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Abstract

With relatively low efficiency, differentiated cells can be reprogrammed to a pluripotent state by ectopic expression of a few
transcription factors. An understanding of the mechanisms that underlie data emerging from such experiments can help
design optimal strategies for creating pluripotent cells for patient-specific regenerative medicine. We have developed a
computational model for the architecture of the epigenetic and genetic regulatory networks which describes
transformations resulting from expression of reprogramming factors. Importantly, our studies identify the rare temporal
pathways that result in induced pluripotent cells. Further experimental tests of predictions emerging from our model should
lead to fundamental advances in our understanding of how cellular identity is maintained and transformed.
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Introduction

Cellular states are plastic, and even terminally differentiated

cells (e.g., B-cells) can be reprogrammed to pluripotency by ectopic

expression of selected transcription factors [1,2,3,4,5,6,7]. This

finding raises the possibility of creating patient-specific stem cells

for regenerative medicine [8]. However, reprogramming efficien-

cies range from 0.0001% to 29% [5,6,9,10], with most reports

showing that successful induction of the pluripotent state is rare

even if all required factors are present [11,12]. The genetic and

epigenetic regulatory mechanisms that make reprogramming

possible, and determine its efficiency, are poorly understood [2].

Elucidating these mechanistic principles can help define optimal

strategies for reprogramming differentiated cells, and answer

fundamental questions regarding how cellular identity is main-

tained and transformed.

In spite of recent progress, our knowledge of the identities and

functions of the genes and proteins involved in regulating the

transformation of cellular identity is grossly incomplete [2,13,14].

Thus, it is not yet possible to construct a detailed molecular

mechanistic description of how epigenetic modifications and

expression of master regulatory genes are controlled. However,

ectopic expression of the same transcription factors can reprogram

different cell types [1,6,12], and the genetic and epigenetic

transformations observed during reprogramming of diverse

differentiated cells share many common features

[2,11,15,16,17,18,19]. These common observations can be the

basis for developing a conceptual understanding of the general

architecture of the genetic and epigenetic networks that regulate

transcription factor induced reprogramming and establish cellular

identity during differentiation.

We have taken a step toward this goal by developing a

computational model that is consistent with, and suggests general

mechanistic explanations for, empirical observations of transcrip-

tion factor induced reprogramming. The model makes experi-

mentally-testable predictions. If validated, descendents of this

model could also provide insights into the aberrant de-differen-

tiation events which characterize some of the most malignant

cancers.

Results

Model development
Elegant theoretical models for the molecular regulatory

networks responsible for stem cell renewal and differentiation

and the population dynamics of these processes have been created

[20,21,22,23,24]. Our goal is different. We aim to develop a model

for the architecture of coupled epigenetic and genetic networks

which describes large changes in cellular identity (e.g., induction of

pluripotency by reprogramming factors). Although the general

principles of interactions between genetic and epigenetic layers of

regulation have been described [25,26], no computational model

has been developed to study the outcomes of such interactions and

their biological consequences. Such a computational model would
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be a useful complement to experiments in understanding the

processes that occur during reprogramming of differentiated cells,

and why reprogramming is rare. Here, we propose, to our

knowledge, the first computational model that describes how

cellular identity changes by creating a mathematical description of

interactions between epigenetic and genetic networks. Our goal is

not to describe the details of how specific regulatory proteins

interact, but rather, to understand general principles underlying

how cellular states evolve upon ectopic expression of certain types

of genes. The concise model we have developed explains why

reprogramming probability is low, and makes experimentally

testable predictions.

Almost all cells in a multi-cellular organism share the same

DNA sequence. Yet, different cell types express distinct genes and

perform different functions. Epigenetic modifications are major

regulators of cell-type specific gene expression. They function by

packaging DNA into configurations that allow only some genes to

be expressed, while other genes are tightly packed into

heterochromatin structures that hinder access of most transcrip-

tion factors [27]. Changes in cellular identity during developmen-

tal differentiation or transcription factor induced reprogramming

require modification of the epigenetic state of the cell. The

maintenance and alteration of cellular identity is regulated by a

complex set of interactions between developmentally important

genes, chromatin modifiers, transcription factors etc., the details of

which remain unknown. Toward developing a model for the

architecture of these complex regulatory networks we consider

only the developmentally important genes. For simplicity, each

ensemble of genes responsible for maintenance of a particular

cellular identity (e.g., Oct4, Sox2, etc., for pluripotency) is

described as a single module (Fig. 1a). Theoretical justification

for treating genes that control the embryonic stem (ES) cell state as

a collective unit exists [28]. We also carried out some studies with

each module consisting of a small number of genes (see

corresponding discussion below).

ES cells can differentiate into various lineages. Upon further

differentiation, cells become more restricted. For example,

hematopoetic stem cells can differentiate into T and B-lympho-

cytes, but not neural cells. Therefore, in our model, we arrange

gene modules in a hierarchy (Fig. 1a). Although each cell state can

potentially differentiate into many branches, without loss of

generality, we consider two branches to emanate from each cell

state. Thus, the cellular states are arranged on a Cayley tree. In

our model, a cell state (Fig. 1b) is specified by: i] the state of the

epigenome, and ii] the expression levels of master regulatory

genes.

