
Quantum Convolutional Neural Networks

Citation
Cong, Iris, Soonwon Choi, and Mikhail Lukin. 2019. Quantum Convolutional Neural Networks.
Nature Physics 15, no. 12: 1273–1278.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:42594545

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:42594545
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Quantum%20Convolutional%20Neural%20Networks&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=d4457c1fa60f357582981be4d970f30c&departmentPhysics
https://dash.harvard.edu/pages/accessibility

Quantum Convolutional Neural Networks

Iris Cong,1 Soonwon Choi,1, 2, ∗ and Mikhail D. Lukin1

1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
2Department of Physics, University of California, Berkeley, CA 94720, USA

We introduce and analyze a novel quantum machine learning model motivated by convolutional
neural networks. Our quantum convolutional neural network (QCNN) makes use of only O(log(N))
variational parameters for input sizes of N qubits, allowing for its efficient training and implemen-
tation on realistic, near-term quantum devices. The QCNN architecture combines the multi-scale
entanglement renormalization ansatz and quantum error correction. We explicitly illustrate its po-
tential with two examples. First, QCNN is used to accurately recognize quantum states associated
with 1D symmetry-protected topological phases. We numerically demonstrate that a QCNN trained
on a small set of exactly solvable points can reproduce the phase diagram over the entire parameter
regime and also provide an exact, analytical QCNN solution. As a second application, we utilize
QCNNs to devise a quantum error correction scheme optimized for a given error model. We provide
a generic framework to simultaneously optimize both encoding and decoding procedures and find
that the resultant scheme significantly outperforms known quantum codes of comparable complexity.
Finally, potential experimental realization and generalizations of QCNNs are discussed.

Machine learning based on neural networks has re-
cently provided significant advances for many practical
applications1. In physics, one natural application in-
volves the study of quantum many-body systems, where
the extreme complexity of many-body states often makes
theoretical analysis intractable. This has led to a number
of recent works using machine learning to study proper-
ties of quantum systems2–7, using physical concepts to in-
terpret machine learning8,9, or using quantum computers
to enhance conventional machine learning tasks10–13.

In this work, motivated by the progress towards re-
alizing quantum information processors14–17, we bridge
these approaches by proposing a quantum circuit model
inspired by machine learning and illustrating its success
for two important classes of quantum many-body prob-
lems. The first class of problems we consider is quantum
phase recognition (QPR), which asks whether a given in-
put quantum state ρin belongs to a particular quantum
phase of matter. Critically, in contrast to many exist-
ing schemes based on tensor network descriptions18–20,
we assume ρin is prepared in a physical system with-
out direct access to its classical description. The second
class, quantum error correction (QEC) optimization, asks
for an optimal QEC code for a given, a priori unknown
error model such as dephasing or potentially correlated
depolarization in realistic experimental settings.

The highly complex and intrinsically quantum nature
of these problems makes them particularly difficult to
solve using existing classical and quantum machine learn-
ing techniques. While conventional machine learning
with large-scale neural networks can successfully solve
analogous classical problems such as image recognition
or improving classical error correction1, the exponentially
large many-body Hilbert space hinders efficiently trans-
lating such quantum problems into a classical framework
without performing exponentially difficult quantum state
or process tomography21. Quantum algorithms avoid this
overhead, but the limited size and coherence times of
near-term quantum devices prevent the use of large-scale

(c)

M
ER
A

Q
C
N
N

(QCNN)=

(MERA)=

QEC

Cat Dog

=

C P FCPC
(a)

(b)

i

j

(`)

(`� 1)

(`+ 1)

(`)

(`� 1)

(`+ 1)

(`)

(`� 1)

(`+ 1)

⇢in F

Figure 1: (a) Simplified illustration of CNNs. A sequence of
image processing layers—convolution (C), pooling (P), and
fully connected (FC)—transforms an input image into a series
of feature maps (blue rectangles), and finally into an output
probability distribution (purple bars). (b) QCNNs inherit a
similar layered structure. (c) QCNN and MERA share the
same circuit structure, but run in reverse directions.

networks; thus, it is vital to first theoretically understand
the most important machine learning mechanisms that
must be implemented. In this work, we introduce a quan-
tum machine learning method for QPR and QEC opti-
mization, provide both theoretical insight and numerical
demonstrations for its success, and show its feasibility for
near-term experimental implementation.

ar
X

iv
:1

81
0.

03
78

7v
2

 [
qu

an
t-

ph
]

 2
 M

ay
 2

01
9

2

QCNN CIRCUIT MODEL

Convolutional neural networks (CNNs) provide a suc-
cessful machine learning architecture for classification
tasks such as image recognition1,22,23. A CNN generally
consists of a sequence of different (interleaved) layers of
image processing; in each layer, an intermediate 2D array
of pixels, called a feature map, is produced from the pre-
vious one (Figure 1a)24. The convolution layers compute

new pixel values x
(`)
ij from a linear combination of nearby

ones in the preceding map x
(`)
i,j =

∑w
a,b=1 wa,bx

(`−1)
i+a,j+b,

where the weights wa,b form a w × w matrix. Pooling
layers reduce feature map size, e.g. by taking the max-
imum value from a few contiguous pixels, and are of-
ten followed by application of a nonlinear (activation)
function. Once the feature map size becomes sufficiently
small, the final output is computed from a function that
depends on all remaining pixels (fully connected layer).
The weights and fully connected function are optimized
by training on large datasets. In contrast, variables such
as the number of convolution and pooling layers and the
size w of the weight matrices (known as hyperparame-
ters) are fixed for a specific CNN1. CNN’s key properties
are thus translationally invariant convolution and pool-
ing layers, each characterized by a constant number of
parameters (independent of system size), and sequential
data size reduction (i.e., a hierarchical structure).

Motivated by this architecture we introduce a quan-
tum circuit model extending these key properties to the
quantum domain (Fig. 1b). The circuit’s input is an
unknown quantum state ρin. A convolution layer ap-
plies a single quasi-local unitary (Ui) in a translationally-
invariant manner for finite depth. For pooling, a fraction
of qubits are measured, and their outcomes determine
unitary rotations (Vj) applied to nearby qubits. Hence,
nonlinearities in QCNN arise from reducing the number
of degrees of freedom. Convolution and pooling layers are
performed until the system size is sufficiently small; then,
a fully connected layer is applied as a unitary F on the
remaining qubits. Finally, the outcome of the circuit is
obtained by measuring a fixed number of output qubits.
As in the classical case, circuit structures (i.e. QCNN
hyperparameters) such as the number of convolution and
pooling layers are fixed, and the unitaries themselves are
learned.

A QCNN to classify N -qubit input states is thus char-
acterized by O(log(N)) parameters. This corresponds
to doubly exponential reduction compared to a generic
quantum circuit-based classifier12 and allows for efficient
learning and implementation. For example, given clas-
sified training data {(|ψα〉 , yα) : α = 1, ...,M}, where
|ψα〉 are input states and yα = 0 or 1 are correspond-
ing binary classification outputs, one could compute the
mean-squared error

MSE =
1

2M

M∑

α=1

(yi − f{Ui,Vj ,F}(|ψα〉))2. (1)

Here, f{Ui,Vj ,F}(|ψα〉) denotes the expected QCNN out-
put value for input |ψα〉. Learning then consists of ini-
tializing all unitaries and successively optimizing them
until convergence, e.g. via gradient descent.

