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Abstract
Background: Biologists often conduct multiple but different cDNA microarray studies that all
target the same biological system or pathway. Within each study, replicate slides within repeated
identical experiments are often produced. Pooling information across studies can help more
accurately identify true target genes. Here, we introduce a method to integrate multiple
independent studies efficiently.

Results: We introduce a Bayesian hierarchical model to pool cDNA microarray data across
multiple independent studies to identify highly expressed genes. Each study has multiple sources of
variation, i.e. replicate slides within repeated identical experiments. Our model produces the gene-
specific posterior probability of differential expression, which provides a direct method for ranking
genes, and provides Bayesian estimates of false discovery rates (FDR). In simulations combining two
and five independent studies, with fixed FDR levels, we observed large increases in the number of
discovered genes in pooled versus individual analyses. When the number of output genes is fixed
(e.g., top 100), the pooled model found appreciably more truly differentially expressed genes than
the individual studies. We were also able to identify more differentially expressed genes from
pooling two independent studies in Bacillus subtilis than from each individual data set. Finally, we
observed that in our simulation studies our Bayesian FDR estimates tracked the true FDRs very
well.

Conclusion: Our method provides a cohesive framework for combining multiple but not identical
microarray studies with several sources of replication, with data produced from the same platform.
We assume that each study contains only two conditions: an experimental and a control sample.
We demonstrated our model's suitability for a small number of studies that have been either pre-
scaled or have no outliers.

Background
cDNA microarrays monitor gene expression for thousands
of genes simultaneously. Two experimental conditions are
compared by examining the ratio of expression between
two samples, e.g. treatment versus control, wildtype ver-

sus mutant, or disease versus healthy. The primary goal of
these experiments is to identify genes that are differen-
tially expressed between the two conditions. The up-regu-
lated and down-regulated genes shed light on biological
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mechanisms of the cell, such as functional pathways,
response to treatments, and gene regulation.

Bayesian models have been used extensively in single
microarray studies to identify differentially expressed
genes (e.g. [1-3]); the discrete mixture model approach in
particular has had considerable use [4-13]. Additional
Bayesian methods for identifying differentially expressed
genes include Bayesian ANOVA for microarrays (BAM) of
Ishwaran and Rao [14,15]. This approach redefines the
search for differentially expressed genes as a Bayesian var-
iable selection process and uses a hierarchical model that
is tailored to adaptive shrinkage. Through the use of
model averaging, BAM essentially shrinks only the effects
of the non-differentially expressed genes relative to the
least squares estimates. For a review of Bayesian
approaches to microarray data analysis and their advan-
tages over frequentist methods, see Yang et al. [16].

In addition to performing single microarray studies, biol-
ogists often conduct multiple but not identical studies to
understand the same biological system. Pooling results of
these studies can help identify truly differentially
expressed genes. Meta-analyses for microarray studies
have been used recently by many researchers in a non-
Bayesian context [17-24]. Rhodes et al. [17] combined the
results of four prostate cancer studies using a p-value
approach. Genes were assigned a p-value in each study
separately, and the results were combined to estimate a
gene-specific p-value across all studies. This method
avoids the necessity of integrating gene expression meas-
ures and thus can be used for data across multiple plat-
forms. Choi et al. [18] presented a meta-analysis that
integrated gene effect sizes, rather than p-values, into one
mean effect. The effect sizes for each study were equal to
the mean differences between affected and control
groups, standardized by a pooled standard deviation. Due
to this standardization, data was able to be integrated
across platforms. A common parameter for inter-study
variability was incorporated into the model, and statistical
significance was determined by permutation tests. Parmi-
giani et al. [20] introduced an integrative correlation
approach to combining data from multiple platforms.
This procedure evaluated gene expression consistencies
across platforms rather than pooling gene expression val-
ues. Using lung cancer data, this method identified genes
with reproducible expression patterns across studies and
improved correlation across studies. Additional theoreti-
cal approaches for combining data from different plat-
forms include adding covariates to models to account for
the differences among data types [24,25], although this
has not been applied in a microarray setting. While the
studies of Rhodes et al. [17], Choi et al. [18], Parmigiani et
al. [20] and others provide methods for integrating data
across platforms, other authors have shown the difficul-

ties in such an approach ([26,27]; discussions in [25,28]).
Working with cell lines, Kuo et al. [26] and Jarvinen et al.
[27] both conclude that combining data across platforms
is unreliable. Due to these difficulties, other meta-analysis
methods focus on incorporating data from one platform
only [23,24]. Here, we focus our approach to combine
microarray data from the same platform, cDNA microar-
rays, and assume that the data has either been pre-normal-
ized across studies or that there are no outlying studies.

