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Toward A Common Framework
for Statistical Analysis and Development

Kosuke IMAI , Gary KING, and Olivia LAU

We develop a general ontology of statistical methods and use it to propose a com-
mon framework for statistical analysis and software development built on and within
the R language, including R’s numerous existing packages. This framework offers a
simple unified structure and syntax that can encompass a large fraction of existing sta-
tistical procedures. We conjecture that it can be used to encompass and present simply
a vast majority of existing statistical methods, without requiring changes in existing
approaches, and regardless of the theory of inference on which they are based, notation
with which they were developed, and programming syntax with which they have been
implemented. This development enabled us, and should enable others, to design statis-
tical software with a single, simple, and unified user interface that helps overcome the
conflicting notation, syntax, jargon, and statistical methods existing across the methods
subfields of numerous academic disciplines. The approach also enables one to build a
graphical user interface that automatically includes any method encompassed within
the framework. We hope that the result of this line of research will greatly reduce the
time from the creation of a new statistical innovation to its widespread use by applied
researchers whether or not they use or program in R.

Key Words: Graphical user interface; Interdisciplinary; R language; Statistical ontol-
ogy; Statistical software.

1. INTRODUCTION

Quantitative methodology is thriving like never before, both in the discipline of statis-
tics and in the quantitative subfields of diverse substantive disciplines. Despite a com-
mon underlying mathematical and statistical foundation and numerous cross-disciplinary
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2 K. I MAI , G. KING, AND O. LAU

efforts, however, quantitative analysis looks remarkably different in each substantive dis-
cipline. Researchers in different fields favor different jargon, different mathematical no-
tation, different parameterizations, different quantities of interest, and different syntax for
computer implementation. Traversing the quantitative methods subfields of these diverse
disciplines and understanding what the natives have to offer—in everything from statistical
theory to software implementation—can be highly productive, but has often been far more
difficult than it should be for pursuits that have so much underlying structure in common.

Among the efforts to reduce the costs of spanning these diverse subfields, the R Project
for Statistical Computing (Ihaka and Gentleman 1996; R Development Core Team 2008)
and the S language on which it is based (Becker, Chambers, and Wilks 1988) stand as
monumental developments. These projects solve so many problems for developers that a
large fraction of statistical innovators from many fields now implement their methods first
as R-language programs and distribute them as open source R packages. This development
makes it possible for statistically sophisticated researchers who are literate in programming
languages to use new methods soon after their creation.

Unfortunately, using R packages is not always easy even for sophisticated users, given
the diverse syntax, far-flung examples, and uneven documentation quality. Those who are
statistically sophisticated but do not know how to program will have more difficulty using
the new procedures. Researchers who do not use R must wait for other (mostly commercial)
statistical packages to reprogram the new procedures from scratch. And of course, since
the vast majority of applied data analysts do not know R, and are unlikely to use statistical
software without an easy-to-use graphical user interface (GUI) during their entire careers,
the time from statistical innovation to widespread use is still far too long.

We propose to make progress on this problem in a way that does not require statistical
innovators to change existing practices. Instead, developers can supplement what they do
now with a few simple bridge functions that translate their chosen approach into a com-
mon framework. Using a new method of wrapping and then extending existing packages,
our framework consists of three steps—fitting a statistical model, choosing a quantity of
interest by specifying the values of explanatory variables, and implementing simulation to
make inferences about predetermined quantities of interest (although users can also com-
pute other arbitrary quantities of interest from the output)—which gives applied users a
relatively universal statistical syntax with three general-purpose commands to perform the
procedure for any included R package. The bridge functions we recommend tap into our
ontology for describing statistical models so thatGUIs can be created automatically, with-
out additional programming to include new packages. These developments should make
it easier for R developers to reach a significantly larger audience without much additional
effort.

The result of this work is not only a simple user interface. It also enables developers
and users to take advantage of infrastructure that works for a wide range of methods with-
out having to build it themselves. For example, we introduce here an intuitive extension
of R’s existing single equation formula framework to encompass a much larger range of
statistical models (and model-free approaches) so they can work with multiple equation,
multilevel, hierarchical, panel, time series, and other structures, which reduce the complex-
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Figure 1. Main Zelig commands (solid arrows) and some options (dashed arrows).

ities of managing multiple datasets, groups of covariates, and parameter vectors in these
settings. Among other innovations, we have also added facilities for creating and rerun-
ning replication datasets, using multiply imputed data and data processed via matching,
running multiple analyses within given strata, bootstrapping parameters, documenting sta-
tistical models through a standard framework, and translating often uninterpretable model
parameters into quantities of direct scientific interest.

We describe these developments first from the perspective of the user (Section 2) and
then from that of the developer (Section 3). We offer an implementation of these ideas,
and illustrate them throughout this article, via an R package called Zelig (Imai, King, and
Lau 2006). However, all the ideas we describe here exist independently of our software
and can be adopted or extended separately from our particular implementation. This article
summarizes only the structural aspects of Zelig, rather than all of its options. See the Zelig
project Web site, athttp://gking.harvard.edu/zelig, for more information. (We named Zelig
after a Woody Allen movie about a man who had the strange ability to become the physical
and psychological reflection of anyone he met and thus to fit perfectly in any situation).

2. A UNIFIED USER INTERFACE

From the user’s perspective, we organize data analysis into three core activities which
are a part of Zelig, and a variety of related activities. Figure 1 outlines the main features.
The basic idea is that raw data goes in—perhaps after being preprocessed via matching
methods for causal inference (Rubin 1973; Ho et al. 2007), multiple imputation for miss-
ing data (Rubin 1987; King, Honaker, Joseph, and Scheve 2001; Honaker and King 2007),
or outlier removal and feature detection to improve data quality or statistical robustness
(Bishop 1995, chap. 8)—and then three commands are always performed: First, some sta-
tistical method, such as a likelihood or Bayesian model, is specified and fit. Second, we
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identify the quantity of interest, such as forecasts, causal effects, or conditional or uncon-
ditional counterfactual evaluation. This is usually done by setting each of the explanatory
variables to one or more chosen (actual or counterfactual) values. Finally, the quantity of
interest can be computed by simulation drawn using an asymptotic normal approximation,
bootstrap resampling, a Bayesian posterior simulation, or any other available method. The
corresponding three commands to implement these three stages in Zelig arezelig() ,
setx() , andsim() , respectively. In one simple example,

z.out <- zelig(y ˜ age + race, model = "logit",

data = turnout)

x.out <- setx(z.out, age = 36, race = "white")

s.out <- sim(z.out, x = x.out)

All code selections displayed in this article, including the above, are executable demos
included in the Zelig package, except where clearly identified as pseudo-code. Since the
code above requires some set up, such as commands to load and recode data, we pro-
vide only excerpts in the interests of parsimony. To view the full example above, use
demo(logit) after loading the Zelig library within R.

