiring extrapolation can easily be identified from the histograms
as the areas that do not overlap. Interpolation bias can arise where the histograms overlap
but differ in density.

In most real applications, of course, Z contains many control variables, and so com-
paring features of P(Z| D = 1) and P(Z| D = 0) would involve estimating and comparing
two multidimensional densities. For more than a few explanatory variables, this is a for-
midable task (essentially impossible without stringent assumptions). Below we briefly
review one popular approach to this curse of dimensionality problem, illuminate some
serious difficulties of that approach for our task, and then discuss the utility of our methods
introduced in section 2 as an alternative approach.

Difficulties with the Propensity Score Approach. One approach that has been used to
compare multivariate Z distributions and assess multivariate common support in causal
inference problems uses the propensity score, 1 = Pr( D = 1| Z), the probability of D = 1
given the control variables Z. The propensity score summarizes the multidimensional Z
with a unidimensional 7. Rosenbaum and Rubin (1983) show that conditioning on the true
7 balances the distribution of Z across the treatment and control groups:

P(Z|D=1,m)=P(Z|D=0,n). (19)

I5If @ is the quantity of interest and if all treatment units are on common support, dropping control group data not
on the common support will lead to inefficient estimates.
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This statement is of great theoretical interest, since it makes it possible to demonstrate that
the condition for ensuring elimination of both control and extrapolation bias, that the
distribution of Z in the treatment group being the same as that in the control group:

P(Z|D=1)=P(Z|D=0), (20)

is equivalent to a seemingly more useful form, that the distribution of x in the treatment
group is identical to the distribution of 7 in the control group:'®

P(n|D=1)=P(rn|D=0). (21)

This expression seems more useful because it apparently solves the curse of dimension-
ality problem in the multivariate comparison in Eq. (20) by only requiring comparison of
two unidimensional densities of 7 (one for democracies and one for nondemocracies) and
identifying common support and adjusting the density differences based only on this one
control variable.

The key problem, however, is that the “true” propensity score is itself unknown and
must be estimated from the data, so any estimate of = may be afflicted not merely by
sampling error but also potentially by the usual model specification, measurement, and
other estimation errors. If the estimated propensity score is wrong, then the theoretical
properties of the propensity score do not hold, and no result suggests that it will still give
valid results. Thus the curse of dimensionality is not solved by the propensity score
approach in real applications. And since the only way to check whether an estimated
propensity score is close to being true is to check whether it balances the Z distributions,
the theory of the propensity score from the point of view of the researcher is tautological
(Ho et al. 2005).

For the task of identifying the extrapolation region or nonoverlap in the support of
Z|D = 1and Z| D = 0, using the propensity score involves not only what (Ho et al. 2005)
call the Propensity Score Tautology, but also a fundamental problem of infinite regress:
we cannot use the propensity score to identify regions of extrapolation until we can verify
that the estimated propensity score is valid, but we cannot verify the validity of the estimated
propensity score until we have first removed the regions requiring extrapolation. The reason
is that by definition, © values outside of common support will not satisfy the balancing
condition (19), which is the basis of all balancing tests, since one of the two densities will be
0 and the other positive. For estimated propensity scores, the question is whether the
imbalance is due to incomplete overlap of the Z | D =1 and Z | D = 0 distributions or to
the inadequacy of the model used for estimating the propensity score. Since it is virtually
impossible to prove that any given propensity score model is close to being the true model in
the presence of imbalance, the researcher will not be able to differentiate the two different
causes of the imbalance. Thus, in theory, to identify nonoverlap with an estimated pro-
pensity score would require the assumption that the propensity score model is correct.'” Of
course, verification by assumption is obviously not an empirical exercise, so using the
propensity score for identifying the extrapolation region is of questionable practical value.

!By definition, P(Z | D=0)= [P(Z | D=0,m)P(r | D = 0)dn, which upon substituting in Eq. (19), gives
P(Z|D=0)= [P(Z|D=1,n)P(n | D= 0)dn. Comparing thisresultwithP(Z |D=1)= [P(Z | D=1,7)
P(n | D = 1)dn, which is also true by definition, proves that Eq. (20) holds if Eq. (21) does.

17Standard balancing tests are not reliable because they reduce the comparison of two densities at a given 7 to
comparison of a few moments of the densities within intervals of 7 values. In hard balancing problems or with
sparse data, wider intervals are typically used or the comparison is restricted to the overlap region, further
undermining the value of the tests.
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The attractive theoretical properties of the true propensity score have sparked much
interest, and the propensity score methodology has been used in numerous applications
throughout a wide array of disciplines. But as our discussion makes clear, using the
propensity score to identify common support or the extrapolation region is difficult at
best, and likely misleading in many situations. Even if a researcher has good reason to use
the propensity score to help in matching, weighting, or parametric analyses, having
a method to identify, and possibly remove observations from, the region of extrapolation
first would help not only in removing extrapolation bias but in making balancing checks
more reliable in evaluating estimated propensity scores.

