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ABSTRACT
In this paper, we provide a simple game-theoretic model of
an online question and answer forum. We focus on factual
questions in which user responses aggregate while a ques-
tion remains open. Each user has a unique piece of informa-
tion and can decide when to report this information. The
asker prefers to receive information sooner rather than later,
and will stop the process when satisfied with the cumulative
value of the posted information. We consider two distinct
cases: a complements case, in which each successive piece
of information is worth more to the asker than the previ-
ous one; and a substitutes case, in which each successive
piece of information is worth less than the previous one. A
best-answer scoring rule is adopted to model Yahoo! An-
swers, and is effective for substitutes information, where it
isolates an equilibrium in which all users respond in the first
round. But we find that this rule is ineffective for com-
plements information, isolating instead an equilibrium in
which all users respond in the final round. In addressing
this, we demonstrate that an approval-voting scoring rule
and a proportional-share scoring rule can enable the most
efficient equilibrium with complements information, under
certain conditions, by providing incentives for early respon-
ders as well as the user who submits the final answer.

Categories and Subject Descriptors
H.5.3 [Information Interfaces and Presentation (e.g.
HCI)]: Group and Organizational Interfaces; J.4 [Social
and Behavioral Sciences]: Economics

General Terms
Design, Economics, Theory

1. INTRODUCTION
Yahoo! Answers is a question and answer forum where

users can post questions or answer questions on wide va-
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riety of topics. Yahoo! Answers has 25 categories ranging
from ‘Computers & Internet’ to ‘Travel’ to ‘Family & Rela-
tionships’ to ‘Health.’ Users may post discussion questions,
factual questions or polls. In Yahoo! Answers, people do not
exchange money for answers to questions. Participation in
Yahoo! Answers is encouraged through an elaborate point
system, and with leaderboards and top-contributor designa-
tions to encourage participants to accumulate more points.

In this paper, we provide a game-theoretic model of be-
havior for online question and answer forums such as Ya-
hoo! Answers. We focus on modeling the one-shot question
and answer game. Additionally, we focus on modeling fac-
tual questions, such as“What are the main causes of the cur-
rent housing crisis?”, rather than discussion questions (e.g.
“What is your favorite movie of all time?”). Factual ques-
tions have been demonstrated to have a higher archival value
than discussion questions [5].

Our interest is in understanding the structure of the equi-
libria in a model that captures some qualitative features of
these environments, and especially in considering the effect
of alternate scoring rules on the quality of these equilibria
for the asker. In the model that we propose, each user has
a unique piece of information that is relevant to a question
and can decide when to report this information. As infor-
mation is reported it is aggregated into the responses, so
that the value to the asker monotonically improves while the
question remains open. In the case that multiple pieces of
information are simultaneously revealed in the final round,
we assume that the asker is able to combine the information.

In considering the interactions between the information,
we consider two distinct cases: a complements case in which
each successive piece of information is worth more to the
asker than the previous one; and a substitutes case in which
each successive piece of information is worth less. The asker
prefers to receive information sooner rather than later, and
will stop the process when satisfied with the cumulative
value of the posted information.

We first analyze the equilibrium for a best-answer scor-
ing rule, that is designed to model the current Yahoo! An-
swers environment. Upon stopping the process, the asker
assigns one point to the best answer among all responses.
As we assume that every user has the ability to combine her
own information with information that has already been re-
vealed, under the best-answer scoring rule the asker assigns
the point to the most recent answer (breaking ties at ran-
dom in the case that multiple answers are received in the
most recent round). We find that this scoring rule is ef-



fective in isolating the efficient equilibrium in the case of
substitutes information, in which all information is posted
in the very first round. On the other hand, the best-answer
rule is ineffective for complements information, where it in-
stead isolates the least efficient equilibrium in which every
user posts information in the very last round.

In addressing this problem, we consider two alternative
scoring rules. The first is an approval-voting scoring rule,
in which the asker assigns one point to each of the best
k > 1 answers. In our setting, this means that the asker
assigns one point to each of the most recent set of k answers
(with ties broken at random if more than k answers were
received in the most recent round, or more than k−k1 users
in the penultimate round with k1 in the most recent round,
and so on). With this scoring rule, we find that it is now
possible to have the most efficient equilibrium outcome for
complements information, with certain restrictions on the
asker’s valuation function. This scoring rule also retains the
efficient equilibrium in the case of substitutes information.
However, the downside of this rule is that it also retains
the least efficient equilibrium for complements information
and introduces the least efficient equilibrium for substitutes
information, again under certain restrictions on the asker’s
valuation function. An interesting feature of this scoring
rule is the tunable parameter k, which represents the trade-
off between the benefit of this scoring rule for the case of
complements information and the disadvantage for the case
of substitutes information.

The second scoring rule we propose is the proportional-
share scoring rule, in which the asker assigns some share of
the available points in proportion to the marginal value con-
tributed by a user in the round in which the user submits
information. With this scoring rule, we find that it is now
possible to support the efficient equilibrium outcome (i.e.,
the equilibrium in which all answers are received in the first
round) for complements information, again with certain re-
strictions on the asker’s valuation function. This scoring rule
also retains the efficient equilibrium as the unique outcome
in the case of substitutes information. On the other hand,
while the efficient equilibrium is unique across all ‘pooling’
equilibrium in which users respond in the same round (for
certain restrictions on the valuation function), we are unable
to rule out ‘separating’ equilibrium in which users respond
in different rounds for complements valuations under the
proportional-share rule.

The approval-voting and proportional-share rules differ in
the informational requirements that they place on the asker.
Approval voting does not require any additional informa-
tion beyond that required in the best-answer rule, i.e. just
a signal as to when the asker is happy with the most re-
cent answer(s). On the other hand, the proportional-share
rule requires the asker, upon stopping the process, to as-
sociate a numerical score with the total information value
as the answers aggregate across rounds. It is an interest-
ing open question to understand whether scoring rules can
be designed that preclude inefficient equilibrium for comple-
ments valuations without requiring this additional informa-
tion from the asker.