As input, Zelig accepts R data frames, or preprocessed data output from the R packages
Amelia II (Honaker, King, and Blackwell 2006) for imputing missing data and MatchIt
(Ho et al. forthcoming) for performing matching to reduce model dependence for causal
inference.

Output from each of these three steps may be evaluated or viewed. For example, the
output ofzelig() can be summarized using existing methods for goodness of fit, resid-
ual analysis, and the like. Since quantities of interest farther from the data are more model
dependent, we can evaluate the output ofsetx() to via the R packagewhatif to deter-
mine how far the counterfactual question of interest is from the data (see King and Zeng
2006; King and Zeng 2007; Stoll, King, and Zeng 2005). One may also use diagnostic tools
such as cross-validation to validate the fitted model for any model supported by the Zelig
framework. Finally, estimates of the quantities of interest may be studied in any desired
format, including point estimates and standard errors, confidence (or credible) intervals,
likelihood functions, or posterior densities.

We now turn to our specific innovations in interpreting and presenting statistical results
(Section 2.1), and generalizing R formulas (Section 2.3).

2.1 INTERPRETING AND PRESENTING STATISTICAL RESULTS

From a user’s perspective, one of the most confusing aspects of learning a statistical
procedure comes after the arduous steps of acquiring, cleaning, recoding, describing, and
exploring the data, choosing a statistical model, getting the data into the computer program,
coding up the particular model you want to run or figuring out the syntax of a pre-existing
package: the statistical results typically come out of the program on the scale convenient
to the programmer, rather than the user. Model parameters in logit, probit, and negative
binomial regressions as well as hundreds of other procedures all need to be interpreted
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differently; few are documented; and only rarely are model parameters on a scale that have
any direct scientific meaning. Scholars feel the need to present tables of model parameters
in academic articles (perhaps just as evidence that they ran the analysis they claimed to
have run), but these tables are rarely interpreted other than for their sign and statistical
significance. Most of the numbers in these tables are never even discussed in the text. From
the perspective of the applied data analyst, R packages without procedures to compute
quantities of scientific interest are woefully incomplete.

A better approach focuses on quantities of direct scientific interest rather than uninter-
pretable model parameters. The lists of parameter estimates and standard errors are then
treated as intermediate values, used to calculate quantities of interest that are typically
on the scale of the variable being predicted or explained. For example, the distributions of
predicted values and expected values obtained from the model may be compared to the em-
pirical distribution of the dependent variable observed in the data. These quantities include
counterfactual predictions, or what the value of the dependent variable would have been
if the explanatory variables had taken on particular values. They include causal effects,
which are normally taken to be some type of comparison between the observed value of
the outcome variable and a counterfactual, such as if a treatment were applied to a control
unit. The comparison in causal effects can be done by ratios, differences, or other calcu-
lations, and produces quantities such as relative risks, risk differences, attributable risks,
first differences, marginal effects, average treatment effects, average treatment effects on
the treated, numbers needed to treat, and so forth.

For each quantity of interest, the user needs some summary that includes a point es-
timate and a measure of uncertainty such as a standard error, confidence interval, or a
distribution. The methods of calculating these differ greatly across theories of inference
and methods of analysis. However, from the user’s perspective, the result is almost always
the same: the point estimate and uncertainty of some quantity of interest. To calculate the
quantities of interest, both the ones we chooseex anteand others that developers may
choose themselves, we use the fact that for almost every statistical procedure there exists a
method of simulating parameters, and that any quantity of interest can be computed from
these simulations. By replicating several published articles and computing simulations of
several quantities of interest, King, Tomz, and Wittenberg (2000) showed that following
this procedure can produce considerable information of direct interest to researchers, in-
formation which is not readily available through the usual presentation of coefficients.

This procedure consists of three steps, which correspond to the three functions in Fig-
ure 1. First, fit a statistical model via thezelig() function, which wraps many existing
statistical procedures. At this point, users may choose to use sets of multiply imputed data
frames, matched data, or subsets of the data by running the analysis separately in each
stratum (see Section 2.2). The output ofzelig() also can be used for model validation
using, for example, a cross-validation procedure.

Second, select quantities of interest you would like to compute or calculate by calling
setx() . Choose values of the explanatory variables for a forecast, or use two calls to
setx() to compute a causal effect. For example, we might compute a hypothetical causal
effect by setting the treatment variable at 1 and then 0, while holding the other explanatory
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variables constant (whether at their means, modes, or medians). Alternatively, compute the
in-sample average treatment effect (Imbens 2004) by setting the explanatory variables at
their observed values, and imputing only the unobserved counterfactual for each individual.

Finally, use the model output fromzelig() and the values for the explanatory vari-
ables fromsetx() to compute simulations of the quantities of interest using thesim()

command. This procedure involves simulating parameters from their sampling or posterior
distributions, or the (conceptual) equivalent in other theories of interest, using the simu-
lated parameters to compute simulations of the dependent variable, and then calculating
any quantity of interest from these simulations.

The simulations are then viewed via genericsummary() or plot() commands to
report the list of precoded quantities of interest (given the choice of values of explanatory
variables). The raw simulation draws of course remain available so that new quantities of
interest can always be computed by the user (e.g., the probability that income is less than
the poverty level).

