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Abstract 

Long-term memory (LTM) is a multi-factorial construct, composed of different stages of 

information processing, and different cognitive operations that are mediated by distinct neural 

systems, some of which may be more responsible for the marked memory problems that limit the 

daily function of individuals with schizophrenia. From the outset of the CNTRICS initiative, this 

multidimensionality was appreciated, and an effort was made to identify the specific memory 

constructs and task paradigms that hold the most promise for immediate translational 

development. During the second CNTRICS meeting, the LTM group identified item encoding 

and retrieval and relational encoding and retrieval as key constructs.  This manuscript describes 

the process that the LTM group went through in the third and final CNTRICS meeting to select 

nominated tasks within the two LTM constructs and within a reinforcement learning construct 

that were judged most promising for immediate development. This discussion is followed by 

each nominating authors’ description of their selected task paradigm, ending with some thoughts 

about future directions. 

 

Key Words: episodic memory, schizophrenia, relational memory, item memory
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Introduction 

From the outset, the CNTRICS initiative appreciated that long-term memory (LTM) is a 

broad and multidimensional construct, encompassing multiple stages of information processing, 

and engaging distinct neural systems, some of which are likely to be more central to the memory 

problems that limit the daily function of individuals with schizophrenia. Accordingly, during the 

second of three CNTRICS meetings two LTM domains1 were identified as the most promising 

constructs for immediate translational development: 1) relational encoding and retrieval, defined 

as, “the processes involved in memory for stimuli/elements and how they were associated with 

coincident context, stimuli or events.”, 2) item encoding and retrieval, defined as, “the processes 

involved in memory for individual stimuli or elements irrespective of contemporaneously 

presented context or elements.” The LTM group was also assigned the construct of  

reinforcement learning, defined as, “acquired behavior as a function of both positive and 

negative reinforcers including the ability to (a) associate previously neutral stimuli with value, as 

in Pavlovian conditioning; (b) rapidly modify behavior as a function of changing reinforcement 

contingencies and; (c) slowly integrate over multiple reinforcement experiences to determine 

probabilistically optimal behaviors in the long run.” At the end of the second meeting, a call 

went out to the scientific community to engage in an on-line submission process to nominate 

tasks that assess these three constructs, to be considered for ongoing development.  

As part of the nomination process, scientists were asked to provide evidence for each 

task’s construct validity, link to neural circuits, clarity of cognitive mechanisms, availability of 

an animal model, link to neural systems through neuropsychopharmacology, amenability for use 

in neuroimaging, evidence of impairment in schizophrenia, and psychometric characteristics. In 

the third CNTRICS meeting the LTM working group was asked to select the two most promising 
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tasks within each construct based on these same criteria, with an understanding that although all 

tasks may not meet all requirements (e.g., animal model, psychometric characteristics), tasks 

without clear evidence of construct validity and link to a neural circuit should not be given 

further consideration. The purpose of this manuscript, is to report on the outcome of this 

deliberation process, and provide the reader with the nominating authors’ description of the one 

item encoding and retrieval, two relational encoding and retrieval, and three reinforcement 

learning tasks that were judged to be ready for immediate translational development.  

For the construct of relational encoding and retrieval two tasks – Associative Inference 

Paradigm (AIP) and Relational Encoding and Retrieval (REaR), were judged ready for further 

development and will be described below. The third nominated task was a Transitive Inference 

Paradigm (TIP). Working group members were impressed with TIP’s link to neural circuits, 

availability of an animal model, link to neuropsychopharmacology, and evidence of impairment 

in schizophrenia. However, the greater complexity of the TIP versus AIP resulted in a somewhat 

lower score for construct validity, and led to a decision to select the AIP over the TIP for 

immediate development. Two tasks were considered for the item encoding and retrieval 

construct – Relational Encoding and Retrieval (REaR) and Inhibition of Current Irrelevant 

Memories Task. Of these, only the REaR (which assesses both item and relational memory) was 

chosen. The nominating author’s acknowledgement that the Inhibition of Current Irrelevant 

Memories Task has “unknown” construct validity precluded it from further consideration. Within 

the reinforcement learning construct, the complementary nature of several of the nominated tasks 

lead the working group to recommend three tasks for further development – the Probabilistic 

Reward Task, the Probabilistic Selection Task, and the Probabilistic Reversal Learning task. The 

Weather Prediction Task was the fourth task nominated. Because the nominating author 
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described three different possible learning strategies, questions arose about the task’s construct 

validity and it did not receive further consideration. Below are the nominating authors’ 

descriptions of the selected tasks within each of the three LTM constructs. 

Relational Encoding and Retrieval  

Associative Inference Paradigm (AIP) 

Description: Relational representations bind distinct elements of an event into a memory 

representation that captures the relationships between the elements.2,3 Relational representations 

are thought to underlie mnemonic flexibility that allows for the generative use of stored 

knowledge about elements of experience to address new questions posed by the environment. 

The AIP provides a means to examine mnemonic flexibility and the nature of the relational 

representations that support the use of memory in novel situations.  

In the AIP, participants receive explicit training on two sets of paired associates (e.g., AB 

and BC) and are then tested on whether they can infer from these associations the relationship 

between A and C. Specifically, participants learn an initial set of AB associations, where each A 

might consist of a unique face and each B a unique house (Figure 1a). Then, participants learn an 

overlapping set of associations consisting of the same B stimuli (e.g., the same houses) paired 

with a new set of C stimuli (e.g., another unique set of faces). Thus, during learning, each B 

stimulus (a house) is associated with two different stimuli, A and C (two unique faces), though 

the A and C stimuli are not directly experienced together. 

During a subsequent memory test, participants make two-alternative forced-choice 

judgments that depend on memory for the learned associations (AB and BC) and the inferential 

relationship between A and C. For all test trials, the incorrect choice item (foil) is a stimulus that 

had been studied in another pairing, ensuring that the two choice stimuli are equally familiar. 
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This aspect of the design provides construct validity, because performance requires memory for 

the relations between stimuli rather the memory for individual items. That is, memory judgments 

for trained pairs (AB, BC) cannot be determined from stimulus familiarity and must be made 

based on learned associations. Similarly, for inferential pairs (AC) whose relationship was not 

studied, participants must retrieve the relation between the A and C stimuli that emerges from the 

overlapping associations with the same B stimulus. 