Specification and regulation of the epigenome. The

epigenome is specified by chromatin states. Histones with

positive marks (e.g. H3K4me3) promote transcription, and

histones with negative marks (e.g. H3K27me3) repress

transcription [29,30]. Hypermethylated genes are also silent

[17,31]. Genes associated with both H3K4me3 and H3K27me3

simultaneously (bivalent marks) can recruit promoters, but

transcription is suppressed [32,33,34]. Based on these

observations, in our model, each developmentally important

gene module can adopt one of three possible epigenetic states. It

can be silent either due to negative histone marks or DNA

methylation (denoted as the ‘‘21’’ state), marked positively by

histone marks (denoted as the ‘‘+1’’ state), and marked bivalently

(denoted as the ‘‘0’’ state). From the standpoint of gene expression,

each module can be either actively transcribing (denoted as the

‘‘+1’’ state) or not (denoted as the ‘‘0’’ state).

During interphase, DNA with genes packaged in a way

characteristic of the cell’s identity manages gene transcription

and protein synthesis. Before cell division, the chromosomes

condense. During telophase at the end of mitosis, the prevailing

protein environment could alter the chromatin states of deconden-

sing chromosomes in a daughter cell, thereby modifying the

epigenetic state of its DNA [15,35]. We divide the cell cycle into

two parts (Fig. 2). During phase one (termed interphase, for ease of

reference), the epigenetic state cannot be modified and gene

expression is subject to this constraint. In phase two (termed

telophase, for ease of reference), the epigenetic state can

potentially be altered by the protein environment established

during the preceding interphase.

Chromatin state maps show that the ES state is characterized by

an unusually large proportion of bivalent chromatin marks on

developmentally important genes [19,32,36]. Therefore, we define

the ES state as one where the gene module controlling this state

(expressing Sox2, Oct4, etc.) is in the open chromatin state and all

other master regulator genes are bivalently marked (Fig. 1b, left

panel). Since the identities of all master-regulatory genes are not

yet experimentally available, it should be noted that bivalency of

all master-regulatory modules in the ES state is an assumption that

extrapolates available knowledge to yet unidentified modules.

It is known that, as cells differentiate from the ES state,

bivalently marked genes remain bivalent, acquire a positive mark,

or are silenced by negatively marked histones or methylation

[19,32,36]. Other than pluripotent ES cells, upon receiving

appropriate cues, a cell state can only differentiate into other

states in the same lineage. Upon differentiation from the ES state

positive histone marks are removed at an earlier stage compared to

silencing of genes by DNA methylation, and reactivation of DNA

methylated genes is more difficult than those with negative histone

marks (summarized in Table 1). These facts are encapsulated in

our model by the following rules regarding how proteins expressed

by a particular gene module can modify epigenetic states during

telophase (Fig. 3b): 1] They favor putting positive marks on the

module that expresses them, which enables stable maintenance of

cellular identity. 2] They favor putting negative histone marks on

the modules regulating the immediate progenitor or an immediate

Author Summary

Most cells in an organism have the same DNA. Yet,
different cell types express different proteins and carry out
different functions. These differences are reflected by cell
epigenetics; i.e., DNA in different cell types is packaged
distinctly, making it hard to express certain genes while
facilitating the expression of others. During development,
upon receipt of appropriate cues, pluripotent embryonic
stem cells differentiate into diverse cell types that make up
the organism (e.g., a human). There has long been an
effort to make this process go backward— i.e., reprogram
a differentiated cell (e.g., a skin cell) to pluripotent status.
Recently, this has been achieved by overexpressing
specific transcription factors in differentiated cells. This
method does not use embryonic material and promises
the development of patient-specific regenerative medi-
cine. The mechanisms that make reprogramming rare, or
even possible, are poorly understood. We have developed
the first computational model of transcription factor-
induced reprogramming. Results obtained from the model
are consistent with diverse observations, and identify the
rare pathways that allow reprogramming to occur. If
validated by further experiments, our model could be
further developed to design optimal strategies for
reprogramming and shed light on basic questions in
biology.

Reprogramming Paths
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‘‘sibling’’ in the hierarchy; this hinders differentiation into cells in

competing lineages and accidental de-differentiation to the

progenitor. 3] They favor putting bivalent histone marks on the

modules that regulate immediate progeny, which keeps cells poised

to differentiate. 4] They favor methylation of all modules that

regulate cell states in competing lineages or less differentiated

states in the same lineage. This has a similar effect as the marking

of histones in rule 2.

Rules 1–3 are based on experimental facts, and concern how

proteins expressed by a gene module can affect the histone marks

of only modules that regulate its immediate precursor, immediate

progeny (see Fig. 3b), or other states to which its precursor can

differentiate (i.e., ‘‘nearest neighbors’’ on the hierarchy of gene

modules shown in Fig. 1a).

Rule 4 states that proteins expressed by a gene module favor

silenced chromatin state of gene modules that are distal from it in

the hierarchy by DNA methylation (Fig. 3b). Although there are

no experimental measurements showing that methylation of

unrelated lineages is directly caused by master-regulatory genes

of current cell state, this rule is motivated by the global DNA

methylation of genes of unrelated lineages observed upon cell

differentiation [16,17] and the fact that global DNA hypomethyla-

tion blocks differentiation [37]. To further investigate the effect of

such long-range interactions, we have perturbed the formulation

of rule 4 in different ways. We find that unless the long-ranged

nature of rule 4 is included, the in silico reprogramming trajectories

exhibit features which are inconsistent with experimental obser-

vations. In particular, stable expression of protein products of the

ES master-regulatory module becomes possible within the first

reprogramming cycle, in contradiction with the observation that

endogenous Oct4 is expressed shortly before completion of

reprogramming after at least 12 days of action of reprogramming

factors (see, for example Fig. 2 in [2] and references therein). Our

computational results are also inconsistent with this observation if

we allow proteins expressed by a module to put bivalent marks on

all modules that regulate states in the lineage that are below it,

rather than just the immediate progeny (rule 3 above).