2.2 INFRASTRUCTURE FOR REPLICATION DATASETS, BOOTSTRAPPING, M UL -
TIPLE I MPUTATION , AND M ULTIPLE ANALYSES

By recognizing the common features of many statistical models, it becomes possible
to add infrastructure that would benefit anyone using models implemented in the same
framework. In Zelig, we have simple options to bootstrap parameters, run multiple analyses
within strata specified by the user, use lists of datasets to deal with multiply imputed data,
or employ combinations of the three options. From themi demo in Zelig, we can run
analyses for multiply imputed datasets using

z.out <- zelig(as.factor(ipip) ˜ wage1992, model = "ologit",

data = mi(immi1, immi2, immi3, immi4, immi5),

by = "gender")

x.out <- setx(z.out)

s.out <- sim(z.out, x = x.out)

Any other procedure that can be applied uniformly to the broad class of statistical models
covered here can easily be included and applied to any individual model.

With this framework, users can also create and store “replication datasets,” which many
scholarly journals now archive (King 1995). Although replication datasets can be as crude
as a zip file with a read-me including a narrative of what was done and some raw data, R
provides users with the option of storing data, output, quantities of interest, and the code
used to generate them in a single R image file. For example, ifz.out is thezelig()

output, ands.out is thesim() output, we can create and save the replication data file
as in therepl demo:

save(turnout, z.out, s.out, file = "demo_replication.RData")

Zelig provides a replication procedure that reduces the many steps involved in data analysis
into one command. After loading the replication data file, the generic functionrepl()
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will either reevaluate the model, or in the case of output fromsim() , reevaluate the model
and recalculate quantities of interest. Continuing therepl demo:

load("demo_replication.RData")

s.rep <- repl(s.out)

If the random seed was saved with the replication materials, the replication objects.rep

will return identical quantities of interest.

2.3 GENERALIZING R FORMULAS

The base R framework includes a successful and widely adopted “formula” framework
for identifying, transforming, including, and excluding dependent and explanatory vari-
ables for single equation models. (The syntax of the basic version is an outcome variable,
a tilde separator, and a list of explanatory variables separated by plus signs:y ˜ x1 +

x2 , where “+” means inclusion, not addition.) This provides an easy-to-use syntax, but
its most important contribution is recognizing and taking advantage of the fact that many
models have common features: a dependent variable and one set of associated explanatory
variables. The features that vary across models, such as the functional form and stochastic
component, are identified separately from the variables selected.

We now expand on this insight and identify common features of a much broader class of
statistical models, including single equation, multiple equation, time series, multilevel, and
hierarchical models, as well as those with constraints across equations. Identifying these
common features lets us write a simple generalization of the R single equation formula that
applies much more widely. This may also simplify notation across packages: Although the
same R single equation formula is used in a wide array of packages, procedures that take
more than one set of explanatory variables now use almost as many different syntaxes as
there are packages.

We begin by recognizing that a large class of statistical models all havestochasticand
systematiccomponents. The stochastic component specifies a scalar or vector of depen-
dent variablesYi (for observationsi = 1, . . . , n) distributed asP(µi , θ), whereP is a
density that may or may not be known. The systematic components involve parameters
µi that vary over the observations and parametersθ that are constant over observations.
Each of the elements ofµi varies as a (known or unknown) functiong(·) of (measured
or latent) explanatory variablesXi and fixed parameters,β, such thatµi = g(Xi , β). The
model is completed with some independence assumption, most typically thatYi andYj are
independent conditional onµi andθ for all i 6= j (see King 1989). For example, the sim-
ple linear-normal regression model has a scalar dependent variableYi distributed normally
with meanµi and varianceσ 2, and with the mean varying as a linear function of a vector
of covariatesXi , and a conformable vector of coefficients,β:

Yi ∼ N(µi , σ
2), where µi = Xiβ. (2.1)

All statistical procedures in this broad class have four key features. First, models may
have more than one systematic component, such as if we add a variance component to (2.1):
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σ 2
i = exp(Zi γ ), with a vector of explanatory variablesZi (that may overlap withXi ) and

a parameter vectorγ . Second, the parameters in these equations may have constraints that
require coefficients on some variables in different equations to be equal. Third, equations
in statistical models represent the parameters of distributions, such asσ 2

i above, and do
not necessarily correspond to specific dependent variables. Finally, for some multilevel or
hierarchical models, different parameters may be logically associated with variables from
different datasets.

To ensure that our generalized formula framework can incorporate these ideas, we first
provide a way to identify (and thus to constrain) coefficients. For example, the equationy

˜ x1 + tag(x2,"beta") + x3 labels (or “tags”) the coefficient onx2 asbeta .
We also allow a list of equations. The combination of the two enables one to specify con-
straints across equations. For example the list of formulaslist(y˜ tag(x1,"gamma")

+ x2, y2 ˜ z1 + tag(z2,"gamma")) , constrains the coefficient onx1 in the
first equation to equal the coefficient onz2 in the second (since both have the same la-
belgamma).

We also need a way to label parameters separately from the dependent variables to
which they may correspond. We do this by allowing each formula in the list to be labeled
with a name corresponding to the parameter it represents, via the standard method for
labeling elements in lists. For example, we can represent the normal model with variance
function aslist(mu = y ˜ x1 + x2, sigma = ˜ z1 + z2) , where the equa-
tion for the variance component has no corresponding dependent variable on the left-hand
side.

Since this particular model always includes exactly two equations, only one of which
has a dependent variable, dropping the names in the list would not create ambiguity and so
is allowed. We could also represent the model defined in Equation (2.1), that is without the
variance component, more completely aslist(mu = y ˜ x1 + x2, sigma = ˜

1) , but as a default we would not suggest requiring elements that are unnecessary, and so
this expression reduces to the current R standard formula,y ˜ x1 + x2 .

We now illustrate how this generalized formula framework can represent four more
sophisticated models and, where necessary, we also introduce other features of our frame-
work.

A Bivariate Probit Model.The bivariate probit model has dependent variablesYi =
(Yi 1,Yi 2) observed as (0,0), (1,0), (0,1), or (1,1) for alli . The stochastic component with
two latent bivariate normal variables (Y∗i 1, Y∗i 2) is

(
Y∗i 1
Y∗i 2

)

∼ N

{(
µi 1

µi 2

)

,

(
1 ρ

ρ 1

)}

, (2.2)

with marginal meansµi 1 ≡ E(Y∗i 1) andµi 1 ≡ E(Y∗i 1) and correlationρ ≡ cor(Y∗i 1,Y
∗
i 2).