Choi et al. [18] also provided an alternative Bayesian
meta-analysis method to their random effects approach.
In this Bayesian model, uninformative prior distributions
were assigned to the overall mean effects and the inter-
study variation parameter. Within-study gene effects were
modelled as t-distributions, and posterior estimates of the
overall mean effect for each gene were produced by
smoothing effects across studies. The authors demon-
strated that Bayesian meta-analysis is more robust and
flexible than traditional methods, confirming the findings
of DuMouchel and Harris [29]. Bayesian models are also
well-suited to data with many levels of replication, includ-
ing replicate slides within repeated identical experiments.
Due to these advantages, we introduce a Bayesian hierar-
chical model that provides a principled framework for
incorporating data from multiple independent cDNA
microarray studies with several sources of replication.
Unlike the approach of Choi et al. [18], which smoothes
the gene effects into one average, our method produces
the posterior probability of differential expression based
on gene expression levels across studies. Thus, inter-study
variability does not need to be estimated by our model.
The probability of differential expression provides a direct
method for ranking genes, and also for estimating both
integration-driven discovery rates and false discovery
rates. In simulations, we illustrate that pooling studies
increases the number of discovered genes for given thresh-
olds of probabilities of differential expression and false
discovery rates, compared to individual studies. In addi-
tion, for a fixed top number of genes, the pooled model
identifies considerably more differentially expressed
genes than separate studies. We also illustrate our method
using experimental data from two independent studies in
Bacillus (B.) subtilis.

Background on cDNA microarray experiments
cDNA microarrays measure the amount of messenger
RNA (mRNA) contained in an experimental sample. They
are produced by robotic arrayers, which place entire gene
sequences complementary to mRNA onto glass slides. In
an experiment, the mRNA in two samples, e.g. treated and
control, are fluorescently labeled with two different dyes,
typically red and green (Cy5 and Cy3), and mixed
together. The combined sample is hybridized to the array,
and complementary sequences bind to each other. The
Page 2 of 13
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relative amounts of mRNA present in the two samples are
measured by scanning the slide with two different wave-
lengths. The resulting fluorescent intensity values for the
red and green-labeled mRNA are then compared by using
the ratio of intensities. For further details, see [30-33]. We
use log-ratios of intensities in each study since they even
out highly skewed distributions and give a more realistic
sense of variation [34].

Results and discussion
Bayesian model for pooling multiple studies
Biologists often conduct multiple but different studies
that all target the same biological system or pathway. For
example, when studying the effect of a key transcription
factor σE in B. subtilis, Eichenberger et al. [35] conducted
both the σE knockout and the σE over-expression experi-
ments (i.e. the mutant and induction experiments, respec-
tively; see Methods). Thus, those genes that are up-
regulated in one experiment should be down-regulated in
another. Pooling both experiments can help more accu-
rately identify true target genes. More generally, we may
imagine having available multiple independent studies of
one specific biological system. We assume that each study
contains only two conditions: an experimental and a con-
trol. It is desirable to combine information from these
studies in a principled way. Our model to achieve this
goal is as follows:

for j = 1,..., J independent studies. Here, yjgse is the micro-

array data, i.e. the normalized log-expression ratios for

gene g, experiment e, slide s, and µjge is the average over all

slides Se within experiment e of study j. θjg is the log-

expression ratio for each gene of study j. Conjugate inverse

chi-squared prior distributions are assigned to  and

 , for which we use the notation  and

. Here,  denotes the standard

inverse χ2 distribution with k degrees of freedom, and 

and  are scale parameters of the inverse chi-squared

distribution and are derived from the data. The parameter

 is equal to slide variation,  is equal to experiment

variation for study j, and the degrees of freedom h, k are

assumed known. We define Ig~Bernoulli(p) as the indica-

tor variable for differential expression of gene g, i.e. θjg≠0,

j = 1,..., J, where p is the percent of differentially expressed
genes. Thus, Prob(Ig = 1) = p, where