2. YAHOO! ANSWERS AND Q&A FORUMS
In Yahoo! Answers, users maintain a tally of points and

are penalized for asking questions, rewarded for logging onto
the system each day, rewarded for answering a question and

Activity Points
first time user +100 points
log into the system once per day +1 point
ask a question -5 points
answer a question +2 points
have your answer chosen as best answer +10 points
pick a best answer for your question +3 points

Table 1: The Points Scheme in Yahoo! Answers

rewarded heavily for having answers selected as a best an-
swer. The complete point system is given in Table 1.

Based on the number of points a user accumulates, the
user receives a “level” designation, with there being seven
levels in total. The higher the level, the greater privileges a
user will get in terms of the number of questions she can ask
per day, the number of questions she can answer per day,
etc. All users have a profile where the number of points the
user has, the level, and the percentage of best answers is
clearly displayed. Perhaps this is the most visible informa-
tion displayed about a user.

In addition to the point system, leaderboards and top con-
tributor designations encourage users to accumulate more
points. For each category and sub-category, the “top con-
tributor” is displayed at the top of the page. Likewise, for
each category and sub-category, there is a leaderboard of
the top ten users. It has been shown that points are a factor
in motivating users to participate in points-based question
and answer forums [14]. Note, though, that points are not
needed to ask questions because users can always create new
identities and obtain 100 new points!

While we believe that this is the first game-theoretic in-
vestigation of question and answer forums, there do exist
a number of existing empirical studies, there have been a
number of empirical studies devoted to understanding how
users participate in such forums [14, 19, 1]. Nam et al. [14]
aim to understand the underlying motivations for why users
participate in question and answer forums. They study the
Naver Knowledge-iN (KiN) system, the largest question and
answer community in South Korea. They give a survey to
26 users of KiN and find that altruism along with selfish
reasons (e.g. points, promoting personal businesses, main-
taining personal knowledge, etc.) are top motivations for
participating in KiN. These authors also show that the av-
erage number of answers to a question increases as the ex-
pected reward increases.1 Indeed, others observe that higher
rewards lead to increased participation. Yang et al. [19] find
that higher monetary rewards for a solution to a task on
Taskcn, a popular web-based knowledge-sharing market in
China, attract more views for the task and increased task
participation. Harper et al. [6] compare different question
and answer forums and find that monetary rewards and in-
creased rewards lead to higher quality answers.

Perhaps in support of the fact that users can build upon
previous answers and receive credit for the aggregated infor-
mation, Nam et al. [14] present an interesting result: In the
“C++” forum, the next-to-last question is chosen as a best
answer 51% of the time and the last question 69% of the
time [14].2 These authors get virtually identical results for

1KiN allows an asker to increase the reward for a question
by up to 100 additional points.
2KiN allows for selecting more than one best answer.



the “Java” forum and similar results for the “Singer” forum.
Making the case that users are behaving strategically,

Yang et al. [19] also point out that users learn to select tasks
where they are competing against few opponents, to increase
their chances of winning. Users also, over time, select tasks
with higher expected rewards.

Yang et al. [19] also study user behavior over time and
find that most users become inactive after only a few sub-
missions. They also find that there is a very small core of
successful users who manage to increase their win percent-
age over time. This core group accounts for 20% of the
winning solutions on Taskcn. Nam et al. [14] also observe a
heavy tailed distribution in terms of user contribution and
that many users drop out after a few contributions. This is
a general theme across many websites with user generated
content [18].

In an attempt to improve the quality of information on
Yahoo! Answers, Harper et al. [5] focus on distinguishing
factual questions in Yahoo! Answers from discussion ques-
tions. Harper et al. point out that factual questions have a
higher archival value than discussion questions, which indeed
is our motivation for focusing on factual questions. Harper
et al. then use a number of classifiers to group questions as
either factual questions or discussion questions. Adamic et
al. [1] also observe the difference between factual forums and
discussion forums and find that factual forums tend to have
a smaller number of responses, while each response is rela-
tively long, whereas discussion forums tends to have more re-
sponses that are shorter in length. In addition, these authors
find that discussion forums tend to have a greater amount
of overlap between users who ask questions and users who
ask questions than factual forums.

Other research in question and answer forums has focused
on determining experts in such communities [20, 11, 12],
while others have observed the redundancy in such systems
and attempt to retrieve semantically similar questions [10].
Many studies notice the varying quality of user generated
content, and aim to retrieve high quality content [2, 4] and
improve content quality [8]. Yet other studies try to predict
certain properties of Q&A forums (e.g., the likelihood an
answer will be chosen as a best answer [1] or asker satisfac-
tion [13]).

Online question and answer forums fit into the larger realm
of peer production systems [3], which is a term used to refer
to decentralized system of users that contribute to a sys-
tem to achieve a global goal, without receiving monetary
compensation for their work. Examples of peer production
systems include Wikipedia, YouTube, and human compu-
tation systems [16, 17]. Prior work has presented a game-
theoretic analysis of human computation systems, specifi-
cally the PhotoSlap game [7] and the ESP game [9]. There
have also been a number of empirical studies analyzing user
contribution to various peer production systems. It has been
shown that there exists strong regularities among a wide
range of peer production systems [18], namely power laws in
terms of contribution to such systems. Pouwelse et al. [15]
also provide a nice empirical survey of the growth of many
peer production systems over the past decade.

3. OUR MODEL
We focus on modeling how users participate in answer-

ing a single question posted by asker. We assume that the
question is on a particular topic that has n pieces of dis-

joint information. Denote I = {I1, I2, . . . , In} as the in-
formation space of the question. There are n users in the
system that can potentially answer the question. Each user
i ∈ {1, . . . , n} possesses a unique piece of information Ii.
Even though information is private, the fact that everyone
possesses a piece of information out of n total pieces is com-
mon knowledge for all users and the asker.

The question-answering process has T rounds, unless the
asker closes the question earlier. The users each make a
decision about which round to participate in, and are able
to observe the responses by other users before responding.
When participating in round t > 1, every user has the abil-
ity to combine her own piece of information with all other
pieces of information that have been revealed in previous
answers, and submit an integrated answer. Each user, how-
ever, can only answer the question once. This restriction is
also present in the Yahoo! Answers forum. At the end of
each round, the asker decides whether or not to close the
question.