The following observation mechanism links the observed dependent variables,Yi j , with
the latent variables

Yi j =

{
1 if Y∗i j ≥ 0,

0 otherwise.
(2.3)
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for j = 1, 2. The model has three systemic components, each with separate but possibly
overlapping vectors of explanatory variables,Xi , Zi , andWi , respectively:

µi 1 = Xiβ, µi 2 = Zi γ, and ρi =
exp(Wi θ)− 1

exp(Wi θ)+ 1
. (2.4)

We can represent this model in three formulas with a constraint across two of them for
illustrative purposes:

formulae <- list(mu1 = y1 ˜ tag(x1,"beta") + x2,
mu2 = y2 ˜ tag(z1,"beta") + z2,
rho = ˜ w1 + w2)

where, by design, no dependent variable is associated with therho equation.

A Compound Hierarchical Ordered Probit Model.Models with parameters fitted from
different datasets also fit our framework. This model corrects survey responses due to
threshold shifts resulting from differential item functioning (i.e., survey respondents hav-
ing different standards for what constitutes different levels of the dependent variable; see
King, Murray, Salomon, and Tandon 2004). The main portion of the model is a multivariate
ordered probit, for independent normal latent variablesY∗is for observationi (i = 1, . . . , n)
and self-assessment variables (s = 1, . . . , S). The stochastic components for the latent
variables are normal,Y∗is ∼ N(µi , 1) for all s, with a common systematic component,
µi = Xiβ. As in ordered probit, for each equations, we only observeyis, which indicates
the category into which the latent variableY∗is falls:

Yis = k if τ k−1
is ≤ Y∗is < τ k

is (2.5)

with a vector of thresholdsτis (whereτ0
is = −∞, τ Ks

is = ∞, andτ k−1
is < τ k

is, with indices
for categoriesk = 1, . . . , Ks and self-assessment questionss = 1, . . . , S) that vary over
the observations as a function of a vector of covariates,Vi (which may overlapXi ), and a
vector of unknown parameter vectors,γs, with elements the vectorγ k

s :

τ1
is = γ 1

s Vi (2.6)

τ k
is = τ k−1

is + eγ
k
s Vi (k = 2, . . . , Ks− 1). (2.7)

Finally, there exists a set of latent positions on vignette questionsZ∗`j possibly from a
different survey (with observations̀= 1, . . . , L) with constant means:

Z∗`j ∼ N(θ j , σ
2
j ), (2.8)

which are turned by the respondent into a categorical answer to the survey questionz`j via
the observation mechanism:

z`j = k if τ k−1
`1 ≤ Z∗`j < τ k

`1 (2.9)

and with thresholds determined by the sameγ1 coefficients as in (2.6) forYi 1, and the
same explanatory variablesV`, with values measured for the second dataset with indices
labeled̀ , V`:

τ1
`1 = γ

1
1 V` (2.10)

τ k
`1 = τ

k−1
`1 + eγ

k
1 V` (k = 2, . . . , K1− 1).
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This more complicated model is easily represented with the tools above, since the same
common features also apply to this model. We need one equation for eachµ corresponding
to a self-assessment question, one for eachθ corresponding to a vignette question from a
possibly different dataset; and one equation forτi and one forτ`, corresponding to no
dependent variable, but possibly different datasets. Following thechopit demo:

formulas <- list(self = y ˜ sex + age + factor(country),

vign = cbind(v1, v2, v3, v4, v5) ˜ 1,

tau = ˜ sex + age + factor(country))

where thevign equation is shorthand forvign1 = v1 ˜ 1, ..., vign5 = v5

˜ 1 , which is possible because the right side of both equations are always identical in
this model (as they are estimated with scalar mean, and hence do not take explanatory
variables). Since each equation has a label, we can load variables in each equation from a
different data set. For example, continuing thechopit demo,

data <- list(self = free1, vign = free2)

z.out <- zelig(formulas, data = data, model = "chopit")

Sinceτ is drawn from both datasets, this model does not require it to be explicitly identified
in the data statement.

Time Series Models.We implement a user-interface for single equation time series
models with special functions for differencing,Diff(Y,d) ; lags ofY for AR(p) terms,
lag.y(p) ; and lags of the disturbance forMA(q) terms,lag.eps(q) . For example, we
can represent anARIMA (3,1,2) model without a covariate asyt ∼ N(µ, σ ), where

E(yt ) = µt =
3∑

j=1

β j yt− j +
2∑

j=1

γ j εt− j (2.11)

and whereyt = Yt−Yt−1 andεt = yt−E(yt ) via the intuitive representation,Diff(y,1)

˜ lag.y(3) + lag.eps(2) . To view this example with and without covariates, see
thearima demo in Zelig.

Multilevel Models.Multilevel models are also easy to represent in this framework by
tagging a coefficient on an explanatory variable in one equation and using the tag as the
name (for the list element) of another equation. For this use, we introduce a| (which often
means “by” in R) and a group identification (or strata) variable to be included in thetag()

special. For a simple example, we could havelist(y ˜ x1 + tag(x2, gamma |

state), gamma = ˜ z1 + z2) , where the first equation varies over all individuals
and the second varies over the aggregatestate variable. The label, rather than an explicit
parameter name, identifies the second equation.

Our framework also allows both structural and reduced forms of equations. We usually
regard the structural version, such as in the previous paragraph, as most intuitive, but the
reduced form is sometimes more convenient. For example, the same model can be rep-
resented in reduced form aslist(y ˜ x1 + tag(x2, z1 + z2 | state)) . In
addition, if the user chooses to have all variables in one dataset, then all variables from both
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equations would be recorded at the individual level and only one dataset would specified in
the data argument inzelig() . With the tools offered here, considerably more elaborate
models can be included in the same framework.