To gain physical insight into the mechanism underly-
ing QCNNs and motivate their application to the prob-
lems under consideration, we now relate our circuit
model to two well-known concepts in quantum infor-
mation theory—the multiscale entanglement renormal-
ization ansatz25 (MERA) and quantum error correction
(QEC). The MERA framework provides an efficient ten-
sor network representation of many classes of interest-
ing many-body wavefunctions, including those associated
with critical systems25–27. A MERA can be understood
as a quantum state generated by a sequence of unitary
and isometry layers applied to an input state (e.g. |00〉).
While each isometry layer introduces a set of new qubits
in a predetermined state (e.g. |0〉) before applying uni-
tary gates on nearby ones, unitary layers simply apply
quasi-local unitary gates to the existing qubits (Figure
1c). This exponentially growing, hierarchical structure
allows for the long-range correlations associated with
critical systems. The QCNN circuit has similar struc-
ture, but runs in the reverse direction. Hence, for any
given state |ψ〉 with a MERA representation, there is
always a QCNN that recognizes |ψ〉 with deterministic
measurement outcomes; one such QCNN is simply the
inverse of the MERA circuit.

For input states other than |ψ〉, however, such a QCNN
does not generally produce deterministic measurement
outcomes. These additional degrees of freedom distin-
guish QCNN from MERA. Specifically, we can identify
the measurements as syndrome measurements in QEC28,
which determine error correction unitaries Vj to apply
to the remaining qubit(s). Thus, a QCNN circuit with
multiple pooling layers can be viewed as a combination
of MERA — an important variational ansatz for many-
body wavefunctions — and nested QEC — a mechanism
to detect and correct local quantum errors without col-
lapsing the wavefunction. This makes QCNN a powerful
architecture to classify input quantum states or devise
novel QEC codes. In particular, for QPR, the QCNN can
provide a MERA realization of a representative state |ψ0〉
in the target phase. Other input states within the same
phase can be viewed as |ψ0〉 with local errors, which are
repeatedly corrected by the QCNN in multiple layers. In
this sense, the QCNN circuit can mimic renormalization-
group (RG) flow, a methodology which successfully clas-
sifies many families of quantum phases29. For QEC op-
timization, the QCNN structure allows for simultaneous
optimization of efficient encoding and decoding schemes
with potentially rich entanglement structure.

DETECTING A 1D SPT PHASE

We first demonstrate the potential of QCNN explic-
itly by applying it to QPR in a class of one-dimensional

3

(c)

(a)

Paramagnetic

SPT

Antiferromagnetic

(b)

𝑋

𝑋

𝑋

𝑋

𝑋 𝑋𝑋 𝑋𝑋 X 𝑋

C

…

…

…

…

FC

P

C

⇥d

X XX

X X XX XX X

Z
Z

Z
Z

Z
ZX

X

X

X

(d)

Figure 2: (a) The phase diagram of the Hamiltonian in the main text. The phase boundary points (blue and red diamonds) are
extracted from infinite size DMRG numerical simulations, while the color represents the output from the exact QCNN circuit
for input size N = 45 spins (see Methods). (b) Exact QCNN circuit to recognize a Z2 × Z2 SPT phase. Blue line segments
represent controlled-phase gates, blue three-qubit gates are Toffoli gates with the control qubits in the X basis, and orange two-
qubit gates flip the target qubit’s phase when the X measurement yields −1. The fully connected layer applies controlled-phase
gates followed by an Xi projection, effectively measuring Zi−1XiZi+1. (c) Exact QCNN output along h1 = 0.5J for N = 135
spins, d = 1, ..., 4. (d) Sample complexity of QCNN at depths d = 1, ...4 (blue) versus SOPs of length N/2, N/3, N/5, and N/6
(red) to detect the SPT/paramagnet phase transition along h1 = 0.5J for N = 135 spins. The critical point is identified as
h2/J = 0.423 using infinite size DMRG (bold line). Darkening colors show higher QCNN depth or shorter string lengths. In
the shaded area, the correlation length exceeds the system size and finite-size effects can considerably affect our results. Inset:
The ratio of SOP sample complexity to QCNN sample complexity is plotted as a function of depth d on a logarithmic scale
for h1/J = 0.3918. In the numerically accessible regime, this reduction of sample complexity scales exponentially as 1.73e0.28d

(trendline).

many-body systems. Specifically, we consider a Z2 × Z2

symmetry-protected topological (SPT) phase P, a phase
containing the S = 1 Haldane chain30, and ground states
{|ψG〉} of a family of Hamiltonians on a spin-1/2 chain
with open boundary conditions:

H = −J
N−2∑

i=1

ZiXi+1Zi+2 − h1
N∑

i=1

Xi − h2
N−1∑

i=1

XiXi+1.

(2)
Xi, Zi are Pauli operators for the spin at site i, and
the Z2 × Z2 symmetry is generated by Xeven(odd) =∏
i∈even(odd)Xi. Figure 2a shows the phase diagram as a

function of (h1/J, h2/J). When h2 = 0, the Hamiltonian
is exactly solvable via Jordan-Wigner transformation29,
confirming that P is characterized by nonlocal order pa-
rameters. When h1 = h2 = 0, all terms are mutually
commuting, and a ground state is the 1D cluster state.
Our goal is to identify whether an given, unknown ground
state drawn from the phase diagram belongs to P.

As an example, we first present an exact, analytical
QCNN circuit that recognizes P, see Figure 2b. The
convolution layers involve controlled-phase gates as well
as Toffoli gates with controls in the X-basis, and pooling

layers perform phase-flips on remaining qubits when one
adjacent measurement yields X = −1. This convolution-
pooling unit is repeated d times, where d is the QCNN
depth. The fully connected layer measures Zi−1XiZi+1

on the remaining qubits. Figure 2c shows the QCNN out-
put for a system of N = 135 spins and d = 1, ..., 4 along
h2 = 0.5J , obtained using matrix product state simula-
tions. As d is increased, the measurement outcomes show
sharper changes around the critical point, and the output
of a d = 2 circuit already reproduces the phase diagram
with high accuracy (Figure 2a). This QCNN can also be
used for other Hamiltonian models belonging to the same
phase, such as the S = 1 Haldane chain30 (see Methods).

Sample Complexity

The performance of a QPR solver can be quantified
by sample complexity21: what is the expected number of
copies of the input state required to identify its quantum
phase? We demonstrate that the sample complexity of
our exact QCNN circuit is significantly better than that
of conventional methods. In principle, P can be detected
by measuring a nonzero expectation value of string order

4

parameters (SOP)31,32 such as

Sab = ZaXa+1Xa+3...Xb−3Xb−1Zb. (3)

In practice, however, the expectation values of SOP van-
ish near the phase boundary due to diverging correlation
length32; since quantum projection noise is maximal in
this vicinity, many experimental repetitions are required
to affirm a nonzero expectation value. In contrast, the
QCNN output is much sharper near the phase transition,
so fewer repetitions are required.