Here, genes are divided into two groups, non-expressed (Ig

= 0) and expressed (Ig = 1), with respective probabilities

(1-p) and p. The model produces the posterior distribu-
tion for Dg = Prob(Ig = 1|data), which is the basis for infer-

ence. For prior distributions, when Ig = 0, we assume the

θjg are distributed normally with mean zero and small var-

iance ; when Ig = 1, we assume the θjg are distributed

normally with mean zero and large variance c × . A

Markov chain Monte Carlo (MCMC) implementation of
the model [36] simulates posterior distributions for each
parameter. See Methods for more details on the prior dis-
tributions and the MCMC implementation. For each gene,
we calculate the posterior probability Dg of differential

expression over all studies, and rank the genes based on

Dg. The prior estimates of the variance parameters 

and  are similar to Tseng et al. [2]. Our prior structure

for a single experiment is similar to Gottardo et al. [8]
except that we place a Uniform prior distribution on p
rather than estimating p through an iterative algorithm.
We also have one more level of variation than the model
of Gottardo et al. [8], i.e. variation over slides within
experiments. Our underlying hierarchical Gaussian model
is also similar to the BAM models of Ishwaran and Rao
[14,15], except that the BAM models are designed for a
two-sample problem, while our model assumes that the
data are ratios of treatment and control intensities. We
evaluate our model using false discovery rates and integra-
tion-driven discovery rates, defined in the following.

Integration-driven discovery
Choi et al. [18] define the integration-driven discovery
rate (IDR) as the number of genes discovered in a meta-
analysis that were not discovered in any of the individual
studies alone, divided by the total number of discoveries.
IDR represents the gain in information from combining
studies versus individual studies. For our model, we fix a
threshold value, γ, and label genes differentially expressed
if (Dg ≥ γ). The IDR is defined as the number of genes that
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are labelled differentially expressed in the pooled analysis
and are not differentially expressed in any of the individ-
ual studies:

False discovery rate
Benjamini and Hochberg [37] introduced the false discov-
ery rate (FDR), which is defined as the number of false dis-
coveries divided by the number of discoveries. We refer to
this as the true false discovery rate (tFDR), which can be
exactly computed in our simulation studies since we
know which genes are truly differentially expressed. Fur-
ther applications of FDR to microarrays include [38-40].
Genovese and Wasserman [41] define the posterior
expected FDR (peFDR) as:

with δg an indicator for differentially expressed genes (see
also Do et al. [13]). In the simulated data, we use tFDR
and compare tFDR to peFDR; for the experimental data,
we have no choice but to use peFDR.

Simulation results for two studies
We simulated data for two studies, Study 1 and Study 2,
with similar format to the B. subtilis mutant and induction
studies, using three different values for the percent of truly
differentially expressed genes: p = 5%, 10% and 25% (see
Methods). We implemented Model (1) for each of the two
simulation studies separately and in a pooled analysis.
The IDR ranged from 1.9% to 42.9% for all values of p for
γ ≥ 50%, with maximum tFDR of 5% for the pooled anal-
ysis (Table 1). Note that tFDR is low for large values of γ

due to the simulation procedure. The IDR increases as γ
increases. IDR is also smaller for larger values of p (Figure
1a); this is due to the larger variability between studies. As
a result, fewer genes have Dg less than γ in both studies
separately, which reduces IDR. In addition to identifying
highly expressed genes by choosing a γ threshold,
researchers often choose a maximum tFDR and examine
lists of differentially expressed genes with corresponding
tFDR. In Figure 1b, we display all tFDR levels < 20% for p
= 10% and show the number of discovered genes for the
two individual studies and the pooled analysis. This plot
shows the considerable increase in the number of differ-
entially expressed genes found in the pooled analysis ver-
sus the separate analyses for the same level of tFDR.

In addition to choosing a threshold value of Dg or FDR,
researchers are often interested in the top set of genes
only, i.e. the top 300 genes. For this reason, we rank the
genes based on Dg in both the pooled and individual anal-
yses and compare the resulting numbers of differentially
expressed genes that are included in the top genes. For
each of the three simulation studies, p = 5%, 10%, 25%,
we choose a threshold of the top p% of genes. We find that
the pooled model always identifies a larger number of dif-
ferentially expressed genes than individual studies (Table
2).