We assume that users seek to maximize their expected
score in answering the question and are thus selfish and mo-
tivated solely by points, not altruism. Because there is no
cost in our model to answering a question, and because users
seek to maximize their score, we can restrict attention to
strategies in which a user will always submit an answer to
the question. Moreover, a user will always choose to submit
an answer that aggregates her information with previous in-
formation because this can only increase her score under all
scoring rules that we consider. When multiple new answers
are received in the same round, we assume that the asker is
herself able to combine the information in these responses.

The asker is modeled with a valuation function, that maps
sequences of information from information space I into a real
number representing the asker’s value for the cumulative in-
formation associated with the sequence of information. Let
σ be a permutation of I and σi(I) be the i-th element of
σ. The asker’s valuation function v satisfies the following
properties:

P1: v(I0) = 0, when I0 = ∅;
P2: v(I1, I2, . . . , Ij) = v(σ1(I), σ2(I), . . . , σj(I)) for all 1 ≤

j ≤ n and all permutations σ of I;

P3: v(σ1(I), σ2(I), . . . , σj(I)) < v(σ1(I), σ2(I), . . . , σj+1(I))
for all 1 ≤ j < n and all permutations σ of I.

From now on, we use v(i) = v(I1, I2, . . . , Ii) to denote the
asker’s valuation for any i pieces of information, not just
those from agents {1, . . . , i}. This is possible due to property
P2 which requires that all information is equivalent in the
sense that any i pieces of information generate the same
value.

To define the stopping rule, we model the asker as draw-
ing a threshold value, θ ∼ U [0, v(n)], uniformly at random
between 0 and the value of receiving all information in the
information space I of the question. Once the asker’s valu-
ation for items received exceeds θ, the asker is satisfied and
closes the question, and awards points to one or more users
according to some specific scoring rule. The distribution on
this threshold value is common knowledge to all users but
only the askers knows the actual threshold value. That the
question is closed once the threshold is exceeded models the
intuition that the asker prefers to receive an answer sooner
rather than later.



Given that an earlier answer is preferred to a later answer
and that more information is better than less information,
we can identify the efficient outcome as that in which every
user responds in the very first round. This can be thought
of as a pooling equilibrium, with every user coordinating on
a particular round in which to submit information. Apart
from a pooling equilibrium, we can also consider a separat-
ing equilibrium, in which pieces of information are received
in distinct rounds. The least efficient outcome is that in
which each user waits until the very last round to respond.
Note that in all equilibria, the asker will certainly receive
all information by the last round because it is costless for
users to submit an answer. Therefore, a pooling equilibrium
in which all users coordinate on the last round is the least
efficient of all outcomes.

Depending on the nature of the question, the pieces of
information related to the question may be complements or
substitutes. For example, suppose the asker posts the ques-
tion: “What should I do for a one-day visit to Boston?” The
two pieces of information, “walk along the Freedom Trial”
and “have lunch at Quincy Market (which is on the Free-
dom Trial)” are complements, because the value of knowing
both pieces of information for the asker is higher than the
sum of the values of only knowing a single piece of infor-
mation. However, if the asker posts the question: “Where
should I have lunch in Times Square?”, the answers “Becco”
and “Kodama” are substitutes for the asker, since the asker
must choose between the two.

To model the different nature of these two questions and
the associated information, we consider the case where the
value of each successive piece of information received by the
asker is of greater value than the previous one (the comple-
ments case) and the case where the value of each successive
pierce of information received by the asker is less than the
value of the previous one (the substitutes case). In the fol-
lowing definitions, let δj = v(j)− v(j − 1).

Definition 3.1. In the complements case, the valuation
function must satisfy δj < δj+1 for all 1 ≤ j < n.

The substitutes case is defined analogously.

Definition 3.2. In the substitutes case, the valuation func-
tion must satisfy δj > δj+1 for all 1 ≤ j < n.

Under these configurations, we provide the probability for
the asker to close a question at time t. Let b(t) denote the
amount of information that the asker has at the end of each
time round, where 1 ≤ t ≤ T .

Remark 3.1. The probability of stopping after each round
t, conditional on that the question has not been closed at

round t − 1, is v(b(t))
v(n)

for both the complements and the

substitutes cases. Furthermore, in the complements case,

if b(t) = i, then v(b(t))
v(n)

< i
n

for all i. Likewise, for the

substitutes case, if b(t) = i, then v(b(t))
v(n)

> i
n

for all i.

Proof. Conditional on that the question has not been
closed, the probability of stopping at step t equals P [θ ≤
v(b(t))]. Since θ follows a uniform distribution, we have

P [θ ≤ v(b(t))] =
v(b(t))

v(n)− v(∅) =
v(b(t))

v(n)
.

We must have v(b(t)) =
∑i

j=1 δj and v(n) =
∑n

j=1 δj .
For the complements case, by Definition 3.1, δi < δi+1. We

have,

v(b(t))

v(n)
=

∑i
j=1 δj∑n
j=1 δj

=
1

1 +
∑n

j=i+1 δj∑i
j=1 δj

<
1

1 + (n−i)δi
iδi

=
i

n
.

For the substitutes case, by Definition 3.2, δi > δi+1. Hence
the inequality in the above expression is reversed for the
substitutes case.

Remark 3.2. If T = 2, the probability of stopping in the

first round is p where p = v(i)
v(n)

and i is the number of items

received in the first round. The probability of stopping in the

second round is 1− p = v(n)−v(i)
v(n)

.

Proof. By Remark 3.1, the probability of stopping at

the first round is p = v(i)
v(n)

, and the probability of stopping

at the second round, conditional on not stopping at the first

round, is v(n)
v(n)

= 1. Hence, the unconditional probability of

stopping at the second round is (1− p)× 1 = 1− p.

Remark 3.3. If T ≥ 2, the probability of stopping in the

first round is p where p = v(i)
v(n)

and i is the number of items

received in the first round. The probability of stopping in the

second round is p′ where p′ = v(i+j)−v(i)
v(n)

and j is the num-

ber of items received in the second round, and so on. More
generally, the probability of stopping in round k is q where

q = v(b(k))−v(b(k−1))
v(n)

, where b(k) is the set of information

available at the end of round k.

Proof. The probability that the question was not closed
at round k − 1 is P [θ > v(b(k − 1))]. Then conditional on
the fact that the question was not closed at round k − 1,
the probability of stopping at round k is P [θ < v(b(k))|θ >
v(b(k−1))]. Hence, the unconditional probability of stopping
at round k is the product of the two probabilities, which
equals

P [v(b(k − 1)) < θ < v(b(k))] =
v(b(k))− v(b(k − 1))

v(n)
.