Quantitatively, given some |ψin〉 and SOP S, a projec-
tive measurement of S can be modeled as a (generalized)
Bernoulli random variable, where the outcome is 1 with
probability p = (〈ψin|S |ψin〉+ 1)/2 and −1 with proba-
bility 1−p (since S2 = 1); after M binary measurements,
we estimate p. p > p0 = 0.5 signifies |ψin〉 ∈ P. We de-
fine the sample complexity Mmin as the minimum M to
test whether p > p0 with 95% confidence using an arcsine
variance-stabilizing transformation33:

Mmin =
1.962

(arcsin
√
p−√arcsin p0)2

. (4)

Similarly, the sample complexity for a QCNN can be de-
termined by replacing 〈ψin|S |ψin〉 by the QCNN output
expectation value in the expression for p.

Figure 2d shows the sample complexity for the QCNN
at various depths and SOPs of different lengths. Clearly,
QCNN requires substantially fewer input copies through-
out the parameter regime, especially near criticality.
More importantly, although the SOP sample complexity
scales independently of string length, the QCNN sample
complexity consistently improves with increasing depth
and is only limited by finite size effects in our simula-
tions. In particular, compared to SOPs, QCNN reduces
sample complexity by a factor which scales exponentially
with the QCNN’s depth in numerically accessible regimes
(inset). Such scaling arises from the iterative QEC per-
formed at each depth and is not expected from any mea-
surements of simple (potentially nonlocal) observables.
We show in Methods that our QCNN circuit measures a
multiscale string order parameter—a sum of products of
exponentially many different SOPs which remains sharp
up to the phase boundary.

MERA and QEC

Additional insights into the QCNN’s performance are
revealed by interpreting it in terms of MERA and QEC.
In particular, our QCNN is specifically designed to con-
tain the MERA representation of the 1D cluster state
(|ψ0〉)—the ground state of H with h1 = h2 = 0—such
that it becomes a stable fixed point. When |ψ0〉 is fed as
input, each convolution-pooling unit produces the same
state |ψ0〉 with reduced system size in the unmeasured
qubits, while yielding deterministic outcomes (X = 1) in
the measured qubits. The fully connected layer measures

X

QECZX

X

X

Z

| (L)
0 i | (L)

0 i

| (L/3)
0 i⌦|010...0ix1|010...0ix

X

X X X

XZ

Z

Z

Z

Z

Z

Z

X X X X XXXX

XZ

Figure 3: Action of cluster model QCNN convolution-pooling
unit on a state with a single-qubit X error.

Figure 4: Output of a randomly initialized and trained
QCNN for N = 15 spins and depth d = 1. Gray dots show
(most of)35 the training data points, which are 40 equally
spaced points on a line where the Hamiltonian is solvable by
Jordan-Wigner transformation (h2 = 0, h1 ∈ [0, 2]). The blue
and red diamonds are phase boundary points extracted from
infinite size DMRG numerical simulations, while the colors
represent the expectation value of the QCNN output.

the SOP for |ψ0〉. When an input wavefunction is per-
turbed away from |ψ0〉, our QCNN corrects such “errors.”
For example, if a single X error occurs, the first pooling
layer identifies its location, and controlled unitary oper-
ations correct the error propagated through the circuit
(Fig. 3). Similarly, if an initial state has multiple, suffi-
ciently separated errors (possibly in coherent superposi-
tions), the error density after several iterations of convo-
lution and pooling layers will be significantly smaller34.
If the input state converges to the fixed point, our QCNN
classifies it into the SPT phase with high fidelity. Clearly,
this mechanism resembles the classification of quantum
phases based on renormalization-group (RG) flow.

Obtaining QCNN from Training Procedure

Having analytically illustrated the computational
power of the QCNN circuit model, we now demonstrate
how a QCNN for P can also be obtained using the learn-
ing procedure. In our example, the QCNN’s hyper-
parameters are chosen such that there are four convo-

5

U�1
1 U�1

2 U1 U2 N

U�1
1 U�1

2 U1 U2 N

U�1
1 U�1

2 U1 U2 NU�1
1 U�1

2 U1 U2 N

U�1
1 U�1

2 U1 U2 N

U�1
1 U�1

2 U1 U2 N

U�1
1 U�1

2 U1 U2 NU�1
1 U�1

2 U1 U2 N

U�1
1 U�1

2 U1 U2 N

|0i | li ⇢

|0i | li ⇢

|0i | li ⇢

|0i | li ⇢

|0i | li ⇢

|0i | li ⇢

|0i | li ⇢

|0i | li ⇢

|0i | li ⇢

|0i | li ⇢

Encoding Decoding

(a)

(b)

10-4 10-3 10-2 10-1

Input Error Rate

10-6

10-4

10-2

Lo
gi

ca
l E

rr
or

 R
at

e

Figure 5: (a) Schematic diagram for using QCNNs to opti-
mize QEC. The inverse QCNN encodes a single logical qubit
|ψl〉 into 9 physical qubits, which undergo noise N . QCNN
then decodes these to obtain the logical state ρ. Our aim is
to maximize 〈ψl| ρ |ψl〉. (b) Logical error rate of Shor code
(blue) versus a learned QEC code (orange) in a correlated
error model. The input error rate is defined as the sum of
all probabilities pµ and pxx. The Shor code has worse per-
formance than performing no error correction at all (identity,
gray line), while the optimized code can still significantly re-
duce the error rate.

lution layers and one pooling layer at each depth, fol-
lowed by a fully connected layer (see Methods). Initially,
all unitaries are set to random values. Because classi-
cally simulating our training procedure requires expen-
sive computational resources, we focus on a relatively
small system with N = 15 spins and QCNN depth d = 1;
there are a total of 1309 parameters to be learned (see
Methods). Our training data consists of 40 evenly spaced
points along the line h2 = 0, where the Hamiltonian is ex-
actly solvable by Jordan-Wigner transformation. Using
gradient descent with the mean-squared error function
(1), we iteratively update the unitaries until convergence
(see Methods). The classification output of the resulting
QCNN for generic h2 is shown in Fig. 4. Remarkably,
this QCNN accurately reproduces the 2D phase diagram
over the entire parameter regime, even though the model
was trained only on samples from a set of solvable points
which does not even cross the lower phase boundary.

This example illustrates how the QCNN struc-
ture avoids overfitting to training data with its ex-
ponentially reduced number of parameters. While
the training dataset for this particular QPR prob-
lem consists of solvable points, more generally, such a
dataset can be obtained by using traditional methods
(e.g. measuring SOPs) to classify representative states
that can be efficiently generated either numerically or
experimentally36,37.

