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Abstract

Studies of the relationship between DNA variation and gene expression variation, often referred to as ‘‘expression
quantitative trait loci (eQTL) mapping’’, have been conducted in many species and resulted in many significant findings.
Because of the large number of genes and genetic markers in such analyses, it is extremely challenging to discover how a
small number of eQTLs interact with each other to affect mRNA expression levels for a set of co-regulated genes. We
present a Bayesian method to facilitate the task, in which co-expressed genes mapped to a common set of markers are
treated as a module characterized by latent indicator variables. A Markov chain Monte Carlo algorithm is designed to search
simultaneously for the module genes and their linked markers. We show by simulations that this method is more powerful
for detecting true eQTLs and their target genes than traditional QTL mapping methods. We applied the procedure to a data
set consisting of gene expression and genotypes for 112 segregants of S. cerevisiae. Our method identified modules
containing genes mapped to previously reported eQTL hot spots, and dissected these large eQTL hot spots into several
modules corresponding to possibly different biological functions or primary and secondary responses to regulatory
perturbations. In addition, we identified nine modules associated with pairs of eQTLs, of which two have been previously
reported. We demonstrated that one of the novel modules containing many daughter-cell expressed genes is regulated by
AMN1 and BPH1. In conclusion, the Bayesian partition method which simultaneously considers all traits and all markers is
more powerful for detecting both pleiotropic and epistatic effects based on both simulated and empirical data.
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Introduction

Studies in the genetics of gene expression combine gene

expression and genotype data in segregating populations to detect

loci linked to variations in RNA levels. These loci are referred to as

expression quantitative trait loci (eQTL). To date, eQTL studies

have been pursued in a number of species ranging from yeast to

mouse and human [1–3]. A common theme of these studies is to

treat thousands of gene expression values as quantitative traits and

conduct QTL mapping for all of them.

Most eQTL studies are based on linear regression models [4] in

which each trait variable is regressed against each marker variable.

The p-value of the regression slope is reported as a measure of

significance for the association. In the context of multiple traits

and markers, procedures such as false discovery rate (FDR)

controls [5] can be used to quantify family-wise error rates.

Despite the success of this type of regression approach, a number

of challenging problems remain. First, these methods can not

easily assess the joint effect of multiple markers beyond additive

effects. Storey et al. [5] developed a step-wise regression method to

find eQTL pairs, then Zou and Zeng improved it [6]. This

procedure, however, tends to miss eQTL pairs with small marginal

effects but a strong interaction effect. There are methods for

detecting eptistatic effects without main marginal effects [7–8].

However, their applications are limited to a few clinical traits

instead of thousands of expression traits due to computational

constraints. Second, there are often strong correlations among

expression levels for certain groups of genes, partially reflecting co-

regulation of genes in biological pathways that may respond to

common genetic loci and environmental perturbations [2,9–11].

Previous findings of eQTL ‘‘hot spots’’, i.e., loci affecting a larger

number of expression traits than expected by chance, and their

biological implications further enhance this notion and highlight

the biological importance of finding such gene ‘‘modules’’.

Mapping genetic loci for multiple traits simultaneously is more

powerful than mapping single traits at a time [12]. Although for a

known small set of correlated traits, one can conduct QTL

mapping for the principal components [13], this method becomes

ineffective when the set size is moderately large or one has to

enumerate all possible subsets. An alternative approach is to

identify subsets of genes by a clustering method, and then fit

mixture models to clusters of genes [14]. The eQTL mapping then

depends on whether the distance metric used by the clustering

method is appropriate, whether the method can find the right

number of clusters.

We address these issues by modeling the joint distribution of all

genes and all markers simultaneously. Under a Bayesian

framework, we introduce three sets of latent indicator variables
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for genes, markers, and individuals, and then systematically infer

the association between groups of genes and sets of markers. In this

framework, correlated expression traits and their associated set of

markers are treated as a module so as to account for epistatic

interactions and pleiotropic effects. Parameters of interest are the

partitions of genes and markers into modules, and the partition of

individuals into different types that correspond to the relationships

between expression levels and marker genotypes in a given

module. A Markov chain Monte Carlo (MCMC) algorithm is

designed to traverse the space of all possible partitions. Simulation

studies show that the proposed method achieves significantly

improved power in detecting eQTLs compared to traditional

regression-based methods. A particular strength of our method is

its ability to detect epistasis with high power when the marginal

effects are weak, addressing a key weakness of all other eQTL

mapping methods.

We applied our method to a previously described data set

consisting of gene expression and genotypes data for 112

segregants from a cross between laboratory (BY) and wild (RM)

strains of S. cerevisiae [15]. In addition to identifying several

modules linked to single eQTLs that are consistent with previous

reports [1,11,16], our method dissected large eQTL hot spots into

different modules that correspond to different causal regulators or

to primary and secondary responses to causal regulators. In

addition, we detected nine modules under the control of two

genetic loci. One of these modules corresponds to a previously

verified result regarding the interaction between GPA1 and MAT

[5,16]. another is regulated by both ZAP1 expression and

genotype, consistent with previously described results [17]. The

other seven modules represent novel findings. Three of these

appear to be artifacts of cross-hybridization in microarray

experiments; while another exhibits strong epistatic interactions

between two loci consisting of many daughter-cell expressed genes

that we predict are under the regulation of AMN1 and BPH1.