4. ANALYSIS OF BEST-ANSWER RULE
The best-answer rule models the scoring method currently

used by Yahoo! Answers. In Yahoo! Answers, upon closing
the question, the asker can select one answer as the best
answer and the associated user is then awarded some fixed
number of points. Without loss of generality, we normalize
the number of points awarded to 1.3

When the asker closes the question because the value has
reached the threshold, the asker selects the user that an-
swered in the most recent round as the winner. When there
are multiple answers provided in the final round, the asker
uniformly picks one of them as the best answer. On one hand
we see that users would prefer to wait so that the value of
the answer that they submit is maximized since their infor-
mation will be aggregated with earlier answers. But on the
other hand, waiting too long could result in a missed op-
portunity because the question may be closed in an earlier
stage.

3This is without loss of generality because we model only a
single game, and thus the relative weight of points for being
selected as the best answer vs. asking a question and so forth
is irrelevant in our analysis.



This tradeoff between waiting to form better answers and
participating before the question is closed is the key strategic
consideration facing users. In the rest of this section, we ex-
plore this tradeoff and perform equilibrium analysis for both
complements and substitutes cases. We use the notion of an
active round in our analysis. A round is active if at least
one user participates in that round, otherwise it is inactive.
We will establish a clean separation for the complements
and substitutes cases: the unique Nash equilibrium profile
for complements valuations is the most inefficient outcome,
while the unique Nash equilibrium profile for substitutes val-
uations is the most efficient outcome.

4.1 Complements Case
For the complements case, the asker’s valuation of having

a collection of several pieces of information is higher than the
sum of her valuations for individual pieces. The benefit of
waiting to form a better answer is therefore relatively high.
The following results show that the only Nash equilibrium
for the complements case under the best answer rule, is that
all users answer the question in the final round, just before
the question will definitely close. This is the least efficient
equilibrium, because the asker must wait to get an answer
until the last possible round.

Lemma 4.1. Consider any strategy profile that involves
all users playing in the same round. The only one of these
strategy profiles that forms a pure-strategy Nash equilibrium
is the one in which all users play last, for any valuation
function satisfying the complements condition and under the
best-answer rule.

Proof. Any strategy profile that involves all users play-
ing in the same round, yields an expected payoff of 1

n
to each

user, because with probability 1
n

their answer is selected as
the best answer. Let the active round be t. When t < T , a
user can deviate by participating in round t + 1. The prob-
ability that the question is closed at the end of round t is
p < n−1

n
, due to Remark 3.1. The deviating user earns an

expected payoff 1− p > 1
n
. Thus, all users playing at round

t < T can not be a Nash equilibrium. Finally, consider the
strategy profile consisting of all users participating in the
T th round. If user i deviates by going earlier, his expected
payoff equals the probability that the question is closed be-

fore round T , which in this case is v(1)
v(n)

< 1
n

according to

Remark 3.1.

Theorem 4.2. For any valuation function satisfying the
complements condition, the unique pure-strategy Nash equi-
librium under the best-answer rule is the least efficient strat-
egy profile, in which all users participate in the last round.

Proof. Lemma 4.1 indicates if a strategy profile forms an
equilibrium and it is not the strategy profile that involves all
users playing in the last round, then the strategy profile must
have more than one active round. Consider the first active
round, call this round t. Suppose i users have played in the
tth round. The probability that the question is closed at the

end of the tth round is given by p = v(i)
v(n)

. The expected

payoff of a user who plays in round t is p/i. Consider the
expected payoff of a user from round t who deviates to the
next active round, call this round t′. Suppose other j users
have played in round t′. The probability that the question
is closed at the end of round t′ under this deviation is p′ =

v(i+j)−v(i−1)
v(n)

according to Remark 3.3. The expected payoff

of the deviating user is now p′/(j + 1). It is easy to see that
p′/(j+1) > p/i under the complements condition. Thus any
strategy profile that has more than one active round cannot
be an equilibrium.

4.2 Substitutes Case
For the substitutes case, the asker’s valuation of having

a collection of several pieces of information is lower than
the sum of her valuations for individual pieces. The benefit
of waiting to form a better answer in this case is therefore
relatively low. In contrast to the complements case, the only
Nash equilibrium for the substitutes case under the best
answer scoring rule, is that all users answer the question in
the very first round. This is the most efficient equilibrium,
because the asker will get all the answers without waiting.

Lemma 4.3. Consider any strategy profile that involves
all users playing in the same round. The only one of these
strategy profiles that forms a pure-strategy Nash equilibrium
is the one in which all users play first, for any valuation
function that satisfies the substitutes condition and under
the best-answer rule.

Proof. Any strategy profile that involves all users play-
ing in the same round, yields an expected payoff of 1

n
to each

user. Let the active round be t. When t > 1, a user can de-
viate by participating in round t − 1. The probability that
the question is closed at the end of round t−1 is p > 1

n
, due

to Remark 3.1. The deviating user earns an expected payoff
p > 1

n
. Finally, consider the strategy profile consisting of all

users participating in the 1st round. If a user deviates by
going later, the probability that the question is closed after
the first round is greater than n−1

n
according to Remark 3.1

and the user’s expected payoff is less than 1
n
.

Theorem 4.4. For any valuation function satisfying the
substitutes condition, the unique pure-strategy Nash equilib-
rium under the best-answer rule is the most efficient strategy
profile, in which all users participate in the first round.

Proof. Lemma 4.3 indicates that if a strategy profile is
in equilibrium and it is not the strategy profile that involves
all users playing in the first round, then the strategy profile
must have more than one active round. Consider the last
active round, call this round t. Suppose i users have played
in the tth round. This means that n− i users played earlier.
The expected payoff for a user who played in the last round

is (1−p)/i, where p = v(n−i)
v(n)

is the probability that the ques-

tion is closed before the last round was reached. Consider
the value of p. We know from Remarks 3.1, 3.2, and 3.3 that
the probability of stopping before the last round is reached
is greater than n−i

n
, so the expected payoff of participating

in the last active round must be less than 1
n
. A user who

participates by going in the last round can deviate by play-
ing in the first active round. Assume that there are j users
who play in the first active round, including the user who
deviated. The probability that the question is closed at the

end of the first round is v(j)
v(n)

> j
n
. So the expected payoff

of participating in the first round is greater than 1
n
.