Specification and regulation of gene expression. In our

model, gene expression during interphase is subject to

constraints imposed by the epigenetic marks as follows

(summarized in Table 1): 19] if a gene module is positively

marked, its expression is favored. Expression of bivalently

marked gene modules is not favored, but it is not as strongly

suppressed as modules that are negatively marked or DNA

Figure 1. Specification of the genetic and epigenetic states that describe cellular states. (a) Only the master-regulatory genes that govern
cell state are arranged in a hierarchy (house keeping, stress-response and many other genes are not considered). Each node of the hierarchy
represents an ensemble of master-regulatory genes that govern a particular cellular state. For example, genes in the top node are known master-
regulators of the embryonic stem cell state (e.g. Oct4, Sox2, Nanog). When a cell is in the ES state, only these three genes will be expressed while
other genes will not. Similarly, when a cell is fully differentiated, genes in one of the bottom modules will be expressed but not any other gene in the
network. Each master-regulatory ensemble can contain many genes, only three are shown in each node. Green and blue balls above the links indicate
that not only master regulatory proteins but also other proteins such as chromatin modifiers and housekeeping genes mediate interactions between
modules of master-regulators. (b) Fig. 1a has been coarse-grained such that only master-regulatory modules (nodes in fig. 1a) are shown. Cellular
identity is determined by both epigenetic (chromatin marks, DNA methylation) and genetic (expression profile) states. Examples of two states (ES
state and ‘‘left’’ pluripotent progenitor) are shown. For each example, two lattices are needed to describe the state of gene expression and the
epigenome: top lattice reflects the expression levels of master-regulatory proteins in the ES/progenitor state and bottom lattice reflects the
epigenetic state of master-regulatory genes in the ES/progenitor state.
doi:10.1371/journal.pcbi.1000785.g001

Reprogramming Paths
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methylated (see Eq. 3 in Methods). 29] Diverse experimental

data [38,39] show that, due to effects such as feedback

regulation, etc., expression of genes from competing lineages

is mutually repressed. For example, GATA-1, erythroid lineage

specific gene, and PU-1, transcription factor for genes of

myeloid lineage are among the most studied master-regulatory

genes. They posses typical properties attributed to the master-

regulators in this manuscript: they enhance their own expression

[40,41] and mutually antagonize each others’ activity

[20,38,42]. We thus impose such mutually repressive

interactions to gene modules that regulate directly competing

cellular states (i.e., nearest neighbors in the hierarchy in Fig. 3a).

Rules 1–4 (summarized in Table 1) noted above are meant to

describe how the epigenetic state is maintained and how it could

evolve due to protein products of signaling events or ectopic

expression of transcription factors. During telophase, there could

be a ‘‘tug of war’’ between the epigenetic state preferred by newly

expressed proteins and that preferred by proteins expressed in

accord with the preceding epigenetic state [35]. Similarly, rules 19

and 29 could lead to a tug of war between expression of different

genes. Our computations reveal possible outcomes of these battles.

The epigenetic modifications during telophase or gene expres-

sion patterns during interphase are simulated on a computer using

a Monte-Carlo algorithm, with rules 1–4 and 19–29 represented as

Figure 2. Simplified model for progression through the cell cycle. The cell cycle is divided into two generalized phases: called interphase and
telophase for simplicity. Gene expression occurs during the interphase, while cell division and associated processes occur in the telophase. In the
interphase gene expression profile is governed by the stable epigenetic marks on the master-regulatory genes. In the telophase, however, protein
environment can change the epigenetic marks of the master-regulaory genes, particularly when DNA is decondensing after cell division.
Differentiation signals (newly expressed proteins) determine future epigenetic marks created during telophase due to the action of the new protein
environment. The color code representing genetic and epigenetic states is the same as in Fig. 1.
doi:10.1371/journal.pcbi.1000785.g002

Table 1. Summary of the rules governing interactions between genetic and epigenetic networks during the two phases labeled
interphase and telophase (details in text).

During Interphase: During Telophase: proteins expressed by a gene module…

(19) if a gene module is positively marked, its expression is favored.
Expression of bivalently marked gene modules is not favored, but it is
not as strongly suppressed as modules that are negatively marked or
DNA methylated

(1) … favor putting positive marks on the module that expresses them, which enables
stable maintenance of cellular identity (2) … favor putting negative histone marks on
the modules regulating the immediate progenitor or an immediate ‘‘sibling’’ in the
hierarchy

(29) Diverse experimental data [38,39] show that, due to effects such as
feedback regulation, etc., expression of genes from competing lineages
is mutually repressed.

(3) … favor putting bivalent histone marks on modules regulating immediate
progeny (4) … favor methylation of all modules that regulate cell states in competing
lineages or less differentiated states in the same lineage

doi:10.1371/journal.pcbi.1000785.t001

Reprogramming Paths
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effective Hamiltonians (Eqs. 2–3, Methods). We specify the initial

epigenetic state of the cell or the proteins that have been expressed

in the previous interphase (including signaling products and

ectopic expression of transcription factors). If the gene expression

pattern is specified, simulation of telophase results in an epigenetic

state that becomes the input for simulation of the next interphase,

and so on (see Methods).

Differentiation
ES cells are cultured in specific media (e.g., containing LIF/

BMP4 for mouse ES cells) to prevent differentiation [43]. The

medium inhibits a self-induced differentiation pathway. We

represent this feature by assuming that proteins expressed by the

module regulating the ES state favor putting positive chromatin

marks on gene modules regulating immediate progenies if LIF, etc.

are absent. Simulations of this situation show (Fig. 4) that, as in

experiments [2], ES cells differentiate randomly to one of their

progeny.