________________ 

Figure 1 About Here 

_________________ 

Construct Validity: The logic of the AIP rests on the theoretical argument that relational 

representations separately code elements of an event, maintaining the compositionality of the 

elemental representations and organizing them in terms of their relations to one another.2,3 The 

compositional nature of these relations allows for reactivation of representations from partial 

input (pattern completion),4,5 a process thought to underlie event recollection. Further, 

maintenance of the compositionality of elements in relational representations allows flexible use 

of learned information at retrieval, making it possible to infer relations across stimuli without 

explicit training. This flexibility is important for associative inference decisions that putatively 

require inference to solve novel (untrained) stimulus configurations at test (AC retrieval 

decisions). However, relational representations may also contribute to inferential decisions 

through pattern completion at encoding.5-7 When learning an overlapping set of pairs, AB and 

BC, pattern completion to AB during presentation of BC would enable an AC relation to be 

encoded. At test, inferential logic is not required to make an AC decision because a stored AC 

relation exists and can be directly retrieved. 
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Neural Systems: Neuroanatomical and computational models have proposed that the 

medial temporal region, and the hippocampus in particular, is essential for pattern completion 

processes that support performance in the AIP.5,8,9 Recent neuroimaging work with humans has 

revealed activation in anterior hippocampal regions at retrieval during inferential judgments 

relative to explicitly learned associations (Figure 1b).10  

Pharmacological and Behavioral Manipulation: Medial temporal lobe function has also 

been associated with performance on a related relational memory task in humans.11-13 In this 

hierarchical (or transitive) inference paradigm (TIP), participants incidentally learn, via 

feedback, relationships between pairs of stimuli that are hierarchically organized (A > B, B > C, 

C > D, D > E). At test, participants make recognition judgments for trained relationships (e.g., B 

> C, C > D) as well as decisions about untrained, inferential relationships (e.g., B > D). 

Successful performance on BD trials has been argued as evidence for the formation of a 

relational hierarchy (A > B > C > D > E) that allows untrained judgments to be inferred from 

learned information. However, others have proposed that successful BD performance in this 

hierarchical inference task can be explained by reinforcement learning processes that do not 

depend on relational representations that rely on medial temporal lobe processing.5,6 The 

benzodiazepine midazolam, which is thought to disrupt hippocampal function, actually enhances 

BD performance in this hierarchical inference paradigm, suggesting that learning in this task may 

rely on striatal mechanisms that support feedback-based habit learning.14 Thus, important 

differences may exist between the AIP and TIP, with different neural systems being recruited 

depending on task demands. 

 Behavioral variation in performance has been observed in the AIP, with awareness of the 

overlapping relationships between stimuli during encoding perhaps being essential to inferential 
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performance at test. For example, participants who are explicitly informed about the overlapping 

relationships between stimuli prior to learning or who spontaneously acquire such awareness 

during learning perform more accurately on AC judgments than uninformed or unaware 

subjects.15 Similar awareness-dependent performance differences are observed in the TIP. While 

above chance inferential performance can occur in unaware participants,16,17 aware participants 

demonstrate greater accuracy on AC judgments than unaware participants.16,18 

Animal Models: Complementary animal work has documented impaired associative 

inference judgments following hippocampal lesion. In rats, lesions of hippocampus proper 

impair AC judgments without disrupting the ability to encode or retrieve the explicitly trained 

associations (AB and BC).19 Medial temporal lobe function has also been associated with task 

performance in the TIP in rats.20 

Performance in Schizophrenia: How schizophrenia affects performance in the AIP is 

currently unknown. However, in the hierarchical transitive inference paradigm, schizophrenia 

impairs relational judgments (BD) with performance on nonrelational judgments (AE) remaining 

intact.21  Functional neuroimaging has further demonstrated that impaired memory performance 

in schizophrenia during conscious recollection22 and the hierarchical inference task23 is 

associated with decreased activation in hippocampal regions.  

Psychometric Data: These data are not yet available for the AIP. 

Item Encoding and Retrieval and Relational Encoding and Retrieval  

Relational Encoding and Retrieval Task (REaR) 

Description: The REaR task combines two paradigms previously used to study item-

specific and relational episodic memory in schizophrenia. The first is a levels-of-processing task 

designed to control for group differences in item-specific encoding strategies and, thereby, 
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generate equivalent recognition and source memory performance between schizophrenia patients 

and controls.24,25 The second is a relational encoding task,26 that produces a significant 

recognition deficit in patients with schizophrenia. During the encoding phase of REaR, 

participants are presented with two trial types in separate blocks. During ‘item-specific’ 

encoding blocks, participants are presented with a series of trials in which they are shown a 

single object and asked to rate whether it is pleasant or unpleasant. During ‘relational’ encoding 

blocks, participants are presented with a series of trials in which three objects are shown and they 

must judge whether the objects are in the correct order in terms of weight (from lightest to 

heaviest). In each study block, participants encode 12 objects, and a total of 3 blocks are 

completed for each encoding condition. The sequence of encoding blocks is counterbalanced to 

minimize order effects. During the retrieval phase of the task, participants first complete a yes/no 

item recognition test consisting of a random sequence of 72 previously studied objects (36 from 

item-specific and 36 from relational) and 72 previously unseen foil objects. Next, participants are 

given an associative recognition test consisting of objects that were previously studied on 

relational trials. The test includes 18 “intact” pairs consisting of objects that were originally 

studied on the same trial and 18 “recombined” pairs consisting of objects that were originally 

studied on different trials. Subjects are asked to indicate if the pairs are intact or rearranged. 

Construct Validity: Behavioral research has distinguished between item-specific and 

relational encoding strategies.26-28 Common item-specific encoding strategies involve making a 

semantic decision about an item (e.g., “pleasant”/”unpleasant”, “abstract”/”concrete”), whereas 

relational encoding strategies include imagining two or more items interacting, or linking two or 

more words in the context of a sentence or story. It is thought that relational encoding promotes 

memory for associations amongst items, whereas item-specific encoding enhances the 
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distinctiveness of specific item.27-30 In the episodic memory literature, relational encoding has 

been linked to the function of the hippocampus, which is thought to support the binding of novel 

representations.31-33 The distinction between relational versus item-specific encoding has also 

been supported by neuroimaging studies of working memory (WM) that have revealed 

dissociations between brain regions involved in item-specific WM maintenance and regions 

involved in manipulation of relationships between items while they are being maintained. 

Research has shown that DLPFC is selectively activated on trials in which relationships among 

items are processed.34 Moreover, engagement of the DLPFC during relational WM processing 

predicts successful long-term memory (LTM) retrieval.26,35,36 Several studies have shown that, 

although both relational and item-specific encoding tasks are effective, they tend to have 

different effects on memory performance.27-30 For example, relational encoding is optimal when 

memory for associations between items will be tested (e.g., paired associate learning), whereas 

item-specific encoding is optimal when memory for item-details is tested.37 The available 

evidence therefore indicates that the construct of relational encoding and retrieval has validity at 

both the cognitive and neural level of analysis, and that it is supported by both hippocampal and 

DLPFC mediated mechanisms. 

In prior work,26 it has been shown that the associative portion of the REaR task promotes 

LTM by building associations between triplets of words, whereas this evidence was not seen for 

a control task that involved passive rehearsal of words. Preliminary results (see below) suggest 

that performance is impaired in patients relative to controls. In contrast, item-specific semantic 

encoding has been shown to improve memory by facilitating encoding of distinctive item-

specific information, as it does not encourage building of relationships amongst items.28 As 
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described below, item-specific semantic encoding tasks promote robust levels of memory 

performance in patients with schizophrenia.24,38,39 

Neural Systems: Several recent studies have demonstrated that DLPFC activation during 

relational encoding reliably predicts successful LTM.26 However, DLPFC activity is generally 

not correlated with successful item-specific encoding (see35 for review). For example, in a recent 

study from Dr. Ranganath’s lab26 using a variant of the relational encoding task used in the 

REaR paradigm, participants were scanned while performing the two WM tasks (Figure 2a). On 

‘rehearse’ trials, subjects were required to rehearse a set of 3 words across a 12 second delay 

period, whereas on ‘reorder’ trials, participants were required to rearrange a set of three words 

based on the weight of the object that each word referred to over the delay. Although both 

conditions required maintenance across the delay, reorder trials also required participants to 

evaluate relationships between items in the memory set along a single dimension (weight). 