5. ANALYSIS OF APPROVAL VOTING
Under the best-answer rule, the unique equilibrium for the

complements case is all users going last, which is inefficient.



It is possible that by changing the design of the scoring rule,
we can induce a useful change in the behavior of users and
in particular, enable a more efficient equilibrium. In this
section, we consider an approval-voting scheme and analyze
the equilibrium play of users under this rule.

Under the proposed approval-voting scheme, the asker as-
signs one point to each of k > 1 users, where k < n. The
number of winners, k, is a design parameter. Note that if
k = 1, this reduces to the best-answer rule of Yahoo! An-
swers. The Naver Knowledge-iN forum, in comparison, does
allow for askers to select more than one best answer. In
approval voting, the winners are the k most recent users to
answer before the question is closed, with ties broken uni-
formly at random. In the special case in which the question
is closed and more than k users respond in the most recent
round, then a subset of k winners is selected uniformly at
random. Similarly, when k1 < k users respond in the most
recent round then each receive one point and a subset of
k − k1 users that responded in the previous round are also
selected as winners, and so forth.

We consider the approval-voting scheme because it is sim-
ple and also because it seems possible that allowing users
that responded earlier to receive points will facilitate addi-
tional equilibrium, by lessening the incentive in the comple-
ments case for every user to wait to the very last moment
to respond to the question.

Remark 5.1. For any valuation function satisfying the
complements condition, and for any strategy profile consist-
ing of all users playing in the same round, a user cannot
profitably deviate by playing in an earlier round under the
approval-voting rule, for any k > 1.

Proof. If all users play in the same round, their expected
payoff is k

n
. If a user deviates by going earlier, she receives

a payoff of one unit only if the question is closed after the
first active round, which occurs with probability < 1

n
for any

valuation function satisfying the complements condition.

Remark 5.2. For any valuation function that satisfies the

condition v(n−1)
v(n)

≥ n−k
n

, and for any strategy profile con-

sisting of all users playing in the same round, a user can-
not profitably deviate by going in a later round, under the
approval-voting rule for k > 1 winners.

Proof. If all users play in the same round, their expected
payoff is k

n
. If a user deviates by going later, she receives a

payoff of one unit only if the question is not closed after the
first active round. The question is closed after the first active

round with probability p = v(n−1)
v(n)

. The user who deviates,

gets an expected payoff of 1 − p. We need 1 − p ≤ k
n

or in

other words, p ≥ n−k
n

.

Remark 5.3. For any valuation function satisfying the
substitutes condition, and for any strategy profile consisting
of all users playing in the same round, a user cannot prof-
itably deviate by playing in a later round under the approval-
voting rule, for any k > 1.

Proof. If all users play in the same round, their expected
payoff is k

n
. If a user deviates by going later, she receives

a payoff of one unit only if the question is not closed after
the first active round, which occurs with probability less
than 1

n
for any valuation function satisfying the substitutes

condition.

Remark 5.4. For any valuation function that satisfies the

condition v(1)
v(n)

≤ k
n
, and for any strategy profile consisting of

all users playing in the same round, a user cannot profitably
deviate by playing in an earlier round, under the approval-
voting rule for k > 1 winners.

Proof. If all users play in the same round, their expected
payoff is k

n
. If a user deviates by going earlier, she receives

a payoff of one unit only if the question is closed after the

first active round, which occurs with probability v(1)
v(n)

. This

deviation is not profitable if and only if v(1)
v(n)

≤ k
n
.

Lemmas 5.1 and 5.2 are two technical lemmas that to-
gether show that any strategy profile in which there are at
least two active rounds cannot be a Nash equilibrium for
any valuation function that satisfies the complements infor-
mation criterion. The proof of these lemmas will appear in
the full version of the paper.

Lemma 5.1. Any strategy profile that has at least two ac-
tive rounds, where at least k users participate in the last
active round, cannot be a pure-strategy Nash equilibrium for
any valuation function satisfying the complements condition,
under the approval-voting rule for k > 1 winners.

Lemma 5.2. Any strategy profile that has at least two ac-
tive rounds, where less than k users participate in the last
active round, cannot be a pure-strategy Nash equilibrium for
any valuation function satisfying the complements condition,
under the approval-voting rule for k > 1 winners.

Theorem 5.3. For any valuation function that satisfies

the complements condition and v(n−1)
v(n)

≥ n−k
n

, all users

playing in the same round is a pure-strategy Nash equilib-
rium, for any round, under the approval-voting rule for k >
1 winners. Moreover, these are the only pure-strategy Nash
equilibria. For any valuation function that satisfies the com-

plements condition and v(n−1)
v(n)

< n−k
n

, the only pure-strategy

Nash equilibria is for all users to play in the last round.

Proof. From Lemmas 5.1 and 5.2, we know that any
strategy profile that has two or more active rounds cannot
be a Nash equilibrium. Therefore any equilibrium must have
only one active round. We know from Remark 5.1, that if
all users are going in the last round, a user cannot prof-
itably deviate for any valuation function that satisfies the
complements condition. Therefore, this strategy profile is
a Nash equilibrium for any valuation function that satisfies
the complements condition. We know from Remark 5.2, that

when v(n−1)
v(n)

< n−k
n

and all users are playing in the same

round, a user can profitably deviate by going later. Thus,

when v(n−1)
v(n)

< n−k
n

, any strategy profile where all users

participate in a round that is not the last round cannot be
a Nash equilibrium. We know from Remark 5.2, that when
v(n−1)

v(n)
≥ n−k

n
and all users are playing in the same round, a

user cannot profitably deviate by going later. We know from
Remark 5.1, that if all users are playing in the same round, a
user cannot profitably deviate by going earlier. Thus, when
v(n−1)

v(n)
> n−k

n
, any strategy profile where all users partici-

pate in a single round is a Nash equilibrium.

Similar to the case of complements information, Lem-
mas 5.4 and 5.5 are two technical lemmas that together show



that any strategy profile in which there are at least two ac-
tive rounds cannot be a pure-strategy Nash equilibrium for
any substitutes valuation. The proof of these lemmas will
appear in the full version of the paper.

