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LOCAL GEOMETRIC LANGLANDS CORRESPONDENCE: THE

SPHERICAL CASE

EDWARD FRENKEL1 AND DENNIS GAITSGORY2

To Masaki Kashiwara on his 60th birthday

Abstract. A module over an affine Kac–Moody algebra bg is called spherical if the action
of the Lie subalgebra g[[t]] on it integrates to an algebraic action of the corresponding group
G[[t]]. Consider the category of spherical bg-modules of critical level. In this paper we prove
that this category is equivalent to the category of quasi-coherent sheaves on the ind-scheme
of opers on the punctured disc which are unramified as local systems. This result is a
categorical version of the well-known description of spherical vectors in representations of

groups over local non-archimedian fields. It may be viewed as a special case of the local
geometric Langlands correspondence proposed in [FG2].

1. Introduction

A general framework for the local geometric Langlands correspondence was proposed in our
earlier work [FG2] (see also [FG3]–[FG5] and [F2]). According to our proposal, to each “local
Langlands parameter” σ, which is a Ǧ–local system on the punctured disc D× = Spec C((t))
(or equivalently, a Ǧ-bundle with a connection on D

×), there should correspond a category Cσ

equipped with an action of the formal loop group G((t)). Even more ambitiously, we expect
that there exists a category Cuniv fibered over the stack LocǦ(D×) of Ǧ-local systems, equipped
with a fiberwise action of the ind-group G((t)), whose fiber category at σ is Cσ. Moreover, we
expect Cuniv to be the universal category equipped with an action of G((t)). In other words,
we expect that LocǦ(D×) is the universal parameter space for the categorical representations
of G((t)). The ultimate form of the local Langlands correspondence for loop groups should be,
roughly, the following statement:

(1.1)
categories fibering
over LocǦ(D×)

⇐⇒
categories equipped
with action of G((t))

We should point out, however, that neither the notion of category fibered over a non-algebraic
stack such as LocǦ(D×), nor the unversal property alluded to above are easy to formulate. So
for now (1.1) should be understood heuristically, as a guiding principle.

As we explained in [FG2], the local geometric Langlands correspondence should be viewed
as a categorification of the local Langlands correspondence for the group G(F ), where F is a
local non-archimedian field. This means that the categories Cσ, equipped with an action of
G((t)), that we wish to attach to the Langlands parameters σ ∈ LocǦ(D×) should be viewed as
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2 EDWARD FRENKEL AND DENNIS GAITSGORY

categorifications of smooth representations of G(F ) in the sense that we expect the Grothendieck
groups of the categories Cσ to “look like” irreducible smooth representations of G(F ).

1.1. The spherical part. In the study of representations π of G(F ), a standard tool is to
consider the subspaces πK of vectors fixed by open compact subgroups K of G(F ).

This procedure has a categorical counterpart. Let K be a group-scheme contained in G[[t]]
and containing the Nth congruence subgroup KN for some N (i.e., the subgroup of G[[t]]
consisting of elements congruent to 1 modulo tNC[[t]]). For example, K can be G[[t]] itself, or
the Iwahori subgroup I.

Given a category C, acted on by G((t)), we can consider the corresponding K-equivariant
category C

K . Via (1.1), any such C
K is also a category fibered over LocǦ(D×).

This procedure applies in particular to Cuniv. Although at present, we do not know how to
construct the entire category Cuniv, we do have a guess what C

K
univ for some choices of K.

In this paper we specialize to the simplest case K = G[[t]]. (Another case, which can be
explicitly analyzed is that of K = I, discussed in [FG2].) Based on the analogy with the
classical local Langlands correspondence for spherical representations, we propose:

(1.2) C
G[[t]]
univ ≃ Rep(Ǧ).

Here Rep(Ǧ) is the category of (algebraic) representations of Ǧ, which can be also thought
as the category of quasi-coherent sheaves on the stack pt/Ǧ. The structure of category fibered
over LocǦ(D×) comes from the maps of stacks

(1.3) pt/Ǧ ≃ Locunr
Ǧ → LocǦ(D×)

corresponding to the inclusion of the stack Locunr
Ǧ of unramified local systems (or, equivalently,

local systems on the unpunctured disc D) into the stack LocǦ(D×) of all local systems.

1.2. Representations of critical level. In [FG2] we have considered a specific example of
a category equipped with an action of G((t)); namely, the category ĝcrit –mod of modules over
the affine Kac–Moody algebra ĝ of critical level. It carries a canonical action of the ind-group
G((t)) via its adjoint action on ĝcrit.

What should be the relationship between ĝcrit –mod and the conjectural universal category
Cuniv?

We note that the category ĝcrit –mod naturally fibers over the ind-scheme OpǦ(D×) of Ǧ-
opers on D

× introduced in [BD]. This is because, according to [FF, F1], the center Zg of the
category ĝcrit –mod is isomorphic to the algebra of functions on OpǦ(D×).

