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Abstract

This paper introduces a Stata implementation of Coarsened Exact Matching (CEM), a
new method for improving the estimation of causal effects by reducing imbalance in co-
variates between treated and control groups. CEM is faster, easier to use and understand,
requires fewer assumptions, more easily automated, and possesses more attractive statis-
tical properties for many applications than existing matching methods. In CEM, users
temporarily coarsen their data, exact match on these coarsened data, then run their anal-
ysis on the uncoarsened, matched data. CEM bounds the degree of model dependence and
causal effect estimation error by ex ante user choice, is montonic imbalance bounding (so
that reducing the maximum imbalance on one variable has no effect on others), does not
require a separate procedure to restrict data to common support, meets the congruence
principle, is approximately invariant to measurement error, balances all nonlinearities and
interactions in-sample (i.e., not merely in expectation), and works with multiply imputed
data sets. Other matching methods inheret many of CEM’s properties when applied to
further match data preprocessed by CEM. The library cem implements the CEM algorithm
in Stata.



1 Introduction

This program is designed to improve the estimation of causal effects via a powerful method
of matching that is widely applicable in observational data and easy to understand and
use (if you understand how to draw a histogram, you will understand this method). The
program implements the Coarsened Exact Matching (CEM) algorithm described in (Iacus,
King and Porro, 2008). CEM is a monotonoic imbalance reducing matching method —
which means that the balance between the treated and control groups is chosen by ex ante
user choice rather than discovered through the usual laborious process of checking after the
fact, tweaking the method, and repeatedly reestimating. CEM also assures that adjusting
the imbalance on one variable has no effect on the maximum imbalance of any other. CEM
strictly bounds through ex ante user choice both the degree of model dependence and the
average treatment effect estimation error, eliminates the need for a separate procedure to
restrict data to common empirical support, meets the congruence principle, is robust to
measurement error, works well with multiple imputation methods for missing data, can be
completely automated, and is extremely fast computationally even with very large data
sets. After preprocessing data with CEM, the analyst may then use a simple difference in
means or whatever statistical model they would have applied without matching. CEM can
also be used to improve other methods of matching by applying those methods to CEM-
matched data (they formally inherent CEM’s properties if applied within CEM strata).
CEM also works well for determining blocks in randomized experiments, and evaluating
extreme counterfactuals.

2 Background

2.1 Notation

Consider a sample of n units randomly drawn from a population of N units, where n ≤ N .
For unit i, denote Ti as an indicator variable with value Ti = 1 if unit i receives the
treatment (and so is a member of the “treated” group) and Ti = 0 if not (and is therefore
a member of the “control” group). The outcome variable is denoted Y , where Yi(0) is
the potential outcome for observation i if the unit does not receive treatment and Yi(1) is
the potential outcome if the (same) unit receives treatment. For each observed unit, the
observed outcome is Yi = TiYi(1) + (1 − Ti)Yi(0) and so Yi(0) is unobserved if i receives
treatment and Yi(1) is unobserved if i does not receive treatment.

To compensate for the observational data problem where the treated and control groups
are not necessarily identical before treatment (and, lacking random assignment, not the
same on average), matching estimators attempt to control for pre-treatment covariates.
For this purpose, we denote X = (X1, X2, . . . , Xk) as a k-dimensional data set, where
each Xj is a column vector of observed values of pre-treatment variable j for the n sample
observations (possibly drawn from a population, of size N). That is, X = [Xij , i =
1, . . . , n, j = 1, . . . , k].

2.2 Quantities of Interest

As usual, the treatment effect for unit i, TEi = Yi(1)− Yi(0), is unobserved. All relevant
causal quantities of interest are functions of TEi, for different groups of units, and so must
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be estimated. We focus on the sample average treatment effect on the treated (SATT):

SATT =
1

nT

∑
i∈T

TEi (1)

where nT =
∑n

i=1 Ti and T = {1 ≤ i ≤ n : Ti = 1}. Matching algorithms sometimes also
change the quantity being estimated to one that can be estimated without much model
dependence by selecting control and/or treated units.

We assume that treatment assignment is ignorable conditional on X. This assumption
is often stated as “no unmeasured confounders” or “no omitted variables.” Formally, this
means that the treatment assignment is independent of the potential outcomes,

P (T |X, Y (0), Y (1)) = P (T |X). (2)

2.3 Existing matching methods and practice

Matching is a nonparametric method of controlling for some or all of the confounding in-
fluence of pretreatment control variables in observational data. The key goal of matching
is to prune observations from the data so that the remaining data have better balance
between the treated and control groups, meaning that the empirical distributions of the
covariates (X) in the groups are more similar. Exactly balanced data means that control-
ling further for X is unnecessary (since it is unrelated to the treatment variable), and so
a simple difference in means on the matched data can estimate the causal effect; approx-
imately balanced data requires controlling for X with a model (such as the same model
that would have been used without matching), but the only inferences necessary are only
those relatively close to the data, leading to less model dependence and reduced statistical
bias than without matching.