Using the Convex Hull. Fortunately, based on our analyses in the first part of this article,
a workable approach to this problem is available. If we are interested in estimating the
average treatment effect on the treated (0 in Eq. [11]), then we simply discard any control
units for which Z is not within the convex hull of the treated units Z. (Even if some of the
treated units are outside the convex hull of the control units and thus would require
extrapolation, they would not be omitted so the quantity of interest remains the same,
although it would be worth identifying them so a source of the remaining model depen-
dence is identified.)

If instead we are wiling to change the quantity being estimated to something different
but reliably estimate without high levels of model dependence, we would also want to drop
treated units that fall outside the convex hull of the control units. If this alternative is
desired, we can consolidate the two steps and proceed as follows. Let D* and Z* denote,
respectively, the subset of D and Z such that the counterfactual points {1 — D*, Z*} fall
within the convex hull of the observed data X = {D, Z}; then use the convex hull of Z* as
an estimate of where the common support lies. When no extrapolation is needed, Z* = Z.
Thus the same procedures for identifying whether points fall within the convex hull as
described in section 2.3 can be used for assessing common support. Both procedures are
conservative evaluations of common support and more so in higher dimensional space, but
each is fast, easy to apply, and applicable to a wide range of problems.

In essence, this strategy uses the convex hull of the data as an estimate of the support of
the data. In sufficiently large samples, the convex hull contains the support; when the
support has no gaps or voids, the convex hull approximation is nearly exact. To avoid the
risk of voids within the common support, we can use the Gower distance to assess whether
any of the counterfactual points within the hull are far from any observed data.'®

In small samples, the convex hull may give too narrow a range for the common support
region (for the same reason that the sample maxima and minima are biased estimates of the
corresponding population quantities, for any finite sized sample). However, where only
one sample from the same population will ever be observed, as in most areas of compar-
ative politics or international relations, no other observable data will be available to
differentiate the convex hull boundary from that of the support, and using the convex hull
will still normally be a reasonable choice.

This strategy has not been used in the literature before, in part because finding whether
counterfactual points fall in the hull has not previously been viewed as feasible. Given our
methods described in section 2.3.2, however, this strategy is now feasible and easy to
apply. Indeed, a key advantage of the strategy suggested here is that what is at least a good
first cut at finding the region of common support can now be automated and easily included

'31f the risk of voids seems substantial enough, it would be advisable as an alternative or extra verification step to
rule counterfactual points not within, say, 0.1 Gower distance from a sufficient number of data points as effectively
off the common support, although in many applications checking the convex hull should be sufficient on its own.
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in standard statistical software. It is already included in the software that accompanies this
(Stoll et al. 2005) and has also been implemented as part of a general purpose matching
software package called Matchlt (Ho et al. 2005).

4 Concluding Remarks

Consider a model that fits the data well, has large coefficients, small p-values, narrow
confidence intervals, large causal effect estimates, predictions with path-breaking policy
implications, and fascinating answers to a range of what-if questions. With statistical
reporting standards now commonly used in political science, results like these would be
written up, published, and taken seriously by readers. Unfortunately, a subset of these
involve counterfactuals that are so model dependent as to be nearly unrelated to the data at
hand and so are based more on the authors’ hypotheses and convenient but undefended or
unnoticed model assumptions than the data. Although it is rarely the case presently,
assessing model dependence of counterfactual questions needs to be a routine and ex-
pected part of statistical reporting for anyone making predictions, asking what-if ques-
tions, and estimating causal effects—which together encompasses the goals of a large
fraction of empirical work in the discipline.

We have offered several approaches to evaluating whether counterfactuals are too far
from the data that are easy to use and should generally be consulted prior to drawing
substantive conclusions. Other approaches such as sensitivity analysis, Bayesian model
averaging, committee methods, or transdimensional Markov Chains are also useful, but
only when it is feasible to identify the relevant class of models for exploration (Hoeting
et al. 1999; Imai and King 2004; Sisson 2005) In most situations, the approach we
recommend, which does not require choosing classes of models or specifying or estimat-
ing any models at all, should be of wider applicability and have greater power.