Our model exhibits robust differentiation (forward program-

ming) to specific cell states when the appropriate cues are

delivered. Appropriate cues are expression of proteins (e.g.,

signaling products) that become available during interphase. In

the next telophase, these proteins favor putting positive histone

marks on the gene module regulating the appropriate progeny of

the current cellular state (rule 1). Results from our computer

simulations (Fig. 4 in Text S1) demonstrate that our model exhibits

Figure 3. Rules that govern interactions within epigenetic and genetic networks. (a) During interphase, gene expression profiles of master-
regulatory modules are established. Gene expression is influenced by epigenetic marking of the corresponding gene and interactions between
expressed proteins. Two rules reflect this in our simulation: 1) when master-regulatory gene is in epigenetically marked positively, it favors expression
of the corresponding protein; 2) when two (three) neighboring genes are in epigenetically open states, they all favor expression of corresponding
proteins, but due to their mutually repressive action (see text) only one of two(three) genes are expressed. Which gene is expressed is chosen
stochastically. (b) During the telophase, the protein environment can alter the epigenetic marks on the master-regulatory genes. Epigenetic marks on
both neighboring and distant genes in the hierarchy can be altered. Long-range effect is typically mediated through DNA methylation which
epigenetically silences all of the master-regulatory genes of unrelated lineages and also ancestral states (see text). Short-range interactions affect
nearest-neighbors differentially: progenies master-regulatory genes are preferentially put into bivalent states while progenitor and competing
lineage modules are epigenetically silenced. The color code representing genetic and epigenetic states is the same as in Fig. 1. The numbers
corresponding to the rules are the same as in text and Table 1.
doi:10.1371/journal.pcbi.1000785.g003

Reprogramming Paths

PLoS Computational Biology | www.ploscompbiol.org 5 May 2010 | Volume 6 | Issue 5 | e1000785



high-fidelity responses to such differentiation cues. This is

consistent with the experimental observation that overexpression

of the master-regulatory genes of desired lineage leads to

predominant differentiation in that direction [44,45]. This result

is relevant because practical use of induced pluripotent cells will

involve differentiating them to desired cell types. We also find

an exponential decay of the number of progenitor cells (with

a signal strength-dependent lifetime), as has been noted before

[46].

Reprogramming
We simulate reprogramming experiments by starting with a

terminally differentiated cell state where genes from other lineages,

etc., have been epigenetically silenced. Our basic premise is that

terminally differentiated cells can reprogram because protein

products of the ectopically expressed genes can potentially alter the

epigenetic state of the cell as a cell progresses through the

telophase. In our low resolution model, we identify genes not by

names, but rather by their functional properties. We presume that

Klf4 and c-Myc are important ingredients of the reprogramming

‘‘cocktail’’ because they promote progression through the cell

cycle, and this provides more opportunities for the other

reprogramming factors to perturb the epigenome during telo-

phase. This functional identification of Klf4 and c-Myc makes our

model general, and is validated by experiments showing that

shutting down p53 abrogates the need for Klf4 and c-Myc for

reprogramming (only Oct4 and Sox2 required) precisely because

this also allows faster progression through the cell cycle

[47,48,49,50,51]. (Interestingly, simulataneous action of c-Myc

and p53 knock-down decreases the efficiency of reprogramming

indicating existence of the optimum). Oct4 and Sox2 have an

enormous number of binding targets on the DNA, and are

responsible for maintenance of the ES state which likely implies

multiple interactions with master-regulatory genes. We therefore

identify the ectopic expression of these genes with the function of

being highly likely to perturb the epigenome during telophase.

Each gene module in our model corresponds to an ensemble of

carefully tuned mutually interacting master-regulatory genes that

govern a particular cellular identity. At the moment, not all of the

master-regulatory genes of cellular states are experimentally

identified, thus we use gene modules to represent these ensembles

in a general way. Even though products of ectopically expressed

Oct4 and Sox2 have numerous targets [52], it is unlikely that the

epigenetic state of many such sets of genes will be simultaneously

altered. Thus, in order to mimic the effect of reprogramming

factors, we randomly pick one epigenetically silenced gene module

and change its state to correspond to open chromatin. To examine

the effects of overexpression of ectopic genes, we also study the

consequences of multiple epigenetic transformations at a time (see

discussions below).

Starting with a terminally differentiated state we perturb the

epigenome as described above, and then simulate the next gene

expression phase where both the module regulating the terminally

differentiated state and the one which was transformed to open

chromatin status can express proteins according to rules 19–29 (or

Eq. 3). The protein atmosphere thus generated becomes the input

to simulation of the next telophase according to rules 1–4 (or Eq.

2). This can then potentially establish a new epigenetic state which

becomes input to simulation of the next gene expression phase;

i.e., the genetic and epigenetic states are allowed to come to a new

balance. Then, the epigenetic state of another randomly picked

silent gene module is changed to open chromatin because of the

effects of reprogramming factors. This procedure is continued

until a fully reprogrammed or a dead/arrested state is achieved

(see below).

We carried out 10, 000 independent replicate simulations of the

effects of ectopic expression of reprogramming factors on a

differentiated cell in a model with four levels in the hierarchy of

cellular states. Results from each simulation describe the fate of a

single cell in a population. Only 3 out of 10, 000 ‘‘cells’’

successfully reprogrammed; i.e, as in experiments, reprogramming

is rare. The percentage of cells that reprogram depends upon the

number of levels in the hierarchy (0.0001% and 2% of the cells

reprogram successfully for a five-level and three-level hierarchy,

respectively). This suggests that reprogramming efficiency should

improve for less differentiated cells. This has been demonstrated

directly in a well-defined lineage such as the hematopoietic system

[53]. Additionally, Hanna et al. demonstrated a notable increase

in the efficiency of reprogramming B cells upon Pax5 knockdown

[12]. Loss of Pax5 had been previously shown to cause

dedifferentiation of B cells to a common progenitor that upon

transplantation allowed T cell development [54].