The most common matching methods involve finding, for each treated unit, at least one
control unit that is “similar” on the covariates. The distinction between methods is how
to define this similarity. For example, exact matching simply matches a treated unit to all
of the control units with the same covariate values. Unfortunately, due to the richness of
covariates in many examples, this method often produces very few matches. A whole host
of approximate matching methods specify a metric to find control units that are close to the
treated unit. This metric is often the Mahalanobis distance or the propensity score (which
is simply the probability of being treated, conditional on the covariates). Many of these
related methods are implemented in Stata (Becker and Ichino, 2002; Abadie et al., 2004;
Leuven and Sianesi, 2004; Abadie, Diamond and Hainmueller, 2008). A problem with this
type of solution is that it requires the user to set the size of the matching solution ex ante,
then check for balance ex post. Thus analysts must check for balance after the algorithm
is finished, then respecify a matching model and recheck balance, etc. This process repeats
until the user obtains an acceptable amount of balance.

As matching is simply a data preprocessing technique, analysts must still apply sta-
tistical estimators to the data after matching. When one-to-one exact matching is used, a
simple difference in means between Y in the treated and control group provides an estima-
tor of the causal effect. When the match is not exact, a parametric model must be used to
control for the differences in the covariates across treated and control groups. This may be
a linear regression, a maximum likelihood estimator or some other estimator. Applying a
matching method to the data before analysis can reduce the degree of model dependence
(Ho et al., 2007).
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One wrinkle in the analysis of matched data occurs when there are not equal numbers
of treated and control units within strata. In this situation, estimators require weighting
observations according to the size of their strata (Iacus, King and Porro, 2008).

3 Coarsened Exact Matching

3.1 The Algorithm

The central motivation for CEM is that while exact matching provides perfect balance, it
typically produces few matches due to curse-of-dimensionality issues. For instance, adding
one continuous variable to a dataset effectively kills exact matching since two observations
are unlikely to have identical values on a continuous measure. The idea of CEM is to
temporarily coarsen each variable into substantively meaningful groups, exact match on
these coarsened data and then only retain the original (uncoarsened) values of the matched
data. As coarsening is a process at the heart of measurement, many analysts know how to
coarsen a variable into groups that preserve information. For instance, education may be
measured in years, but many would be comfortable grouping observations into categories
of high school, some college, college graduates, etc. This method works by exact matching
on distilled information in the covariates as chosen by the user.

The algorithm works as follows:

1. Begin with the covariates X and make a copy, which we denote X∗.

2. Coarsen X∗ according to user-defined cutpoints, or CEM’s automatic binning algo-
rithm.

3. Create one stratum per unique observation of X∗ and place each observation in a
stratum.

4. Assign these strata to the original data, X and drop any observation whose stratum
does not contain at least one treated and one control unit.

Once completed, these strata are the foundations for calculating the treatment effect.
The inherent trade-off of matching is reflected in CEM too: larger bins (more coarsening)
used to make X∗ will result in fewer strata. Fewer strata will result in more diverse
observations within the same strata and, thus, higher imbalance.

It is important to note that CEM prunes both treated and control units. This process
changes the quantity of interest under study to the treatment effect in the post-matching
subsample. This change is reasonable so long as the decision is transparent (see e.g. Crump
et al. (2006)).

3.2 The Benefits

Iacus, King and Porro (2008) derive many of the properties of the CEM algorithm and we
review some of them here. The key property of CEM is that it is in a class of matching
methods called Monotonic Imbalance Bounding (MIB). MIB methods bound the maximum
imbalance in some feature of the empirical distributions through an ex ante choice by the
user. In CEM, this ex ante choice is the coarsening. As the coarsening on any variable
becomes finer (the bins become more narrow), the bound on the maximum imbalance
on the moments of that variable becomes tighter. This is also true for the bound on
differences in the empirical quantiles. Furthermore, this choice also bounds the maximum
imbalance on the full multivariate histogram of treated and control units, which includes
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all interactions and non-linearities. By choosing the coarsening ex ante, users can control
the amount of imbalance in the matching solution. Iacus, King and Porro (2008) also
show that CEM bounds both the error in estimating the average treatment effect and the
amount of model dependence.

Aside from bounding the imbalance between the treated and control groups, CEM has
a number of other beneficial properties. First, CEM meets the congruence principle, which
states that the data space and analysis space should be the same. Methods that fail to
meet this principle often produce strange or counter-intuitive results. Methods that meet
the principle allow analysts to leverage their substantive knowledge of the data in order
to find better matches. Second, CEM automatically restricts the matched data to areas
of common empirical support. This is necessary to remove the possibility of difficult-to-
justify extrapolations of the causal effect that end up being heavily model dependent (King
and Zeng, 2006). Finally, CEM is computationally very efficient even for large data sets.