Our checks on model dependency hold regardless of the model chosen and for all
possible dependent variables. However, they are conditional on the choice of explanatory
variables and their valid measurement. Measurement error and the incorrect identification
of relevant covariates must be avoided in these procedures, as in all others. Passing convex
hull and Gower distance tests can help in assessing the degree of model dependence, but all
the other usual threats to validity must still be evaluated and avoided.

If an interesting counterfactual question is so far from the data that answers are highly
model dependent, we still may wish to draw conditional inferences that are by their nature
more uncertain than model-based uncertainty measures indicate. The best one could do in
that situation would be to fairly indicate the degree of model dependence when reporting
results. If changing the counterfactual question at hand is not an option, then the most
substantively productive procedure would be to design research to avoid the problem from
the start. When this turns out to be possible, it basically involves collecting data more
relevant to the question at hand. Accomplishing this is often much easier at the research
design stage than during data analyses.

Appendix A: Membership in a Convex Hull as a Linear Programming Problem

This appendix gives our approach to checking whether a given point x, « is in the convex
hull of X,,..x, where n is the number of data points in X and k the number of variables. Let §
be the set of vertices of the convex hull of X, containing all the “boundary” points of X. By
definition, x being in the convex hull of X implies that x can be expressed as a convex
combination of points in S. Since all points of X are also convex combinations of points in S,
the condition is equivalent to x being a convex combination of all points in X. Identification
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of S can be computationally very expensive, but the second form of the condition can be
checked easily using standard linear programming software without ever computing S.

To do so, we formulate the problem as one of checking the existence of a feasible
solution for a standard linear programming problem with a degenerate objective function.
If x can be expressed as a convex combination of points in X, then there exists a vector of
coefficients 1, constrained to the simplex so that X'} = x'. This last equation contains
k linear constraints, each stating that an element (variable) of x is a convex combination
of the corresponding elements of rows in X. Combining this with the constraint that
the elements of n sum to one, we have a total of k + 1 linear constraints in the form
A'n = B’, where A’ and B are X' and x’ with a row of ones added, respectively.

To check whether x is in the convex hull of X therefore is equivalent to checking the
existence of a feasible solution to the following standard form linear programming (LP)
problem:

min C'n
st.A'm=B’ (22)
n=0,

where C is a vector of zeros (so there is no objective function to minimize). Checking
whether there is a feasible solution to problem (22) is what all standard LP software does
in phase I, and it can be done very efficiently for large k and n.

Appendix B: Decomposition of Causal Effect Estimation Bias

We now derive our new decomposition of the bias of the estimator d in Eq. (13). We derive
this for the average treatment effect and for the average treatment effect on the treated.
Note that d is the simplest estimator for all three causal effect parameters (the average
causal effect in democracies, 0, its counterpart for nondemocracies for which we have
assigned no symbol, and the average causal effect overall, y, from Eq. [12]). In this
appendix we prove that the bias of d as an estimator of any of these three parameters
has the same four types of components as given in Eq. (15) and discussed in section 3.2.

The first two parts of our decomposition, A, and A,, correspond to, or in a sense provide
another proof for, Pearl’s “back-door” criterion for identifying adjustment variables in the
identification of causal effects. This criterion has two parts: that Z should not be caused by
X and that Z should be minimally sufficient to control for omitted variable bias. The first
two components of our decomposition are analogous, but in reverse: we show in estima-
tion that the bias would be zero if X did not cause Z, and Z includes the right variables.
Since he was concerned with identification and not estimation, Pearl did not explicitly
analyze the consequences of nonoverlap or density differences, although he implicitly
assumed their absence. In contrast, Heckman, Ichimura, and Todd’s (1998) three-part
decomposition, which we generalize here, does not address or analyze the consequences
of post-treatment bias, except implicitly, which is fundamental in Pearl’s work and essen-
tial to understanding a key problem in the comparative politics literature.

We start by showing that the bias of d in estimating the total effect y is a convex
combination of its bias in estimating the two group-specific causal effect parameters.
We have E(d—y)=[E(Y; | D=1)—E(Yo | D=0)]—[E(Y1)—E(Y0)]. Let Tt = Pr(D = 1) be
the size of the treatment group and then rewrite the terms in the definition of 7y
above as E(Y;)=1E(Y; |D=1)+ (1 —1)E(Y, | D=0) and E(Yy) =tE(Yy | D=1) +
(1 =1)E(Yy | D=0). Thus,
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E(d—-v)=E(Y, | D=1)—-E(Y, | D=0)—1E(Y; | D=1)
—(1-7E(Y, | D=0)+1E(Yp | D=1)4+ (1 —-1)E(Yy | D=0)
~(1=[EW, | D=1)—E(¥; | D=0)
FAE(Yy | D=1)~E(Y | D=0)
= (1 —1)By + 1By, (23)

where B; = E(Yy | D = 1) -E(Yy | D = 0) = E(d - 0) is the bias of using d to estimate 0, the
causal effect on the treated (democracies), as derived in Eq. (14). In a directly analogous
way, By = E(Y; | D = 1) - E(Y; | D = 0) is the bias of d as an estimator of the causal effect
in the control group (nondemocracies). (Note that, quite intuitively, B; is a function
of unobservables among the treated, and By is a function of unobservables among the
untreated.)