The idea of [FG2] is that the latter fibration is a “base change” of Cuniv, that is, there is a
Cartesian diagram

(1.4)

ĝcrit –mod −−−−→ Cuniv
y

y

OpǦ(D×)
α

−−−−→ LocǦ(D×)

which commutes with the action of G((t)) along the fibers of the two vertical maps. In other
words,

(1.5) ĝcrit –mod ≃ Cuniv ×
LocǦ(D×)

OpǦ(D×).
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Given a ǧ-oper χ, let us consider it as a point of Spec(Zg), i.e., a character of Zg. Let
ĝcrit –modχ be the full subcategory ĝcrit –modχ of ĝcrit –mod whose objects are ĝcrit-modules,
on which the Zg acts according to this character. This is the fiber category of the category
ĝcrit –mod over χ ∈ OpǦ(D×).

Let σ = α(χ) ∈ LocǦ(D×). By (1.5), we have:

(1.6) Cσ ≃ ĝcrit –modχ .

As was mentioned above, at the moment we do not have an independent definition of Cuniv,
and therefore we cannot make the equivalences (1.5) and (1.6) precise. But we use it as our
guiding principle. This leads us to a number of interesting corollaries, some of which have been
discussed in [FG2]–[FG5].

For example, if χ, χ′ are two Ǧ-opers, such that the corresponding local systems α(χ) and
α(χ′) are isomorphic, for every choice of an isomorphism we are supposed to have an equivalence
of categories:

(1.7) ĝcrit –modχ ≃ ĝcrit –modχ′ .

This is a highly non-trivial conjecture about representations of ĝcrit.

1.3. Harish-Chandra categories. Let us return to the discussion of the category of K-
equivariant objects in the context of C = ĝcrit –mod. The corresponding category ĝcrit –modK

identifies with the category of (ĝcrit, K) Harish-Chandra modules. When K is connected, this
is a full abelian subcategory of ĝcrit –mod, consisting of modules, on which the action of the Lie
algebra Lie(K) ⊂ ĝcrit is integrable, i.e., comes from an algebraic action of K.

Now specialize to the case K = G[[t]]. We call objects of the corresponding category

ĝcrit –modG[[t]] of G[[t]]-equivariant ĝcrit-modules spherical. Combining eqns. (1.2), (1.3) and
(1.5), we arrive at the following equivalence:

(1.8) ĝcrit –modG[[t]] ≃ QCoh

(
Locunr

Ǧ ×
LocǦ(D×)

OpǦ(D×)

)
.

Here we should remark that although the stack LocǦ(D×) is a problematic object to work
with, the fiber product

Locunr
Ǧ ×

LocǦ(D×)
OpǦ(D×)

appearing on the right-hand side of (1.8) is a well-defined (non-reduced) ind-subscheme of
OpǦ(D×). This is the moduli ind-scheme of opers that are unramified as local systems. We

denote this ind-scheme by Opunr
Ǧ . It is a disjoint union of formal schemes Opunr,λ

Ǧ
, λ being

a dominant weight, where the reduced scheme corresponding to each Opunr,λ

Ǧ
is the scheme

Opreg,λ

Ǧ
of λ-regular opers introduced in [FG2].

Thus, the heuristic guess given by (1.8) leads to the following precise statement, which is
the main result of this paper:

Main Theorem. The category ĝcrit –modG[[t]] of spherical ĝcrit-modules is equivalent to the
category of quasi-coherent sheaves on the ind-scheme Opunr

Ǧ of Ǧ-opers on D× unramified as
local systems.

Moreover, we show that a functor from the former category to the latter one is an analogue
of the Whittaker functor.
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1.4. Some corollaries. Let χ be a C-point of OpǦ(D×), and let us consider the category

ĝcrit –modG[[t]]
χ . As an abelian category, this is a full subcategory of ĝcrit –modχ, consisting of

G[[t]]-integrable modules.

One can show (see [FG3], Corollary 1.11) that this category is 0 unless χ ∈ Opunr
Ǧ . In the

latter case, from the Main Theorem we obtain that the category ĝcrit –modG[[t]]
χ is equivalent to

the category of vector spaces. This result is the first test for our prediction that ĝcrit –modχ,
as a category equipped with a G((t))-action, depends only on α(χ), as expected in (1.7). In
addition, this equivalence is in agreement with a classical fact that the space of spherical vectors
in an irreducible representation of G(F ) is either zero or one-dimensional.

As another corollary of the Main Theorem, we obtain the following description of the algebra

of self-Exts of the Weyl modules Vλ in the derived category D(ĝcrit –modG[[t]]) of (ĝcrit, G[[t]])
Harish-Chandra modules:

Ext•D(bgcrit –modG[[t]])(V
λ
g,crit, V

λ
g,crit) ≃ Λ•

z
reg,λ
g

(Nλ
reg/ unr),

where Nλ
reg/ unr is the bundle of Opreg,λ

Ǧ
in Opunr,λ

Ǧ
. (In the above formula we identify the algebra

of function on Opreg,λ

Ǧ
with the corresponding quotient of Zg, denoted z

reg,λ
g .) For λ = 0 this

isomorphism was previously established in [FT] by other methods.