4 An Extended Example

We show here how to use CEM1 through a simple running example: the National Sup-
ported Work (NSW) Demonstration data, also known as the Lalonde data set (Lalonde,
1986). This program provided training to selected individuals for 12-18 months and help
finding a job in the hopes of increasing their earnings. The treatment variable, treated,
is 1 for participants (the treatment group) and 0 for nonparticipants (the control group).
The key outcome variable is earnings in 1978 (re78). The statistical goal is to estimate a
specific version of a causal effect: the sample average treatment effect on the treated (the
“SATT”).

Since participation in the program was not assigned strictly at random, we must control
for a set of pretreatment variables by the CEM algorithm. These pre-treatment variables
include age (age), years of education (education), marital status (married), lack of a high
school diploma (nodegree), race (black, hispanic), indicator variables for unemployment
in 1974 (u74) and 1975 (u75), and real earnings in 1974 (re74) and 1975 (re75). Some
of these are dichotomous (married, nodegree, black, hispanic, u74, u75), some are
categorical (age and education), and the earnings variables are continuous and highly
skewed with point masses at zero. You can load this data into Stata using the command

use http://gking.harvard.edu/cem/lalonde.dta, clear

Matching is not a method of estimation; it is a way to preprocess a data set so that
estimation of SATT based on the matched data set will be less “model-dependent” (i.e.,
less a function of apparently small and indefensible modeling decisions) than when based
on the original full data set. Matching involves pruning observations that have no close
matches on pre-treatment covariates in both the treated and control groups. The result
is typically less model-dependence, lower bias, and (by removing heterogeneity) increased
efficiency (King and Zeng, 2006; Ho et al., 2007; Iacus, King and Porro, 2008).

4.1 Basic Evaluation and Analysis of Unmatched Data

We begin the simple difference in means as a naive estimate of SATT; this estimator is
useful only when the in-sample distribution of pre-treatment covariates happens to be the

1In addition to the Stata version of CEM, there is an R version in the package cem. The example
presented here is also used in that package as a vignette, and includes some obvious overlap in prose.
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same in the treatment and control groups. First we compute the size of the treated and
control groups:

. table treated

----------------------
treated | Freq.

----------+-----------
0 | 425
1 | 297

----------------------

Thus, the data include 297 treated units and 425 control units. The (unadjusted and
therefore likely biased) difference in means can be found by a simple linear regression of
outcome on treatment,

. regress re78 treated

Source | SS df MS Number of obs = 722
-------------+------------------------------ F( 1, 720) = 3.52

Model | 137332528 1 137332528 Prob > F = 0.0609
Residual | 2.8053e+10 720 38962865.4 R-squared = 0.0049

-------------+------------------------------ Adj R-squared = 0.0035
Total | 2.8191e+10 721 39099300.5 Root MSE = 6242

------------------------------------------------------------------------------
re78 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
treated | 886.3038 472.0863 1.88 0.061 -40.52625 1813.134
_cons | 5090.048 302.7826 16.81 0.000 4495.606 5684.491

------------------------------------------------------------------------------

Thus, our estimate of SATT is 886.3. Because the variable treated was not randomly
assigned, the pre-treatment covariates differ between the treated and control groups. To
see this, we focus on these pre-treatment covariates: age, education, black, nodegree,
re74.

The overall imbalance is given by the L1 statistic, introduced in Iacus, King and
Porro (2008) as a comprehensive measure of global imbalance. It is based on the L1

difference between the multidimensional histogram of all pretreatment covariates in the
treated group and that in the control group. First, we coarsen the covariates into bins. To
use this measure, we require a list of bin sizes for the numerical variables. Our functions
compute these automatically, or they can be set by the user.2 Then, we cross-tabulate
the discretized variables as X1 × · · · × Xk for the treated and control groups separately,

2Of course, as with drawing histograms, the choice of bins affects the final result. The crucial point is
to choose one and keep it the same throughout to allow for fair comparisons. The particular choice is less
crucial.
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and record the k-dimensional relative frequencies for the treated f`1···`k
and control g`1···`k

units. Finally, our measure of imbalance is the absolute difference over all the cell values:

L1(f, g) =
1
2

∑
`1···`k

|f`1···`k
− g`1···`k

| (3)

Perfect global balance (up to coarsening) is indicated by L1 = 0, and larger values
indicate larger imbalance between the groups, with a maximum of L1 = 1, which indicates
complete separation. If we denote the relative frequencies of a matched dataset by fm and
gm, then a good matching solution would produce a reduction in the L1 statistic; that is,
we would hope to have L1(fm, gm) ≤ L1(f, g).

We compute L1 statistic, as well as several unidimensional measures of imbalance via
our imb function. In our running example:

. imb age education black nodegree re74, treatment(treated)

Multivariate L1 distance: .50759358

Univariate imbalance:

L1 mean min 25% 50% 75% max
age .10119 .1792 0 1 0 -1 -6

education .10047 .19224 1 0 1 1 2
black .00135 .00135 0 0 0 0 0

nodegree .08348 -.08348 0 -1 0 0 0
re74 .0522 -101.49 0 0 69.731 584.92 -2139

Only the overall L1 statistic measure includes imbalance with respect to the full joint
distribution, including all interactions, of the covariates; in the case of our example, L1 =
.5076. The L1 value is not valuable on its own, but rather as a point of comparison
between matching solutions. The value .5076 is a baseline reference for the unmatched
data. Once we have a matching solution, we will compare its L1 value to .5076 and gauge
the increase in balance due to the matching solution from that difference. Thus, L1 works
for imbalance as R2 works for model fit: the absolute values mean less than comparisons
between matching solutions. The unidimensional measures in the table are all computed
for each variable separately.