We also compared peFDR to tFDR for the simulation data
to ensure that our peFDR is a reasonable approximation to
the true values. As seen from Figure 2, which displays all
values of peFDR versus tFDR for the simulation results, the
peFDR was always larger than tFDR, so that peFDR is a con-
servative estimate of tFDR. The average differences
between peFDR and tFDR were less than 2.3% for all
pooled simulation results. The maximum difference
between peFDR and tFDR decreased as the simulated per-
cent of truly differentially expressed genes p increased.
Specifically, for p = 5%, the average difference between
peFDR and tFDR was 2.3%, with maximum difference of

IDR 
 genes[(  in pooled analysis] and [(  in 

γ
γ γ

( ) =
≥ <# ) )D Dg g aall individual studies]

# genes[(  in pooled analysis]Dg ≥ γ )
..

pe E

Dg g
g

g
g

FDR FDR= =

−

( )
( )∑
∑

| ,Y

1 δ

δ

Table 1: Results for two-study simulations. Integration-driven discovery rate (IDR) and the number of discovered genes for various 
threshold values of the posterior probability of differential expression, γ, and three simulated levels of the percent of differentially 
expressed genes p = 5%, 10%, 25%. The true false discovery rate (tFDR) is controlled at 5% for all pooled studies.

Simulated p

0.05 γ 0.50 0.90 0.95 0.99
IDR 4.6% 22.1% 33.3% 42.9%

# Discovered genes 109 86 78 70
0.10 γ 0.50 0.90 0.95 0.99

IDR 3.5% 12.6% 14.3% 29.8%
# Discovered genes 231 191 175 161

0.25 γ 0.50 0.90 0.95 0.99
IDR 1.9% 3.2% 8.4% 20.3%

# Discovered genes 642 528 499 434
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12.6% at tFDR = 19.9%. For p = 10%, the average differ-
ence was 2.2%, with maximum difference of 7.8% at tFDR
= 3.1%. For p = 25%, the average difference was 2.3%,
with maximum difference of 5.1% at tFDR = 23.8%.

Simulation results for five studies

We also assessed our model for a meta-analysis with five
studies. For this, we used the same Study 1 and Study 2 as
in the previous section, and p = 10%. We then simulated
three further studies similar to Study 1, but with different

model parameters for ,c, and variation over slides

and experiments (see Methods). The IDR was 7.1% for γ =
0.95, and 12.8% for γ = 99%, with tFDR of 0% in the

pooled analysis for these levels of γ. The IDR was lower for

the same levels of γ for the five-study versus two-study
pooled analysis. This was due to the larger variation
between the five studies, resulting in fewer genes with Dg

less than γ in all studies, which reduced IDR. We plot IDR

versus γ in Figure 3a. Figure 3b displays the number of dis-
covered genes for the pooled analysis versus the five sepa-
rate analyses for tFDR < 20%, which again shows a
considerable increase for the pooled analysis.

We also show the number of differentially expressed genes
identified by the pooled versus individual analyses for a
fixed value of top expressed genes in Table 2. For the top
300 genes, the pooled model again identifies more differ-
entially expressed genes than individual studies. We also
compared peFDR to tFDR in Figure 2d. The average differ-
ence was 0.54%, with maximum difference of 2.7%at
tFDR = 0.36%. These values are smaller than the results for
the two-study simulations, showing improved accuracy of
peFDR when pooling more data.

Experimental data results
We implemented Model (1) to pool the mutant and
induction B. subtilis studies, with 2,515 genes that had
expression in both studies. We also implemented Model
(1) for each study individually. For values of γ ≥ 50% and
maximum peFDR of 11.5% for the pooled analysis, the
IDR ranged from 8.2% to 53.3% (Table 3). We plot IDR
versus γ in Figure 4a. Figure 4b presents the number of dis-
covered genes for peFDR < 20% for both the separate and
pooled analyses. The induction study had much lower
log-ratios of expression than the mutant study; the aver-
age 97.5%-ile for the induction experiments was 0.65 ver-
sus 1.59 for the mutant experiments. As a result, the
maximum Dg value for the induction study was 0.84, with
minimum corresponding peFDR of 16%. In contrast, the
mutant study had 33 genes with Dg of 1.0. Even though
the values of Dg were lower for the induction than the
mutant study, we found that combining the two data sets
resulted in more discoveries of differentially expressed
genes than either study alone for fixed levels of peFDR.