Results

Overview of Bayesian partition method
We define a module as a set of gene expression traits (referred

to as ‘‘genes’’ henceforth) and a set of genetic markers (e.g., SNPs)

such that the variation of the gene expression traits is associated

with the variation of the markers, as shown in Figure 1. This

association between multiple genes and markers is characterized

by a latent indicator variable, individual type, conditional on

which the trait and marker variables are independent of each

other. The individual type latent variable can be viewed as

representing a certain combination of markers that induces

changes in expressions of a certain set of genes across different

individual types. In the simplest case with a single marker, the

individual type could correspond to a dominant genetic model, as

illustrated in Figure 2A. In this instance, our model is

mathematically equivalent to the regression model (Figure 2B).

In the case of two markers associated with gene expression traits,

there could be two to nine individual types (various genotype

combinations). Figure 2C illustrates a case with three individual

types: 1) high expression values associated with red-colored

genotype combinations, 2) medium expression values with blue-

colored combinations, and 3) low expression values with green-

colored combinations. The goal of the Bayesian partition method

is to simultaneously partition genes and SNPs into modules. The

details of the Bayesian partition model are described in the

Methods section.

Simulation studies
To test the effectiveness of our method, we simulated 120

individuals with 500 binary markers and 1000 expression traits in

the context of inbred cross of haploid strains. There are eight

modules (summarized in Table 1), each consisting of 40 genes,

simulated from different epistasis models based on the linear

regression framework, which is different from the posited Bayesian

model in our analysis. The genotypic means and frequencies for

the two loci used in the simulation are listed in Table 2. We

repeated the simulation 100 times and analyzed the simulated data

using two methods: (1) our Bayesian partition method using

parallel tempering [18] with 15 temperature ladders, referred to as

BP; (2) the two-stage regression method of Storey et al [5], referred

to as SR. Details of the simulation and implementation of these

two methods are described in the Supplemental Material. As shown

from the receiver operating characteristic (ROC) curves in

Figure 1. An illustration of the Bayesian partition model. Each
row represents an individual and the columns represent gene
expression traits (left) and markers (right). Data is partitioned into
three modules plus a null module. Module 1 has two markers
associated with a group of genes, represented by a link in green color.
In this module individuals are partitioned into three individual types.
Genes in module 2 are associated with one marker, represented by a
link in blue color. Individuals in module 2 are partitioned into two
individual types. Similarly module 3 has two markers linked with a
group of genes, represented by a link in red color. Individuals in module
3 are partitioned into three individual types. Genes and markers in the
null module are drawn in black. Note that different modules have
different individual partitions.
doi:10.1371/journal.pcbi.1000642.g001

Author Summary

Genome-wide association studies (GWAS) have yielded
several causal genes for many human diseases. However,
the mechanisms underlying how DNA variations affect
disease phenotypes have not been well understood in
many cases. Gene expression is intermediate between
DNA and clinical endpoints. Linking DNA variation and
gene expression variation, often referred to as ‘‘expression
quantitative trait loci (eQTL) mapping’’, has yielded clues
of mechanisms and pathways by which DNA variations
impact phenotypes. Because of the large number of genes
and genetic markers in such analyses, it is extremely
challenging to discover how a small number of eQTLs
interact with each other to affect mRNA expression levels
for a set of co-regulated genes. We present a Bayesian
method to identify genetic interactions and more eQTLs
by treating co-expressed genes as a module. Our method
provides a tool to study genetic interactions in human
disease models.

A Bayesian Partition Method
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Figure 3, BP achieved a significantly higher power to detect

eQTLs compared to SR. For example, allowing for 50 false

positives, BP detected more than 500 (out of 640) true gene-

marker pairs, whereas SR only detected ,100 true pairs and

became plateaued even with many more false positives allowed.

There are likely two reasons for this. First, we modeled the co-

regulated genes as a module so that information from all genes in a

given module could be aggregated to improve the signal. Multiple

trait mapping has proven to be more powerful than single trait

mapping [12] in the regression framework. Second, we modeled

epistatic interactions explicitly so that markers with weak marginal

but strong interactive effects could be detected.

The contrast of the performances of these two methods is most

prominent when the marginal effect is weak. For example, in

modules B, D and H, the rate of true positive detections of SR

never exceeded 5% even at the generous FDR threshold of 90%.

In modules E, F, and G where the major marker explains more

than 70% of the genetic variation, SR detected the major marker

in nearly 50% of the simulations at the 50% FDR threshold, but

not the minor marker. In contrast, BP performed superiorly and

robustly in all eight modules. The module by module comparisons

are detailed in the Supplemental Material Text S1 and shown in

Supplementary Figure S1.

Figure 4 provides a graphical view of the BP result for another

simulated dataset with 120 individuals, 1000 genes, and 500

markers. Four distinct modules, with 60, 60, 40, and 40 genes, and

controlled by 3, 2, 1, and 2 markers, respectively (shown in

Supplementary Table S1), are simulated similarly as in the

previous example (more details in the Supplemental Material Text

S1). The shape and height of a point represent the most probable

module classification and the corresponding maximum posterior

probability of a gene. We see that all of the ‘‘background’’ genes

were correctly classified according to their highest posterior

probabilities. Most genes in the four non-null modules were also

correctly classified, other than a very few ones that were classified

into the null module, most likely due to their weak signals. BP also

correctly identified the truly associated markers of the four

modules with high posterior probabilities (shown in Supplemen-

tary Table S2).