The first column, labeled L1, reports the Lj
1 measure, which is L1 computed for the j-

th variable separately (which of course does not include interactions). The second column
in the table of unidimensional measures, labeled mean, reports the difference in means.
The remaining columns in the table report the difference in the empirical quantiles of
the distributions of the two groups for the 0th (min), 25th, 50th, 75th, and 100th (max)
percentiles for each variable.

This particular table shows that variables re74 is imbalanced in the raw data in many
ways and variable age is balanced in means but not in the quantiles of the two distributions.
This table also illustrates the point that balancing only the means between the treated and
control groups does not necessarily guarantee balance in the rest of the distribution. Most
important, of course, is the overall L1 measure, since even if the marginal distribution of
every variable is perfectly balanced, the joint distribution can still be highly imbalanced.

6



4.2 Coarsened Exact Matching

We now apply the coarsened exact matching algorithm by calling the function cem. The
CEM algorithm performs exact matching on coarsened data to determine matches and
then passes on the uncoarsened data from observations that were matched to estimate
the causal effect. Exact matching works by first sorting all the observations into strata,
each of which has identical values for all the coarsened pre-treatment covariates, and then
discarding all observations within any stratum that does not have at least one observation
for each unique value of the treatment variable.

To run this algorithm, we must choose a type of coarsening for each covariate. We
show how this is done this via a fully automated procedures in next section. Then we
show how to use explicit prior knowledge to choose the coarsening, which is normally
preferable when feasible.

In CEM, the treatment variable may be dichotomous or multichotomous3 . Alterna-
tively, cem may be used for randomized block experiments without specifying a treatment
variable; in this case the strata are simply returned without any pruning of observations.

4.2.1 Automated Coarsening

In our running example we have a dichotomous treatment variable. In the following code,
we match on our chosen pre-treatment variables, but not re78, which is the outcome
variable and so should never be included.

The output contains useful information about the match, including a (small) table
about the number of observations in total, matched, and unmatched by treatment group,
as well as the results of a call to the imb function for information about the quality of the
matched data. Since cem bounds the imbalance ex ante, the most important information
is the number of observations matched. But the results also give the imbalance in the
matched data using the same measures as that in the original data described in Section
4.1. Thus,

. cem age education black nodegree re74, tr(treated)

Matching Summary:
-----------------
Number of strata: 205
Number of matched strata: 67

0 1
All 425 297

Matched 324 228
Unmatched 101 69

Multivariate L1 distance: .46113967

Univariate imbalance:
3 While CEM can match for multichotomous treatments, analysis with these matched samples is some-

what difficult. For instance, Iacus, King and Porro (2008) develop weights for two treatment groups and
it is not obvious how to generalize these weights for more treatment groups. We suggest users run CEM
on each pair of treatment levels, get the correct weights for each and calculate separate ATT.
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L1 mean min 25% 50% 75%
age .13641 -.17634 0 0 0 0

education .00687 .00687 1 0 0 0
black 3.2e-16 -2.2e-16 0 0 0 0

nodegree 5.8e-16 4.4e-16 0 0 0 0
re74 .06787 34.438 0 0 492.23 39.425

max
age -1

education 0
black 0

nodegree 0
re74 96.881

We can see from these results the number of observations matched and thus retained,
as well as those which were pruned because they were not comparable. By comparing
the imbalance results to the original imbalance table given in the previous section, we can
see that a good match can produce a substantial reduction in imbalance, not only in the
means, but also in the marginal and joint distributions of the data.

The function cem also generates weights for use in the evaluation of imbalance measures
and estimates of the causal effect (stored in cem weights).

4.2.2 Coarsening by Explicit User Choice

The power and simplicity of CEM comes from choosing the coarsening yourself rather
than using the automated algorithm as in the previous section. Choosing the coarsening
enables you to set the maximum level of imbalance ex ante, which is a direct function of
the coarsening you choose. By controlling the coarsening, you also put an explicit bound
on the degree of model dependence and the SATT estimation error.

Fortunately, the coarsening is a fundamentally substantive act, almost synonymous
with the measurement of the original variables. In other words, if you know something
about the data you are analyzing, you almost surely have enough information to choose
the coarsening. (And if you don’t know something about the data, you might ask why you
are analyzing it in the first place!)

In general, we want to set the coarsening for each variable so that substantively indis-
tinguishable values are grouped and assigned the same numerical value. Groups may be
of different sizes if appropriate. Recall that any coarsening during CEM is used only for
matching; the original values of the variables are passed on to the analysis stage for all
matched observations.