OPTIMIZING QUANTUM ERROR
CORRECTION

As seen in the previous example, the QCNN’s archi-
tecture enables one to perform effective QEC. We next
leverage this feature to design a new QEC code itself that
is optimized for a given error model. More specifically,
any QCNN circuit (and its inverse) can be viewed as a de-
coding (encoding) quantum channel between the physical
input qubits and the logical output qubit. The encoding
scheme introduces sets of new qubits in a predetermined
state, e.g. |0〉, while the decoding scheme performs mea-
surements (Fig. 5a). Given a error channel N , our aim
is therefore to maximize the recovery fidelity

fq =
∑

|ψl〉∈{|±x,y,z〉}
〈ψl|M−1q (N (Mq(|ψl〉 〈ψl|))) |ψl〉 ,

(5)
whereMq(M−1q) is the encoding (decoding) scheme gen-
erated by a QCNN circuit, and |±x, y, z〉 are the ±1
eigenstates of the Pauli matrices. Thus, our method
simultaneously optimizes both encoding and decoding
schemes, while ensuring their efficient implementation in
realistic systems. Importantly, the variational optimiza-
tion can be carried out with a unknown N since fq can
be evaluated experimentally.

To illustrate the potential of this procedure, we con-
sider a two-layer QCNN with N = 9 physical qubits
and 126 variational parameters (Figure 5a and Meth-
ods). This particular architecture includes the nested
(classical) repetition codes and the 9-qubit Shor code38;
in the following, we compare our performance to the bet-
ter of the two. We consider three different input error
models: (1) independent single-qubit errors on all qubits
with equal probabilities pµ for µ = X, Y , and Z errors
or (2) anisotropic probabilities px 6= py = pz, and (3) in-
dependent single-qubit anisotropic errors with additional
two-qubit correlated errors XiXi+1 with probability pxx.

Upon initializing all QCNN parameters to random val-
ues and numerically optimizing them to maximize fq, we
find that our model produces the same logical error rate
as known codes in case (1), but can reduce the error rate
by a constant factor in case (2), depending on the specific
input error probability ratios (e.g. 14% for px = 1.8py,
or 50% for px = 0.4py—see Methods). More drastically,
in case (3), the optimized QEC code performs signifi-
cantly better than known codes (Figure 5b). Specifically,
because the Shor code is only guaranteed to correct ar-
bitrary single-qubit errors, it performs even worse than
using no error correction, while the optimized QEC code
performs much better. This example demonstrates the
power of using QCNNs to obtain and optimize new QEC
codes for realistic, a priori unknown error models.

6

EXPERIMENTAL REALIZATIONS

Our QCNN architecture can be efficiently implemented
on several state-of-the-art experimental platforms. The
key ingredients for realizing QCNNs include the efficient
preparation of quantum many-body input states, the
application of two-qubit gates at various length scales,
and projective measurements39. These capabilities have
already been demonstrated in multiple programmable
quantum simulators consisting of N ≥ 50 qubits based
on trapped neutral atoms and ions, or superconducting
qubits40–43.

As an example, we present a feasible protocol for near-
term implementation of our exact cluster model QCNN
circuit via neutral Rydberg atoms40,44, where long-range
dipolar interactions allow high fidelity entangling gates45

among distant qubits in a variable geometric arrange-
ment. The qubits can be encoded in the hyperfine ground
states, where one of the states can be coupled to the Ry-
dberg level to perform efficient entangling operations via
the Rydberg-blockade mechanism45; an explicit imple-
mentation scheme for every gate in Fig. 2b is provided
in Methods. Our QCNN at depth d with N input qubits
requires at most 7N

2 (1−31−d)+N31−d multi-qubit oper-
ations and 4d single-qubit rotations. For a realistic effec-
tive coupling strength Ω ∼ 2π×10−100 MHz and single-
qubit coherence time τ ∼ 200 µs limited by the Rydberg
state lifetime, approximately Ωτ ∼ 2π× 103− 104 multi-
qubit operations can be performed, and a d = 4 QCNN
on N ∼ 100 qubits feasible. These estimates are rea-
sonably conservative as we have not considered advanced
control techniques such as pulse-shaping46, or potentially
parallelizing independent multi-qubit operations.

OUTLOOK

These considerations indicate that QCNNs provide a
promising quantum machine learning paradigm. Sev-

eral interesting generalizations and future directions can
be considered. First, while we have only presented the
QCNN circuit structure for recognizing 1D phases, it is
straightforward to generalize the model to higher dimen-
sions, where phases with intrinsic topological order such
as the toric code are supported47,48. Such studies could
potentially identify nonlocal order parameters with low
sample complexity for lesser-understood phases such as
quantum spin liquids49 or anyonic chains50. To recognize
more exotic phases, we could also relax the translation-
invariance constraints, resulting in O(N) parameters for
system size N , or use ancilla qubits to implement par-
allel feature maps following traditional CNN architec-
ture. Further extensions can incorporate optimizations
for fault-tolerant operations on QEC code spaces. Fi-
nally, while we have used a finite-difference scheme to
compute gradients in our learning demonstrations, the
structural similarity of QCNN with its classical counter-
part motivates adoption of more efficient schemes such
as backpropagation1.

Acknowledgment. The authors thank Xiao-Gang Wen,
Ignacio Cirac, Xiaoliang Qi, Edward Farhi, John Preskill,
Wen Wei Ho, Hannes Pichler, Ashvin Vishwanath,
Chetan Nayak, and Zhenghan Wang for insightful dis-
cussions. I.C. acknowledges support from the Paul and
Daisy Soros Fellowship, the Fannie and John Hertz Foun-
dation, and the Department of Defense through the Na-
tional Defense Science and Engineering Graduate Fel-
lowship Program. S.C. acknowledges support from the
Miller Institute for Basic Research in Science. This work
was supported through the National Science Foundation
(NSF), the Center for Ultracold Atoms, the Vannevar
Bush Faculty Fellowship, and Google Research Award.

∗ Electronic address: soonwon@berkeley.edu
1 Y. LeCun, Y. Bengio, and G. Hinton, Nature 521, 436

(2015).
2 G. Carleo and M. Troyer, Science 355, 602 (2017).
3 E. P. L. van Nieuwenburg, Y. h. Liu, and S. D. Huber, Nat.

Phys. 13, 435 (2017).
4 J. Carrasquilla and R. G. Melko, Nat. Phys. 13 (2017).
5 L. Wang, Phys. Rev. B 94 (2016).
6 Y. Levine, N. Cohen, and A. Shashua, Phys. Rev. Lett.
122 (2019).

7 Y. Zhang and E.-A. Kim, Phys. Rev. Lett. 118 (2017).
8 H. W. Lin, M. Tegmark, and D. Rolnick, J. Stat. Phys.
168, 1223 (2017).

9 P. Mehta and D. J. Schwab, preprint, arXiv (2014),
1410.3831.

10 J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost,

N. Wiebe, and S. Lloyd, Nature 549, 195 (2017).
11 V. Dunjko, J. M. Taylor, and H. J. Briegel, Phys. Rev.

Lett. 117 (2016).
12 E. Farhi and H. Neven, preprint, arXiv (2018), 1802.06002.
13 W. Huggins, P. Patil, B. Mitchell, K. B. Whaley, and E. M.