Yeast eQTL modules – a re-examination of the landscape
of genetic complexity

We applied our Bayesian method to a data set consisting of gene

expression and genotypes for 112 segregants from a cross between

laboratory (BY) and wild (RM) strains of S. cerevisiae [15] and

detected 29 modules of genes and their associated markers

(Methods). Among these 29 modules, 20 are linked to a single

eQTL while the remaining nine are linked to two eQTLs. Three of

the nine linking to two eQTLs give rise to significant epistatic

interactions between the two loci. Twenty-six of the 29 modules

significantly overlap (corrected p-value,0.05) with at least one of

Figure 2. Comparison of different models for associating
genotypes and phenotypes. (A) the regression model; (B) the
Bayesian partition (BP) model with a single biallelic marker ; (C) the BP
model with two interactive biallelic markers. In the regression model,
gene expression values (Y) are regressed onto marker genotypes (X). If
the marker has a dominant effect on the gene expression, the
regression implicitly partitions the expression values into low and high
groups corresponding to genotypes aa for, say, low expression and Aa
or AA for high expression. In the BP model, a latent variable, denoted
here as ‘‘Individual Type’’, is introduced and conditional on this variable
the gene expression traits and marker genotypes are independent. In
the case of a single marker, two individual types exist, colored here as
green and red. In (c), gene expression is linked with a set of two biallelic
markers. In this instance, individuals are partitioned into three types,
colored here as green, blue and red, corresponding to low, medium,
and high expression levels, respectively.
doi:10.1371/journal.pcbi.1000642.g002

Table 1. Simulation design and genetic variance decomposition of different models.

Module Modela % of Var.b Locus 1c Locus 2d Epistasise

A R~b Ix1~1 or x2~1ze 0.153 0.338 0.339 0.333

B R~b Ix1~x2ze 0.158 0.052 0.052 0.895

C R~2b Ix1~1 or x2~1zb (x1 � x2)ze 0.160 0.466 0.441 0.088

D R~b Ix1~0,x2~1z2b Ix1~1,x2~0ze 0.161 0.133 0.128 0.739

E R~b x1zb (x1 � x2)ze 0.132 0.748 0.138 0.128

F R~2b x1zb x2ze 0.169 0.736 0.231 0.043

G R~2b x1zb Ix1~x2ze 0.168 0.743 0.050 0.211

H R~2b I01z1:5b I10z0:5b I11ze 0.168 0.131 0.048 0.821

aThe regression model that was used to generate the ‘‘core gene’’ in each module.
bThe average percentage of variation of genes in the module explained by the true model.
cThe average percentage of genetic variance explained by the first locus.
dThe average percentage of genetic variance explained by the second locus.
eThe average percentage of genetic variance explained by epistasis. In all modules, the heritability of the ‘‘core gene’’ is 0.6 and the average correlation of the module
genes with the ‘‘core gene’’ is 0.5.

doi:10.1371/journal.pcbi.1000642.t001

A Bayesian Partition Method
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the 13 gene groups previously reported as mapping to eQTL hot

spots [11]. We also tested each of these modules for enrichment

using GO terms, a yeast knockout compendium [19], and

transcription factor binding sites [20]. At p-value,0.05 after

multiple testing correction, 21 modules have at least one GO term

enrichment; 22 modules overlap with at least one knockout

signature, and 13 modules are enriched for at least one

transcription factor binding site. The result is summarized in

Table 3 and a breakdown result is in Supplementary Table S3. In

contrast, the LOD score distributions of transcripts at the associated

markers under the ‘‘single-transcript-single-marker’’ model are

shown in Supplementary Figure S2. Our Bayesian method

identifies significantly more weak gene-marker associations than

the simple model. These GO enrichments support the biological

relevance of different modules detected by our method. Each

module is described in detail in the Supplemental Material Text S1.

Modules linked to complex eQTL hot spots. Several

modules are linked to loci that correspond to previously identified

eQTL hot spots [11]. For example, modules 26–28 are linked to a

locus on chromosome XV that is coincident with eQTL hot spot 12,

with all modules significantly overlapping with genes linked to this

locus (p-value = 1:08|10{10, 3:11|10{11, and 9:01|10{11,

respectively). The average intra-module correlation for module 26

(0.731) is higher than that for modules 27 (0.409) and 28 (0.459).

PHM7 was previously identified and validated as a causal regulator

for this hot spot [10]. The PHM7 knockout signature significantly

overlaps with modules 26 and 28 (p-value = 8:93|10{5 and

0:0016, respectively). When compared to a previously constructed

yeast knockout compendium [19], module 26 overlaps with 33

knockout signatures, while module 28 overlaps with only four of the

knockout signatures (three of the four also overlap with module 26).

Application of a causality test procedure [21] revealed that 52 genes

(out of 83) in module 26 were supported as causal for at least one

gene in module 28, while only six genes (out of 74) in module 28

were supported as causal for at least one gene in module 26 (shown

in Supplementary Figure S3). These results indicate that genes in

module 26 serve as the primary response to the causal perturbation

of PHM7 and genes in module 28 serve as the secondary response.

Other causal regulators for module 27 that are independent of

PHM7 may exist.

Modules linked to two loci. Our results provide a number of

positive controls that illustrate how our method can dissect complex

eQTL hot spots into different modules and detect modules with

complex genetic regulation. As summarized above, nine of the 29

modules we identified are linked to two eQTLs. Modules 3, 12 and

16 have significant epistatic interactions (p-value = 6:63|10-5,

2:05|10-13 and 0:00097, for the interaction terms, respectively)

between the two loci. Modules 12 and 20 were previously reported

in the literature [16–17]. Among the other seven novel modules,

three of them (modules 16, 17 and 19) are likely due to cross-

hybridization (see details in Supplemental Material Text S1). Module 3,

which consists of many daughter cell expressed genes and is linked

to two eQTLs with a significant epistatic interaction, is predicted to

be under the regulation of AMN1 and BPH1, each located near the

two eQTL loci. Modules 7 and 18 are each mapped to two

previously detected eQTL hot spots suggesting that genes in these

two modules are under the control of multiple mega-regulators.