For numerical variables, we can use the cutpoints syntax in cem. Thus, for example, in
the US educational system, the following discretization of years of education corresponds
to different levels of school

Grade school 0–6
Middle school 7–8
High school 9–12
College 13–16
Graduate school >16

8



Using these natural breaks in the data to create the coarsening is generally a good approach
and certainly better than using fixed bin sizes (as in caliper matching) that disregard these
meaningful breaks. In our data, no respondents fall in the last category,

. table education

----------------------
education | Freq.
----------+-----------

3 | 1
4 | 6
5 | 5
6 | 7
7 | 15
8 | 62
9 | 110
10 | 162
11 | 195
12 | 122
13 | 23
14 | 11
15 | 2
16 | 1

----------------------

We can use the cutpoints above using parentheses after the education variable:

. cem age education (0 6.5 8.5 12.5 17.5) black nodegree re74, tr(treated)

Matching Summary:
-----------------
Number of strata: 155
Number of matched strata: 53

0 1
All 425 297

Matched 349 245
Unmatched 76 52

Multivariate L1 distance: .43604654

Univariate imbalance:

L1 mean min 25% 50% 75% max
age .05034 -.15556 0 0 0 1 -1

education .0309 .00362 1 -1 0 0 2
black 8.2e-16 1.0e-15 0 0 0 0 0

nodegree 1.2e-15 1.9e-15 0 0 0 0 0
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re74 .04975 2.5048 0 0 161.28 -17.37 1198.1

As we can see, this matching solution differs from that resulting from our automated
approach in the previous section. In fact, it has actually increased the balance in matching
solution while giving us a higher number of matched units.

4.2.3 Coarsening categorical variables

For categorical variables that do not have a natural ordering, some recoding might be
necessary before inputing to CEM. For instance, if we have a variable that is

Strongly Agree 1
Agree 2
Neutral 3
Disagree 4
Strongly Disagree 5
No Opinion 6

there is a category (“No Opinion”) that does not fit on the ordinal scale of the variable.
In our example dataset, we have such a variable, q1,

. table q1

------------------------------
q1 | Freq.

------------------+-----------
strongly agree | 121

agree | 111
neutral | 129
disagree | 121

strongly disagree | 118
no opinion | 122

------------------------------

In order to coarsen this variable, first create a new coarsened variable using the recode
command4:

. recode q1 (1 2 = 1 "agree") (3 6 = 2 "neutral") (4 5 = 3 "disagree"), gen(cem_q1)
(601 differences between q1 and cem_q1)

. table cem_q1

----------------------
RECODE of |
q1 | Freq.
----------+-----------

agree | 232

4For variables that are strictly string (non-numeric) variables, users will need to first use the encode

command to convert the strings to numeric, then use recode.
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neutral | 251
disagree | 239
----------------------

Here we have collapsed the opinions into the direction of opinion, also grouping “No
Opinion” with “Neutral.” Once the coarsened variable is created, you can pass this variable
to CEM with the (#0) cutpoints command after it to ensure that CEM does not coarsen
further:

. cem age education black nodegree re74 cem_q1 (#0), tr(treated)

Matching Summary:
-----------------
Number of strata: 315
Number of matched strata: 81

0 1
All 425 297

Matched 260 190
Unmatched 165 107

Multivariate L1 distance: .5904067

Univariate imbalance:

L1 mean min 25% 50% 75% max
age .14574 -.1994 0 0 0 1 -1

education .00263 .00263 1 0 0 0 0
black 3.6e-16 6.7e-16 0 0 0 0 0

nodegree 3.5e-16 6.7e-16 0 0 0 0 0
re74 .09854 70.061 0 0 375.1 -383.76 96.881

cem_q1 3.1e-16 3.1e-15 0 0 0 0 0

When calculating treatment effects after running CEM, be sure to use the original,
uncoarsened variables for analysis. Coarsened variable should only be used to produce
matches. After this, they can be discarded.

4.3 Restricting the matching solution to a k-to-k match

By default, CEM uses maximal information, resulting in strata that may include different
numbers of treated and control units. To compensate for the differential strata sizes, cem
also returns weights to be used in subsequent analyses. Although this is generally the
best option, a user with enough data may opt for a k-to-k solution to avoid the slight
inconvenience of needing to use weights.

The argument k2k accomplishes this by pruning observations from a cem solution
within each stratum until the solution contains the same number of treated and control
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units within all strata. Pruning occurs within a stratum (for which observations are
indistinguishable to cem proper) by random matching inside cem strata5.

Here is an example of this approach. Running the earlier call with the k2k options
yields:

. cem age education black nodegree re74, tr(treated) k2k

Matching Summary:
-----------------
Number of strata: 205
Number of matched strata: 67

0 1
All 425 297

Matched 205 205
Unmatched 220 92

Multivariate L1 distance: .37560976

Univariate imbalance:

L1 mean min 25% 50% 75% max
age .07805 -.10732 0 0 0 0 -1

education 0 0 1 0 0 0 0
black 0 0 0 0 0 0 0

nodegree 0 0 0 0 0 0 0
re74 .0439 -34.547 0 0 -120.7 -214.55 96.881

It is clear that the number of matched units has decreased after using the k2k option.