1.5. Structure of the proof. The proof of the Main Theorem is quite simple. The main idea

is that the category ĝcrit –modG[[t]] has a universal object, denoted Dch
G,crit, which is the vacuum

module of the chiral algebra of differential operators on G. The module Dch
G,crit is in fact a

ĝcrit-bimodule, and for any other object M ∈ ĝcrit –modG[[t]] we have

M ≃ Dch
G,crit

∞

2

⊗
g((t))

M

(here
∞

2

⊗
g((t))

stands for the semi-infinite Tor functor).

Therefore, in order to define functors and check isomorphisms on ĝcrit –modG[[t]], it is enough
to do so just for the module Dch

G,crit. Thus, in Sect. 2 we prove a theorem that describes the

structure of Dch
G,crit as a bi-module over ĝcrit –modG[[t]], and in Sect. 3 we derive our Main

Theorem from this structure theorem.

2. Chiral differential operators on G at the critical level

In this section we describe the structure of the chiral algebra of differential operators (CADO)
on a simple connected simply-connected algebraic group G over C at the critical level, viewed
as a bimodule over ĝcrit.

2.1. Notation. We will follow the notation of [FG2]. In particular, ĝcrit is the critical central
extension of the formal loop algebra g((t)), ĝcrit –mod is the category of discrete modules over
ĝcrit, Zg is the center of ĝcrit –mod (or, equivalently, of the completion of the enveloping algebra
of ĝcrit). This is a topological commutative algebra. According to a theorem of [FF, F1], the
corresponding ind-scheme Spec(Zg) is canonically isomorphic to the moduli space OpǦ(D×) of

Ǧ-opers on the formal punctured disc, where Ǧ is the Langlands dual group to G (of adjoint
type). For the definition of OpǦ(D×), see [BD].
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For λ ∈ Λ+, we let z
reg,λ
g denote the quotient of Zg corresponding to the sub-scheme Opreg,λ

Ǧ
⊂

OpǦ(D×) introduced in [FG2], Section 2.9. Let

Vλ
g,crit = Ind

bgcrit

g[[t]]⊕C1
(V λ) := U(ĝcrit) ⊗

U(g[[t]]⊕C1)
V λ

be the Weyl module with dominant integral highest weight λ ∈ Λ+. According to [FG6],
Theorem 1, the action of Zg on Vλ

g,crit factors as follows:

Zg ։ zreg,λ
g ≃ End(Vλ

g,crit).

Furthermore, Vλ
g,crit is flat (and in fact, free) as a z

reg,λ
g -module.

Let ĝcrit –modG[[t]] be the full abelian subcategory of ĝcrit –mod. In this paper we will work

with the ”naive” derived category D(ĝcrit –modG[[t]]). However, by generalizing the argument

of [FG2], Sect. 20.16, one can identify D(ĝcrit –modG[[t]]) with the G[[t]]-equivariant derived
category corresponding to ĝcrit –mod, as introduced in loc. cit., Sect. 20.8.

In particular, for M ∈ ĝcrit –modG[[t]] we have:

Exti
bgcrit –modG[[t]](V

λ
g,crit, M) ≃ ExtiG[[t]](V

λ, M).

2.2. Unramified opers. Let Opunr
Ǧ ⊂ OpǦ(D×) be the ind-subscheme of opers that are un-

ramified as local systems. For any C-algebra A, the set of A-points of Opunr
Ǧ is by definition the

set of opers on Spec A((t)), which are isomorphic, as local systems, to the trivial local system.
We have:

(2.1) Opunr
Ǧ ≃

⋃

λ∈Λ+

Opunr,λ

Ǧ
,

where Opunr,λ

Ǧ
are pairwise disjoint formal sub-schemes of OpǦ(D×) with

(Opunr,λ

Ǧ
)red ≃ Opreg,λ

Ǧ
.

We will also use the notation Spec(Zunr
g ), Spec(Zunr,λ

g ) for these ind-schemes. Let ιλreg/ unr

denote the closed embedding Spec(zreg,λ
g ) →֒ Spec(Zunr,λ

g ); let Iλ denote the (closed) ideal of

Spec(zreg,λ
g ) in Spec(Zunr,λ

g ); let Nλ
reg/ unr be the normal scheme to Spec(zreg,λ

g ) in Spec(Zunr,λ
g ).

It follows from [FG2], Section 4.6, that its sheaf of sections is a locally free z
reg,λ
g -module (in

other words, Nλ
reg/ unr is s vector bundle over Spec(zreg,λ

g )). Moreover, Zg carries a Poisson

structure, which identifies Nλ
reg/ unr with Ω1(zreg,λ

g ).

The following fact was established in [FG3], Corollary 1.11 (note that Spec(Zunr
g ) was denoted

by Spec(Zm.f.
g ) in [FG3]).

Theorem 2.3. The support in Spec(Zg) of every M ∈ ĝcrit –modG[[t]] is contained in
Spec(Zunr

g ).