As an example, consider a multilevel logistic regression model for individuali =
1, . . . , n j in family j = 1, . . . , J such that

Yi j ∼ Bernoulli(yi j | πi j ),

and

πi j ≡ Pr(Yi j = 1 | γ j ) =
1

1+ exp(−β0− Xi j β − Zi j γ j )
, (2.12)

with the family-level random effect parameter vectorγ j distributed normally that has its
expected value specified as a linear function of given covariates,

E(γ j ) = θ0+W1 j θ1+W2 j θ2 (2.13)

and varianceφ.
This model can be expressed with our notation as

formula <- list(pi = Y ˜ X + tag(Z, "theta" | household),

theta = ˜ W1 + W2)

z.out <- zelig(formula, model = "logit.mixed",

data = list(pi = indData, theta = houseData) )

where data for theπ equation is loaded from the individual-level data setindData , and
for the θ equation is loaded from a smaller, household-level dataset,houseData . The
variablehousehold is an index which links the individual level data and the household
level data, and must be available in both datasets. Thus, the same model can also be ex-
pressed in reduced form, and loaded from a single dataset:

z.out <- zelig(Y ˜ X + tag(Z, W1 + W2 | household),

model = "logit.mixed", data = indData)

Note that thehousehold strata must be identified even in the reduced form to index the
observations inW1andW2.

3. A DEVELOPER’S INTERFACE

In addition to proposing an extension of the formula interface, we also provide some
essential functions to transform this user-interface into data constructs useful for program-
mers. This section describes the computational infrastructure in Zelig that makes it easier
to write new models (Section 3.1), makes those models compatible with the three-step
Zelig framework for calculating quantities of interest (Section 3.3), and finally describes a
self-generatingGUI interface for the models included in Zelig (Section 3.4).
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3.1 TOOLS FOR WRITING NEW M ODELS

Consistent with the existing R framework, we implement amultiple class extension
to the existingmodel.matrix() andmodel.frame() generic functions, in the form
of model.matrix.multiple() andmodel.frame.multiple() . To ensure dis-
patch to the appropriate methods, we have also developed a suite of functions that simplify
the process of writing a new model.

This process is divided into several steps that apply to every statistical model and es-
timator. First, the developer must write down the model, complete with all the parameters
and the dimensionality of each parameter. Next, the developer needs some symbolic repre-
sentation for the parameters (for example, we will use the syntax proposed in Section 2.3),
and will transform that user-interface into vectors, matrices, or arrays that the developer
can manipulate to produce estimates from the model.

The developer tools that we propose define the inputs to the statistical model or proce-
dure in a function calledparse.formula() , which has output of classmultiple and
ensures dispatch to the appropriatemodel.frame() andmodel.matrix() methods.
There are two methods for defining models inputs. First, the developer can use some com-
bination of the following arguments to define the model parameters:req , for parameters
that correspond to dependent variables, without which the model cannot be fitted;opt , for
parameters that do not correspond to dependent variables, which are optional, and which
default to scalars if not specified by the user; andancil , for scalar ancillary variables
that do not vary over observations. Alternatively, the developer can drop these additional
arguments and instead write adescribe.mymodel() function to specify the model pa-
rameters (see Section 3.4), and invoke it usingparse.formula(formula, model

= "mymodel") . The first syntax is faster; the second allows more detailed descriptions
and also serves the purpose of describing your model for our automated GUI creation facil-
ity. (The examples we give in Figures 2 and 3 show both options for illustrative purposes.)

Next, we offer tools to fix what is in our experience one of the most common program-
ming mistakes in writing functions to be optimized. Procedures likeoptim() in R (and
maxlik in Gauss or the optimization toolbox in Matlab) require a function to be optimized
over asingleparameter vector. This means that developers have to create starting values
by concatenating unrelated parameters into one vector, and then they must figure out how
to subset this vector into its constituent components inside the log-likelihood function. It
typically leads to code that is either highly specific to the problem at hand,

beta <- par[1:4]; gamma <- par[5:6]; sigma <- par[7]

or general but extremely awkward and error prone, with constructs like:

beta <- par[(ncol(X)+ncol(Z)+2):

(ncol(X)+ncol(Z)+2+ncol(W)+3)]

Our syntax for parsing model inputs makes possible an elegant and less error-prone ap-
proach by using functions that extract components of the parameter vector by name.

The syntax described here works with arbitrarily complicated models, with parameter
vectors of any size and in any order, and with any number of equations, as long as each
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set of parameters has been appropriately identified in theparse.par() statement. To
illustrate this procedure, we begin with the familiar Gaussian normal regression model,
with log-likelihood function:

ln L (β, σ 2 | y) = c−
1

2

{

n ln σ 2+

∑n
i=1(yi − xiβ)

2

σ 2

}

, (3.1)

wherec = −n
2 ln 2π . Obviously, the maximum of this function has a simple analytical so-

lution, but for clarity, we write here the function necessary to optimize it numerically. The
log-likelihood includes a parameter vectorβ and scalarσ 2, but in the function both must
be stacked together as vec(β, σ 2) and then extracted separately. Consider the complete
example in thenormal.regression demo, and the excerpt presented in Figure 2.

The bracketed numbers in Figure 2 correspond to the following comments:

normal.regression <- function(formula, data, start.val = NULL, ...) {

# fml <- parse.formula(formula, req = "mu", ancil = "sigma2") # [1a]

fml <- parse.formula(formula, model = "normal.regression") # [1b]

D <- model.frame(fml, data = data)

X <- model.matrix(fml, data = D)

Y <- model.response(D)

terms <- attr(D, "terms")

start.val <- set.start(start.val, terms) # [2]

ll.normal <- function(par, X, Y, n, terms) { # [3]

beta <- parse.par(par, terms, eqn = "mu") # [3a]

gamma <- parse.par(par, terms, eqn = "sigma2") # [3b]

sigma2 <- exp(gamma)

-0.5 * (n * log(sigma2) + sum((Y - X % * % beta)ˆ2 / sigma2))

}

res <- optim(start.val, ll.normal, method = "BFGS", # [4]

hessian = TRUE, control = list(fnscale = -1),

X = X, Y = Y, n = nrow(X), terms = terms, ...)

fit <- model.end(res, D) # [5]

class(fit) <- "normal"

fit

}

Figure 2. Normal regression example using Zelig optimization tools. (Excerpts from the
normal.regression demo.)
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1. Theparse.formula(formula, ...) function takes the user-specified for-
mula and some information about the parameters in the statistical model (provided
by the developer). There are two ways to useparse.formula() :

(a) As in line (1a), we use thereq , opt , andancil options. In the case of normal
regression, the parameter vectorβ corresponds toE(Yi ) = µi = Xiβ and is
hence a required user input, but the ancillary parameterσ 2 is always estimated
as a scalar.