4.4 Estimating the Causal Effect from cem output

Using the output from cem, we can estimate the SATT by the regular Stata methods, by
simply including the cem weights. For example,

. reg re78 treated [iweight=cem_weights]

Source | SS df MS Number of obs = 552
-------------+------------------------------ F( 1, 550) = 3.15

Model | 128314324 1 128314324 Prob > F = 0.0766
Residual | 2.2420e+10 550 40764521.6 R-squared = 0.0057

-------------+------------------------------ Adj R-squared = 0.0039
Total | 2.2549e+10 551 40923414.2 Root MSE = 6384.7

------------------------------------------------------------------------------
re78 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
5Note that in the R version of this software pruning within strata can be done using a distance metric.

12



treated | 979.1905 551.9132 1.77 0.077 -104.9252 2063.306
_cons | 4919.49 354.7061 13.87 0.000 4222.745 5616.234

------------------------------------------------------------------------------

For convenience, we compute this as a regression of the outcome variable on a constant
and the treatment variable, where the SATT estimate is the coefficient on the treated vari-
able, in our case 979.19. Any Stata command that accepts weights (aweight or iweight)
can be used.

If exact matching (i.e., without coarsening) was chosen this procedure is appropriate
as is. In other situations, with some coarsening, some imbalance remains in the matched
data. The remaining imbalance is strictly bounded by the level of coarsening, which can be
seen by any remaining variation within the coarsened bins. Thus, a reasonable approach in
this common situation is to attempt to adjust for the remaining imbalance via a statistical
model. (Modeling assumptions for models applied to the matched data are much less
consequential than they would otherwise be because CEM is known to strictly bound the
level of model dependence.) To apply a statistical model to control for the remaining
imbalance, we simply add variables to the regression command. For example:

. reg re78 treated re74 re75 [iweight=cem_weights]

Source | SS df MS Number of obs = 552
-------------+------------------------------ F( 3, 548) = 5.42

Model | 649651702 3 216550567 Prob > F = 0.0011
Residual | 2.1899e+10 548 39961951.7 R-squared = 0.0288

-------------+------------------------------ Adj R-squared = 0.0235
Total | 2.2549e+10 551 40923414.2 Root MSE = 6321.5

------------------------------------------------------------------------------
re78 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
treated | 988.083 546.5395 1.81 0.071 -85.48584 2061.652

re74 | -.0174322 .1593346 -0.11 0.913 -.3304134 .2955491
re75 | .3190651 .1744905 1.83 0.068 -.023687 .6618172
_cons | 4287.523 393.0883 10.91 0.000 3515.378 5059.667

------------------------------------------------------------------------------

The user can also specify glm modeling in the case of binary, count, or other non-
continuous outcome variables by utilizing their commands in Stata (logit, poisson, etc)
combined with the iweight syntax.

4.5 Matching and Missing Data

Almost all previous methods of matching assume the absence of any missing values. In
contrast, CEM offers two approaches to dealing with missing values (item nonresponse). In
the first, where we treat missing values as one of the values of the variables, is appropriate
when “.” is a valid value that is not really missing (such as when “no opinion” really
means no opinion). The other is a special procedure to allow for multiply imputed data
in CEM.
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4.5.1 Matching on Missingness

If users leave missing values in the data, cem will coarsen the variables as normal, but use
“.” as a separate category for each variable. Thus, cem will match on missingness.

4.5.2 Matching Multiply Imputed Data

Consider a data set to be matched, some of which is missing. One approach to analyzing
data with missing values is multiple imputation, which involves creating m (usually about
m = 5) data sets, each of which is the same as the original except that the missing values
have been imputed in each. Uncertainty in the values of the missing cells is represented
by variation in the imputations across the different imputed data sets (King et al., 2001).

Suppose that we have used some imputation program (such as (Honaker, King and
Blackwell, 2006)) to produce 5 imputed datasets, saved as:

imp1.dta
imp2.dta
imp3.dta
imp4.dta
imp5.dta

As an example we added missingness to the example dataset and imputed it using
Honaker, King and Blackwell (2006)6. If we place all of the imputed datasets in the same
directory and open the first, we can run cem with the miname and misets arguments to
specify the root of the imputed datasets’ filename and the number of datasets, respectively.
In our example, this would be:

. use imp1.dta, clear

.