The interaction term for module 12 is statistically most significant

(p-value = 2:05|10-13). A previous study [16] experimentally

validated that an interaction between MAT at the chromosome

III locus and GPA1 at the chromosome VIII locus affects a group of

19 genes. Among these 19 genes, one of them is not in our study set;

two other genes were later experimentally verified to be ‘‘false

positives’’ [16] and are correctly assigned to the null module in our

analysis; and four other genes are negatively correlated with genes in

this module and so are not placed in module 12. The remaining 12

genes are all recovered in this module. In addition, our method

detects another gene, HMLALPHA2, which is also related to mating

type. The heat map of the gene expression in module 12 is plotted in

Figure 5B. This result demonstrates that our method not only is able

to detect an experimentally validated interaction, but also has a

higher specificity and sensitivity to detect the interaction than the

regression based method.

Module 20 consists of 21 genes and is linked to two loci on

chromosome XIII and X, respectively, but no epistatic interaction

is detected between these loci. The heat map of the gene

expression in this module is plotted in Figure 5C. Two

transcription factor binding sites are enriched in the module, with

the ZAP1 binding site being the most significantly enriched (p-

value = 9:51|10{8). In fact, 14 of the 21 genes in module 20 are

known or predicted to be ZAP1 target genes [22] (p-

value = 2:99|10{22). ZAP1, which is physically located at the

chromosome X locus and has an eQTL at the chromosome XIII

locus, is included in this module. A previously identified ZAP1

module [17] overlaps significantly with module 20. Among the ten

genes in the ZAP1 module, eight of them are also predicted in

module 20. It was previously conjectured that a regulator at the

Figure 3. Comparison of the receiver operator characteristic
(ROC) curves for the gene-marker pair detection obtained by
our Bayesian partition method (BP) and the two-stage
regression method (SR). Different points along the ROC curves
represent the false positive and true positive counts averaged over 100
simulations at different posterior probability thresholds (for BP) or at
different FDR thresholds (for SR). There are 40 genes in each of the eight
modules which are linked to two markers and thus the total number of
the true positive gene-marker pairs is 640.
doi:10.1371/journal.pcbi.1000642.g003

Table 2. Genotypic means and frequencies for a two-locus
model used in the simulation studies.

Locus 2 Mean

B b

Locus 1 A mAB mAb mA

(pAB) (pAb)

a maB mab ma

(paB) (pab)

Mean mB mb

doi:10.1371/journal.pcbi.1000642.t002

A Bayesian Partition Method
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chromosome XIII locus regulates ZAP1 expression, and that as a

result ZAP1 expression and ZAP1 genotype together affect ZAP1

target genes [17]. Our model is consistent with this hypothesized

mechanism and also identifies more ZAP1 target genes in an

objective way (i.e., regulators do not need to be pre-specified).

Module 3 is comprised of 16 genes and has the second most

significant interaction term (p-value = 6:63|10{5). This module

is linked to chromosomes II: 548401 and III: 177850. The heat

map of the gene expression in this module is plotted in Figure 5A.

Binding sites for ACE2, a transcription factor that activates

expression of early G1-specific genes and that localizes to daughter

cell nuclei after cytokinesis, are enriched in this module (p-

value = 2:46|10{5). AMN1, a protein required for daughter cell

separation and multiple mitotic checkpoints, is the only gene with

a cis-eQTL in the module, and is predicted as at least one of the

putative regulators for the eQTL hot spot at the chromosome II

locus [10–11]. The AMN1 allele swap signature [10] overlaps

significantly with this module (p-value = 1:77|10{11). In addi-

tion, of the ten daughter-specific expression (DSE) genes identified

in culture-averaged microarray experiments [23], nine are in our

study set and seven of these are included in this module (p-

value = 4:97|10{12). At the chromosome III locus is BPH1, a

gene involved in cell wall organization. The RM version of BPH1

has a deletion in the middle of the coding sequence compared to

the BY sequence (Supplementary Figure S4), which results in an

in-frame stop. Therefore, the RM version of BPH1 may not be

functional. When BPH1 is knocked out, sporulation decreases

[24]. However, we note that BPH1 is in the null module,

suggesting that the BPH1 activity instead of its expression level

may be linked to this locus.

To show that module 3 is under the regulation of two loci, we

examined the expression of two genes in the module, DSE1 and

DSE2. DSE1 and DES2 are up-regulated 15.1- and 20.4-fold,

respectively, in segregants carrying the BY allele at the AMN1

locus relative to those carrying the RM allele. If we restrict

attention to those segregants carrying the BY allele at the BPH1

locus, DES1 and DES2 are up-regulated 13.8- and 16.9-fold,

respectively, in segregants carrying the BY allele at the AMN1

locus relative to those carrying the RM allele. When the RM

version of AMN1 was introduced onto the BY background, DES1

and DES2 were up-regulated only 9.7- and 13.5-fold in the BY

wildtype compared to the BY engineered strain [25]. These results

combined suggest that AMN1 alone can not explain all of the

variation in DSE1 and DSE2 expression, but the combination of

the AMN1 and BPH1 alleles explains significantly more of the

variation (shown in Figure 6).