Stoudenmire, Quantum Science and Technology 4 (2018).
14 T. D. Ladd et al., Nature 464, 45 (2010).
15 C. Monroe and J. Kim, Science 339, 1164 (2013).
16 M. H. Devoret and R. J. Schoelkopf, Science 339, 1169

(2013).
17 D. D. Awschalom, L. C. Bassett, A. S. Dzurak, E. L. Hu,

and J. R. Petta, Science 339, 1174 (2013).
18 C.-Y. Huang, X. Chen, and F.-L. Lin, Phys. Rev. B 88

(2013).
19 S. Singh and G. Vidal, Phys. Rev. B 88 (2013).
20 I. Kim and B. Swingle, preprint, arXiv (2017), 1711.07500.

mailto:soonwon@berkeley.edu

7

21 J. Haah, A. W. Harrow, Z. Ji, X. Wu, and N. Yu, IEEE
Transactions on Information Theory 63, 5628 (2017).

22 Y. LeCun and Y. Bengio, The handbook of brain theory
and neural networks 3361, 10 (1995).

23 A. Krizhevsky, I. Sutskever, and G. E. Hinton, Advances
in Neural Information Processing Systems (2012).

24 More generally, CNN layers connect volumes of multiple
feature maps to subsequent volumes; for simplicity, we con-
sider only a single feature map per volume and leave the
generalization to future works.

25 G. Vidal, Phys. Rev. Lett. 101 (2008).
26 M. Aguado and G. Vidal, Phys. Rev. Lett. 100 (2008).
27 R. N. C. Pfeifer, G. Evenbly, and G. Vidal, Phys. Rev. A

79 (2009).
28 J. Preskill (1998), lecture Notes for Physics 229, California

Institute of Technology.
29 S. Sachdev, Quantum Phase Transitions (Cambridge Uni-

versity Press, 2011).
30 F. Haldane, Phys. Rev. Lett. 50 (1983).
31 J. Haegeman, D. Pérez-Garćıa, I. Cirac, and N. Schuch,

Phys. Rev. Lett. 109 (2012).
32 F. Pollmann and A. M. Turner, Phys. Rev. B 86 (2012).
33 L. D. Brown, T. T. Can, and A. DasGupta, Statistical

Science 16 (2001).
34 B. Zeng and D. L. Zhou, Eur. Phys. Lett. 113 (2016).
35 We included some training data points outside the plotted

2D parameter regime (namely those with h1 ∈ [1.6, 2]) to
obtain an equal number of points inside and outside the
SPT phase, and avoid bias in the prior distribution.

36 M. Schwarz, K. Temme, and F. Verstraete, Phys. Rev.
Lett. 108 (2012).

37 Y. Ge, A. Molnar, and J. I. Cirac, Phys. Rev. Lett. 116
(2016).

38 P. Shor, Phys. Rev. A 52 (1995).
39 We emphasize that the measurements of intermediate

qubits and feed-forwarding can be replaced by controlled
two-qubit unitary operations so that measurements are
only performed at the end of an experimental sequence,
as in stabilizer-based QEC.

40 H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Om-
ran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres,
M. Greiner, et al., Nature 551, 579 (2017).

41 J. Zhang, G. Pagano, P. W. Hess, A. Kyprianidis,
P. Becker, H. Kaplan, A. V. Gorshkov, Z.-X. Gong, and
C. Monroe, Nature 551, 601 (2017).

42 T. Brydges, A. Elben, P. Jurcevic, B. Vermersch, C. Maier,
B. P. Lanyon, P. Zoller, R. Blatt, and C. F. Roos, preprint,
arXiv (2018), 1806.05747.

43 R. Harris et al., Science 361, 162 (2018).
44 H. Labuhn, D. Barredo, S. Ravets, S. de D. Léséleuc,

M. Macri, T. Lahaye, and A. Browaeys, Nature 534, 667
(2016).

45 H. Levine, A. Keesling, A. Omran, H. Bernien,
S. Schwartz, A. S. Zibrov, M. Endres, M. Greiner,
V. Vuletic, and M. D. Lukin, Phys. Rev. Lett. 121 (2018).

46 R. Freeman, Progress in Nuclear Magnetic Resonance
Spectroscopy 32, 59 (1998).

47 A. Y. Kitaev, Ann. Phys. 303 (2003).
48 M. A. Levin and X.-G. Wen, Phys. Rev B. 71 (2005).
49 L. Savary and L. Balents, Rep. Prog. Phys 80 (2017).
50 A. Feiguin, S. Trebst, A. W. W. Ludwig, M. Troyer, A. Ki-

taev, Z. Wang, and M. H. Freedman, Phys. Rev. Lett. 98
(2007).

Methods

Phase Diagram and QCNN Circuit Simulations

The phase diagram in the main text (Fig. 2a) was nu-
merically obtained using the infinite size density-matrix
renormalization group (DMRG) algorithm. We gener-
ally follow the method outlined in Ref. 51 with the maxi-
mum bond dimension 150. To extract each data point in
Fig. 2a, we numerically obtain the ground state energy
density as a function of h2 for fixed h1 and computed its
second order derivative. The phase boundary points are
identified from sharp peaks.

The simulation of our QCNN in Fig. 2b also uti-
lizes matrix product state representations. We first ob-
tain the input ground state wavefunction using finite-size
DMRG51 with bond dimension D = 130 for a system of
N = 135 qubits. Then, the circuit operations are per-
formed by sequentially applying SWAP and two-qubit
gates on nearest neighboring qubits52. Each three-qubit
gate is decomposed into two-qubit unitaries53. We find
that increasing bond dimension to D = 150 does not lead
to any visible changes in our main figures, confirming a
reasonable convergence of our method. The color plot in
Fig. 2a is similarly generated for a system of N = 45
qubits.

QCNN for the S = 1 Haldane Chain

As discussed in the main text, the (spin-1/2) 1D clus-
ter state belongs to an SPT phase protected by Z2 × Z2

symmetry, a phase which also contains the celebrated
S = 1 Haldane chain30. It is thus natural to ask whether
this circuit can be used to detect the phase transition
between the Haldane phase and an S = 1 paramagnetic
phase, which we numerically demonstrate here.

Figure 7: Exact QCNN output (at depth d = 1, ...4) for the
Haldane chain Hamiltonian with N = 54 spins.

The one-parameter family of Hamiltonians we con-

8

sider for the Haldane phase is defined on a one-
dimensional chain of N spin-1 particles with open bound-
ary conditions30:

HHaldane = J

N∑

j=1

Sj · Sj+1 + ω

N∑

j=1

(Szj)2 (6)

In this equation, Sj denotes the vector of S = 1 spin
operators at site j. The system is protected by a Z2×Z2

symmetry generated by global π-rotations of every spin

around the X and Y axes: Rx =
∏
j e
iπSxj , Ry = eiπS

y
j .

When ω is zero or small compared to J , the ground state
belongs to the SPT phase, but when ω/J is sufficiently
large, the ground state becomes paramagnetic30.

To apply our QCNN circuit to this Haldane phase,
we must first identify a quasi-local isometric map U be-
tween the two models, because their representations of
the symmetry group are distinct. More specifically, since
the cluster model has a Z2 × Z2 symmetry generated by
Xeven(odd) =

∏
i∈even(odd)Xi, we require URxU

† = Xodd

and URyU
† = Xeven. Such a map can be constructed fol-

lowing Ref. 54. Intuitively, it extends the local Hilbert
space of a spin-1 particle by introducing a spin singlet
state |s〉 and mapping it to a pair of spin-1/2 particles:
|x〉 7→ |+−〉, |y〉 7→ − |−+〉, |z〉 7→ −i |−−〉, |s〉 7→ |++〉.
Here, |±〉 denote the ±1 eigenstates of the (spin-1/2)
Pauli matrix X. |µ〉 denotes a spin-1 state defined by
Rν |µ〉 = (−1)δµ,ν+1 |µ〉 (µ, ν ∈ {x, y, z}). The QCNN
circuit for the Haldane chain thus consists of applying U
followed by the circuit presented in the main text.