Thus, every G[[t]]-integrable ĝ-module M splits as a direct sum
⊕
λ

Mλ, where Mλ is supported

at Spec(Zunr,λ
g ) and has an increasing filtration whose sub-quotients are quotient modules of

Vλ
g,crit.
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2.4. Chiral differential operators. Let X be a smooth algebraic curve. We will work with
Lie-* algebras and chiral algebras on X and with modules over them supported at a fixed point
x ∈ X (see [CHA] for the definitions). In this paper all chiral algebras will come from vertex
algebras, and we will tacitly identify a chiral algebra with its vacuum module, i.e., its fiber
at any point of a curve equipped with a coordinate. In fact, everything may be rephrased in
terms of the corresponding vertex (Lie) algebras and modules over them, but we will use the
formalism of chiral algebras for the sake of consistency with [FG1]–[FG3].

Recall from [AG, GMS] that for any level κ (i.e., an invariant bilinear form on g) we have
the chiral algebra of differential operators (CADO), denoted by Dch

G,κ. It comes equipped with
two mutually commuting embeddings

(2.2) Ag,κ
lg
−→ Dch(G)κ

rg

←− Ag,κ′ ,

where

κ′ = −κ + 2κcrit.

Recall that the fiber of Ag,κ at x is the vacuum Weyl module Vg,κ of level κ, and the fiber
of Dch

G,crit at x with

Ind
bgκ

g[[t]]⊕C1
(OG[[t]]) := U(ĝκ) ⊗

U(g[[t]]⊕C1)
OG[[t]].

Here t is a formal coordinate at x and OG[[t]] is the algebra of functions on the group G[[t]],
on which g[[t]] acts trivially and 1 acts as the identity. This is a module over ĝκ ⊕ ĝκ′ . The
action of ĝκ on Dch(G)κ,x corresponding to the left arrow in (2.2) is the natural action on this
induced module, and the action corresponding to the right arrow in (2.2) was constructed in
[AG, GMS]. We will refer to the two actions as the “left” and the “right” actions, respectively.

2.5. CADO at the critical level. We now specialize to the critical level κ = κcrit. Then
κ′ = κcrit, and so both left and right actions of ĝ correspond to the critical level. We will
describe the structure of Dch(G)crit,x as a ĝcrit-bimodule. From now on, when there is no
confusion, we will skip the subscript x when describing the fiber of the chiral algebra at x.

Let zg denote the center of Ag,crit (note that zg identifies with zreg,0
g ). The following has been

established in [FG1]:

Lemma 2.6. The two embeddings

l, r : zg ⇉ Dch
G,crit

differ by the automorphism of zg, induced by Cartan involution τ of g.

As a bimodule over ĝcrit, Dch
G,crit is G[[t]]-integrable with respect to both actions. By The-

orem 2.3, its support over Spec(Zg) is contained in Spec(Zunr
g ) (note that by Lemma 2.6, the

two actions of Zg on Dch
G,crit differ by τ). Hence, we have a direct sum decomposition of Dch

G,crit

as a ĝcrit-bimodule:

Dch
G,crit ≃

⊕

λ∈Λ+

D
ch,λ
G,crit

where D
ch,λ
G,crit is the summand supported at Opunr,λ

Ǧ
= Spec(Zunr,λ

g ) (see formula (2.1)).

Recall that OG[[t]] denotes the algebra of functions on G[[t]]. It has a natural structure of

commutative chiral algebra, and as such it is a chiral subalgebra of Dch
G,crit. The map

OG[[t]] → Dch
G,crit

respects the bimodule structure with respect to g[[t]] ⊂ ĝcrit.
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For λ ∈ Λ+ we have a natural map

V λ ⊗ V τ(λ) → OG →֒ OG[[t]],

compatible with the action of g[[t]]⊕ g[[t]]. Inducing, we obtain a map of bimodules over ĝcrit:

Vλ
g,crit ⊗ V

τ(λ)
g,crit → D

ch,λ
G,crit.

From Lemma 2.6 we obtain:

Lemma 2.7. The above map factors through a map

(2.3) Vλ
g,crit ⊗

z
reg,λ
g

V
τ(λ)
g,crit → D

ch,λ
G,crit.

2.8. A description of the CADO. Recall that Iλ denotes the ideal of Spec(zreg,λ
g ) in

Spec(Zunr,λ
g ). Consider the canonical increasing filtration on D

ch,λ
G,crit numbered by i = 0, 1, ...

with F i(Dch,λ
G,crit) being the ĝcrit sub-bimodule, annihilated by the i + 1-st power of the ideal

Iλ. By construction, the image of the map (2.3) belongs to F 0(Dch,λ
G,crit).

We are now ready to formulate the main result of this section:

Theorem 2.9.

(1) The map (2.3) defines an isomorphism

Vλ
g,crit ⊗

z
reg,λ
g

V
τ(λ)
g,crit ≃ F 0(Dch,λ

G,crit).