Analyses of subsequent LTM performance showed significantly more reorder trials in which all 

three items were recollected than would be expected based on overall item hit-rates alone (Figure 

2b), but the same was not true for rehearse trials. This result suggests that, on reorder trials, 

participants successfully encoded relationships between the items in each memory set. Consistent 

with the idea that the DLPFC is involved in relational processing in WM, DLPFC activation was 

increased during reorder trials compared to rehearse trials (Figure 2c). Furthermore, DLPFC 

activation during reorder, but not rehearse trials, was positively correlated with subsequent LTM 

performance. No such relationship was evident during rehearse trials. In contrast, activation in 

the left VLPFC (BA 44/6) and in the hippocampus was correlated with subsequent memory 

performance on both rehearse and reorder trials. Results from this study and others36 suggest that 
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the DLPFC may be specifically recruited during relational encoding, adding support to the 

validity of this neural construct. 

_________________ 

Figure 2 About Here 

_________________ 

 

Pharmacological and Behavioral Manipulation: Data on pharmacological manipulation 

effects on the REaR are not yet available. As noted above, when patients are provided with an 

item-specific encoding strategy there are no longer group differences in item recognition and 

source retrieval performance,25,25 or in fMRI activation in the VLPFC.38,39  

Animal Models: The kinds of relational encoding processes that are manipulated in the 

REaR paradigm have not been extensively investigated in animal models, in part because it is 

difficult to directly manipulate encoding strategies in non-human animals. Some relevant 

evidence, however, comes from studies of working memory tasks in monkeys. For example, a 

single-unit recording study40 showed that neurons in the monkey dorsal prefrontal cortex 

encoded information about temporal order relationships between a series of items presented in a 

working memory task. In contrast, ventral prefrontal neurons tended to encode the physical 

features of objects to be maintained. Another study demonstrated that lesions to mid-dorsolateral 

prefrontal cortex impaired memory for sequences of actions.41 

Performance in Schizophrenia: Research by Dr. Ragland and others has revealed 

consistent evidence of episodic memory deficits in schizophrenia linked to impaired 

organizational processes. During initial experiments, subjects were studied with explicit word list 

encoding tasks where no strategy was provided.42,43 During debriefing, controls were more likely 
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to engage in item-specific semantic processing, and we suspected that patients were employing a 

less effective strategy. A levels-of-processing (LOP) paradigm44 tested whether providing a 

semantic, item-specific encoding strategy could improve patients’ performance and prefrontal 

function. As predicted, patients showed the same benefit as healthy controls from item-specific 

semantic processing on both recognition38,39 and source memory tasks,25 and showed robust 

activation in the ventrolateral portions of the prefrontal cortex.38 These results suggest that item-

specific encoding processes may be relatively spared compared to relational encoding, and 

motivate inclusion of a semantic item-specific encoding condition in the REaR paradigm to 

address issues of generalized deficit. 

In contrast, pilot data from Dr. Ragland and Dr. Ranganath using the relational encoding 

condition from the REaR task, suggests that when individuals with schizophrenia are provided 

with a relational encoding strategy, they may perform more poorly than controls (Figure 3). 

Specifically, preliminary data from a sample of 12 individuals with schizophrenia (4 females) 

and 12 demographically-matched healthy volunteers showed that recognition accuracy was 

significantly lower in patients (red triangles) versus healthy controls (blue circles) for relational 

encoding [t(23)=-1.73; p<.05], but not for item-specific encoding [t(23)=-1.24; p=.12].  

_________________ 

Figure 3 About Here 

_________________ 

Psychometric Data: These data are not yet available for the REaR. 

Reinforcement Learning 

Probabilistic Reward Task  
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Description: This task is based on a differential reinforcement schedule that provides an 

objective assessment of participants’ propensity to modulate behavior as a function of reward 

history.45 The task, which was modified from an earlier paradigm described by Tripp and 

Alsop,46 is rooted within the behavioral model of signal-detection47 and the generalized matching 

law.48,49  

_________________ 

Figure 4 About Here 

_________________ 

Figure 3 provides a summary of the probabilistic reward task (adapted from45). The task 

includes 300 trials, divided into 3 blocks of 100 trials, which are separated by a 30-sec break. A 

trial starts with the presentation of an asterisk for 1400 msec, immediately followed by a 

schematic mouthless cartoon face presented for 500 msec. Next, either a short (11.5 mm) or long 

(13 mm) mouth is briefly presented on the screen for 100 msec. The mouthless face remains 

visible until the participant makes a response. For each trial, participants are asked to determine 

which mouth stimulus was presented by pressing either the “z” key or the “/” key on a PC 

keyboard (counterbalanced across subjects). For each block, the two mouth stimuli are presented 

equally often using a pseudo-randomized sequence allowing up to three consecutive 

presentations of the same stimulus. Within each block, only 40 correct trials are followed by 

reward feedback (e.g., “Correct!! You won 5 cents”), presented for 1500 msec immediately after 

a correct response. If a reward feedback is presented, an additional blank screen is presented for 

250 msec. For non-rewarded trials, a blank screen is presented for 1750 msec. 

Critically, an asymmetric reinforcer schedule is used to induce a response bias.50 Thus, 

correct identification of one mouth (“rich stimulus”) is rewarded three times more frequently 
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than correct identification of the other mouth (“lean stimulus”). Only 40 correct trials are 

rewarded in each block (30 rich, 10 lean) to ensure that each participant is exposed to the same 

(or a very similar) number of rewards. To achieve this goal, a controlled reinforcer procedure is 

used: if a participant makes an incorrect response on a trial scheduled to be rewarded, the 

feedback is delayed until the next correct response of the same stimulus.  