(b) Write adescribe.mymodel() function (see 3.4) to work with theGUI.
If you had written a function calleddescribe.normal.regression() ,
you could use the code in line (1b) instead of (1a), as in the example above, to
avoid defining the model’s parameters in multiple locations.

2. Automatically set starting values using the parameters identified inparse.

formula() , and subsequently stored interms . If any equations are constrained,
you may replace the default values (zero for all parameters), by usingput.start

(start.val, eqn, value) , which works for either scalar or vector parame-
ters.

3. The log-likelihood function corresponds to the mathematical expression above.
Within the log-likelihood, use theparse.par() function to extract different sets
of parameters from the vector to be optimized,par . Line (3a) extracts the param-
eters which correspond to the mean equationµi , and line (3b) extracts the scalar
parameter that corresponds toσ 2, which is reparameterized in the subsequent line to
satisfy the constraintσ 2 > 0.

4. The call to the optimization routine,optim() .

5. The tidying functionmodel.end() takes the optimized output and codes some
additional meta-data so thatmodel.frame() andmodel.matrix() will work
in subsequent steps.

3.2 MANAGING PARAMETERS IN M ODELS WITH M ORE THAN ONE DEPENDENT

VARIABLE

Many statistical methods relate explanatory variablesxi to a dependent variable of
interestyi for each observation (i = 1, . . . , n) through a possibly nonlinear function of
a linear predictorηi . Let β be a set of parameters that correspond to each column inX,
which is ann× k matrix with rowsxi . For a single equation model, the linear predictor is

ηi = xiβ, (3.2)

whereη is the set ofηi (for i = 1, . . . , n) and is usually represented as ann× 1 matrix.
For a two-equation model, the linear predictor becomes a matrix with two columns

where each row is given by

ηi = (ηi 1, ηi 2) = (xi 1β1, xi 2β2). (3.3)
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With η as ann× 2 matrix, we now have four choices for constructing the linear predictor:
An equation-by-equationlayout, which pulls out theX matrix for one equation at a time;
an intuitive layout, which stacks matrices of explanatory variables, and provides an easy
visual representation of the relationship between explanatory variables and coefficients;
a memory-savinglayout, which reduces the overall size of theX andβ matrices; and a
computationally efficientlayout, which takes advantage of vectorization for speed.

Each of these methods is associated most closely withvector, stacked vector, or matrix
representations of the coefficients. The choice of the format for explanatory variables and
parameters also determines how easy it is to allow constraints across equations.

For a running example in describing the different methods, we use this three-equation
system from the bivariate probit model, with

formulae <- list(mu1 = y1 ˜ tag(x1, "gamma") + x2,

mu2 = y2 ˜ tag(x2, "gamma") + x3,

rho = ˜ x4)

and with a constraint of equality on the first coefficient across the first two equations. For
simplicity, we ignore theρ equation below since parameters cannot be constrained between
µ andρ. The above example may be examined in detail in thebivariate.probit

demo included in Zelig.

The Equation-by-Equation Layout.Choosing model.matrix(..., eqn =

"mu2") outputs theX matrix corresponding only to the equation forµi 2. It produces
an n × 3 matrix for X (the two variables and a constant term) and thus directly gener-
alizes the standardmodel.matrix() in a simple and easy-to-understand way. To ex-
tract parameters in a format convenient for thisX matrix representation, we would use
the vector representation of the parameters, which we do by usingparse.par(...,

shape="vector", eqn="mu2") (whereshape="vector" could be omitted since
it is the default when extracting parameters from a single equation).

Unfortunately, implementing constraints across equations would be difficult with this
method for any particular example, and would require tedious coding to make it work in
general. Although this method is the first one that most think of when they desire multiple-
equation generalizations, they quickly learn that something even more general and sophis-
ticated is required. In particular, multiple equations need to be treated as a set rather than
entirely separately. The following three methods do exactly this.

The Intuitive Layout.A stacked matrix ofX and stacked vectorβ is probably the most
visually intuitive configuration. LetJ = 2 be the number of equations in the bivariate
probit model,n be the number of observations, andv be the number of unique covariates
across both equations. Then,model.matrix(..., shape = "stacked") yields
a (Jn× v) matrix of explanatory variables. For the example above, we have:

X =

(
1 0 x1 x2 0
0 1 x2 0 x3

)

, (3.4)

wherex3 from the first equation andx4 from the second are in the same column because
their (tagged) coefficients are constrained to be equal. Correspondingly, we extractβ as a
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stacked vector, usingparse.par(..., shape="vector") , producing

(β
µ1
0 β

µ2
0 βγ β

µ1
x2
βµ2

x3
)′, (3.5)

whereβµ1
0 andβµ2

0 are the intercept terms for Equations (2.1) and (2.2), respectively. Since
X is (2n× 5) andβ is (5× 1), the matrix product of the two is the stacked(2n× 1) linear
predictorη. Although difficult to manipulate (since observations are indexed byi and 2i
for eachi = 1, . . . , n), it is easy to see that we have turned the two equations into one large
X matrix and one long vectorβ, which is analogous to the familiar single-equationη.

The Memory-Efficient Layout.Choosing a “compact”X matrix and matrixβ is usually
the most memory-efficient configuration:model.matrix(..., shape =

"compact") produces ann × v matrix, wherev is the number of unique variables in
all of the equations (4 in this case, since the intercept term is identically valued in both
equations, and so counts only as one variable, and the theuniquevariables arex1, x2, and
x3). Let x1 be ann×1 vector representing variablex1 , x2 bex2 , and so forth. This leaves:

X = (1 x1 x2 x3) β ′ =

(
β
µ1
0 βγ β

µ1
x2 0

β
µ2
0 0 βγ β

µ2
x3

)

, (3.6)

where theβ matrix is constructed viaparse.par(..., shape="matrix") . βland

is used twice to implement the constraint, and the number of empty cells is minimized by
implementing the constraints inβ rather thanX. Furthermore, sinceX is (n× 4) andβ is
(4× 2), Xβ = η is n× 2.