(2) The canonical maps

(Iλ)n/(Iλ)n+1 ⊗
z
reg,λ
g

grn(Dch,λ
G,crit)→ gr0(Dch,λ

G,crit)

give rise to isomorphisms

(2.4) grn(Dch,λ
G,crit) ≃ gr0(Dch,λ

G,crit) ⊗
z
reg,λ
g

Symn
z
reg,λ
g

(Nλ
reg/ unr)

of ĝcrit-bimodules, where N
λ
reg/ unr is the normal bundle to Opreg,λ

Ǧ
in Opunr,λ

Ǧ
.

The above theorem should be contrasted with the following:

Lemma 2.10. For a generic κ (i.e., such that κ/κc is not a rational number) we have an
isomorphism

(2.5) Dch
G,κ ≃

⊕

λ∈Λ+

Vλ
g,κ ⊗ V

τ(λ)
g,κ′ ,

of ĝκ ⊕ ĝκ′ modules.

Proof. For any level κ we have a canonical non-zero homomorphism of ĝκ ⊕ ĝκ′ modules

(2.6) Vλ
g,κ ⊗ V

τ(λ)
g,κ′ → Dch

G,κ.

If κ satisfies the conditions of the lemma, then both Vλ
g,κ and V

τ(λ)
g,κ′ are irreducible modules.

Therefore the above maps are injective. The assertion of the lemma then follows from the
obvious fact that the characters of the two sides of (2.5) are equal to each other. �
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For special values of κ, when κ/κc ∈ Q, the modules Vλ
g,κ and V

τ(λ)
g,κ′ may become reducible,

and so the structure of Dch
G,κ may become more complicated. Theorem 2.9 describes what

happens at the critical level κ = κcrit. In this case the image of the homomorphism (2.6) is

equal to Vλ
g,crit ⊗

zλ

V
τ(λ)
g,crit. In other words, we observe the collapse of the degrees of freedom

corresponding to zλ. But these degrees of freedom are restored by the second factor in (2.4).

2.11. Proof of part (2). We shall first prove part (2) of Theorem 2.9. Recall the chiral

algebroid A
ren,τ
g,crit of [FG1], Section 4, whose chiral enveloping algebra is D

ch,0
G,crit, by Lemma

9.7 of loc. cit. (note that the assertion of Theorem 2.9 for λ = 0 follows in fact from this
isomorphism and Lemma 7.4 of [FG1]).

A version of Kashiwara’s theorem proved in Section 7 of loc. cit. implies the following:

Proposition 2.12. Let M be a chiral A
ren,τ
g,crit-module, whose support over Spec(Zg) is contained

in Spec(Zunr,λ
g ). Let F i(M), i = 1, 2, ... be the canonical increasing filtration on M by the powers

of Iλ. Then

(a) Ri(ιλ)!(M) = 0 for i > 0 and R0(ιλ)!(M) ≃ F 0(M).

(b) The canonical maps

(Iλ)n/(Iλ)n+1 ⊗
z
reg,λ
g

grn(M)→ gr0(M)

give rise to isomorphisms

grn(M) ≃ gr0(M) ⊗
z
reg,λ
g

Symn
z
reg,λ
g

(Nλ
reg/ unr).

We apply this proposition to D
ch,λ
G,crit, which is a chiral module over D

ch,0
G,crit, and hence over

A
ren,τ
g,crit, and the assertion of point (2) of Theorem 2.9 follows.

2.13. Proof of part (1). To prove part (1) of Theorem 2.9, let us first show that the map
(2.3) is injective. Indeed, let K denote its kernel; this is a bimodule over ĝcrit, supported at

Spec(Zunr,λ
g ) and G[[t]]-integrable with respect to both actions. Hence, if K 6= 0, there exists a

non-zero map of Vλ
g,crit → K of ĝcrit-modules, with respect to the left action.

However, we claim that the map

(2.7) Hombgcrit
(Vλ

g,crit, V
λ
g,crit ⊗

z
reg,λ
g

V
τ(λ)
g,crit)→ Hombgcrit

(Vλ
g,crit, D

ch,λ
G,crit)

is injective, and in fact an isomorphism. This would lead to a contradiction, implying that
K = 0.

To show that (2.7) is an isomorphism, consider the composition

(2.8) V
τ(λ)
g,crit → Hombgcrit

(Vλ
g,crit, V

λ
g,crit ⊗

z
reg,λ
g

V
τ(λ)
g,crit)→ Hombgcrit

(Vλ
g,crit, D

ch,λ
G,crit).

We claim that the first arrow in (2.8) is an isomorphism. Indeed, since V
τ(λ)
g,crit is flat over

z
reg,λ
g , we have

Hombgcrit
(Vλ

g,crit, V
λ
g,crit ⊗

z
reg,λ
g

V
τ(λ)
g,crit) ≃ Endbgcrit

(Vλ
g,crit) ⊗

z
reg,λ
g

V
τ(λ)
g,crit,

and by the main result of [FG6], the natural map

zreg,λ
g → Endbgcrit

(Vλ
g,crit)
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is an isomorphism.