Before the task, participants are instructed that the goal of the task is to win as much 

money as possible, and that not all correct responses will receive a reward feedback. Importantly, 

participants are not informed that one of the stimuli will be rewarded more frequently. Note that 

due to the probabilistic nature of the task, participants cannot infer which stimulus is more 

advantageous based on the outcome of a single trial; instead, in order to optimize their choices, 

participants need to “integrate” reinforcement history over time. Depending on the monetary 

reward used for each trial, participants earn approximately $6 (5 cent/trial)45 or approximately 

$24 (20 cent/trial).51 

The main variable of interest is response bias, which can be computed46,47 as:  

 
 

As evident from the formula, a high response bias emerges when participants tend to 

correctly identify the stimulus associated with more frequent rewards (rich hits) and to 

misclassify the lean stimulus (lean misses). To examine general task performance, secondary 

analyses consider hit rates  [(number of hits)/(number of hits + number of misses)], reaction 

time, and discriminability. Discriminability, which assesses the subjects’ ability to perceptually 

distinguish between the stimuli and can thus be used as an indication of task difficulty), is 

computed as:  



CNTRICS Long-Term Memory Tasks 

 

16 

 

 
 

In addition to these variables, the probability of specific responses as a function of the 

immediately preceding trial can be computed to evaluate the strength of a response bias as a 

function of (a) which stimulus had been rewarded in the preceding trial; and (b) proximity of 

reward delivery. For example, the probability of selecting “rich” or “lean” in trials immediately 

following a correctly identified, rewarded rich trial vs. a correctly identified, non-rewarded rich 

trial may be computed.52 Finally, in several studies we have found that reward learning, which 

can be measured by subtracting response bias in block 1 from response bias in block 3, showed 

strong construct and predictive validity.45,52 

Construct Validity: Initial construct validity comes from studies evaluating samples 

hypothesized to be characterized by dysfunctional reinforcement learning.53,54 Subjects with 

elevated depressive symptoms,45 unmedicated patients with major depressive disorder (MDD),55 

and medicated euthymic patients with bipolar disorders52 showed reduced response bias toward 

the more frequently rewarded stimulus (Figure 5a). Moreover, trial-by-trial probability analyses 

revealed that MDD subjects were impaired at expressing a response bias toward the more 

frequently rewarded cue in the absence of immediate reward (manifested as increased miss 

rates), whereas they were responsive to delivery of single rewards. Increased miss rates for the 

more frequently rewarded stimulus correlated with anhedonic symptoms (r = 0.52, p < 0.05), 

even after considering anxiety symptoms and general distress.55 In prior studies, reward learning 

(response bias in block 3 minus response bias in block 1) negatively correlated with self-reported 

anhedonic and/or melancholic symptoms in non-clinical samples (r = -0.28, p < 0.05;45 r = -0.33, 

p < 0.05)56 and euthymic bipolar patients (r =  0.51, p < 0.030),52 and predicted these symptoms 
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one month later (r = -0.41, p < 0.05).45 Additional analyses indicated that reward learning 

predicted anhedonic symptoms more than one month later (on average, 38.28 days later) after 

controlling for initial anhedonic symptoms and general negative affectivity.45  

_________________ 

Figure 5 About Here 

________________ 

Neural Systems: In a recent study, event-related potentials (ERPs) were recorded in 30 

healthy controls performing the probabilistic reward task.57 Feedback-related negativity (FRN) 

was measured in response to reward feedback, and compared between subjects who developed a 

response bias toward the more frequently rewarded stimulus (“learners”) versus subjects who did 

not (“non-learners”). Relative to non-learners, learners were characterized by smaller (i.e., more 

positive) FRNs (Figure 6a).  In light of recent findings indicating that the FRN is smaller (i.e., 

more positive) when participants learn a stimulus-response association58 or can predict outcomes, 

including positive ones,59 larger FRN in the non-learners was interpreted as an 

electrophysiological marker of blunted reinforcement learning. Consistent with this 

interpretation, compared to learners, non-learners showed significantly lower activation in 

response to reward feedback in dorsal anterior cingulate cortex (dACC) regions that have been 

previously implicated in integrating reinforcement history over time (Figure 6b).60,61 Moreover, 

the ability to develop a response bias toward the more frequently rewarded stimulus correlated 

with dACC activation (r = 0.40, p < 0.030). A final feature of this study was that some of the 

participants performed a monetary incentive delay (MID) task62,63 during functional magnetic 

resonance imaging. Relative to non-learners, learners showed larger basal ganglia responses to 

reward feedback (monetary gains) in the MID task (Figure 6c). These findings suggest that 
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participants developing a response bias toward the more frequently rewarded stimulus had 

stronger dACC and basal ganglia responses to reward outcomes.  

_________________ 

Figure 6 About Here 

________________ 

Pharmacological and Behavioral Manipulation: Two studies have shown that response 

bias in the Probabilistic Reward task is modulated by pharmacological manipulations affecting 

dopamine (DA) either directly51 or indirectly.64 In the first study, a single 0.5 mg dose of the 

D2/3 agonist pramipexole or placebo was administered to healthy volunteers 2 hours before 

performing the task.51 Consistent with predictions based on animal evidence,65-67 pramipexole 

impaired reinforcement learning (see68 for a prior human study postulating similar effects). 

Compared to placebo, subjects receiving pramipexole showed lower response bias toward the 

more frequently rewarded stimulus (Figure 5b).51 Control analyses confirmed that reduced 

response bias was not due to transient adverse effects.  

These behavioral findings were extended by analyses of event-related potentials (ERPs) 

collected while participants performed the probabilistic reward task by the application of 

computational modeling to test whether presynaptic inhibitory mechanisms might explain the 

reduced response bias in the pramipexole group. Two sets of findings emerged. First, blunted 

reward learning in participants receiving pramipexole could be simulated by reduced presynaptic 

DA signaling in response to reward in a neural network model of striatal-cortical function.69,70 

Second, compared to the placebo group, participants receiving pramipexole were characterized 

by larger (i.e., more negative) FRN to probabilistic rewards, indicating reduced reinforcement 

learning.58,59,70 Replicating and extending findings from an independent study,57 source 
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localization at the time of maximal FRN indicated that, relative to the placebo group, the 

pramipexole group was characterized by significantly lower activation in dACC regions 

previously implicated in integrating reinforcement history over time.70 Collectively, these 

findings are in line with prior evidence that phasic DA signaling plays an important role in 

reinforcing actions leading to reward,71-73 and indicate that performance in the probabilistic 

reward task is sensitive to DA challenges. 

The aim of a second pharmacological study was to test the hypothesis that nicotine might 

increase responsiveness to reward-related cues,64 based on prior findings that nicotine increases 

appetitive responding through activation of presynaptic nicotinic receptors on mesocorticolimbic 

DA neurons in animals,74,75 and increases the incentive value of monetary reward in humans.76 

Using a randomized, double-blind, placebo-controlled crossover design, Barr and coworkers 

administered a single dose of transdermal nicotine (7-14 mg) to 30 psychiatrically healthy adult 

non-smokers. Nicotine increased response bias toward the more frequently rewarded stimulus, 

and this effect persisted over time, as demonstrated by a greater response bias during the placebo 

session in participants who received nicotine in the first compared to the second session (one 

week later).  