The Computationally Efficient Layout.Choosing arrayX and vectorβ is probably
the the most computationally efficient configuration:model.matrix(..., shape =

"array") produces ann× k × J array whereJ is the total number of equations andk
is the number of unique parameters across all the equations. Denote the number of param-
eters in equationj askj . Then, since some parameter values may be constrained across
equations,k ≤

∑J
j=1 kj . If a variable is not in a certain equation, it is observed as a vector

of zeros. With this option,each xi matrix becomes:
(

1 0 xi 1 xi 2 0
0 1 xi 2 0 xi 3

)

. (3.7)

By stacking each of thesexi matrices along the first dimension, we getX as an array with
dimensionsn× k× J. Correspondingly,β is a stacked vector, created withparse.par

(..., shape="vector") , and having elements

(β
µ1
0 β

µ2
0 βγ β

µ1
x2
βµ2

x3
)′. (3.8)

To multiply theX array with dimensions(n×5×2) and the(5×1) β vector, wevectorize
over equations as follows:

eta <- apply(X, 3, ’% * %’, beta)

The linear predictorη is therefore a(n× 2) matrix.
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3.2.1 Illustrations

To illustrate how easy it is to interchange these options, we introduce a concrete ex-
ample in thebivariate.probit demo in Zelig. Consider the bivariate probit example
introduced in Equations (2.2)–(2.4). We begin with the memory-efficient layout in Figure
3 and show that we only need to modify a few lines of code to change from one of these
schemes to another.

To change to the intuitive option or the computationally efficient option, we change
only a few lines of code. For the intuitive option, at Comment (2), we switch to the option
in line (2b)

X <- model.matrix(fml, data = D, shape = "stacked",

eqn = c("mu1", "mu2"))

and at Comment (3), to option (3b)

Beta <- parse.par(par, terms, shape = "vector",

eqn = c("mu1", "mu2"))

and at Comment (4), to option (4b)

mu <- X %* % Beta; mu <- matrix(mu, ncol = 2)

To switch to the computationally efficient layout, replace the line at Comment (2) with
line (2c)

X <- model.matrix(fml, data = D, shape = "array",

eqn = c("mu1", "mu2"))

and at Comment (3) with line (3c)

Beta <- parse.par(par, terms, shape = "vector",

eqn = c("mu1", "mu2"))

and at Comment (4) with line (4c)

mu <- apply(X, 3, ’% * %’, Beta)

Even if your optimizer calls directly a C or FORTRAN routine using functions such as
.C() and .Fortran() , one can use combinations of Zelig’smodel. * () and
parse.par() functions to set up the data structures needed to obtain the linear pre-
dictor (or the model’s equivalent) before passing these data structures to the estimation
routine.

3.3 WRAPPING EXISTING PACKAGES

Although Zelig offers some tools for those writing new R packages in Section 3, devel-
opers need not use these tools to incorporate existing code into Zelig. This section assumes
that you have some model already coded up and would like to incorporate it into the Zelig
framework for estimating quantities of interest without modifying the original code. To
accomplish this, we use the computational framework illustrated in Figure 4.
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bivariate.probit <- function(formula, data, start.val = NULL, ...) {

# fml <- parse.formula(formula, req=c("mu1","mu2"), opt="rho") # [1a]

fml <- parse.formula(formula, model = "bivariate.probit") # [1b]

D <- model.frame(fml, data = data)

X <- model.matrix(fml, data = D, eqn = c("mu1", "mu2")) # [2a]

# X <- model.matrix(fml, data = D, shape = "stacked", # [2b]

# eqn = c("mu1", "mu2"))

# X <- model.matrix(fml, data = D, shape = "array", # [2c]

# eqn = c("mu1", "mu2"))

Xrho <- model.matrix(fml, data = D, eqn = "rho")

Y <- model.response(D)

terms <- attr(D,"terms")

start.val <- set.start(start.val, terms)

start.val <- put.start(start.val, 1, terms, eqn = "rho")

log.lik <- function(par, X, Y, terms) {

Beta <- parse.par(par, terms, eqn = c("mu1", "mu2")) # [3a]

# Beta <- parse.par(par, terms, shape = "vector", # [3b] & [3c]

# eqn = c("mu1", "mu2"))

gamm <- parse.par(par, terms, eqn = "rho")

rho <- (exp(Xrho % * % gamm) - 1) / (1 + exp(Xrho % * % gamm))

mu <- X %* % Beta # [4a]

# mu <- X %* % Beta; mu <- matrix(mu, ncol = 2) # [4b]

# mu <- apply(X, 3, ’% * %’, Beta) # [4c]

[... main log-likelihood calculation, omitted ...]

return(llik)

}

res <- optim(start.val, log.lik, method = "BFGS",

hessian = TRUE, control = list(fnscale = -1),

X = X, Y = Y, terms = terms, ...)

fit <- model.end(res, D)

class(fit) <- "bivariate.probit"

fit

}

Figure 3. Bivariate probit function, from thebivariate.probit demo. To use the memory-efficient de-
fault, use lines 2a, 3a, and 4a; for the intuitive option, choose lines 2b, 3b, and 4b, and for the computationally
efficient option, lines 2c, 3c, and 4c. At Comments (2) and (3), you may optionally simplifyeqn = c("mu1",
"mu2") to eqn = "mu" .
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ModelFitting zelig()

(1) zelig2mymodel()

(2) mymodel()

Interpretation sim()

(3) param.myclass()

(4) qi.myclass()

Figure 4. A developer’s framework for Zelig, wheremymodel is both the name of the model and the function
that fits the model, andmyclass is the class of the output from the statistical procedure, for which appropriate
print() andsummary() methods have been defined.