Discussion

We have developed a Bayesian partition model for simulta-

neously mapping multiple eQTLs for multiple sets of co-regulated

genes. Whereas conventional linkage analysis has been widely and

successfully applied to the study of one or a small number of traits

at a time, our module-based method is suitable for analyzing

thousands of phenotypes simultaneously. Both simulation studies

and empirical data examples demonstrated that our method is

effective for detecting marker interactions, even when no marginal

effects could be detected. These improvements in power are a

direct result of accounting for the correlation among gene

expression traits and assessing the joint effect of multiple eQTLs,

including interactions, on these correlated gene sets.

One of the main advances in our approach is the introduction of

the ‘‘individual type’’ as a latent variable to describe associations

between gene expression traits and markers. The individual type

latent variable can be interpreted as a classification of individuals

according to a combination of phenotypes and genotypes. The

underlying mathematical model for this dependence structure is

represented as a chain in which the joint distribution for some set

of markers influences a set of expression traits via a latent

‘‘individual type’’ variable. After integrating out this latent

variable, we observe a direct relationship between the marker

and gene expression sets, similar to what would have been

obtained from a the traditional regression model in the single-

marker, single-gene case (Figures 2A and 2B). However, the

advantage over the standard regression in introducing the latent

Figure 4. The posterior probability plot. The height of each point is the posterior probability for the most likely classification of the gene; and
the shape/color of the point represents the module type of the classification. The first 200 genes are those in one of the four non-null modules,
separated by vertical lines.
doi:10.1371/journal.pcbi.1000642.g004

A Bayesian Partition Method
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Table 3. Summary of the 29 modules that were detected in the yeast data set.

Module Sizea Locib GO categoryc KOd TFBSe eQTL hot spotf

1 38 Chr II: 548401 0 0

2 33 Chr II: 548401 1 0 2****

3 16 Chr II: 548401 cell wall (sensu Fungi)** 6 3 2***

Chr III: 177850 3*

4 137 Chr II: 548401 Nucleolus**** 9 0g 2****

5 75 Chr II: 548401 0 1 2***

6 38 Chr II: 602012 Protein disulfide isomerase activity** 2 1 8***

7 83 Chr III: 79091 ‘de novo’ IMP biosynthesis** 17 2 4 ****

Chr XV: 170945 10**

12***

8 69 Chr III: 79091 histidine biosynthesis* 53 2 4****

9 61 Chr III: 79091 7 0 4***

10 18 Chr III: 81832 branched chain family amino acid biosynthesis* 18 1 4****

11 52 Chr III: 81832 nuclear nucleosome*** 3 2

Chr VIII: 84437

12 13 Chr III: 201166 Regulation of transcription from RNA polymerase II
promoter*

1 0 4****

Chr VIII: 111679 5*

13 9 Chr III: 201166 10 3 4****

5**

14 13 Chr V: 116530 ‘de novo’ pyrimidine base biosynthesis** 4 0 6****

15 44 Chr VIII: 111690 Mating projection tip*** 20 3 7****

16 10 Chr X: 22315 aldehyde metabolism*** 0 0

Chr VI: 28041

17 11 Chr XII: 659357 12 0 8**

Chr XIII: 430164

18 45 Chr XII: 662627 ergosterol biosynthesis**** 6 1 8****

Chr III: 79091

19 34 Chr XII: 105609 telomerase-independent telomere maintenance*** 11 0 9****

Chr IV: 1525327

20 21 Chr XIII: 49903 4 2 10***

Chr X: 327852

21 81 Chr XIV: 449639 endoplasmic reticulum*** 2 0 1*

22 52 Chr XIV: 486861 structural constituent of ribosome**** 2 0 11****

23 68 Chr XIV: 486861 Arp2/3 protein complex** 0 0 11**

24 39 Chr XIV: 449639 nuclear pore organization and biogenesis* 0 0 11****

25 77 Chr XIV: 486861 mitochondrial inner membrane** 0 0 11****

26 83 Chr XV: 170945 response to stress*** 33 1 12***

27 45 Chr XV: 170945 0 0 12****

28 74 Chr XV: 170945 Fructose transporter activity* 4 0 12****

29 42 Chr XV: 563943 respiratory chain complex III (sensu Eukaryota)**** 10 5 13****

aNumber of genes in each module.
bThe chromosome positions of markers associated with each module.
cThe most significant GO terms. A total of 510 GO terms of sizes 5 to 300 were tested. Multiple testing corrected (Fisher Exact Test p-value|510) p-values less than 0.05

are displayed at four different levels indicated by *. *: 1023,0.05; **: 1025,1023; ***: 10210,1025; ****0,10210.
dNumber of knockout signatures that overlap with each module. 287 knockout signatures [19] were tested and the p-value cut-off is 1:74|10{4 (0.05/287).
eNumber of the transcription factors whose binding sites are enriched in each module. 119 transcription factor binding sites [20] were tested and the p-value cut-off is
4:2|10{4 (0.05/119).

fOverlapped eQTL hot spots. Multiple testing corrected (Fisher Exact Test p-value|13) p-values at cut-off 0.05 are displayed in four different levels indicated by *.
gModule 4 is enriched with de novo motifs PAC and RRPE.
*1023,1022.
**1025,1023.
***10210,1025.
****0,10210.
doi:10.1371/journal.pcbi.1000642.t003
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individual type variable is its enabling us to model epistatic

interactions and pleiotropy simultaneously.