Now we claim that the composition in (2.8) is an isomorphism. The latter is equivalent to
point (a) of the following assertion, established in [AG]:

Lemma 2.14.

(a)

Hombgcrit
(Vλ

g,crit, D
ch
G,crit) ≃ HomG[[t]](V

λ, Dch
G,crit) ≃ V

τ(λ)
g,crit.

(b) For i > 0,

Exti
G[[t]](V

λ, Dch
G,crit) = 0.

2.15. Computation of characters. We are now ready to finish the proof of Theorem 2.9.
Using the coordinate on the formal disc, we will view Dch

G,crit as acted on by G×G×Gm, where
the latter acts by loop rotations. It is easy to see that the isotypic components for the above
action are finite-dimensional.

Using point (2) of Theorem 2.9 and the above injectivity result, we obtain that the theorem
would follow once we show that for each µ1, µ2, d,

dim
(
HomG×G×Gm

(V µ1 ⊗ V µ2 ⊗ Cd, Dch
G,crit)

)
=

∑

λ

dim

(
HomG×G×Gm

(
V µ1 ⊗ V µ2 ⊗ Cd, (Vλ

g,crit ⊗
z
reg,λ
g

V
τ(λ)
g,crit) ⊗

z
reg,λ
g

Sym
z
reg,λ
g

(Nλ
reg/ unr)

))
.

Since Nλ
reg/ unr ≃ Ω1(zreg,λ

g ), and since each zreg,λ
g is isomorphic to a polynomial algebra, the

multiplicities of the irreducibles in the G×G×Gm-modules

(Vλ
g,crit ⊗

z
reg,λ
g

V
τ(λ)
g,crit) ⊗

z
reg,λ
g

Sym
z
reg,λ
g

(Nλ
reg/ unr) and Vλ

g,crit ⊗ V
τ(λ)
g,crit

are the same.

Hence, it suffices to show that for each µ1, µ2, d,

dim
(
HomG×G×Gm

(V µ1 ⊗ V µ2 ⊗ Cd, Dch
G,crit)

)
=

∑

λ

dim
(
HomG×G×Gm

(
V µ1 ⊗ V µ2 ⊗ Cd, Vλ

g,crit ⊗ V
τ(λ)
g,crit

))
.

However, the one-parameter families of G×G×Gm-modules given by Vλ
g,κℏ+κcrit

⊗V
τ(λ)
g,−κℏ+κcrit

and Dch
G,ℏ, where κℏ = ℏκ0 for some non-zero invariant inner product κ0, are ℏ-flat. Hence, it

is sufficient to check the equality

dim
(
HomG×G×Gm

(V µ1 ⊗ V µ2 ⊗ Cd, Dch
G,ℏ)

)
=

=
∑

λ

dim
(
HomG×G×Gm

(
V µ1 ⊗ V µ2 ⊗ Cd, Vλ

g,κℏ+κcrit
⊗ V

τ(λ)
g,−κℏ+κcrit

))

for a generic ℏ. The latter equality indeed holds, since for ℏ irrational we have an isomorphism
of ĝcrit-bimodules:

Dch
G,ℏ ≃

⊕

λ

Vλ
g,κℏ+κcrit

⊗ V
τ(λ)
g,−κℏ+κcrit

by Lemma 2.5.
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3. The category of spherical modules

In this section we use the results on the CADO obtained in the previous section to prove the
Main Theorem stated in the Introduction.

3.1. Semi-infinite cohomology functor. Define the character

(3.1) χ0 : n+((t))→ C

by the formula

χ0(eα,n) =

{
1, if α = αı, n = −1,

0, otherwise .

We have the functors of semi-infinite cohomology (the + quantum Drinfeld–Sokolov reduction)
from the category of ĝcrit-modules to the category of graded vector spaces,

(3.2) M 7→ H
∞

2 +i(n+((t)), n+[[t]], M ⊗ χ0),

introduced in [FF, FKW] (see also [FB], Ch. 15, and [FG2], Sect. 18; we follow the notation of
the latter).

More generally, for a complex M• of ĝcrit-modules (or of n((t))-modules), the corresponding
semi-infinite Chevalley complex

C
∞

2 (n((t)), M• ⊗ χ0)

gives rise to a well-defined triangulated functor

D+(ĝcrit –mod)→ D(Vect).

This is an analogue of the Whittaker functor in representation theory of reductive groups over
local fields.

Since Zg maps to the center of the category ĝcrit –mod, the above functor naturally lifts to a
functor

D+(ĝcrit –mod)→ D(Zg –mod).

By Theorem 2.3, the composed functor

D+(ĝcrit –modG[[t]])→ D+(ĝcrit –mod)→ D(Zg –mod),

factors through a functor

Ψ : D+(ĝcrit –modG[[t]])→ D
(
QCoh(Spec(Zunr

g ))
)
.

The main result of this paper is the following:

Theorem 3.2. The functor Ψ is exact (with respect to the natural t-structures) and defines an
equivalence of abelian categories

(3.3) ĝcrit –modG[[t]] ∼
−→ QCoh(Spec(Zunr

g )).