Figure 7 shows the QCNN output for an input system
of N = 54 spin-1 particles at depths d = 1, ..., 4, ob-
tained using matrix product state simulations with bond
dimension D = 160. For this system size, we numerically
identified the critical point as ω/J = 1.035 ± 0.005, by
using DMRG to obtain the second derivative of energy
density as a function of ω and J . The QCNN provides
accurate identification of the phase transition.

Multiscale String Order Parameters

We examine the final operator measured by our circui
that recognizes the SPT phase in the Heisenberg picture.
Although a QCNN performs non-unitary measurements
in the pooling layers, similar to QEC circuits28, one can
postpone all measurements to the end and replace pool-
ing layers by unitary controlled gates acting on both mea-
sured and unmeasured qubits. In this way, the QCNN is
equivalent to measuring a non-local observable

O = (U
(d)
CP ...U

(1)
CP)†Zi−1XiZi+1(U

(d)
CP ...U

(1)
CP) (7)

where i is the index of the measured qubit in the fi-

nal layer and U
(l)
CP is the unitary corresponding to the

convolution-pooling unit at depth l. A more explicit ex-
pression of O can be obtained by commuting UCP with

(b) �l ⇠ O(3d) �l ⇠ O(3d)

O =

C1 + C2 + C3 + C4 + C5

C1 + C2 + C3 + C4 + C5

C1 + C2 + C3 + C4 + C5
C1 + C2 + C3 + C4 + C5

C1 + C2 + C3 + C4 + C5

O(⇠)

(a)

=X

i + 1

i � 1

i + 1

i � 1

i + 1

i � 1

ĩ + 1

ĩ � 1

ĩ + 1

ĩ � 1

ĩ + 1

ĩ � 1

=Z

1

2

✓

i + 1

i � 1
i + 1

i � 1
i + 1

i � 1

ĩ + 1

ĩ � 1

ĩ + 1

ĩ � 1

ĩ + 1

ĩ � 1

i + 1

i � 1

i + 1

i � 1

i + 1

i � 1

◆

U
(l)
CP

U
(l)†
CP

U
(l)
CP

U
(l)†
CP

U
(l)
CP

U
(l)†
CP

U
(l)
CP

U
(l)†
CP

X X X

X

X

X X

Z

Z

Z

ZZZ

Figure 8: (a) Recursion relations for computing Pauli oper-

ators in the Heisenberg picture. U
(l)
CP is the unitary corre-

sponding to the convolution-pooling unit at depth l, and the
different indices i, ĩ reflect different numbers of unmeasured
qubits at different layers. Qubits measured at depth l are in-
dicated by lighter lines, while the remaining ones are shown
in bold. (b) Measured operator in the Heisenberg picture is a
sum of exponentially many products of string operators, with
coefficients determined by Eq. (10).

the Pauli operators, which yields recursive relations:

U†CPXiUCP = Xĩ−2XĩXĩ+2 (8)

U†CPZiUCP =
1

2
(Zĩ − Zĩ−2Xĩ−1 −Xĩ+1Zĩ+2

− Zĩ−2Xĩ−1ZĩXĩ+1Zĩ+2)
(9)

ĩ enumerates every qubit at depth l − 1, including those
measured in the pooling layer (Fig. 8a). It follows that
an SOP of the form ZXX...XZ at depth l transforms into
a weighted linear combination of 16 products of SOPs at
depth l − 1. Thus, instead of measuring a single SOP,
our QCNN circuit measures a sum of products of expo-
nentially many different SOPs (Fig. 8b):

O =
∑

ab

C
(1)
ab Sab +

∑

a1b1a2b2

C
(2)
a1b1a2b2

Sa1b1Sa2b2 + · · · ,

(10)
O can be viewed as a multiscale string order parame-
ter with coefficients computed recursively in d using Eqs.
(8,9). This allows the QCNN to produce a sharp classifi-
cation output even when the correlation length is as long
as 3d.

9

U1U2U3U4

XV1V2XV1V2

XV1V2XV1V2 XV1V2XV1V2

U1U2U3U4

U1U2U3U4

U1U2U3U4

U1U2U3U4

U1U2U3U4U1U2U3U4

U1U2U3U4

U1U2U3U4

XV1V2XV1V2XV1V2XV1V2

XV1V2XV1V2 P

C4
C3

C2

C1

FC
X

…

…

…

…

F

Figure 9: Circuit parameterization for training a QCNN to
solve QPR. Our circuit involves 4 different convolution layers
(C1 − C4), a pooling layer, and a fully connected layer. The
unitaries are initialized to random values, and learned via
gradient descent.

Demonstration of Learning Procedure for QPR

To perform our learning procedure in a QPR problem,
we choose the hyperparameters for the QCNN as shown
in Fig. 9. This hyperparameter structure can be used
for generic (1D) phases, and is characterized by a single
integer n that determines the reduction of system size in
each convolution-pooling layer, L → L/n. (Fig. 9 shows
the special case where n = 3). The first convolution
layer involves (n+1)-qubit unitaries starting on every nth

qubit. This is followed by n layers of n-qubit unitaries
arranged as shown in Fig. 9. The pooling layer measures
n − 1 out of every contiguous block of n qubits; each of
these is associated with a unitary Vj applied to the re-
maining qubit, depending on the measurement outcome.
This set of convolution and pooling layers is repeated d
times, where d is the QCNN depth. Finally, the fully
connected layer consists of an arbitrary unitary on the
remaining N/nd qubits, and the classification output is
given by the measurement output of the middle qubit (or
any fixed choice of one of them). For our example, we
choose n = 3 because the Hamiltonian in Eq. (2) involves
three-qubit terms.

In our simulations, we consider only N = 15 spins and
depth d = 1, because simulating quantum circuits on
classical computers requires a large amount of resources.
We parameterize unitaries as exponentials of generalized
a × a Gell-Mann matrices {Λi}, where a = 2w and w
is the number of qubits involved in the unitary55: U =

exp
(
−i∑j cjΛj

)
.

This parameterization is used directly for the unitaries
in the convolution layers C2 − C4, the pooling layer,
and the fully connected layer. For the first convolu-
tion layer C1, we restrict the choice of U1 to a product
of six two-qubit unitaries between each possible pair of
qubits: U1 = U(23)U(24)U(13)U(14)U(12)U(34), where U(αβ)

is a two-qubit unitary acting on qubits indexed by α and
β. Such a decomposition is useful when considering ex-

perimental implementation.
In the QCNN learning procedure, all parameters cµ are

set to random values between 0 and 2π for the unitaries
{Ui, Vj , F}. In every iteration of gradient descent, we
compute the derivative of the mean-squared error func-
tion (Eq. (1) in the main text) to first order with re-
spect to each of these coefficients cµ by using the finite-
difference method:

∂MSE

∂cµ
=

1

2ε
(MSE(cµ + ε)−MSE(cµ − ε)) +O(ε2).