Linkage disequilibrium (LD) among adjacent markers is an

important feature of the genetic marker data. For individuals

produced by the laboratory crosses (e.g., F1 and F2 designs), the

marker dependency can be modeled satisfactorily by a Markov

chain. The BP model can easily entertain this modification of the

background marker distribution, but the computation time required

to run this modified model dramatically increases since we need a

forward-summation-backward-sampling algorithm to update the

marker indicators (see Supplemental Material Text S1 for details).

Another ad hoc strategy to account for the marker correlations

without directly modeling them was to first scan all markers and to

enumerate those marker pairs with correlations exceeding a given

threshold. Then, in the MCMC algorithm, we imposed a mutually

exclusive condition for such pairs so that highly correlated marker

pairs would not appear simultaneously in any module.

We compared the Markov model approach with the ad hoc

strategy on a small simulated data sets and a subset of the real data

(data not shown). The ad hoc strategy always provided nearly

identical results to that of the Markov model with only a fraction of

the computation cost. Note that there are also markers that are

highly correlated but are not physically linked [26]. In such cases

the Markov model actually worked less satisfactorily than the ad

hoc approach.

Our method shares some similarities to other methods in the

literature, but also shows clear distinctions. For example, Lee et al.

[17] proposed to simultaneously partition the gene expression and

genotype markers. However, their method requires strong priors

on the potential regulators, while our method does not. Kendzioski

et al. [14] proposed a mixture of markers model to find the eQTLs

for multiple gene expression. However, their method separates the

gene clustering and eQTL mapping steps, where they first use k-

means clustering to identify subsets of genes, and then apply eQTL

mapping to the clusters of genes. In addition, their method does

not address the epistatic effects. In contrast, gene expression

partition and eQTL mapping are modeled jointly in our Bayesian

method, and we are able to effectively detect epistasis by using a

comprehensive statistical model on both the gene expression and

the markers. Our analysis of the yeast data identified 20 modules

linked to one eQTL and 9 modules linked to two eQTLs, among

which three giving rise to strong epistatic interactions between

markers. Some of the modules linked to two eQTLs are consistent

with previously reported results [5,17], and we were able to

identify more true positive hits along with fewer false positives than

previously reported.

Figure 5. Heat map for expression of genes in modules. (A) for module 3; (B) for module 12; (C) for module 20. Each row represents a gene
with the gene name listed on the right and each column represents an individual. Individuals are divided into four groups according to the
genotypes of the two eQTLs. Over- and under-expression are indicated by red and green, respectively.
doi:10.1371/journal.pcbi.1000642.g005
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It is of note that our approach can also be applied to

mammalian data and to other quantitative traits data with discrete

genetic and environmental covariates. In typical mouse studies,

about 2000 SNPs are genotyped and 25,000 transcripts are

measured, among which about 8000 are significantly differentially

expressed [2]. The computation time will be at a similar order of

the yeast data analysis. In typical human studies, 650,000 SNPs

are genotyped and 40,000 transcripts are measured. The

computation time will dramatically increase. We may, however,

restrict our attention to hundreds of SNPs identified as possibly

associated with gene expression traits in a human cohort, or/and

to fewer expression traits identified as being relevant to diseases of

interest [27–28]. In this type of scenarios, the input datasets would

be roughly equivalent to the yeast data set described herein. Many

other such applications can be imagined,

We are also improving parallelization implementation. Hope-

fully, we will be able to appropriately generalize and improve the

Bayesian model as well as the MCMC algorithm so that our

method can be applied to complete mammalian and other large

data sets.

Methods

Bayesian partition model
A module is defined in the Results section as a set of gene

expression traits (referred to as ‘‘genes’’ henceforth) and a set of

genetic markers (e.g., SNPs) such that the mRNA expression

variation of the genes is associated with the allelic variation of the

markers. This association between multiple genes and markers is

characterized by a latent indicator variable, individual type,

conditional on which the trait and marker variables are

independent of each other. The individual type latent variable

can be viewed as representing a certain combination of markers

that induces changes in expressions of a certain set of genes across

different individual types.

To formally describe our model, consider a sample with N

individuals. Each individual i is measured with G gene expression

values denoted as fyig : g~1,:::,Gg and M marker genotypes

denoted as fxim : m~1,:::,Mg. We assume that the observed data

can be partitioned into D nontrivial modules plus a null

component. The number of non-null modules, D, is pre-specified

by the user and should reflect the user’s prior belief in the higher

level structure of the data. Every gene g or marker m belongs to

one of the D nontrivial modules or the null module, determined by

the gene indicator Ig [f0,1,:::,Dg and the marker indicator

Jm [f0,1,:::,Dg. For each module d [f1,:::,Dg, we further

partition the N individuals into nT
d types denoted by the individual

indicators Kdi [f1,:::,nT
d g for i [f1,:::,Ng. Each module may have

a different number of individual types as well as different ways of

partitioning the N individuals. For example, with a single biallelic

marker (alleles ‘A’ and ‘a’) in the module, the module may have

two individual types corresponding to genotypes aa vs. Aa or AA

(dominant model), or 3 individual types corresponding to

genotypes aa, Aa and AA (additive model). We seek module

partitions in which expression patterns are similar for all genes,

and gene expression variations across different individuals can be

explained by the individual types. A cartoon illustration of the

partition model is shown in Figure 1.