Two additional studies investigated the effects of stress on reward responsiveness,77,78 

and were motivated by a large body of animal work and limited human findings indicating that 

stress might exert depressogenic effects by reducing hedonic capacity.79,80 In a first study, the 

hypothesis that non-clinical participants reporting elevated levels of stress – assessed by the 

Perceived Stress Scale (PSS)81 – would show reduced response bias toward the more frequently 

rewarded stimulus was tested. Consistent with this hypothesis, in two independent samples (n = 

88 and n = 80), individuals reporting elevated stress had reduced reward responsiveness and 
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elevated anhedonic symptoms. Moreover, PSS scores predicted reduced reward responsiveness 

above and beyond symptoms of general distress and anxiety.78 These correlational findings were 

extended by a second study that tested the effects of an acute laboratory stressor on reward 

responsiveness in healthy participants.77 Eighty female participants performed the probabilistic 

reward task under both a stress condition (threat-of-shock, n = 38 or negative performance 

feedback, n = 42), and a no-stress condition. The acute stress manipulation (particularly threat of 

shock) reduced reward responsiveness (Figure 5c). Notably, the deleterious effects of stress on 

reward responsiveness were largest in individuals reporting elevated anhedonic symptoms in 

their daily life.56 Preliminary analyses of an independent sample replicated these findings, and 

indicated that stress-induced decreases in reward responsiveness might be largest in 

psychiatrically healthy subjects who might be at increased genetic risk for depression,82 

suggesting that stress-induced hedonic deficits might be a promising link between stressful 

experiences and depression. 

Animal Models: In collaboration with Athina Markou at UCSD, Dr. Pizzagalli is 

developing a task analogous to the human Probabilistic Reward task for use in rodent studies. 

Performance in Schizophrenia: In a recent study, Heerey and coworkers used the 

Probabilistic Reward task in a sample of 40 clinically stable and medicated outpatients with 

schizophrenia.83 The authors found that, compared to healthy controls, patients with 

schizophrenia had a reduced ability to discriminate between the stimuli but similar response bias. 

The authors concluded that schizophrenia is characterized by intact sensitivity to reward and 

ability to modify responses based on reinforcements. Although intriguing, the interpretation of 

these findings is somewhat difficult because all patients were medicated at the time of testing. 

Moreover, no information was provided about the smoking status of participants, in particular 
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whether patients and controls were matched for this variable. In light of the recent finding that 

nicotine enhances response bias in the probabilistic reward task,64 and given high rates of 

smoking in schizophrenia,84,85 it is unclear whether the null findings reported in83 might be 

partially due to group differences in smoking status and/or history. At present, there are at least 

four groups currently using or planning to study this task in individuals with schizophrenia. 

Psychometric Data: The test-retest reliability of the Probabilistic Reward task over 

approximately 38 days was r = 0.57, p < .004. Satisfactory test-retest reliability of reward 

learning (r = 0.56 over an averaged period of 39 days period) also emerged in an independent 

sample.57 In a recent study evaluating monozygotic (n = 20) and dizygotic (n = 15) twin pairs, 

the heritability of reward responsiveness was estimated to be 48%.77 Due to the limited sample 

size of this twin study, these heritability estimates should be considered preliminary.  

Probabilistic Selection Task 

Description: The Probabilistic Selection Task86,87 measures participants’ ability to learn 

from positive and negative feedback, by integrating reinforcement probabilities over many trials. 

Three different stimulus pairs (AB, CD, EF) are presented in random order and participants have 

to learn to choose one of the two stimuli. Feedback follows the choice to indicate whether it was 

correct or incorrect, but this feedback is probabilistic: In AB trials, a choice of stimulus A leads 

to positive feedback in 80% of trials, whereas a B choice leads to negative feedback in these 

trials. CD and EF pairs are less reliable: stimulus C is correct in 70% of trials, while E is correct 

in 60% of trials. Over the course of training, participants learn to choose stimuli A, C and E more 

often than B, D, or F. Note that learning to choose A over B could be accomplished either by 

learning that choosing A leads to positive feedback, or that choosing B leads to negative 

feedback (or both). To evaluate whether participants learn more about positive or negative 
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outcomes of their decisions, performance is subsequently probed in a test/transfer phase in which 

all novel combinations of stimuli are presented and no feedback is provided. Positive feedback 

learning is assessed by reliable choice of the most positive stimulus A in this test phase, when 

presented with other stimuli (AC, AD, AE, AF). Negative feedback learning is assessed by 

reliable avoidance of the most negative stimulus B when presented with the same stimuli (BC, 

BD, BE, BF). The extent to which participants perform better in choose-A or avoid-B pairs has 

been associated with a “Go” or “NoGo” learning bias, and is very sensitive to dopaminergic 

state, manipulation, and genetics.68,88-91 

In addition to the probabilistic reinforcement learning biases, the task can also probe 

other aspects of reinforcement-based decision making. For example, the tendency to rapidly 

learn from a single instance of reinforcement in the initial trials of the task is thought to rely on 

distinct process from that involved in integrating feedback probabilities over trials.89 Similarly, 

when faced with novel test pairs, participants adaptively modulate their response times in 

proportion to the degree of reinforcement conflict. High conflict choices involving stimuli with 

similar reinforcement probabilities are associated with longer response times than those 

associated with divergent reinforcement probabilities, a process thought to depend on 

interactions between dorsomedial frontal cortex and the subthalamic nucleus.90 

Construct Validity: Performance on the Probabilistic Selection Task is defined by the 

ability to choose the probabilistically most optimal stimulus. Of course many factors can 

contribute to better or worse performance aside from reinforcement learning, including attention, 

motivation, fatigue, working memory, etc. However, the main measure of interest in the task is 

within-subject (i.e., the ability to choose the most positive stimulus is contrasted with that of 

avoiding the most negative stimulus), thereby controlling for overall performance levels and 
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specifically assessing the contribution of reinforcement. This relative positive to negative 

feedback learning measure is reliably altered by dopaminergic manipulation in a range of 

populations, and moreover, similar effects in positive vs negative learning have been observed in 

other tasks meant to measure similar constructs but using different stimuli, motor responses, and 

task rules (i.e., probabilistic Go/NoGo learning task,68 and probabilistic reversal learning task92). 

Neural Systems: Within the task paradigm, positive and negative feedback learning in 

this task are thought to rely on striatal D1 and D2 receptors, respectively. As described above, 

probabilistic positive and negative feedback learning are sensitive to dopaminergic manipulation. 

Increases in dopaminergic stimulation, likely in the striatum, lead to better positive learning but 

cause impairments in negative feedback learning.68,89,90 Conversely, dopamine depletion is 

associated with relatively better negative feedback learning, but worse positive feedback 

learning. At the individual difference level, genes that control D1 and D2 dopamine function in 

the striatum are predictive of probabilistic positive and negative learning, whereas genes that 

control dopamine function in prefrontal cortex are predictive of rapid trial-to-trial learning from 

negative feedback.88 Negative feedback learning is also associated with enhanced error-related 

negativity (brain potentials originating from anterior-cingulate cortex69,93) and activation of this 

same region in functional neuroimaging.91 Lesions to medial prefrontal cortex are associated 

with both deficits in the acquisition of reinforcement contingencies (patients took longer to learn) 

and impaired negative feedback learning in the test phase.94 Finally, the subthalamic nucleus (a 

component within the basal ganglia network) is believed to delay responses during high conflict 

decisions. Supporting this claim, deep brain stimulation of the subthalamic nucleus causes 

premature responding in these high conflict choices.89 



CNTRICS Long-Term Memory Tasks 

 

24 

 

Pharmacological and Behavioral Manipulation: As previously noted, the Probabilistic 