Figure 4. Changing cellular identity during self-initiated differentiation of the ES cell-state. Process begins with cell division where
regulatory modules of progenies are put into epigenetically open states. In phase 2 only one of the three neighboring proteins can be actually
expressed in accord with Fig. 3a. Thus, one of three possibilities is realized: self-renewal, and differentiation to the ‘‘left’’ or ‘‘right’’ lineages. In the
absence of external stimuli, in our simulations, there is an equal chance to observe each outcome. Simulations are performed with parameter values
F = 2000; J = 3000; G = 25; H = 40; a = 0; b = 0.3. The color code representing genetic and epigenetic states is the same as in Fig. 1.
doi:10.1371/journal.pcbi.1000785.g004

Reprogramming Paths

PLoS Computational Biology | www.ploscompbiol.org 6 May 2010 | Volume 6 | Issue 5 | e1000785



We report results for models consisting of 3-, 4- and 5-levels in

the hierarchy of gene modules, but in real organisms the depth of

the differentiation tree could be as large as tens of levels [55]. Since

our results indicate that reprogramming efficiency decreases

quickly with the increase in the depth of the hierarchy, it is

natural to ask why reprogramming is at all feasible. The reason is

that master-regulatory genes that regulate closely related states are

not mutually exclusive sets of genes. The difference between genes

that regulate closely related cellular states can be as small as one or

two genes [54]. However, genes that regulate cellular states distal

in the hierarchy are not correlated in this way. As our model does

not treat correlations between genes that regulate closely related

states, in effect, each gene module in our model represents master

regulatory genes that control the identity of a number of cellular

states that have many master regulatory genes in common. Thus, a

5-level hierarchy in our model might represent a 50-level depth of

differentiation in a real organism.

The results reported above were obtained for specific values of

parameters (Table 2) which represent rules 1–4 and 19–29 (Eqs., 2–

3 in Methods). Our simulation results are consistent with diverse

experimental observations (see Table 3 and discussion below) only

if the methylation constraints (rule 4) and mutual repression of

expression of gene modules (rule 29) are relatively strong effects

(i.e. H.G and J.F, see Table 2, Eqns (2–3), and parameter

sensitivity in SI for further details). As long as these two conditions

are met, the specific choice of parameter values only alters the

quantitative value of the number of successfully reprogrammed

cells, but reprogramming to the ES state remains rare.

Our simulation results suggest a mechanistic explanation for

why reprogramming is so rare. When reprogramming factors

attempt to change cellular identity by altering the epigenetic state

of a previously silenced gene module, the probability of success

depends upon the position of this module relative to the one that

regulates the terminally differentiated state. We find that the

position of the module whose epigenetic state is altered can belong

to one of three categories (Fig. 5a).

Suppose this gene module regulates a cellular identity in a

different lineage from the terminally differentiated state. In the

next interphase, both modules can express proteins as there are no

mutually repressive interactions between them. In the subsequent

telophase, proteins expressed by each module would favor

epigenetic silencing of the other (rule 4). Expression of proteins

characteristic of a cell type from a different lineage does not favor

reprogramming because it leads to cell death or arrest in our

model. Cell death could be mediated by various mechanisms

including genetic instabilities if the two open gene modules send

conflicting instructions to housekeeping genes. Of course, there is

also the chance that the cell will be rescued by stochastic

expression of some master-regulatory gene, or that the cell will

assume an ‘‘intermediate’’ cell state without master regulation that

could be viable, but does not reprogram, such as some arrested

states [18]; finally, there is a possibility that two master regulators

will not repress each other in full, but some minuscule amount of

expression of both will remain thus, arresting the cell. Within the

framework of our model we do not distinguish between these

possibilities, and classify cells in all these unusual, dead, or arrested

states to be dead/arrested.

The gene module whose epigenetic state is altered by

reprogramming factors could be in the same lineage as the

differentiated cell, but not be its sibling or progenitor. In the

following interphase, this module and the one that regulates the

terminally differentiated state can both express proteins. In the

subsequent telophase, according to our model, protein products of

the gene module regulating the terminally differentiated state will

favor epigenetic silencing of the module that was turned on by the

action of reprogramming factors (rule 4). But, the opposite is not

true because the cellular state regulated by the gene module whose

epigenetic state was altered by reprogramming factors could

potentially differentiate to the terminally differentiated cell type.

Thus, the altered gene module will be silenced again, and the cell

remains terminally differentiated.

Reprogramming factors could also change the epigenetic state

of a previously silenced gene module which regulates an

immediate sibling or the progenitor of the terminally differentiated

state. In the subsequent interphase, these two gene modules with

open chromatin status will not simultaneously express proteins at

high levels. This is because gene modules that are ‘‘nearest

neighbors’’ in the hierarchy mutually repress each other (rule 29).

If the dominantly expressed gene module (determined stochasti-

cally) is the one which regulates a sibling or the progenitor of the

terminally differentiated state, then during the next telophase its

products will establish epigenetic marks consistent with a new

identity (rule 1). Thus, with a probability determined by stochastic

effects, a step toward reprogramming can occur via trans-

differentiation or de-differentiation.