We now derive the four components of bias for By, and then in an identical fashion for
By, before we combine them as per Eq. (23). We have:

Bl =E(Y0 | D= 1) —E(Yo | D=0)
= EZo[E<Y0 ’ D= 1,Z0> — E(Yo | D= O,Zo)]
—EJ[E(Yo | D=1,Z)—E(Yy | D=0,Z)]
+E[E(Yo | D=1,2) —E(Yy | D=0,2)]
=[E,E(Yy | D=1,Zy)) —E,E(Yy | D=1,Z)]
+E[E(Yo | D=1,Z) —E(Yo | D=0,2)]
= A, +E[E(Y, | D=1,Z) ~E(Y, | D=0,Z)]
where
A, =E E(Yy | D=1,Zy) —E.E(Yy | D=1,Z) (24)
is the bias due to controlling for post-treatment variables, and E[E(Yq|D = 1, Z) —
E(Yy|D = 0, Z)] can be further decomposed, following and generalizing the approach

in Heckman, Ichimura, Smith, and Todd (1998). Let S; denote the support of Z in
F(Z|D = j) for j = 0, 1 and S the common support. Then

fes

Z[E(YO | D= I,Z)—E(Y() | D:()?Z)]

/ Y0|D—]Z)dF(Z‘D_]) /E(YO|D=O7Z)dF(Z|D=O)
S So

{ E(Yo | D=1,Z)dF(Z | D= 1)+/E(Y0 | D=1,Z)dF(Z | D= 1)}

{ E(Yy | D=0,2)dF(Z | D=0) + /E(Yo | D=0,Z)dF(Z | D=O)}
So\S N

{ E(Yo | D=0,Z)dF(Z | D=1) — /E(Yo | D=0,Z)dF(Z | D=1)}
S

A+ A+ A,
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where, through regrouping the terms,

Aez/ E(Yy | D=1,2)dF(Z | D=1)
SI\S

- / E(Y, | D=0,Z)dF(Z | D=0) (25)
So\S
A = /E(Yo | D=0,2){dF(Z | D=1) —dF(Z | D=0)} (26)
S
A, = /{E(Yo |D=1,2)~E(Y, | D=0,2)}dF(Z | D=1).  (27)
S

Combining results proves Eq. (15) and gives:
Bi=A,+A.+Ai+ A, (28)

Decomposition of By proceeds identically and we omit the intermediate steps. The results
are:

By=A)+ A + A} + A (29)
where

A)=EE(Y, | D=0,Z) —E,E(Y; | D=0,Z) (30)

Ag’:/ E(Y, | D=1,2)dF(Z | D=1)
Si\S

—/ E(Y, | D=0,Z)dF(Z | D=0) (31)

So\S

A = /E(Yl | D=0,2){dF(Z | D=1) —dF(Z | D=0)} (32)
S

A = /{E(Yl | D=1,Z) —E(Y, | D=0,2)}dF(Z | D=1). (33)
S

Now, to arrive at the decomposition of bias in estimating the total effect v, we only need
to combine Egs. (28) and (29) as per Eq. (23). Omitting tedious but straightforward
intermediate steps, the results are:

E(d—7)=A, + A, + A + A, (34)



158 Gary King and Langche Zeng

where

A= (1~ O{EE(Y, | D=0,Z) ~E,E(Y, | D=0,2))}
+H{ELE(Yo | D=1,2) — EE(Y, | D=1,2)}

A= [ {(1—vEM | D=1,2) +<E(Yo | D=1,2)}dF(Z | D=1)
SI\S
— [ {(1=vE( | D=0,2)+<E(Y, | D=0,2)}dF(Z | D=0)

So\S
A§=/{1—r L | D=0,2)+<E(Yo | D=0,2)}

x {dF(Z | D=1) —dF(Z | D=0)}

" /(1—1)[E(Y1 | D=1,Z) —E(Y, | D=0,Z)]
s

+1[E(Yy | D=1,Z)—E(Y, | D=0,Z)]dF(Z | D=1).

>
I

The four components of bias have the same qualitative interpretations in Egs. (28), (29),
and (34).
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