Selection task is sensitive to pharmacological manipulation. Dopamine agonists, including 

levodopa and D2 agonists, impair negative feedback learning in Parkinson’s patients while 

sometimes improving positive feedback learning.90 In ADHD, stimulant medications 

(methylphenidate and amphetamine), which elevate striatal dopamine, improved positive but not 

negative feedback learning.93 In healthy participants, low doses of D2 agonists and antagonists, 

which may act presynaptically to modulate dopamine release, predictably alter positive and 

negative feedback learning.68 

Animal Models: There is currently no available animal model of the Probabilistic 

Selection task. However, preliminary unpublished results from Claudio DaCunha’s lab in Brazil 

suggest that rats can learn a reduced form of the task using odor discrimination and two pairs of 

stimuli. In a related project, Rui Costa and colleagues have developed a forced-choice task 

requiring mice to learn to choose and avoid behaviors associated with positive and negative 

tastants.95 Mice with elevated striatal dopamine levels showed enhanced bias to approach 

rewarding tastants together with a reduced bias to avoid aversive tastants, similar to the data 

reported in humans. In monkeys, striatal D1 receptor blockade abolishes the normal response 

speeding observed when a large reward is available (a measure of Go learning), whereas D2 

receptor blockade leads to greater response slowing when smaller than average rewards are 

available (a measure of NoGo learning).96 

Performance in Schizophrenia: In a preliminary study, patients with schizophrenia 

showed large deficits in learning the standard version of the Probabilistic Selection task, which 

uses Japanese Hiragana characters as stimuli.97 Subsequent testing using verbalizable stimuli 

(pictures of every day objects such as bicycles) showed that patients can learn the task, but show 
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selective deficits in early acquisition (thought to rely on prefrontal structures), which correlated 

with their negative symptoms.97 In the test phase, patients showed intact “NoGo” learning, but 

selectively impaired “Go” learning. Further, all the genetic polymorphisms predictive of learning 

in this task are candidate genes for schizophrenia. 

Psychometric Data: Practice effects for the Probabilistic Selection task have been 

assessed in Frank and O’Reilly.68 Different stimuli are used across sessions. On average 

participants are faster to learn the task after multiple sessions, but this practice does not affect 

relative positive versus negative feedback learning. 

Probabilistic Reversal Learning Task 

Description: This task was developed by Trevor Robbins and Robert Rogers and first 

published in Lawrence et al.98 and Swainson et al.99 The task is administered using a touch-

sensitive screen for recording responses, but a button box can also be used. On each trial, 

subjects are presented two visual patterns (rectangles of colored stripes; Figure 7). These patterns 

appear in two randomly chosen boxes out of four possible boxes. The task consists of two stages, 

starting with a simple probabilistic visual discrimination, in which subjects have to make a two-

alternative forced choice between two colors. The ‘correct’ stimulus (which is always the first 

stimulus touched) receives an 80:20 ratio of positive:negative feedback and the opposite ratio of 

reinforcement is given for the ‘incorrect’ stimulus. After completing 40 trials of this initial 

discrimination, the task proceeds to the second, reversal stage in which contingencies are 

reversed, without warning, so that the previously ‘incorrect’ color is now correct and vice versa 

for the previously ‘correct’ color. The instructions for the task are: “On each go, the same two 

patterns will be presented.  One of the patterns is correct and the other pattern is wrong and you 

have to choose the correct pattern on each go. However on some goes, the computer will tell you 
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that you were wrong even if you chose the correct pattern.  Your task is to stick to the pattern 

that is usually correct.  So in other words, always choose the pattern that is correct more often 

than the other pattern. At some point during the task, the rule may change so that the other 

pattern is now usually correct.  You then have to follow this new rule and choose the new 

pattern.  It is important that you only start choosing the other pattern when you are sure that the 

rule has changed.” 

_________________ 

Figure 7 About Here 

________________ 

Although all subjects receive a total of 80 trials, a learning criterion of eight consecutive 

correct trials is generally imposed for the purposes of analysis. Main performance measures are 

failure or success at each stage, mean errors to criterion and mean latencies. Failure/success rates 

are analyzed using the likelihood-ratio method for contingency tables.100 Subjects failing stage 1 

are excluded from subsequent analyses of error rates and latencies at stage 2. They are included 

when error rates and latencies at stage 1 are analyzed (to obtain a measure of acquisition). 

Square-root transformed errors to criterion [(x + 0.5)1/2] (or total errors if criterion is not 

reached) and response latencies (log-transformed if necessary) are analyzed using one-way 

ANOVAs. If the assumption of homogenous variances is violated, then the error measures are 

analyzed using the nonparametric Kruskal-Wallis and/or Mann–Whitney tests.  

Measures of perseveration and maintenance can also be obtained. Consecutive-

perseverative responses refer to consecutive responses made, directly following reversal of the 

reinforcement contingencies, to the color that was correct during stage 1 but is now incorrect in 

stage 2. STAGE I-perseverative errors (in the terminology of Jones and Mishkin101) refer to 
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errors in blocks of eight trials (of the reversal stage), in which performance within these blocks 

falls significantly below chance (<=1 correct response). Both of these perseveration scores tend 

to correlate significantly with total errors made in stage 2 of the task. Therefore, each should be 

converted to a score indicating the proportion of total errors in stage 2. Maintenance errors refer 

to the errors made subsequent to criterion being reached (i.e. the number of responses to 

incorrect stimulus/total trials remaining), subject to there being at least 10 trials after criterion is 

reached. 

Construct Validity: The Probabilistic Reversal Learning task gauges adaptive behavior, 

which requires anticipation of biologically relevant events, i.e. rewards and punishments, by 

learning signals of their occurrence. The ability to predict events interacts with the ability to 

strengthen and weaken actions when these actions are closely followed by rewards and 

punishments. These processes are often collectively referred to as reinforcement learning. 

Models of reinforcement learning use a temporal difference prediction error signal, representing 

the difference between expected and obtained events, to update their predictions based on states 

of the environment.102 Probabilistic learning tasks are commonly used to assess reinforcement 

learning and neural activity associated with prediction errors.103-105 For example, O’Doherty et 

al.104,105 used probabilistic learning tasks to establish that activity in the (ventral) striatum and 

orbitofrontal cortex was positively correlated with the prediction error signal. 

 Furthermore, a recent EEG) study with healthy volunteers revealed that the FRN 

observed during punishment over the medial frontal cortex correlated significantly and positively 

with the reward prediction error signal during our serial probabilistic reversal learning task,106 

and was greatest during the probabilistic errors and was absent during the final reversal error. By 

contrast, a positive deflection in the signal (corresponding to the P300) was larger during the 
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final reversal error than during probabilistic errors, suggesting that the FRN correlates with the 

prediction error signal, but not necessarily with behavioral adjustment (but see107). Indeed, one of 

the strengths of the task is that it enables the separate investigation of punishment (i.e. prediction 

errors) and behavioral switching. 