We model the gene expression traits in module d by an ANOVA

model so that each trait value is the sum of the gene effect (ag ), the

eQTL effect for individual type k (dk), the individual effect (ri), and

an error term:

yig~dkzrizagzeig,

where gene g is in module d, k is the individual type of i, and ri and

ag are random effects, following independent Gaussian distributions

with mean zero.

To account for epistasis, we model the joint distribution of all

the associated markers of module d, ~xxi~fxim : m is in module d,

i:e:, Jm~dg, by a multinomial distribution, whose frequency vector

is determined by the individual type k, i.e.,

~xxi ~

iid

Multinomial(1;~hhk):

For example, if there are two markers fm1,m2g in the module and

each has three genotypes, then there are nine combinations of the

marker patterns. Thus fxim1
,xim2
g follows a 9-dimensional

multinomial distribution.

For the null component, we assume that there is no association

between the genes and the markers. The gene expression traits

follow a normal distribution and the marker genotypes follow an

independent multinomial distribution.

To avoid overfitting, we put an exponential prior on the

indicator variables to penalize partitions with high complexity:

P(~IIg,~JJm,~KKdi)! exp ({cG

X

d

n
g
d{cM

X

d

Lnm
d {cT

X

d

nT
d ),

where n
g
d ,nm

d ,nT
d are the number of genes, markers and individual

types in module d, and L is the number of genotypes at each

marker. We use conjugate priors on the continuous parameters,

such as means and variances of the Gaussian distributions and

frequency vectors of the multinomials, so that most of these

Figure 6. Comparison of the expression of DSE1 and DSE2 in
different experiments. DSE1 and DSE2 are two daughter cell-specific
genes in module 3. DSE1 and DSE2 are up-regulated 15.1- and 20.4-fold,
respectively, in segregants bearing the BY allele at AMN1 comparing to
segregants bearing the RM allele at AMN1 (blue bars). DSE1 and DSE2
are up-regulated 13.8- and 16.9-fold, respectively, in segregants bearing
the BY allele at AMN1 and the BY allele at BPH1 comparing to
segregants bearing the RM allele at AMN1 and the BY allele at BHP1
(green bars). DSE1 and DSE2 are up-regulated 9.7- and 15.3-fold,
respectively, in the original BY strain relative to the engineered BY strain
with RM allele at AMN1 [25] (brown bars). It is clear that segregants
categorized by both AMN1 and BPH1 alleles match the experimental
result better.
doi:10.1371/journal.pcbi.1000642.g006
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parameters can be integrated out analytically to reduce the

complexity of the posterior distribution.

The joint posterior distribution of all unknown variables is of the

form:

P(~IIg,~JJm,~KKdi,bjX ,Y )!P(~IIg,~JJm,~KKdi) |P(X ,Y ,bj~IIg,~JJm,~KKdi),

where b represents the set of left-over continuous parameters

unable to be integrated out analytically. In order to make

inference on the eQTL modules from this posterior distribution,

we construct a Markov chain Monte Carlo method to traverse the

joint space of all unknown parameters. Each Markov chain is

randomly initialized, and uses the Gibbs sampler and the

Metropolis-Hasting algorithm [18] to update the variables. We

implement a split-merge algorithm, which is a special case of the

reversible jump MCMC [29], to update the individual partitions

globally. Parallel tempering [30] is used to help mixing the Markov

chain. Further details of the modeling and sampling strategies can

be found in the Supplemental Material Text S1.

Posterior probabilities are evaluated for each gene and

candidate marker set to belong to each module based on the

Monte Carlo samples. A threshold is then applied to the posterior

probabilities to determine whether a particular gene and marker

set should be included in a module.

Application to the yeast data set
We assembled genotypic and expression data from 112

segregants obtained from a previously described yeast cross

between the BY and RM strains of S. cerevisiae [15]. Of the

5,740 genes represented on the microarrays in this study, we

selected 3,662 informative genes as input into the partition

algorithm following the same criteria as previously described [10].

We then transformed the gene expression values by first

performing quantile normalization [31] to make the distribution

of the log-expression ratios for each individual to be the same, and

then normalizing each gene so that the mean expression level for

each gene was 0 and the standard deviation was 1.

Given that genes in the data set have been previously mapped to

13 distinct eQTL hot spots [11] and that there can be multiple

causal factors for a single eQTL hot spot, we set the number of

starting modules for our MCMC algorithm to 35,45 (3613 plus a

null model) to account for these previously identified groups, and

to also allow for the detection of new groups as well. For the

parallel tempering implementation, we used 30 temperature

ladders with almost equal spacing so that the average acceptance

probability for exchanges between adjacent chains was roughly

0.15–0.3. We ran MCMC sampling for 1,000,000 iterations in

each chain, which took one week of 30 CPUs (accounting for 30

parallel temperature ladders of the MCMC algorithm) on a Linux

cluster with 2GHz CPUs. The log posterior probability and its

auto-correlation curve depicted in Figures S5C and S5D highlight

that the Markov chain became stationary after a burn-in period.

See Supplemental Material Text S1 for more details.

Because markers in the yeast data set are very densely

distributed, adjacent markers are almost always highly correlated.

After MCMC sampling, markers adjacent to the ‘‘truly’’ linked

marker often diluted the posterior probability for the true marker-

module linkage. Since a proper Markov chain model for unlinked

markers is computationally too expensive to implement (see

Supplemental Material Text S1), we employed a heuristic method to

counter this problem. We first specified a window centered at each

marker so that markers inside the window are in high LD with the

marker at the center. The posterior probabilities of all markers in

the window were summed up and regarded as the modified

posterior probability of the central marker. The markers with peak

probabilities exceeding the given threshold were selected and all

other markers in the corresponding windows were masked out.