Conclusion
We demonstrated here the usefulness of a Bayesian hierar-
chical model for pooling data across independent micro-
array studies with several sources of variation. The pooled
method provides a systematic analysis framework, pro-
ducing probability estimates of differential expression for
each gene. These estimates are used to rank genes, calcu-
late IDR, and produce posterior expected FDR values.

In the simulation of two and five studies, we found an
appreciable increase in the IDR for various thresholds of
the probability of differential expression, with corre-
sponding low levels of tFDR. When fixing tFDR, we found
more genes discovered in the pooled analysis than the
separate analyses. When setting a threshold for the top
genes of interest, the pooled model identified more truly

η jg0
2

Table 2: Number of differentially expressed (D.E.) genes for fixed top numbers of genes. The number of differentially expressed genes 
discovered by the pooled model and individual models for fixed threshold numbers of top genes, including the two-study simulation 
model, p = 5%, 10%, 25%, and the five-study simulation model, p = 10%.

Two-study 
simulation data

Threshold 
number of genes

# of D.E. genes, 
pooled model

# of D.E. genes, 
individual study 1

# of D.E. genes, 
individual study 2

p = 5% 150 128 97 108
p = 10% 300 261 211 218
p = 25% 750 669 569 572

# of D.E. genes, individual study number
Five-study Threshold # of D.E. genes, 

1 2 3 4 5

p = 10% 300 278 211 218 229 221 216
Page 5 of 13
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:247 http://www.biomedcentral.com/1471-2105/7/247

Page 6 of 13
(page number not for citation purposes)

IDR and discovered genes versus tFDR for the two-study simulation dataFigure 1
IDR and discovered genes versus tFDR for the two-study simulation data. a) Integration-driven discovery rate (IDR) 
versus threshold values of posterior probabilities of differential expression, γ, for the two-study simulated data and percent of 
differentially expressed genes p = 5% (blue checks), 10% (black diamonds), 25% (red triangles); b) The maximum number of dif-
ferentially expressed genes versus true false discovery rate (tFDR) for individual analyses of Study 1 (red triangles), Study 2 
(blue checks) and pooled analysis (black diamonds), for two-study simulated data and percent of differentially expressed genes 
p = 10%.

(a)

(b)
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differentially expressed genes than individual analyses. In
the simulation of five studies, the IDR was somewhat
lower than for two studies, but was still considerable.
When comparing the peFDR to tFDR in simulations, we
found reasonable agreement, with peFDR overestimating
tFDR on average by less than 3%. The difference between
peFDR and tFDR decreased for the simulation of five stud-
ies, indicating that pooling more data improves the poste-
rior estimation of FDR. In our analysis of experimental
data, the IDR was also large. One study had somewhat
lower probabilities of differential expression, which
resulted in more discoveries when the data was pooled.
We conclude that combining information across studies
strengthens the probabilities of differential expression,

improves IDR, and increases the number of discovered
genes for fixed tFDR, peFDR and fixed top percent of genes
than individual study analyses.

Our model is designed for studies from the same plat-
form. In the B. subtilis experimental data, a common con-
trol sample was used for the mutant and induction
studies. However, our model does not require a common
reference sample across studies, and assumes the studies
are independent. In addition, all studies do not need to
have the same array-design layout. This is due to the stud-
ies being linked only through the common parameter of
differential expression, p; no other parameters are shared
between studies. For example, one study could have only

True false discovery rate versus posterior expected false discovery rate for the simulation dataFigure 2
True false discovery rate versus posterior expected false discovery rate for the simulation data. True false dis-
covery rate (tFDR) (solid lines) and posterior expected false discovery rate (peFDR) (dashed lines) versus the number of dis-
covered genes for: a) two-study simulation data, p = 5%; b) two-study simulation data, p = 10%; c) two-study simulation data, p 
= 25%; d) five-study simulation data, p = 10%.
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IDR and discovered genes versus tFDR for the five-study simulation dataFigure 3
IDR and discovered genes versus tFDR for the five-study simulation data. a) Integration-driven discovery rate (IDR) 
versus threshold values of posterior probabilities of differential expression, γ, for the five-study simulated data and percent of 
differentially expressed genes p = 10%; b) The maximum number of differentially expressed genes versus true false discovery 
rate (tFDR) for individual analyses of Study 1 (red triangles), Study 2 (blue checks), Study 3 (green stars), Study 4 (turquoise cir-
cles), Study 5 (pink inverted triangles) and pooled analysis (black diamonds), for five-study simulated data and percent of differ-
entially expressed genes p = 10%.