(11)
Each coefficient is thus updated as cµ 7→ cµ − η ∂MSE

∂cµ
,

where η is the learning rate for that iteration. We com-
pute the learning rate using the bold driver technique
from machine learning, where η is increased by 5% if
the error has decreased from the previous iteration, and
decreased by 50% otherwise56. We repeat the gradient
descent procedure until the error function changes on the
order of 10−5 between successive iterations. In our sim-
ulations, we use ε = 10−4 for the gradient computation,
and begin with an initial learning rate of η0 = 10.

Construction of QCNN Circuit

To construct the exact QCNN circuit in Fig. 2b, we
followed the guidelines discussed in the main text. Specif-
ically, we designed the convolution and pooling layers to
satisfy the following two important properties:

1. Fixed-point criterion: If the input is a cluster state
|ψ0〉 of L spins, the output of the convolution-
pooling layers is a cluster state |ψ0〉 of L/3 spins,
with all measurements deterministically yielding
|0〉.

2. QEC criterion: If the input is not |ψ0〉 but instead
differs from |ψ0〉 at one site by an error which com-
mutes with the global symmetry, the output should
still be a cluster state of L/3 spins, but at least one
of the measurements will result in the state |1〉.

These two properties are desirable for any quantum cir-
cuit implementation of RG flow for performing QPR.

In the specific case of our Hamiltonian, the ground
state (1D cluster state) is a graph state, which can be
efficiently obtained by applying a sequence of controlled
phase gates to a product state. This significantly sim-
plifies the construction of the MERA representation for
the fixed-point criterion. To satisfy the QEC criterion,
we treat the ground state manifold of the unperturbed
Hamiltonian H = −J∑i ZiXi+1Zi+2 as the code space
of a stabilizer code with stabilizers {ZiXi+1Zi+2}. The
remaining degrees of freedom in the QCNN convolution
and pooling layers are then specified such that the circuit
detects and corrects the error (i.e. measures at least one
|1〉 and prevents propagation to the next layer) when a
single-qubit X error is present.

10

(b)

(c)

Fixed point

Target phase
boundary QEC threshold

Training

QCNN

(a)
MPS

MERA

input

MERA
circuit

| i

Figure 10: (a) Given a state with a translationally invari-
ant, isometric matrix product state representation (e.g. a
fixed point state for a 1D SPT phase), we explicitly construct
an isometry for the MERA representation of this state. Blue
squares are the matrix product state tensors, while black lines
are the legs of the tensor. While we have illustrated a 3-to-
1 isometry, the generalization to arbitrary n-to-1 isometries
is straightforward. (b) Diagrammatic proof showing that a
MERA constructed from the above tensor maps the fixed-
point state back to a shorter version of itself. The first equal-
ity uses the definition of isometric tensor, and loops in the
middle diagram simplify to a constant number unity. The
generalization of this isometry to higher dimensions is dis-
cussed in Ref. 57. (c) One helpful initial parameterization for
QPR problems consists of a MERA for the fixed point state
|ψ0(P)〉 and a choice of nested QEC, so that states within
the QEC threshold flow toward |ψ0(P)〉. Training procedures
then expand this threshold boundary to the phase boundary.

QCNN for General QPR Problems

Our interpretation of QCNNs in terms of MERA and
QEC motivates their application for recognizing more
generic quantum phases. For any quantum phase P
whose RG fixed-point wavefunction |ψ0(P)〉 has a ten-
sor network representation in isometric or G-isometric
form58 (Fig. 10a), one can systematically construct
a corresponding QCNN circuit. This family of quan-
tum phases includes all 1D SPT and 2D string-net
phases48,58,59. In these cases, one can explicitly con-
struct a commuting parent Hamiltonian for |ψ0(P)〉 and
a MERA structure in which |ψ0(P)〉 is a fixed-point wave-
function (Fig. 10a for 1D systems). tThe diagrammatic
proof of this fixed-point property is given in Fig. 10b.
Furthermore, any “local error” perturbing an input state
away from |ψ0(P)〉 can be identified by measuring a frac-
tion of terms in the parent Hamiltonian, similar to syn-
drome measurements in stabilizer-based QEC28. Then,
a QCNN for P simply consists of the MERA for |ψ0(P)〉
and a nested QEC scheme in which an input state with

error density below the QEC threshold60 “flows” to the
RG fixed point. Such a QCNN can be optimized via our
learning procedure.

While our generic learning protocol begins with com-
pletely random unitaries, as in the classical case1, this
initialization may not be the most efficient for gradi-
ent descent. Instead, motivated by deep learning tech-
niques such as pre-training1, a better initial parame-
terization would consist of a MERA representation of
|ψ0(P)〉 and one choice of nested QEC. With such an ini-
tialization, the learning procedure serves to optimize the
QEC scheme, expanding its threshold to the target phase
boundary (Fig. 10c).

Experimental Resource Analysis

To compute the gate depth of the cluster model QCNN
circuit in a Rydberg atom implementation, we analyze
each gate shown in Figure 2b. By postponing pooling
layer measurements to the end of the circuit, the multi-
qubit gates required are

CzZij = eiπ(−1+Zi)(−1+Zj)/4 (12)

CxZij = eiπ(−1+Xi)(−1+Zj)/4 (13)

CxCxXijk = eiπ(−1+Xi)(−1+Xj)(−1+Xk)/8. (14)

By using Rydberg blockade-mediated controlled gates57,
it is straightforward to implement CzZij and CzCzZijk =

eiπ(−1+Zi)(−1+Zj)(−1+Zk)/8. The desired CxZij and
CxCxXijk gates can then be obtained by conjugating
CzZij and CzCzZijk by single-qubit rotations. For in-
put size of N spins, the kth convolution-pooling unit
thus applies 4N/3k−1 CzZij gates, N/3k−1 CxCxXijk

gates, and 2N/3k−1 layers of CxZij gates. The depth
of single-qubit rotations required is 4d, as these rota-
tions can be implemented in parallel on all N qubits. Fi-
nally, the fully connected layer consists of N31−d CzZij
gates. Thus, the total number of multi-qubit operations
required for a QCNN of depth d operating on N spins is
7N
2 (1−31−d)+N31−d. Note that we need not use SWAP

gates since the Rydberg interaction is long-range.

Demonstration of Learning Procedure for QEC

To obtain the QEC code considered in the main text,
we consider a QCNN with N = 9 input physical qubits
and simulate the circuit evolution of its 2N × 2N den-
sity matrix exactly. Strictly speaking, our QCNN has
three layers: a three-qubit convolution layer U1, a 3-to-
1 pooling layer, and a 3-to-1 fully connected layer U2.
Without loss of generality, we may ignore the optimiza-
tion over the pooling layer by absorbing its effect into the
first convolution layer, leading to the effective two-layer

11

Figure 11: Ratio between the logical error rate of the Shor
code and that of the QCNN code for the anisotropic de-
polarization error model. We fix the total input error rate
ptot = px + py + pz = 0.001 and py = pz, while varying the
ratio px/ptot.

structure shown in Fig. 5a. The generic three-qubit uni-
tary operations U1 and U2 are parameterized using 63
Gell-Mann coefficients each.