These arguments suggest that a step toward reprogramming

occurs with significant probability only if the epigenetic state of a

gene module regulating a sibling or progenitor of the differentiated

cell is changed to open chromatin status by reprogramming

factors. This is a rare event in our simulations where the set of

master regulator genes that determine a cellular identity are

considered to be one gene module. In reality, this is even less likely

because it requires reprogramming factors to orchestrate changes

to a set of master regulator genes synchronously. For successful

reprogramming to the ES state, a sequence of such rare events

must occur in a particular cell. This is because after a step toward

reprogramming occurs, the partially reprogrammed cell is subject

to all the constraints discussed above. Therefore, although cellular

identity is plastic, reprogramming a terminally differentiated cell to

the ES state is rare and requires many cell cycles.

Two examples of how states evolve under the influence of

reprogramming factors in our simulations are shown in Fig. 5b.

The first example shows a ‘‘cell’’ that does not successfully

reprogram, as after a successful trans-differentiation, ultimately the

cell is arrested/dead. In the second example reprogramming to the

ES state occurs successfully, and it shows an interesting feature. At

an intermediate time point, before the ES state is realized,

reprogramming factors have turned on expression of the

Table 2. Parameters used to obtain the simulation results
reported in the main text.

Parameter of the model
Value of the
parameter

Protein action on epigenetic lattice G = 25

Mutual suppression by two proteins J = 3000

Action from epigenetic to genetic lattice F = 2000

Methylation strength H = 40

Minimal protein expression level required to actively
affect epigenetic state of the gene

a = 0

Minimal epigenetic availability of the gene required
to allow protein expression

b = 0.3

Results do not change qualitatively as long as the parameters lie in the
following ranges: H.G; J.F&H,G; 0.1,b,0.5 and 0,a,0.6.
doi:10.1371/journal.pcbi.1000785.t002
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endogenous gene module that regulates the ES state. But this is

transient, as this module is quickly silenced. We find that, unless

proteins expressed by each gene module can stably repress genes

that are distal in the hierarchy of states (rule 4, realized

presumably through DNA methylation), expression of endogenous

genes that regulate the ES state can occur early and prior to the

temporal increase in the number of bivalently marked genes

observed during reprogramming. In other words, our model

recapitulates the observation that endogenous expression of Oct4

and Sox2 is the last step toward reprogramming only if the ‘‘DNA

methylation’’ constraint is long-ranged. Thus, the model suggests

that transient blocking of methylation machinery might allow

endogenous expression of Oct 4, Sox2, etc., at intermediate time

points. This is consistent with the observation that DNA

methyltransferase and histone deacetylase (HDAC) inhibitors,

such as valproic acid (VPA), an HDAC inhibitor, improve

reprogramming efficiency [9].

Our model predicts that reprogramming occurs via a sequence

of trans-differentiations to immediate siblings or de-differentiations

to immediate progenitors in the hierarchy of cellular states. Note,

however, that our results do not imply that pure differentiated states will be

observed as reprogramming occurs. Oct4, Sox2, etc., have numerous

targets, and so genes from unrelated lineages will transiently be

expressed during reprogramming to the ES state (22). But, the

entire set of master regulatory genes for a cellular state from a

different lineage will not be expressed.

We illustrate this point by showing computer simulation results

from a model where we consider each gene module to be

comprised of three individual genes (Fig. 6). Reprogramming

factors can attempt to change the epigenetic state of the individual

genes randomly as before. However, in this more complex model,

if we allow only one gene’s epigenetic state to be modified in every

telophase, reprogramming becomes so rare that we cannot observe

it in a realistic computer simulation time. So, we allowed a larger

number of transformations per cycle. Choosing this number to be

too large corresponds to overexpression of reprogramming factors,

and this severely hinders reprogramming (Text S1, section 2). For

the results shown in Fig. 6, we randomly pick 12 genes and change

their epigenetic states during each simulated telophase. We assume

that the entire set of genes comprising a module must be expressed

for its products to regulate the epigenetic or genetic network. This

is consistent with combinatorial control of regulation.

Fig. 6a shows two examples of in silico cells that successfully

reprogram to the ES state. Reprogramming takes place via a

sequence of trans-differentiation and de-differentiation events

wherein the entire set of genes that regulate a progenitor or

sibling of the previous cellular state is expressed. But, the

intermediate states are not pure differentiated states as some

genes from unrelated lineages are also turned on at the same time

(as observed in experiments [18]). If the terminally differentiated

state in our simulations is analogous to a B cell, our simulations

predict that all successfully reprogrammed cells must transit

through an impure state where all the genes regulating the

hematopoetic stem cell state are turned on (as in Fig. 6a).

Although beyond the scope of this work, it would be reasonable

to test this prediction by applying a cre-lox based lineage-tracing

approach. Using one or more stem/progenitor specific promoters

that are inactive in the terminal state (e.g., B cell), in combination

with a lox-STOP-lox reporter, one could retrospectively determine

whether all the resulting iPS cells are labeled and hence have

transiently expressed markers of earlier stages within the same

lineage. An unrelated cell type, such as fibroblasts, should generate

unlabeled iPS cells because it would not be expected to transition

through hematopoietic progenitor stages and hence serve as an

appropriate control.

The results depicted in Fig. 6 could also potentially be assessed

quantitatively in experiments where the temporal evolution of the

gene expression patterns of a number of successfully repro-

grammed cells is observed. Consider a state where the master

regulator genes corresponding to a particular cellular identity are

all expressed. One could then ask: when these genes are

subsequently silenced during reprogramming, which complete

set of master regulatory genes start expressing proteins? One could

ask this question at various times during reprogramming and in

various successfully reprogrammed cells. This would enable

calculation of the following four point correlation function (C):

C(i,j; t,tzDt)~SdSi,0(tzDt)dSj,1(tzDt):dSi,1(t)dSj,0(t)T ð1Þ

where d is the Kroenecker delta, t is time, t+Dt is a later instant in

Table 3. Examples of experimental features of reprogramming explained by the proposed model (see details in the text).