 More generally, it should be noted that demands for reinforcement learning are 

particularly high in probabilistic reversal learning paradigms. However, reversal learning 

constitutes a special case of reinforcement learning, and adequate performance also depends on 

other processes including prepotent response inhibition and stimulus-switching. On a related 

note, it should be recognized that simple reinforcement learning models do not encompass all 

aspects of probabilistic reversal learning, as implemented in our paradigm. For example, 

Hampton et al.108 have shown that behavioral performance on, and neural activity (in the 

ventromedial prefrontal cortex) during probabilistic reversal learning was fit better by a model 

that also simulated knowledge of the abstract task structure than by a simple reinforcement 

learning model that did not incorporate such a higher-order knowledge about interdependencies 

between actions. 

Neural Systems: A number of neuropsychological studies have revealed that 

(probabilistic and deterministic) reversal learning is disrupted by frontal lobe lesions.109-112 The 

deficits appear restricted to patients with ventromedial frontal lesions, do not to extend to 

patients with dorsolateral prefrontal lesions, and cannot be attributed to problems with initial 

acquisition of stimulus-reinforcement contingencies. Recently, Hornak et al.111 observed deficits 

on the probabilistic reversal learning task in a small number of patients with dorsolateral 

prefrontal cortex lesions, but post-test debriefing revealed that these patients had failed to pay 

attention to the crucial feedback provided on the screen. In a further study, a group of patients 
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with frontal variant fronto-temporal dementia showed impairments on the probabilistic reversal 

learning task, while showing intact performance on executive functions associated with the 

dorsolateral prefrontal cortex.113 

 The first fMRI study of this task114 revealed supra-threshold activity in the VLPFC, 

anterior cingulate cortex and posterior parietal cortex during the final reversal errors relative to 

the baseline correct responses. A priori hypotheses allowed more focused region of interest 

analyses, which revealed that the activity in the VLPFC was significantly larger on the final 

reversal errors than on the other (e.g. probabilistic) errors that did not lead to switching. It should 

be noted that, at a lower statistical threshold (uncorrected for multiple comparisons) the DLPFC 

was also active during the final reversal errors. Such additional (albeit relatively less) activity in 

the DLPFC was confirmed in later fMRI studies with this task,115-117 and with a slightly adapted 

version of the task.118  Finally, more recent studies that employed more optimal acquisition 

sequences, have also revealed reversal-related activity in the more anterior orbitofrontal 

cortex.115,118 In our initial study, reversal-related activity was also observed in the ventral 

striatum, centered on the nucleus accumbens. Reversal-related activity was also observed in the 

nucleus accumbens in patients with Parkinson’s disease (who had abstained from their 

medication115). However, the exact computation carried by the nucleus accumbens during 

probabilistic reversal learning is still under investigation.  

 Pharmacological and Behavioral Manipulation: Probabilistic reversal learning is sensitive 

to dopaminergic and serotoninergic manipulations, but not to noradrenergic manipulations in 

humans. Withdrawal of dopaminergic medication, such as levodopa and dopamine receptor 

agonists in patients with mild Parkinson’s disease (PD) improves performance.119 This effect is 

demonstrated by a greater number of patients OFF medication failing to reach learning criterion 
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on the critical reversal stage, relative to patients ON medication and to age- and education-

matched controls. These results are consistent with Mehta et al.,120 who showed that 

administration of the dopamine receptor agonist bromocriptine impaired performance on this 

task in young healthy volunteers while improving spatial memory. Additional support for the 

overdose hypothesis came from a recent pharmacological fMRI study, which revealed that 

dopaminergic medication in mild PD patients abolished reversal-related activity in the ventral 

striatum (particularly in the nucleus accumbens).115 The effect of medication was particularly 

large on final reversal errors that led to behavioral switching. Interestingly, another 

pharmacological fMRI study in healthy volunteers revealed that administration of 

methylphenidate (60mg oral) also abolished reversal-related activity in the ventral striatum 

(particularly in the ventral putamen), an effect that was again particularly prominent on the final 

reversal errors.116 Discrepancies in the precise localization of this effect within the ventral 

striatum indicate the need for further work. 

Serotoninergic manipulation also affects performance on the task. However, the nature of 

the effect is qualitatively different from that observed after dopaminergic manipulation. 

Chamberlain et al.121 observed that acute administration of citalopram, a selective serotonin 

reuptake inhibitor, but not atomoxetine, a selective noradrenaline reuptake inhibitor, increased 

the number of switches after probabilistic errors (i.e. misleading punishment). This effect was 

attributed to a presynaptic mechanism of action, paradoxically reducing serotonin levels. 

Consistent with this hypothesis, Evers et al.122 found that the dietary acute tryptophan depletion 

procedure, which lowers serotonin synthesis, enhanced neural activity in the dorsomedial 

prefrontal cortex during punishment on switch and nonswitch trials. Thus, in contrast to 

dopaminergic medication, serotoninergic manipulation affected the processing of punishment 
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irrespective of switching. Interestingly, patients with major depression, which has been 

associated with serotoninergic abnormality, were found to suffer a deficit on probabilistic 

reversal learning that did not reflect perseverative responding, but rather reflected an inability to 

maintain responding to the usually correct stimulus in the face of misleading, probabilistic 

errors.117,123 Finally, Taylor-Tavares et al.117 observed an inverse correlation between suppressed 

activity in the amygdala during probabilistic, misleading errors and the tendency to switch after 

these misleading errors. Critically, this relationship was abolished in depressed patients. 

Additional pharmaco-fMRI studies examined different versions of the current task paradigm.124-

129  

Animal Models: There is a long history of animal work on the Probabilistic Reversal 

Learning task.101,130,131 When assessing convergence between animal and human studies, it is 

important to consider subtle differences in task design. First, studies with experimental animals 

have used deterministic rather than probabilistic contingencies, so that animals never obtain 

‘misleading’ punishment or reward. Second, the nature of reward and punishment is qualitatively 

different, with reward constituting prolonged periods of access to juice or food in animals, but 

(often) bonus points of positive feedback in humans. On the other hand, punishment may consist 

of periods of darkness or reward omission in animals, but bonus point loss or negative feedback 

in humans.  

Nevertheless, there is remarkable convergence. Consistent with neuroimaging studies in 

humans, animal work has implicated the orbitofrontal cortex in reversal learning. Lesions of the 

orbitofrontal cortex in rodents and non-human primates induce a perseverative response 

tendency to the previously rewarded stimulus, reflecting persistent interference from a prepotent 

response.101,131,132 Single-cell recordings have also revealed that the firing of orbitofrontal 
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neurons changes with alterations in reward contingencies.133,134 More recent single-cell recording 

studies suggest that the activity of orbitofrontal neurons reverses more slowly than that of 

neurons in the amygdala.135,136 Based on these data together with (disconnection) lesion data 

from the same lab,137 the authors concluded that the orbitofrontal cortex may indirectly facilitate 

flexibility in downstream regions (such as the amygdala) by signaling the expected value of 

outcomes rather than by directly inhibiting previously relevant responses.  