. cem age education black nodegree re74, tr(treated) miname(imp) misets(5)

Matching Summary:
-----------------
Number of strata: 235
Number of matched strata: 76

0 1
All 425 297

Matched 312 217
Unmatched 113 80

Multivariate L1 distance: .38286064

Univariate imbalance:

L1 mean min 25% 50% 75% max

6If users are interested in working with this example, they can access these sample files at http:

//gking.harvard.edu/cem/imp1.dta, etc. Once all five are downloaded, users can generate the following
output. The original data file with missingness added is at http://gking.harvard.edu/cem/lelonde.dta

14

http://gking.harvard.edu/cem/imp1.dta
http://gking.harvard.edu/cem/imp1.dta
http://gking.harvard.edu/cem/lelonde.dta


age .02132 -.07344 .19196 0 1 0 -1
education .01173 -.0121 1 0 0 0 0

black .00207 .00041 0 0 0 0 0
nodegree .00461 -.00092 0 0 0 0 0

re74 .04987 -4.1404 -398.68 0 375.1 -236.7 96.881

The output is identical to a normal run of cem and the output can be interpreted
similarly. The CEM algorithm combines all of the imputed data into one master dataset
to which it assigns strata. To combine strata across imputation, CEM chooses the strata
most often assigned to an observation. This strata assignment is given to each of the
imputed datasets (that is, the cem weights variable is added to each of the datasets).

Now we estimate SATT via the usual multiple imputation combining formulas (av-
eraging the point estimates and within and between variances, as usual; see King et al.
2001), being sure to use the cem weights. This is simple using the miest command by
Ken Scheve7. For example,

. miest imp reg re78 treated [aweight=cem_weights]

Multiple Imputation Estimates

Model: regress
Dependent Variable: re78

Number of Observations: 529
---------------------------------------------------------------

| Coef. Std. Err. t Df P>|t|
---------------------------------------------------------------
treated | 1269.2 557.2244 2.278 10902 0.023
_cons | 4814.5 355.8442 13.530 22308 0.000

---------------------------------------------------------------

Note that we have to use aweight instead of iweight as above (this is due to com-
patibility issues). One can use miest to implement a number of parametric models with
the matching weights. In addition, clarify8 is a useful program for analyzing multiply
imputed data:

. estsimp reg re78 treated [iweight=cem_weights], mi(imp1.dta imp2.dta imp3.dta
> imp4.dta imp5.dta)

\oom

Regress estimates (via multiple imputation) Nobs = 528

---------------------------------------------------------------
re78 | Coef. Std. Err. t d.f. P>|t|

7miest is available at http://gking.harvard.edu/amelia/amelia1/docs/mi.zip.
8Clarify is available at http://gking.harvard.edu/stats.shtml#clarify
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---------+-----------------------------------------------------
treated | 1269.205 557.7437 2.276 10943 0.023
_cons | 4814.52 356.1777 13.517 22392 0.000

---------------------------------------------------------------

Number of simulations : 1000
Names of new variables : b1 b2 b3
Datasets used for MI : imp1.dta imp2.dta imp3.dta imp4.dta imp5.dta

Note that here we were able to use the iweight command as in our earlier analyses.

4.6 Blocking in Randomized Experiments

CEM can produce strata for a block randomized design for a set of pre-treatment covari-
ates. As block randomized designs outperform complete randomization on bias, efficiency,
power and robustness, it should be used whenever possible (Imai, King and Nall, forthcom-
ing, 2009; Imai, King and Stuart, 2008). To create a set of strata for a block randomized
design, simply run CEM without passing a treatment variable. This will assign observa-
tions to strata based on their coarsened values and create a cem strata variable, indicating
this assignment. Once this is complete, simply randomly assign treatment within these
strata to complete the block randomized design.

4.7 Using cem to Improve Other Matching Methods

Even if you plan to use a different matching method, you can still use the CEM algorithm
to improve that matching solution. An important step before matching is restricting
the data to areas of common empirical support. This avoids making inference based on
extrapolation as such inferences are known to be extremely model dependent. Traditional
matching methods, however, are not equipped to handle this situation. For example, the
propensity score can be used to find the area of extrapolation only after we know that
the correct propensity score model has been used. However, the only way to verify that
the correct propensity score model has been specified is to check whether matching on it
produces balance between the treated and control groups on the relevant covariates. But
balance cannot be reliably checked until the region of extrapolation has been removed. To
avoid this type of infinite regress, researchers use entirely different technologies for the first
step, such as kernel density estimation (Heckman, Ichimura and Todd, 1997) or dropping
control units outside the hyper-rectangle (Iacus and Porro, 2009) or convex hull (King and
Zeng, 2006) of the treated units.

The matching methods currently in Stata all rely on propensity score methods for
restricting the data to common empirical support. For CEM, on the other hand, this
restriction is a natural consequence of the algorithm. All observations within a stratum
containing both a treated and control unit are by definition inside of the common support.
In light of this, a good use of CEM would be to reduce the data to common support before
applying another matching solution such as psmatch2, nnmatch, or pscore. This will
improve the quality of the inferences drawn from these methods. Once you have run cem,
all you must do is run the following command to restrict the data to common support:

. drop if cem_matched == 0
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Alternatively, you can use any of the matching methods with an if cem matched==1
option. This will force the other matching methods to only match in the region of common
support. As an example using nnmatch, this would be

. nnmatch re78 treated age education black nodegree re74 if cem_matched == 1

Of course you can apply this idea to any matching method in Stata, not just the ones
listed here.