Experimental observation Explanation

Reprogramming takes at least 12 days of continuous exposure to
reprogramming factors [11]

In the simulations, reprogramming does not occur in small number of cell
divisions. This is because the most probable paths of reprogramming involve a
sequence of de-differentiation events to closely related cellular states (see Fig. 5
for details)

Stochastic nature of reprogramming [56] In the simulations, trajectories starting from identical differentiated state may or
may not undergo successful reprogramming. A trajectory in the simulation
corresponds to the processes in a single cell.

Low yield of reprogramming process [2] In the simulations, the majority of cells end up in dead/arrested state with only a
few that are successfully reprogrammed

The fact that the same gene cocktail can reprogram different terminal
cell types [1,12]

In the simulations, and the mechanism we propose, exogenously added genes
must have multiple targets (e.g., Oct4, Sox2) enabling random epigenetic
perturbation of these targets regardless of the original differentiated state. cMyc
and Klf-4 enhance progression through the cell cycle, thereby providing
opportunities for random epigenetic perturbations.

An increase in the efficiency of reprogramming B cells upon Pax5
knockdown [12]. (Loss of Pax5 had been previously shown to cause
dedifferentiation of B cells)

In the simulations, trajectories starting from the less differentiated state (i.e.,
higher up in the cell hierarchy) have higher chance to undergo successful
reprogramming, thus making reprogramming more efficient compared to
reprogramming of the less differentiated state.

doi:10.1371/journal.pcbi.1000785.t003
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Figure 5. Reprogramming is a consequence of random perturbation of epigenetic state of the cell. In our model, reprogramming factors
can change the epigenetic state of randomly chosen regulatory modules (for reasons, see text). (a) Starting from a fully differentiated state,
reprogramming factors can perturb any of the remaining 14 positions (for the case of a 4-level hierarchy). Four outcomes are possible depending on
the perturbation site: death/arrest, trans-differentiation, de-differentiation or return to the initial cellular state. These outcomes are determined by

Reprogramming Paths
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time during reprogramming (a cycle in our simulations), i and j are

labels of two genes, and Si is either 1 or 0 depending upon whether

the ith gene is expressing proteins or turned off.

Our computer simulations predict (Fig. 6b) that, at each stage of

reprogramming, the correlation function would have high values for

genes from lineages related to the terminally differentiated starting

point and low values for genes of unrelated lineages. We hope that

this prediction can also be assessed in future experiments. This

could involve permanent labeling as mentioned above, or possibly,

in the long-term, real-time monitoring of cell state transitions.

Discussion

To the best of our knowledge, we have developed the first

computational model that describes how terminally differentiated

cells may be reprogrammed by expression of ectopic genes. This is

achieved by a mathematical description of interactions between

epigenetic and genetic networks of master-regulatory genes that

govern specific cell states. The model also describes differentiation

in accord with experiments. Our model describes cellular states as

attractors on a generalized landscape of all possible genetic/

epigenetic configurations. Cellular states are stable, self-renewing

states unless a perturbing signal (either differentiation cue or

reprogramming factors are introduced).

As summarized in the table 3, major features of the reprogram-

ming process are explained by our results and the mechanism of

reprogramming it suggests. For instance, different cell types can be

reprogrammed with the help of the same set of factors [1,12,16]

because ectopic expression of genes that have many targets (e.g., Oct4

and Sox2) can perturb the epigenetic state regardless of the identity of

simulating the system in accord with the rules described in the text and Figs. 2–3. The color code representing genetic and epigenetic states is the
same as in Fig. 1 (b) Examples of real trajectories observed in simulations illustrating different temporal evolution of epigenetic and genetic states.
Complete cell reprogramming appears as a consequence of several successful de-differentiation events as seen in the second example trajectory.
Simulations are performed with parameter values F = 2000; J = 3000; G = 25; H = 40; a = 0; b = 0.3. The color code representing genetic and epigenetic
states is the same as in Fig. 1.
doi:10.1371/journal.pcbi.1000785.g005

Figure 6. Simulations of a model where each gene module regulating a cellular identity consists of three different genes. (a) In this
(similar to the previous) model, individual genes do not interact with each other. Rather modules interact with each other when all of the proteins in
a module are expressed. Since reprogramming factors change the epigenetic state of randomly chosen individual genes, several (here: at least three)
genes have to be changed to open chromatin status at the same time in order to allow a whole module to be able to express proteins. Examples of
simulated trajectories show activation of genes of unrelated lineages during successful reprogramming. Simulations are performed with parameter
values F = 2000; J = 3000; G = 25; H = 40; a = 0; b = 0.3. (b) If population averaged expressions of genes during reprogramming can be measured, one
can compute a 4-point correlation function (see Eq. 1). This correlation function describes the probability of activation of a given gene after the
master regulatory gene module, i, was silenced. Then all the genes can be grouped in three groups as our simulation indicates. Thus, the genes
defining the most likely paths to reprogramming can be identified as the ones with the highest magnitude of this correlation function. The
correlation function was computed by averaging over all successfully reprogrammed trajectories. The colors correspond to the magnitude of the
correlation function (as shown on the left).
doi:10.1371/journal.pcbi.1000785.g006
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the starting differentiated cell type. The importance of fast

progression through the cell cycle (due to cMyc, Klf4, or p53

knockdown) is because this offers more opportunities for epigenetic

transformations during telophase. The important experimental

observation that endogenous Oct4 and Nanog expression [2] occurs

just prior to complete reprogramming is also recapitulated by our

model. The stochastic nature of the reprogramming process [56] and

its low yield [2] are because only a few types of trajectories can lead to

successful reprogramming, and they are realized rarely by stochastic

perturbation of the epigenome by the reprogramming factors. Our

model predicts the nature of these rare trajectories to be those that

progress through reprogramming via de-differentiation to closely

related cell types (immediate progenitors or siblings in the hierarchy).