In addition to orbitofrontal and amygdala findings,101 animal studies have implicated the 

ventral striatum in reversal learning. Specifically, lesions of the ventrolateral part of the head of 

the caudate nucleus induced a perseverative response tendency during (object) reversal learning 

in monkeys.130 Subsequent work with rodents and non-human primates indicates that lesions of 

nucleus accumbens also disrupts performance on (object and/or spatial) reversal learning 

tasks.138,139 However, the impairment following nucleus accumbens lesions is generally not 

restricted to the reversal stages of the task, but extends to initial acquisition stages, suggesting a 

more general role in the learning of stimulus-reinforcement contingencies rather than in reversal 

specifically.138  

Psychopharmacological work with marmosets supports human evidence that reversal 

learning is sensitive to serotoninergic manipulations. Clarke et al.140-142 revealed that depletion of 

serotonin in the orbitofrontal cortex with the neurotoxin 5,7-DHT impaired reversal learning and 

induced perseverative responding to the previously rewarded stimulus. It might be noted that the 

perseverative nature of the deterministic reversal deficit after 5,7-DHT lesions in marmosets is 

qualitatively different from the inappropriate switching seen after tryptophan depletion in 

humans. This discrepancy may reflect differences in the task used in marmosets and humans 



CNTRICS Long-Term Memory Tasks 

 

33 

 

(probabilistic versus deterministic; emphasis on punishment) or, more likely, differences in the 

effect of the manipulation on the degree of serotonin depletion in the brain.143,144 

Performance in Schizophrenia: Waltz and Gold145 recently employed a modified version 

of the probabilistic reversal learning task in 34 patients with schizophrenia and 26 controls. 

Although patients and controls performed similarly on the initial acquisition of probabilistic 

contingencies, patients showed substantial learning impairments when reinforcement 

contingencies were reversed, achieving significantly fewer reversals. 

Psychometric Data: These data are not yet available for the probabilistic reversal learning 

task. 

Future Directions 

In sum, all tasks selected for immediate translational development in the LTM domain 

demonstrate strong construct validity and evidence for neural systems. These criteria were 

viewed as central, as understanding the behavioral construct and neural underpinnings of that 

construct are central to interpretation of pharmacological effects and development and 

refinement of animal models. However, there were a number of other criteria that were not fully 

realized, and are important targets for future development. With the exception of the 

Probabilistic Reward and Probabilistic Selection tasks, psychometric characteristics have not 

been sufficiently established on most tasks. The issue of test re-test reliability, and the avoidance 

of practice effects is an especially thorny issue to deal with in LTM tasks, and is likely to 

necessitate development of parallel forms for many of the task paradigms.  

Authors also identified several important areas of future development for their individual 

task paradigms. For the Associative Inference task it was noted that future studies should extend 

examination of the AIP to schizophrenia populations, and increase examination of 
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pharmacological affects on performance. In particular, medial temporal lobe regions that are 

thought to support relational memory performance in the AIP receive input from and provide 

feedback to dopamine releasing neurons in the midbrain that are associated with reward and 

motivation.146 (Lisman & Grace, 2005). Alteration in medial temporal lobe–midbrain 

interactions may exist in schizophrenia given the abnormal transmission of dopamine observed 

in the disease, and these alterations may have important implications for relational memory 

function. Medications used to treat schizophrenia may also influence interactions between medial 

temporal lobe structures and midbrain dopamine regions thus impacting memory. Determining 

how medication affects medial temporal lobe function and performance in the AIP may yield 

new insights into disease treatment. For the REaR, an important direction for future development 

is initiation of pharamacological and pharmaco-fMRI studies and development of an animal 

model that dissociates item-specific and relational encoding and retrieval.  

Within the reinforcement learning construct authors of the Probabilistic Reward Task see 

a need for ongoing studies to evaluate responsiveness to other types of feedback (e.g., 

punishments), which will allow researchers to pinpoint dysfunction in reinforcement learning 

with increased precision. Future research is also needed to investigate whether participants show 

reduced response bias due to (1) reduced learning that the rich stimulus is associated with more 

frequent reward (so called “Go” learning), and/or (2) reduced learning that the lean stimulus is 

not associated with frequent reward (“NoGo” learning). Finally, a more direct animal model of 

the Probabilistic Selection task was identified for future development to better define the precise 

mechanisms by which dopamine supports different aspects of reinforcement learning. 
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Figure Legends 
 

Figure 1. Associative Inference Paradigm a) Participants encode overlapping face-house pairs 
(AB, BC) and are tested on the inferential relationship between pairs (AC). b) Anterior 
hippocampal activation associated with inferential retrieval of AC pairs.10  
 
Figure 2. Results from Blumenfeld & Ranganath.26 a) Example stimuli and task timing for 
working memory trials, b) Difference between observed and expected numbers of recollected 
triplets from each memory set. The mean difference between the observed number of trials for 
which all three words were successfully judged as remembered and the expected number of such 
trials given the overall hit rate is separately plotted for reorder and rehearse trials. A positive 
difference indicated that subsequent memory performance was benefited by enhanced inter-item 
associations. Error bars depict the standard error of the mean (SEM) across subjects, and the 
asterisk denotes that the observed expected difference was statistically significant for reorder 
trials. c) Time course of activation in prefrontal regions of interest (ROI). The activity in the 
reorder and rehearse task is plotted separately for the left dorsolateral prefrontal cortex (DLPFC) 
and anterior ventrolateral prefrontal cortex (aVLPFC) was correlated with subsequent LTM 
performance specifically during reorder trials. In contrast, delay-period activation in the posterior 
ventrolateral prefrontal cortex (pVLPFC) was predictive of subsequent LTM on both rehearse 
and reorder trials. The error bars in the time courses reflect the SEM at each time point for the 
reorder and rehearse tasks for each ROI.  
 
Figure 3. Recognition accuracy of controls (blue circles) and patients (red triangles) for rehearse 
and reorder tasks. Error bars depict the SEM across subjects, and the asterisk denotes a 
significant group difference for the reorder, but not rehearse task. 
 
Figure 4. Summary of task design. At each trial, participants are asked to select via bottom press 
whether a short or long mouth had been presented. Figure modified with permission from 
Pizzagalli et al.45  
 
Figure 5. Selected findings derived from the probabilistic reward task. Response bias toward the 
more frequently rewarded stimulus is reduced in (A) unmedicated MDD subjects;55 (B) healthy 
controls receiving a single dose of a D2/3 agonist assumed to activate DA autoreceptors and thus 
reduce phasic DA bursts to unpredictable reward;51 and (C) healthy controls exposed to an acute 
stressor.56  Figures modified with permission. 
 
Figure 6. Compared to subjects failing to develop a response bias toward the more frequently 
rewarded stimulus in the probabilistic reward task (“no-learners”), learners showed significantly 
(A) lower FRN to reward feedback; (B) higher dACC activation to reward feedback at the time 
of the FRN; and (C) higher basal ganglia activation to gain outcomes in an unrelated task 
(Monetary Incentive Delay task). Figures modified with permission from Santesso et al.57 
 
Figure 7, Example of a trial-sequence of the probabilistic reversal learning paradigm for fMRI.  
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