The Zelig framework works by taking advantage of R’s lazy evaluation, and the flexibil-
ity of R classes. Thezelig() function itself works by redefining the call tozelig(...,

model="mymodel") to a call tomymodel() , via a developer-supplied wrapper func-
tion calledzelig2mymodel() . Since this dispatch method does not rely on classes,
zelig() can wrap any statistical procedure by evaluating firstzelig2mymodel() to
redefine the call, then the new call. The output fromzelig() retains the original class
(whether S3 or S4), such that any pre-existing generic functions with defined methods
will work. (If the original output is an S3 object,zelig() simply adds a few elements
necessary for subsequent parts of our framework. If the original output is an S4 object,
we create a new object that inherits attributes from the original, and adds slots for the
new elements.) The simulation procedure relies on two generic functions: one to simulate
parameters,param.myclass() ; and one to calculate quantities of interest appropriate
to the model,qi.myclass() . Since the output fromsim() is standardized, we have
written asummary() method for this output.

Thus, a developer only needs to write three functions (in addition to the functions that
fit the model) to take advantage of Zelig’s interpretative framework:

1. zelig2mymodel() to redefine the call;

2. param.myclass() to simulate parameters; and

3. qi.myclass() to calculate model-specific quantities of interest.

Because the initial dispatch fromzelig() relies on the wrapper, which is generated by
specifyingzelig(..., model = "mymodel") , models can be added to this frame-
work without any modifying thezelig() function itself.
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3.4 A DYNAMICALLY GENERATED GUI

The power and flexibility of R as a statistical programming language and computa-
tional environment have made graphical user interfaces (GUIs) difficult to implement. The
general advantage of aGUI is that it lets analysts take advantage of the work of R devel-
opers without having to learn R’s command-line interface that is as powerful for some as
it is intimidating for others. A goodGUI would therefore make the work of R developers
accessible to a much larger audience than present.

Although many attempts have been made at aGUI, we introduce here the concept of a
dynamicor self-generatingGUI, which can be extended without modifying the functions
which govern theGUI itself. Thus, there is no static database of functions, arguments, and
types of inputs accepted as arguments. Rather, theGUI queries Zelig about the included
models, and the types of accepted inputs, and uses this information to render theGUI.
Since developers who use our model-writing tools described in Section 3.1 have already
defined the parameters required for their model, it is a relatively simple step to transform
this information into a data structure that can be queried by other programs.

For any modelmymodel , developers can create a function calleddescribe.

mymodel() , which takes no arguments and returns a list with standard elements de-
scribing the model. This list includes at a minimum thecategory into which the model
falls using a standard set of categories we have developed based on the type of depen-
dent variable or variables that are allowed (continuous unbounded, continuous bounded,
dichotomous, ordinal, multinomial, count, and mixed), and a list of sets of equation-level
parameters (in the linear normal regression model in Equation (2.1), this includesµ and
σ ). Each element of theparameters list includes the minimum and maximum number
of equations allowed, whether tags are allowed (tagsAllowed ), whether the param-
eter should be associated with a dependent variable (depVar ) and explanatory variables
(expVar ). For the bivariate probit model summarized in Equations (2.2)–(2.4), this func-
tion is displayed in Figure 5. (Other information which enable additional functionality are
documented in the Zelig manual and may be included as well.)

Writing this simple summary of the model parameters makes a model accessible to
a GUI. To build the initial model selection menu, theGUI merely needs to know how
manydescribe. * () functions exist in attached environments, to collect the informa-
tion stored in those functions, and then render it as a series of predefined fields in theGUI.
Since the allowed types for the explanatory and dependent variables can also be coded
into thedescribe. * () function, this gives theGUI sufficient information to check the
variables input into different fields, to ensure that they satisfy the model’s assumptions.
For an example of a Zelig-basedGUI, visit one of the installations of the Dataverse Net-
work such ashttp://dvn.iq.harvard.edu/dvn(see also King 2007 or the project Web site at
http://TheData.org).

Using this approach for describing model parameters also simplifies writing a new
model, for those who use the developer tools described in Section 3.1. Rather than defining
the model parameters using the ad hocreq , opt , andancil options, developers can use
insteadparse.par(formula, model="mymodel") , assuming thatdescribe.

mymodel() exists. Thus, developers might choose to use lines (1b) in Figures 2 and 3,
rather than the less-precise definitions in lines (1a).
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describe.bivariate.probit <- function() {

category <- "dichotomous"

mu <- list(equations = 2, # 2 parameters

tagsAllowed = TRUE, # for the mean

depVar = TRUE,

expVar = TRUE),

rho <- list(equations = 1, # 1 parameter

tagsAllowed = FALSE, # for the correlation

depVar = FALSE,

expVar = TRUE),

pars <- parameters(mu = mu, rho = rho)

list(category = category, parameters = pars)

}

Figure 5. The relevantdescribe.mymodel() function for the"bivariate.probit" model.

4. CONCLUDING REMARKS

The original developers of the S and R projects “wanted users to be able to begin in an
interactive environment, where they did not consciously think of themselves as program-
ming. Then as their needs became clearer and their sophistication increased, they should be
able to slide gradually into programming, when the language and system aspects would be-
come more important” (http://stat.bell-labs.com/S/history.html). Much of the work since
the early days has focused on the extreme ends of this “slide”— at one end shoring up the
foundations of the basic statistical computing language, most recently with sophisticated
tools like methods and classes, and at the other end the development of numerous separate
packages by many independent investigators.

Our intention here has been to help shore up the middle ground, to abstract features of
a large fraction of statistical approaches, in particular a far wider range than is covered by
the standard R single-equation framework, and to bring some unity to the diversity of sta-
tistical approaches and syntaxes, all without changing any of the existing packages, or their
approaches, notation, or examples. We also feel that it is time to recognize that most users
will never “slide gradually into programming.” Instead, we need to develop common tools
so that programmers slide gradually into into producing methods that applied researchers
can use directly. Although the developments offered here will not come close to unifying
the diverse methodological subfields of different substantive disciplines, we hope that it
facilitates the dispersion of methodological advances across fields through the use and de-
velopment of an increasingly powerful and diverse set of statistical approaches accessible
to all.
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