3.3. Strategy of the proof. We will derive Theorem 3.2 from the following two statements.

Proposition 3.4. There exists an isomorphism of algebras

(3.4) R• Hombgcrit –modG[[t]](Vλ
g,crit, V

λ
g,crit) ≃ R• HomQCoh(Spec(Zunr

g
))(z

reg,λ
g , zreg,λ

g ).

Let ĝcrit –modreg,λ be the full subcategory of ĝcrit –mod, consisting of modules, whose support

over Zg is contained in Spec(zreg,λ
g ). Let ĝcrit –mod

G[[t]]
reg,λ denote the intersection

ĝcrit –modreg,λ ∩ĝcrit –modG[[t]] .
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Proposition 3.5. The functors Ψ and L 7→ Vλ
g,crit ⊗

z
reg,λ
g

L define mutually quasi-inverse equiv-

alences
ĝcrit –mod

G[[t]]
reg,λ ⇆ zreg,λ

g –mod .

For λ = 0 this was proved in [FG1] (see also Conjecture 10.3.12 of [F2]).
We remark that, conversely, both of these propositions follow from Theorem 3.2 and the

isomorphism

(3.5) Ψ(Vλ
g,crit) ≃ zreg,λ

g

established in [FG6].

Note that Spec(zreg,λ
g )→ Spec(Zunr

g ) is a regular embedding. Therefore we have

R• HomQCoh(Spec(Zunr
g

))(z
reg,λ
g , zreg,λ

g ) ≃ Λ•

z
reg,λ
g

(Nλ
reg/ unr).

Combining this with Proposition 3.4, we obtain:

Corollary 3.6.

(3.6) R• Hombgcrit –modG[[t]](Vλ
g,crit, V

λ
g,crit) ≃ Λ•

z
reg,λ
g

(Nλ
reg/ unr).

For λ = 0 the isomorphism (3.6) was established in [FT] by other methods. The above proof
is independent of [FT] and therefore provides an alternative argument.

Let χ be a C-point of Opunr
Ǧ , that is, a λ-regular oper in Opreg,λ

Ǧ
for some λ ∈ Λ+. We

denote by ĝcrit –modχ the category of ĝcrit-modules on which the center Zg acts according

to the character associated to χ. Let ĝcrit –modG[[t]]
χ be the corresponding G[[t]]-equivariant

category. This category contains the quotient Vλ
g,crit(χ) of the Weyl module Vλ

g,crit by the

central character χ. Theorem 3.2 then has the following corollary (see Conjecture 10.3.11 of
[F2]):

Corollary 3.7. For any χ ∈ Opreg,λ

Ǧ
, λ ∈ Λ+, the category ĝcrit –modG[[t]]

χ is equivalent to the

category of vector spaces: its unique, up to isomorphism, irreducible object is Vλ
g,crit(χ) and any

other object is isomorphic to a direct sum of copies of Vλ
g,crit(χ). This equivalence is given by

the functor Ψ.

This provides a non-trivial test of our conjecture, described in the Introduction (see for-

mula (1.7)), that the categories ĝcrit –modK
χ and ĝcrit –modK

χ′ are equivalent whenever the local
systems underlying χ and χ′ are isomorphic to each other.

3.8. Computation of Ψ. The first step is to compute the functor Ψ on the objects D
ch,λ
G,crit.

Since the functor Ψ commutes with direct limits, from Theorem 2.9 and (3.5) we obtain that

Bλ
G := Ψ(Dch,λ

G,crit) is acyclic off cohomological degree 0 (here we view D
ch,λ
G,crit as an object of

ĝcrit –modG[[t]] via the left action l).

Proposition 3.9. The functor Ψ defines an isomorphism

Hombgcrit –mod(V
λ
g,crit, D

ch,λ
G,crit)→ HomZ –mod(zreg,λ

g , Bλ
G)

(here we consider the left action l of ĝcrit on D
ch,λ
G,crit). Furthermore, the higher Ri Hom’s,

Ri Hombgcrit –modG[[t]](Vλ
g,crit, D

ch,λ
G,crit) and Ri HomD(QCoh(Spec(Zunr

g
)))(z

reg,λ
g , Bλ

G),

vanish.
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Proof. From Lemma 2.14, we know that

Ri Hombgcrit –modG[[t]](Vλ
g,crit, D

ch,λ
G,crit) = 0

for i > 0 and

Hombgcrit –mod(Vλ
g,crit, D

ch,λ
G,crit) ≃ V

τ(λ)
g,crit.

By Theorem 2.9(2) and formula (3.5), Bλ
G has a filtration with the associated graded quotients

given by

grn(Bλ
G) ≃ V

τ(λ)
g,crit ⊗

z
reg,λ
g

Symn
z
reg,λ
g

(Nλ
reg/ unr).