(a)

(b)
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replicate slides, and another study could have both repli-
cate slides and replicate experiments. We also assume that
there are either no outlying studies or that the data has
been scaled across studies before analysis. Future work
will address the issues of pooling studies from different
platforms and sets of studies that may contain outliers.

Methods
Simulation data for two studies

We simulated data for two studies, with the same format
as the B. subtilis mutant and induction experimental data
(see Methods: Experimental data), with the percent of dif-
ferentially expressed genes of p = 5%, 10% and 25%. Each
study had 3,000 genes; the first study had 5 replicate slides
within 3 replicate experiments, and the second study had
4 replicate slides within 3 replicate experiments. We sim-
ulated data from Model (1), with parameters similar to
those found in the experimental data. For Study 1, we

used  = 0.015, and c = 66.67. The variance across

slides was set to 0.074, and across experiments to 0.029.

For Study 2, we used  = 0.02, and c = 40. The vari-

ance across slides was set to 0.02, and across experiments
to 0.026.

Between study variance for the experimental data was
0.067 for all 2,515 genes, and 0.296 for the top 10% of
genes. The simulated data had similar between study var-
iance for all genes, and higher variability for the top genes
than the experimental data. The between study variance
was 0.053 for p = 5%, 0.105 for p = 10% and 0.23 for p =
25% for all 3,000 genes, with between study variance for
the top genes of 0.714 for p = 5%, 0.887 for p = 10% and
0.86 for p = 25%. For each gene, log-expression ratios are
simulated from normal distributions, independently of
other genes. Although expression is expected to have
some correlation among genes, this is difficult to model,
and we thus assume independence for simulation pur-
poses. The independence assumption was also used in

simulation studies by other authors (see, for example,
[8,9]).

Simulation data for five studies

For the simulation of five studies, we used the Study 1 and
Study 2 data from the previous section, and simulated
data for 3 additional studies, with p = 10% for all studies.
For Studies 3, 4 and 5, we simulated 5 replicate slides

within 3 replicate experiments. For the parameters 

,c and variance across slides and experiments, we used a
range of values that were either between the values for
Study 1 and Study 2, or somewhat larger or smaller than

these two studies. For the Study 3, we used  = 0.017,

and c = 70.6. The variance across slides was set to 0.05,
and across experiments to 0.02. For Study 4, we used

 = 0.02, and c = 55. The variance across slides was set

to 0.04, and across experiments to 0.022. For Study 5, we

used  = 0.015, and c = 60. The variance across slides

was set to 0.06, and across experiments to 0.03. Between
study variance ranged from 0.098 to 0.153 for all 5 studies
for all 3,000 genes, and from 0.827 to 1.35 for the top
10% of genes, which was higher than the two-study exper-
imental data.

Experimental data
The B. subtilis experiments were designed to identify
sporulation genes under the control of sigma factor E (σE).
Two complementary experimental setups were used, the
first was a deletion of σE (mutant study) and the second an
overexpression of σE (induction study), described in the
following (for additional details, see [35,42]).

Mutant study
In the mutant study, the treated sample contained sporu-
lating cells with a null mutation in the gene for σE (i.e. the
mutant sample), and the control sample contained sporu-
lating cells that were wild type for σE. The wild-type/
mutant ratios were examined; up-regulated genes were
identified as belonging to the σE regulon. In total, five
microarrays were produced from three independent iden-
tical experiments; the first experiment had three replicate
arrays and the second and third experiments each had one
array. The number of genes spotted on the five arrays
ranged from 4,268 to 4,751; these values are larger than
the B. subtilis genome size of 4,106 due to multiple spot-
ting of selected genes on various arrays. The percent of low
quality spots that were removed from analysis ranged
from 18.6% to 64.5% of values across the five arrays. In
total, there were 3,713 genes with measurable expression

η jg0
2

η jg0
2

η jg0
2

η jg0
2

η jg0
2

η jg0
2

Table 3: Results for Bacillus subtilis experimental data. 
Integration-driven discovery rate (IDR), posterior expected false 
discovery rate (peFDR) and the number of discovered genes for 
various threshold values of the posterior probability of 
differential expression, γ, for the pooled analysis of the B. subtilis 
mutant and induction experimental study data.