Lemma 5.4. Any strategy profile that has at least two ac-
tive rounds, where at least k users participate in the next-
to-last active round, cannot be a pure-strategy Nash equi-
librium for any valuation function satisfying the substitutes
condition, under the approval-voting rule for k > 1 winners.

Lemma 5.5. Any strategy profile that has at least two ac-
tive rounds, where less than k users participate in the next-
to-last active round, cannot be a pure-strategy Nash equi-
librium for any valuation function satisfying the substitutes
condition, under the approval-voting rule for k > 1 winners.

Theorem 5.6. For any asker valuation function satisfy-

ing the substitutes condition and v(1)
v(n)

≤ k
n
, all users playing

in the same round is a pure-strategy Nash equilibrium, for
any round, under the approval-voting rule for k > 1 winners.
Moreover, these are the only pure-strategy Nash equilibria.
For any valuation function that satisfies the substitutes con-

dition and v(1)
v(n)

> k
n
, the only pure-strategy Nash equilibrium

is for all users to play in the first round.

Proof. From Lemmas 5.4 and 5.5, we know that any
strategy profile that has two or more active rounds cannot
be a Nash equilibrium. Therefore any equilibrium must have
only one active round. We know from Remark 5.3, that if
all users are going in the first round, a user cannot prof-
itably deviate for any valuation function that satisfies the
substitutes condition. Therefore, this strategy profile is a
Nash equilibrium for any valuation function that satisfies
the complements condition. We know from Remark 5.4,

that when v(1)
v(n)

> k
n

and all users are playing in the same

round, a user can profitably deviate by going earlier. Thus,

when v(1)
v(n)

> k
n
, any strategy profile where all users par-

ticipate in a round that is not the first round cannot be a
Nash equilibrium. We know from Remark 5.4, that when
v(1)
v(n)

≤ k
n

and all users are playing in the same round, a user

cannot profitably deviate by going earlier. We know from
Remark 5.3, that if all users are playing in the same round,
a user cannot profitably deviate by going later. Thus, when
v(n−1)

v(n)
> n−k

n
, any strategy profile where all users partici-

pate in a single round is a Nash equilibrium.

In contrast to the best-answer rule, the approval-voting
rule can enable the most efficient equilibrium outcome for
the case of complementary information. However, it is not
possible to isolate this as the only equilibrium. For sub-
stitutes, we see that approval-voting can sometimes isolate
the most efficient equilibrium (as was the case for the best-
answer rule.)

The number of winners, k > 1, is a tunable parameter in
the approval-voting rule that changes the equilibrium struc-
ture. The larger k is, the more likely it is to enable the most
efficient equilibrium for the complements case, however, the
larger k is, the more likely it is to introduce the least effi-
cient equilibrium for the substitutes case. In what follows,
we introduce some special cases of complements and substi-
tutes in order to study this tradeoff in a little more detail.
We first turn to complements valuations.

Definition 5.7. Valuation function v satisfies additive
complements if and only if, in addition to satisfying Def-
inition 3.1, v satisfies δj+1 = δj + c with c > 0 for all
1 ≤ j < n.

Definition 5.8. Valuation function satisfies multiplica-
tive complements if and only if in addition to satisfying
Definition 3.1, v satisfies δj+1 = δj · c with c > 1 for all
1 ≤ j < n.

Corollary 5.9 is a very positive result, that we enable
the efficient equilibrium for any additive complements val-
uations and any value of n, in other words, any additive
complements valuation and n pair.

Corollary 5.9. For any valuation function satisfying the
additive complements condition, all users playing in the same
round is a pure-strategy Nash equilibrium for any round, un-
der the approval-voting rule for k > 1 winners. These are
the only Nash equilibria of the game.

In contrast to the previous result, we find that the number
of winners k must be relatively large, in order to enable the
most efficient equilibrium.

Corollary 5.10. For any valuation function satisfying
the multiplicative complements condition, all users playing
in the same round is a pure-strategy Nash equilibrium for any

round, under the approval-voting rule for k ≥ n·cn−1·(c−1)
cn−1

winners. These are the only Nash equilibria of the game. If

k < n·cn−1·(c−1)
cn−1

, then all users playing in the last round is
a unique pure-strategy Nash equilibrium.

Definition 5.11. Valuation function v satisfies additive
substitutes if and only if, in addition to satisfying Defini-
tion 3.2, v satisfies δj+1 = δj+c with c < 0 for all 1 ≤ j < n.

Definition 5.12. Valuation function v satisfies multiplica-
tive substitutes if and only if in addition to satisfying Defini-
tion 3.2, v satisfies δj+1 = δj ·c with c < 1 for all 1 ≤ j < n.

Recall that for the case of substitutes information, the
relevant question is to understand when it is possible to
isolate the efficient equilibrium from amongst the pooling
equilibrium (as in the best-answer scoring rule). For additive
substitutes we see that this is not possible for k ≥ 2:

Corollary 5.13. For any valuation function satisfying
the additive substitutes condition, all users playing in the
same round, for any round, is a pure-strategy Nash equilibria
for any k > 1 winners in the approval-voting rule. These are
the only Nash equilibria of the game.

One would need to resort to the best-answer rule (equiv-
alently, approval-voting with k = 1), to isolate the efficient
equilibrium in this additive substitutes case. And, in picking
a value of k there is a clear tradeoff to make between han-
dling additive substitutes and additive complements. On
the other hand, we obtain positive results for multiplicative
substitutes valuations:

Corollary 5.14. For any valuation function satisfying
the multiplicative substitutes condition, all users playing in
the first round is a unique pure-strategy Nash equilibrium

under the approval-voting rule with k < n·(1−c)
1−cn . Otherwise,

all users playing in the same round, for any round, is a pure-

strategy Nash equilibrium for k ≥ n·(1−c)
1−cn , and these are the

only Nash equilibria of the game.



c = 1.01 c = 2 c = 10
n = 5 k ≥ 2 k ≥ 3 k ≥ 5
n = 10 k ≥ 2 k ≥ 6 k ≥ 9
n = 50 k ≥ 2 k ≥ 25 k ≥ 45

Table 2: Necessary condition on the number of win-
ners, k > 1, in approval-voting with multiplicative
complements in order to enable the most efficient
equilibrium.

c = 0.99 c = 0.5 c = 0.1
n = 5 − k = 2 k ≤ 4
n = 10 − k ≤ 5 k ≤ 9
n = 50 − k ≤ 25 k ≤ 45

Table 3: Necessary condition on the number of win-
ners, k > 1, in approval-voting with multiplicative
substitutes in order to enable the most efficient equi-
librium as the unique equilibrium. Entry ‘−’ indi-
cates that this is not possible.