Moreover, it follows from the definition of the filtration on Dch
G,crit that this filtration is the

canonical one, given by the powers of annihilation by Iλ. This implies that Ri(ιλ)!(Bλ̌
G) = 0 for

i > 0 and that the natural map

V
τ(λ)
g,crit → R0(ιλ)!(Bλ̌

G)

is an isomorphism.
�

3.10. Proof of Proposition 3.4. Consider the relative Chevalley complex

C•(g[[t]]; g, Dch,λ
G,crit ⊗ V λ)

taken with respect to the right action of ĝcrit on D
ch,λ
G,crit, as a complex of objects of ĝcrit –modG[[t]].

By Lemma 2.14, it is quasi-isomorphic to Vλ
g,crit itself. We need to show that the functor Ψ

induces isomorphisms

Ri Hombgcrit –modG[[t]]

(
Vλ

g,crit,C
•(g[[t]]; g, Dch,λ

G,crit ⊗ V λ)
)
→

→ Ri HomD(QCoh(Spec(Zunr
g

)))

(
zreg,λ
g , Ψ

(
C•(g[[t]]; g, Dch,λ

G,crit ⊗ V λ)
))

.

Taking into account Proposition 3.9, it remains to show that the natural map

(3.7) Ψ
(
C•(g[[t]]; g, Dch,λ

G,crit ⊗ V λ)
)
→ C•(g[[t]]; g, Bλ

G ⊗ V λ)

is an isomorphism, i.e., that the corresponding spectral sequences converges.

The latter is established as follows: we endow the bi-complex in the LHS of (3.7) with an
additional Z-grading, as in [FG6], Section 4 (see also [FG2], Section 18.11). We obtain that
in each graded degree, the corresponding bi-complex is concentrated in a shift of a positive
quadrant, hence the convergence.

3.11. Proof of Proposition 3.5. We are now ready to derive Proposition 3.5. The fact that
functor

zreg,λ
g –mod→ ĝcrit –mod

G[[t]]
reg,λ ,

given by

L 7→ Vλ
g,crit ⊗

z
reg,λ
g

L,

is an equivalence, follows from Proposition 3.4 by repeating verbatim the argument in [FG1],
Section 8.

It remains to show that Ψ(Vλ
g,crit ⊗

z
reg,λ
g

L) is acyclic away from the cohomological degree 0,

and that the 0-th cohomology is isomorphic to L.
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Since the functors appearing above commute with direct limits, we can assume that L is

finitely presented. Since z
reg,λ
g is isomorphic to a polynomial algebra, we can further assume

that L admits a finite resolution by free z
reg,λ
g -modules. This reduces the assertion to the

formula (3.5).

3.12. Exactness. We are now ready to show that the functor Ψ is exact, i.e., that for M ∈

ĝcrit –modG[[t]], the object Ψ(M) is acyclic away from the cohomological degree 0.

Indeed, since Ψ commutes with direct limits, we can assume that M is supported at the k-th

infinitesimal neighborhood of Spec(zreg,λ
g ) inside Spec(Zunr,λ

g ). By (finite) devissage, that is, by

representing M as a k-iterated successive extension of modules supported at Spec(zreg,λ
g ), we

may further assume that M belongs to ĝcrit –mod
G[[t]]
reg,λ . In the latter case, the assertion follows

from Proposition 3.5.

3.13. Completion of the proof of Theorem 3.2. Let us now show that the functor Ψ
induces isomorphisms

(3.8) Ri Hombgcrit –modG[[t]]

(
Vλ

g,crit, M
)
→ Ri HomD(QCoh(Spec(Zunr

g
)))

(
zreg,λ
g , Ψ(M)

)

for any i and M ∈ ĝcrit –modG[[t]].

Both sides commute with direct limits in M, so we can again assume that M is supported

at the k-th infinitesimal neighborhood of Spec(zreg,λ
g ) inside Spec(Zunr,λ

g ), and further that it is

on object of ĝcrit –mod
G[[t]]
reg,λ, i.e.,

M ≃ Vλ
g,crit ⊗

z
reg,λ
g

L

for some z
reg,λ
g -module L. Using commutation with direct limits again, we can assume that L

is finitely presented, and hence admits a finite resolution by free z
reg,λ
g -modules. In the latter

case, the isomorphism of (3.8) follows from Proposition 3.4.
By the same devissage procedure we conclude that the functor Ψ induces isomorphisms

Ri Hombgcrit –modG[[t]](M1, M2)→ Ri HomD(QCoh(Spec(Zunr
g

)))(Ψ(M1), Ψ(M2))

for any i and M1, M2 ∈ ĝcrit –modG[[t]].

Finally, it remains to see that Ψ is essentially surjective. Again, by commutation with direct
limits, it is sufficient to see that any L ∈ QCoh(Spec(Zunr

g )) supported at the k-th infinitesimal

neighborhood of Spec(zreg,λ
g ) lies in the image of Ψ.

Since Ψ induces an isomorphism on the level of Ext1, by induction, we can assume that

k = 0, i.e., L ∈ z
reg,λ
g –mod. In the latter case, the assertion follows from Proposition 3.5.
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