Although we did not explicitly model pleiotropic effects for

markers (i.e., single markers were not allowed to be associated with

expression traits in multiple modules), we reported several modules

mapped to the same markers in the yeast data set (See Table 3 and

discussions in the Supplemental Material Text S1). The reason for this

apparent contradiction is due to the aforementioned moving

window approach and the dense distribution of the markers. In

other words, if marker m is truly linked to two modules, in

computation its adjacent markers can serve as its surrogates so that

a subset of these markers are mapped to module 1, and the

remainders mapped to module 2. Then the use of the moving

window method can restore the total probability back to marker m.

To test the robustness of our result with respect to the initial

parameters, we ran our program using three different numbers of

modules, D~35, D~40 and D~45, each having three

independent runs. Samples from the run with the highest average

posterior probability for each value of D were used in the

subsequent analyses. We chose 0.8 as the threshold for the

posterior probabilities to determine the module membership for

each gene and marker. We observed that more than 70% of the

genes were consistently grouped together and mapped to the same

markers (or null module) in all the runs with different D values.

These genes and their associated markers formed the list of 29

modules.

Supporting Information

Text S1 Supplementary methods and results

Found at: doi:10.1371/journal.pcbi.1000642.s001 (0.49 MB PDF)

Figure S1 Module-by-module comparison of the Bayesian

partition (BP) method and the step-wise regression (SR) method.

(A) Number of the true positive gene-marker pairs detected in each

module by the BP method (top) and the SR method (bottom). Nine

different lines correspond to different posterior probability

thresholds (for BP) or different FDR thresholds (for SR), both of

which decrease from 0.9 to 0.1 linearly. There are 40 genes in

each of the eight modules which are linked to two markers and

thus the number of the true positive gene-marker pairs is 640. (B)

Barplots of the number of true eQTLs detected in each module by

the BP method (blue) and SR method (green). The shaded bar

represents the number of genes detected as mapped to at least one

of the true eQTLs while the solid bar represents the number of

genes detected as mapped to both eQTLs. The thresholds are 0.5

for both posterior probability (BP) and FDR (SR). From Figure 1

we know that the total number of false positive gene-marker pairs

is 11.41 and 38.04 for BP and SR respectively. When the

thresholds are relaxed to 0.1, more eQTLs were detected in each

category, as indicated by the vertical lines above the bars.

However, the total number of the false positive gene-marker pairs

is still lower using BP (178.37) compared to that using SR (267.07).

Found at: doi:10.1371/journal.pcbi.1000642.s002 (0.36 MB TIF)

Figure S2 The distributions of LOD scores under the ‘‘single-

gene-single-marker’’ model for genes in the 29 modules identified

by the Bayesian method. (A) the LOD score distribution for genes

in modules linked to a single eQTL. The LOD scores for 56.3% of

transcripts were less than 4.35, the threshold corresponding to a

genome-wide FDR of 0.01, and 11.5% of transcripts were less

than 1.45, corresponding to a point-wise FDR of 0.01. (B) the

LOD score distribution for genes in modules linked to two eQTLs.
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The LOD scores for 69% and 32.5% of transcripts were less than

4.35 and 1.45, corresponding to a genome-wide and a point-wise

FDR of 0.01, respectively.

Found at: doi:10.1371/journal.pcbi.1000642.s003 (0.11 MB TIF)

Figure S3 Plot of the causality test results for all pairs of genes

between (A) module 4 and module 5 and (b) module 26 and 29.

For a particular pair of genes (G1, G2) from module 4 and module

5, respectively, if the causality test claims that gene G1 is causal to

gene G2 (corrected p-value,0.05), i.e. G1RG2, then a green dot

is plotted at the corresponding position. Similarly, if the causality

test results in G2RG1, then a red dot is plotted at the

corresponding position. Genes in module 4 and module 5 are

sorted for better visualization. Similar procedure applies to (B).

Found at: doi:10.1371/journal.pcbi.1000642.s004 (0.34 MB TIF)

Figure S4 A local view of the coding sequence alignment of RM

vs. BY for gene BPH1. The RM sequence has a deletion in the

position labeled in red which results an in-frame stop.

Found at: doi:10.1371/journal.pcbi.1000642.s005 (0.03 MB TIF)

Figure S5 Trace plots and autocorrelation plots of the log

posterior probabilities for one of the simulated data set ((A) and (B))

and the yeast data set analysis ((C) and (D)). In (A), the trace plot

was generated from two independent chains, each having 100,000

iterations, and the autocorrelation plot in (B) was obtained from

the first chain at every 50 iterations. In (C), trace plot was

generated from 1,000,000 Markov chain iterations, using D = 40

(D is the number of the modules). The last 700,000 iterations were

used to generate the auto-correlation plot in (D).

Found at: doi:10.1371/journal.pcbi.1000642.s006 (0.31 MB TIF)

Table S1 Design for the simulation II.

Found at: doi:10.1371/journal.pcbi.1000642.s007 (0.20 MB PDF)

Table S2 True markers and inferred markers in each module.

Found at: doi:10.1371/journal.pcbi.1000642.s008 (0.14 MB PDF)

Table S3 Enrichment of (A) gene knockout signatures and (B)

TFBS for each module.

Found at: doi:10.1371/journal.pcbi.1000642.s009 (0.15 MB PDF)
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