In Tables 2 and 3 we illustrate the requirements for mul-
tiplicative complements and multiplicative substitutes. One
can infer the following kind of difficulty with the approval
voting rule: the requirement on k to allow for the most ef-
ficient equilibrium for the case of complements valuations
tends to be at odds with the requirement on k to isolate
the most efficient equilibrium as the unique equilibrium for
the case of substitutes valuations. Under the proportional-
share rule, proposed in the next section, we do not have this
problem since in the case of substitutes valuations, the most
efficient outcome is always a unique equilibrium. However,
we cannot enable the most efficient equilibrium outcome for
all complements valuations with the proportional share rule
and so neither rule dominates the other.

6. ANALYSIS OF PROPORTIONAL-SHARE
SCORING RULE

In this section, we consider the proportional-share scoring
rule, and analyze the equilibrium behavior of users. In the
proportional-share scoring rule, the asker is given a fixed
number of points that she can distribute. Without loss of
generality, we normalize the total number of points to dis-
tribute to 1 so that each user that participates gets some
fraction of a point.

We assume that the asker distributes this point according
to her valuation function. More specifically, suppose the
question closes after C ≤ T active rounds, collects k ≤ n
pieces of information in total, and at each active round t ≤ C
there are nt participants. In the proportional-share scoring

rule, the asker distributes v(b(1))
v(k)

equally among the n1 users

participated in the active round 1, and, similarly, distributes
v(b(t))−v(b(t−1))

v(k)
to the nt users that participated in active

round t > 1, where v(b(t)) denotes the value of the items
received at the end of round t.

In addition to being a natural scoring rule, with each user
receiving credit in proportion to the marginal value con-
tributed to the system in the period in which his or her
answer is provided, we are interested in this rule because we
want to explore whether or not it can remove the inefficient

equilibrium in the complements case. While the approval-
voting rule was successful in introducing the efficient equi-
librium (under certain conditions on the asker valuation),
it was unable to isolate this as the only equilibrium. The
proportional-share scoring rule is designed to provide more
credit to early responders than the approval-voting rule in
order to mitigate this problem.

We first present a lemma on the behavior of users when
there is only one active round.

Lemma 6.1. For any strategy profile in which all users

play in the same round, and if v(1)
v(n)

≤ 1 −
√

n−1
n

, a user

cannot profitably deviate by going in an earlier round under
the proportional-share rule. For any strategy profile in which

all users play in the same round, and if v(n−1)
v(n)

≥ 1 −
√

1
n
,

a user cannot profitably deviate by going in a later round.

Proof. Consider the strategy profile consisting of all users
going in the same round. The expected payoff of each user is
1
n
. The expected payoff of a user who deviates by playing in

a later round is (1−p)·(1−p), where p = v(n−1)
v(n)

. In order for

this deviation not to be profitable, we need (1− p)2 ≤ 1
n
, or

equivalently, p ≥ 1−
√

1
n
. The expected payoff of a user who

deviates by playing in an earlier round is p+(1−p) ·p, where

p = v(1)
v(n)

. In order for this deviation not to be profitable, we

need p + (1− p) · p ≤ 1
n
, or equivalently, p ≤ 1−

√
n−1

n
.

Applying Lemma 6.1, we get the following theorem, which
characterizes the equilibrium structure when we restrict our
attention to pooling equilibrium.

Theorem 6.2. Consider the proportional-sharing rule and
pooling equilibria where all users participate in a single ac-

tive round. If v(n−1)
v(n)

≥ 1 −
√

1
n

and v(1)
v(n)

> 1 −
√

n−1
n

,

the strategy profile consisting of all users going in the first
round is a unique pure-strategy pooling Nash equilibrium. If
v(1)
v(n)

≤ 1−
√

n−1
n

and v(n−1)
v(n)

< 1−
√

1
n
, the strategy profile

consisting of all users going in the last round is a unique

pure-strategy pooling Nash equilibrium. If v(1)
v(n)

≤ 1−
√

n−1
n

and v(n−1)
v(n)

≥ 1 −
√

1
n
, then any strategy profile in which

there is only one active round can be a pure-strategy pool-

ing Nash equilibrium. Finally if v(1)
v(n)

> 1 −
√

n−1
n

and

v(n−1)
v(n)

< 1 −
√

1
n
, there is no pure-strategy pooling Nash

equilibrium.

We summarize the results of Theorem 6.2 in Table 4. Al-
though Theorem 6.2 completely characterizes the equilib-
rium structure when we restrict attention to pooling equi-
librium, we are unable to rule out the possibility of separat-
ing equilibria. We know that separating equilibria do exist,
however, they appear to hold for a very narrow range of
valuation functions.

Theorem 6.2 gives us a partial characterization of the equi-
librium structure under special cases of complements valu-
ations. We will return to this below. For now we return
to substitutes valuations and see that we retain the same
property as for the best-answer rule and isolate the efficient
equilibrium as the only pure-strategy Nash equilibrium.



v(1)
v(n)

> 1−
√

n−1
n

v(1)
v(n)

≤ 1−
√

n−1
n

v(n−1)
v(n)

≥ 1−
√

1
n

all go first any pooling

v(n−1)
v(n)

< 1−
√

1
n

no pooling all go last

Table 4: Summary of partial equilibrium charac-
terization results for the proportional-sharing rule.
(Theorem 6.2)

Theorem 6.3. For any valuation function that satisfies
the substitutes condition, the only pure-strategy Nash equilib-
rium under the proportional-share scoring rule is the strategy
profile consisting of all n users going first.