As discussed in the main text, we consider three dif-
ferent error models: (1) independent single-qubit errors
on all qubits with equal probabilities pµ for µ = X, Y ,
and Z errors, (2) independent single-qubit errors on all
qubits, with anisotropic probabilities px 6= py = pz, and
(3) independent single-qubit anisotropic errors with ad-
ditional two-qubit correlated errors XiXi+1 with proba-
bility pxx. More specifically, the first two error models
are realized by applying a (generally anisotropic) depo-
larization quantum channel to each of the nine physical
qubits:

N1,i : ρ 7→ (1−
∑

µ

pµ)ρ+
∑

µ

pµσ
µ
i ρσ

µ
i (15)

with Pauli matrices σµi for i ∈ {1, 2, . . . , 9} (the qubit
indices are defined from bottom to top in Fig. 5a). For
the anisotropic case, we trained the QCNN on various
different error models with the same total error prob-
ability px + py + pz = 0.001, but different relative ra-
tios; the resulting ratio between the logical error prob-
ability of the Shor code and that of the QCNN code
is plotted as a function of anisotropy in Fig. 11. For
strongly anisotropic models, the QCNN outperforms the
Shor code, while for nearly isotropic models, the Shor
code is optimal and QCNN can achieve the same logical
error rate.

For the correlated error model, we additionally apply
a quantum channel:

N2,i : ρ 7→ (1− pxx)ρ+ pxxXiXi+1ρXiXi+1 (16)

for pairs of nearby qubits, i.e. i ∈ {1, 2, 4, 5, 7, 8}. Such a
geometrically local correlation is motivated from experi-
mental considerations. In this case, we train our QCNN
circuit on a specific error model with parameter choices

px = 5.8× 10−3, py = pz = 2× 10−3, pxx = 2× 10−4 and
evaluate the logical error probabilities for various physi-
cal error models with the same relative ratios, but differ-
ent total error per qubit px + py + pz + pxx. In general,
for an anisotropic logical error model with probabilities
pµ for σµ logical errors, the overlap fq is (1−2

∑
µ pµ/3),

since 〈±ν|σµ |±ν〉 = (−1)δµ,ν+1. Becuase of this, we
compute the total logical error probability from fq as
1.5(1 − fq). Hence, our goal is to maximize the logical
state overlap fq defined in Eq. (5). If we naively ap-
ply the gradient descent method based on fq directly to
both U1 and U2, we find that the optimization is easily
trapped in a local optimum. Instead, we optimize two
unitaries U1 and U2 sequentially, similar to the layer-by-
layer optimization in backpropagation for conventional
CNN1.

A few remarks are in order. First, since U1 is opti-
mized prior to U2, one needs to devise an efficient cost
function C1 that is independent of U2. In particular, sim-
ply maximizing fq with an assumption U2 = 1 may not
be ideal, since such choice does not capture a potential
interplay between U1 and U2. Second, because U1 cap-
tures arbitrary single qubit rotations, the definition of C1

should be basis independent. Finally, we note that the
tree structure of our circuit allows one to view the first
layer as an independent quantum channel:

MU1
: ρ 7→ tra[U1N (U†1 (|0〉 〈0|⊗ρ⊗|0〉 〈0|)U1)U†1], (17)

where tra[·] denotes tracing over the ancilla qubits that
are measured in the intermediate step. From this per-
spective, MU1

describes an effective error model to be
corrected by the second layer.

With these considerations, we optimize U1 such that
the effective error model MU1 becomes as classical as
possible, i.e. MU1 is dominated by a “flip” error along
a certain axis with a strongly suppressed “phase” error.
Only then, the remant, simpler errors will be corrected
by the second layer. More specifically, one may represent
MU1

using a map MU1
: r 7→ Mr + c, where r ∈ R3

is the Bloch vector for a qubit state ρ ≡ 1
21 + r · σ53.

The singular values of the real matrix M encode the
probabilities p1 ≥ p2 ≥ p3 for three different types of
errors. We choose our cost function for the first layer as
C1 = p21 + p2 + p3, which is relatively more sensitive to
p2 and p3 than p1 and ensure that the resultant, opti-
mized channel MU1

is dominated by one type of error
(with probability p1). We note that M can be efficiently
evaluated from a quantum device without knowing N ,
by performing quantum process tomography for a sin-
gle logical qubit. Once U1 is optimized, we use gradient
decent to find an optimal U2 to maximize the fidelity
fq. As with QPR, gradients are computed via the finite-
difference method, and the learning rate is determined
by the bold driver technique1.

12

∗ Electronic address: soonwon@berkeley.edu
51 I.P. McCulloch. Infinite size density matrix renormal-

ization group, revisited. arXiv preprint arXiv:0804.2509
(2008).

52 G. Vidal. Efficient Classical Simulation of Slightly En-
tangled Quantum Computations. Phys. Rev. Lett. 91(14),
147902 (2003).

53 M.A. Nielsen and I. Chuang. Quantum computation and
quantum information. Cambridge University Press (2000).

54 R. Verresen, R. Moessner, and F. Pollman. One-
dimensional symmetry-protected topological phases and
their transitions. Phys. Rev. B 96, 165124 (2017).

55 R.A. Bertlmann and P. Krammer. Bloch vectors for qudits.
J. Phys. A.: Math. Theor. 41 235303 (2008).

56 G. Hinton. Lecture Notes for CSC2515: Introduction to
Machine Learning. University of Toronto, 2007.

57 N. Schuch, D. Pérez-Garćıa, and J.I. Cirac. PEPS as
ground states: Degeneracy and topology. Ann. Phys. 325,
2153 (2010).

58 N. Schuch, D. Pérez-Garćıa, and J.I. Cirac. Classifying
quantum phases using matrix product states and projected
entangled pair states. Phys. Rev. B 84, 165139 (2011).

59 X. Chen, Z.-C. Gu, and X.-G. Wen. Classification of gapped
symmetric phases in one-dimensional spin systems, Phys.
Rev. B 83, 035107 (2011).

60 D. Aharonov and M. Ben-Or, in Proceedigns of the twemty-
ninth annual ACM symposium on the theory of computing
(ACM, 1997), pp. 176-188.

57 M. Saffman, T. Walker, and K. Molmer, Quantum infor-
mation with Rydberg atoms. Rev. Mod. Phys. 82, 2313
(2010).

mailto:soonwon@berkeley.edu

	 QCNN CIRCUIT MODEL
	 DETECTING A 1D SPT PHASE
	 Sample Complexity
	 MERA and QEC
	 Obtaining QCNN from Training Procedure

	 OPTIMIZING QUANTUM ERROR CORRECTION
	 EXPERIMENTAL REALIZATIONS
	 OUTLOOK
	 References
	 Phase Diagram and QCNN Circuit Simulations
	 QCNN for the S=1 Haldane Chain
	 Multiscale String Order Parameters

	 Demonstration of Learning Procedure for QPR
	 Construction of QCNN Circuit
	 QCNN for General QPR Problems
	 Experimental Resource Analysis
	 Demonstration of Learning Procedure for QEC
	 References