5 cem – Coarsened Exact Matching

5.1 Syntax

. cem varname1 [(cutpoints1)] [varname2 [(cutpoints2)]] ... [, treatment(varname) showbreaks
autocuts(string) k2k imbbreaks(string) miname(string) misets(#)]

5.2 Description

cem implements the Coarsened Exact Matching method described in Iacus, King and Porro
(2008). The main inputs for cem are the variables to use (varname#) and the cutpoints
that define the coarsening (cutpoints#). The latter option is set in a parentheses after the
name of the relevant variable. Users can either specify cutpoints for a variable or allow
cem to automatically coarsen the data based on an automatic coarsening algorithm, chosen
by the user. To specify a set of cutpoints for a variable, place a numlist in parentheses
after the variable’s name. To specify an automatic coarsening, place a string indicating
the binning algorithm to use in parentheses after the variable’s name. To create a certain
number of equally spaced cutpoints including the extreme values, say 10, place #10 in the
parentheses (using #0 will force cem into not coarsening the variable at all). Omitting
the parenthetical statement after the variable name tells cem to use the default binning
algorithm, itself set by autocuts.

Note that character variables are ignored by cem. These variables will need to be
converted into numeric variables using encode. Coarsening that are not ordinal must be
done before running cem using the recode command, as described above.

5.3 Options

treatment(varname) tells cem which variable should be used for matching.
showbreaks will have cem display the cutpoints used for each variable on the screen.
autocuts(string) sets the default automatic coarsening algorithm. The default for this

is “sturges”. Any variable without a cutpoint# command after its name will use the
autocuts argument.

k2k will have cem produce a matching result that has the same number of treated and
control in each matched strata by randomly dropping observations.

imbbreaks(string) sets the coarsening method for the imbalance checks printed after cem
runs. This should match whichever method is used for imbalance checks elsewhere. If
either cem or imbhas been run and there is a r(L1 breaks) available, this will be the
default. Otherwise, the default for this is “scott”

miname(string) is the root of the filenames of the imputed dataset. They should be in the
working directory. For example, if miname were “imputed”, then the filenames should
be “imputed1.dta”,“imputed2.dta” and so on.

misets(#) is the number of imputed datasets being used for matching.
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5.4 Output

The output cem returns depends on the inclusion of a treatment variable. If the treatment
variable is provided, cem will match and return the following three variables in the current
dataset:
cem strata is the strata number assigned to each observation by cem.
cem matched is 1 for a matched observation and 0 for an unmatched observation.
cem weights is the weight of the stratum for each observation. Strata with unmatched

units are give 0 weight and treated observations are given a weight of 1.
cem treat when using the multiple imputation features, cem outputs this variable, which

is the treatment vector used for matching. cem applies the same combination rule to
treatment as to strata.
If the options for multiple imputation are used, cem saves each of these variables in

each of the imputed datasets, allowing for easy use in programs like miest.
The following are stored as saved results in Stata’s memory:
Scalars
r(n strata) number of strata.
r(n groups) number of treatment levels.
r(n mstrata) number of strata with matches.
r(n matched) number of matched observations.
r(L1) multivariate imbalance measure.
Matrices
r(match table) table of treatment vs matched.
r(groups) tabulation of treatment variable.
r(imbal) univariate imbalance measures.
Macros
r(varlist) covariate variables used.
r(treatment) treatment variable.
r(cem call) call to cem.
r(L1 breaks) break method used for L1 distance

If the treatment variable is omitted (e.g. for blocking), then the only outputs are
cem strata, r(n strata), r(varlist), and r(cem call).

6 imb - Imbalance Measures for CEM

6.1 Syntax

imb varlist [if] [in] [, treatment(varname) breaks(string) miname(string) misets(string)
useweights]

6.2 Description

imb returns a number of measures of imbalance in covariates between treatment and control
groups. A multivariate L1 distance, univariate L1 distrances, difference in means and
empirical quantiles difference are reported. The L1 measures are computed by coarsening
the data according to breaks and comparing across the multivariate histogram. See Iacus,
King and Porro (2008) for more details on this measure.

6.3 Arguments

treatment(varname) sets the treatment variable used for the imbalance checks.
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breaks(string) sets the default automatic coarsening algorithm. If either cem or imb has
been run and there is a r(L1 breaks) available, this will be the default. Otherwise,
the default for this is “scott”. It is not incredibly important which method is used here
as long as it is consistent.

miname(string) is the root of the filenames of the imputed dataset. They should be in
the working directory. For example, if miname were “imputed”, then the filenames
should be “imputed1.dta”,“imputed2.dta” and so on.

misets(integer) is the number of imputed datasets being used for matching.
useweights makes imbuse the weights from the output of cem. This is useful for checking

balance after running cem.

6.4 Saved Results

Scalars
r(L1) multivariate imbalance measure
Matrices
r(imbal) matrix of univariate imbalance measures
Macros
r(L1 breaks) break method used for L1 distance
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