Proof. Consider any strategy profile in which there are
at least two active rounds. Suppose that j users play in
the last active round. The expected payoff of a user who

participates in the last active round is (1− p) · (1−p)
j

, where

p = v(n−j)
v(n)

. Consider the expected payoff of a user in the

last active round who deviates by going in the first active
round. Suppose that i users participate in the first active
round, including the user who deviated. His expected payoff

is at least p′
i
, where p′ = v(i)

v(n)
. For any valuation function

that satisfies the substitutes condition, we know that p′
i
≥

1−p
j

, so p′
i

> (1 − p) · (1−p)
j

. Thus any strategy profile in
which there are at least two active rounds cannot be a Nash
equilibrium. Consider any strategy profile in which there is
only one active round. Lemma 6.1 tells us that if all users
are going in the first round, no user has incentive to deviate
if and only if the valuation function satisfies the condition:
v(n−1)

v(n)
≥ 1−

√
1
n
, which is always satisfied by any valuation

function that satisfies the substitutes condition. Lemma 6.1
also tells us that if all users are going in the same round,
that is not the first round, no user has incentive to deviate
by going earlier if and only if the valuation function satisfies

the condition: v(1)
v(n)

≤ 1 −
√

n−1
n

. However, this condition

is never satisfied by any valuation function that satisfies the
substitutes condition, therefore any strategy profile in which
all users play in the same round, that is not the first round,
cannot be a Nash equilibrium.

Unlike the case of the approval-voting rule, it is not al-
ways possible to achieve the most efficient equilibrium for
complements valuations. On the other hand, we do not need
to worry about more inefficient equilibria being introduced
for the case of substitutes information. To better understand
the condition on positive results for complements valuations,
we can again consider the special case of additive comple-
ments and multiplicative complements. Note that in this
case there is no design parameter, and thus no explicit trade-
off that needs to be made between good performance across
different valuation models. For additive complements, we
see that the value of c needs to be quite small with respect
to δ1 to enable a good equilibrium. We see that given a fixed
additive complements valuation, it may not be possible to
have the most efficient equilibrium outcome, depending on
the value of n. In other words, we cannot enable the most
efficient equilibrium outcome for all valuation and n pairs,
when the valuation satisfies additive complements.

Corollary 6.4. Consider the proportional-share rule and
n ≥ 4. If the valuation function of the asker satisfies additive
complements with c < 2·δ1√

n(n−1)
, the most efficient outcome

of all users going in the first round is a pure-strategy Nash
equilibrium. Moreover, this is the only strategy profile that
has one active round that is a pure-strategy Nash equilibrium
(ruling out other pooling equilibrium).

The following corollary tells us that we can enable the
most efficient equilibrium outcome for the case of multi-
plicative complements, however, we can only do so when
the value of c and n are both relatively small. Again we
see that, depending on the valuation function and n pair, it
may not be possible to have the most efficient equilibrium
outcome. This fact is also illustrated in Table 5.

Corollary 6.5. Consider the proportional-share rule. If
the valuation function of the asker satisfies multiplicative

complements with cn−c
cn−1

<
√

n−1√
n

and cn−1(c−1)
cn−1

≤ 1√
n
, the

most efficient outcome of all users going in the first round
is a pure-strategy Nash equilibrium. Moreover, this is the
only strategy profile that has one active round that is a Nash
equilibrium (ruling out other pooling equilibrium).

We present in Table 5 some example values of n and c
and whether the all going first equilibrium can be enabled
for the multiplicative complements case.

c = 1.01 c = 2 c = 10
n = 5 yes no no
n = 10 yes no no
n = 50 yes no no

Table 5: Examples on whether the most efficient
equilibrium can be enabled for the case of multi-
plicative complements.

7. CONCLUSIONS
We believe that appropriate incentive design can help to

improve the information quality in question and answer fo-
rums. In studying this, we have introduced a simple, game-
theoretic model of a question and answer forum such as
Yahoo! Answers. We analyze the best-answer scoring rule,
which models that of Yahoo! Answers, and show that it is
effective with information items that are substitutes but en-
ables only the least efficient outcome, in which every user
plays in the very last round, in the case of complements. In
considering the effect of different scoring rules on the equi-
librium structure of the game, we have identified two scoring
rules that lead to efficiency-improving changes in the equi-
librium. Specifically, the approval-voting rule can enable
the most efficient equilibrium for any complements valua-
tion and n pair, with an appropriately chosen value of k (the
number of winners). On the other hand, for any substitutes
valuation and n pair, the approval-voting rule can introduce
the least efficient outcome as an equilibrium, depending on
the value of k. The tunable parameter, k, enables a tradeoff
between the benefit of this scoring rule for the case of com-
plements information and the disadvantage of introducing
this scoring rule for the case of substitutes information.

The proportional-share rule, in comparison, never intro-
duces a less efficient equilibrium for the case of substitutes



valuations. Moreover, for certain valuations it is possible
with the proportional-share rule to isolate the efficient equi-
librium while ruling out all other pooling equilibrium for
complements valuations. On the other hand, there are some
complements valuations and n pairs for which the proportional-
share rule does not allow the efficient equilibrium and we are
not, in general, able to rule out additional separating equi-
libria (in which users respond in different rounds) for the
case of complements valuations.

Taken altogether, while the approval-voting rule (for a
small enough k) and the proportional-score rules seem to
have more desirable properties than the best-answer rule, we
do not yet have a clear ordering between our two new rules.
In considering the appropriate rule, one must also remember
that the approval-voting rule requires less information from
the asker to allocate points while the proportional-share rule
requires the asker to allocate a value to each answer (or to
each set of answers, when multiple answers are received in
the same round) in a sequence of answers.

Clearly there are a lot of avenues for future work. In ad-
dition to characterizing the complete equilibrium structure
(including split equilibria) for complements valuations in the
proportional-share rule, one could study variations on our
simple model, such as answerers that have different valued
pieces of information (from the asker side) and answerers
that have overlapping information. Such extensions would
remove symmetry of the answerers and move us towards a
richer model. It would also be interesting to incorporate
the fact that some users are partially motivated by altru-
istic reasons into our model. Another direction for future
work would be to model the cost to the asker of combining
information provided by multiple users in the same round,
leading to the identification of scoring rules that promote
“build” equilibrium where the user responses are optimally
sequenced and build of each other. Finally, another exten-
sion is to consider information cascade effects, wherein one
user’s response triggers another user to recall a new piece of
information that would have not been available if not trig-
gered by the first user.
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