γ IDR Posterior expected FDR # Discovered genes

0.995 53.3% 0.001 89
0.99 50.0% 0.002 96
0.95 28.5% 0.013 130
0.90 20.1% 0.025 144
0.50 8.2% 0.115 194
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IDR and discovered genes versus peFDR for the experimental dataFigure 4
IDR and discovered genes versus peFDR for the experimental data. a) Integration-driven discovery rate (IDR) versus 
threshold values of posterior probabilities of differential expression, γ, for the B. subtilis mutant and induction experimental 
study data; b) The maximum number of differentially expressed genes versus posterior expected false discovery rate (peFDR) 
for individual analyses of the B. subtilis mutant study (red triangles), induction study (blue checks) and pooled analysis (black dia-
monds).

(a)

(b)
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ratios in at least one microarray. Here, we analyze values
after normalization using a rank-invariant method [2,43].

Induction study
In the induction study, σE was overexpressed in response
to an inducer, i.e. cells that had been treated with an
inducer were compared to control cells. The induction/
wild-type ratios were examined; up-regulated genes were
identified as belonging to the σE regulon. In total, four
microarrays were produced from three independent iden-
tical experiments. The first two experiments each had one
array, and the third experiment had two replicate arrays.
The number of genes spotted on the four arrays ranged
from 4,608 to 4,751; the percentage of genes detected on
the arrays ranged from 33.0% to 47.4%. In total, there
were 2,552 genes with measurable expression ratios in at
least one microarray. Here, we again analyze the post-nor-
malized values.

Markov chain Monte Carlo implementation
In the Markov chain Monte Carlo analysis, the full condi-
tionals are simulated as follows.

Joint posterior distribution
For the hierarchical model of (1), the joint distribution of
the data and parameters is:

where Ωj = ( , cj), j = study, g = gene, e = experiment,

s = slide.

Prior distributions
The prior distributions are specified as follow.

Here,  denotes the standard inverse χ2 distribution

with k degrees of freedom, and  and  are scale

parameters of the inverse chi-squared distribution derived

from the data.  is produced as follows:

where yjg.e is the average log-ratio of expression over the
slides within an experiment:

Similarly, the scale parameter for  is calculated as fol-

lows:

where yjg.. is the average log-ratio of expression over both

slides and experiments. We use 3 degrees of freedom in

each study for both  and , i.e. h = k = 3. The prior

distributions for the remaining parameters are as follow.

We choose a,  so that the prior mean of  is 1 with

variance 0.1. We choose b,  so that the prior mean of cj

is 100 with variance 10,000.

Full conditional posterior distributions
Each parameter is sampled from the full conditional pos-
terior distributions by the following.

Here,  denotes the standard inverse χ2 distri-

bution with (S1 +...+ SE + k) degrees of freedom, with scale

parameter:
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For Ig = 0, the following full conditionals are sampled:

For Ig = 1, the following full conditionals are sampled:

For all iterations, the following are sampled:

Here G = total number of genes g, G' = set of genes with Ig
= 1 in an iteration, and Yg is the data from all studies. Since
the full conditional posterior distributions are all closed
form when conditioned on the values of Ig, the Gibbs
sampler [36] is used to generate samples from these distri-
butions. We used 5,000 iterations for all analyses, except
for the five study simulation, which required 8,000 itera-
tions, which was more than adequate. The calculations are
implemented using the WinBUGS software [44].

Availability and requirements
The WinBUGS code for executing the models is freely
available.

Project name: BayesPoolMicro.

Project home page: http://www.math.umass.edu/~con
lon/research/BayesPoolMicro/

Operating system: Windows 98 or later.

Other requirements: WinBUGS software version 1.4 or
later [44].

License: free.
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