Ways to directly test this prediction are suggested. However, any

feature that involves a specific molecular interaction between specific

molecules is not described by our model.

In our current model, we consider states with genes that express

proteins with conflicting demands to die/arrest. In reality, some of

these situations can give rise to steady states that do not arrest or

reprogram (such as the recently studied BIV1, MCV8, etc., cell

lines) [18]. The ideas emerging from our model are consistent with

observations made by manipulating these trapped states.

For example, consider the observation that removing repro-

gramming factors allows cells from the BIV1 cell line (isolated

during reprogramming of B lymphocytes) [18] to reprogram to the

ES state. This suggests that overexpression of reprogramming

factors prevents these cells from reprogramming to the ES state.

Our model suggests that this could be due to two reasons. First,

over expression of reprogramming factors (which have many

targets) could simultaneously change the epigenetic states of a

number of silenced genes to permissive chromatin status. Our

simulations of the model shown in Fig. 6 with a large number of

such simultaneous transformations (e.g., 22 at a time, rather than

12 at a time used for Fig. 5) prevents successful reprogramming

because of the large probability of obtaining dead or arrested

states. As noted above, one of these states that cannot reprogram

could correspond to the BIV1 cells.

Secondly, our model describes how lowering expression of

reprogramming factors in BIV1 cells could enable reprogramming.

In our simulations, we consider proteins expressed during each

interphase to act on the epigenome to reach a new balance which

then leads to a corresponding protein expression pattern before

another epigenetic transformation can occur due to the action of

reprogramming factors. This is analogous to assuming that the

reprogramming factors can act to change the epigenetic state of a set

of master regulator genes rarely. If reprogramming factors are

grossly overexpressed, this would not be true. So, before a new

protein expression pattern could be expressed consistent with a

newly acquired epigenome (say, de-differentiation to a progenitor),

another epigenetic transformation would occur, and the whole cycle

would start again. Simulation results showing this effect upon

overexpression of reprogramming factors are depicted in Fig. 3B in

Text S1. Removing reprogramming factors could potentially allow

reprogramming of cells trapped in such an infinite loop.

Our low-resolution model for the architecture of genetic and

epigenetic regulatory networks that determine how cellular

identities change is consistent with diverse observations (Table 3).

In formulating this model, we ruled out many models that were

inconsistent with known experimental results, but we cannot rule

out all other possible models. Therefore, the predictions of the

model (noted earlier) need to be experimentally tested (perhaps in

ways that we have suggested) to either falsify it or encourage

studying it further. If tested positively, the suggestions emerging

from our model regarding ways to enhance reprogramming yields

should be further explored. It would also be interesting to study

other transcription factor induced cell state conversions [57,58]

within the conceptual and computational framework we have

developed for how cellular identity is transformed. In particular,

recent results of direct conversion between exocrine and endocrine

cells through ectopic expression of three alternative transcription

factors [59] should be examined.

It would be interesting to further investigate several assumptions

adopted in the model for the lack of specific information about

individual master-regulatory modules. For example, maximum

expression levels of different master-proteins within different modules

could differ, as well as coupling between genetic and epigenetic

networks could be different for different modules. Also, we assumed

that every simulated cell (as represented by a simulated trajectory) has

the same level of expression of reprogramming factors while in reality

cells can be transfected in a heterogeneous fashion. Also, the difference

in viral integration sites in different cells could lead to the different

expression levels of exogeneous genes thus making effect of

reprogramming factors heterogeneous across the population. In a

sense then, we have studied those cells which have expressed

reprogramming factors at levels above a threshold. It would be

interesting to further explore the consequences of such heterogeneity.

Another avenue for further exploration lies in defining the notion of

time during the reprogramming process, in this work cell cycling has

been adopted as a measure of time required for reprogramming while

in reality cells cycle with non-equal rates determined from some form

of cell division rate distribution (simplest form would be an exponential

distribution). It would be interesting to see applicability of the 4-point

correlation function based analysis for the situation when cell cycling

rates are not identical. Finally, de-silencing action of reprogramming

factors is assumed to be distributed randomly. It would be interesting to

consider situations when de-silencing distribution is not uniform across

the hierarchy. It is possible that non-uniform distributions can improve

the reprogramming efficiency.

From the standpoint of statistical physics, our model couples a

Potts model with short and long-ranged interactions in external

fields (Eq. 2) with an Ising model with short-ranged interactions in

an external field (Eq. 3). It may be fruitful to develop a deeper

field-theoretic understanding of such models.

Methods

All simulations are carried out with the help of two hierarchical

lattices because two lattices are required to properly describe the cell

state as shown in Fig. 1b. In the simulation code provided in Text

S2, we consider 4 levels in the hierarchy (such as the one in Fig. 1b).

Other possibilities (3 and 5 levels) have been considered also.

The epigenetic lattice has a discrete epigenetic state associated

with each node (21,0,+1). Sepigen = 21 corresponds to closed

chromatin, Sepigen = 0 corresponds to bivalent chromatin and

Sepigen = +1 corresponds to open chromatin. Genetic lattice

describes expression of proteins from master-regulatory modules.

It has discrete gene expression states associated with each node

(0, +1). Sgen = 0 corresponds to the absence of any protein

expression from the given gene, Sgen = +1 corresponds to the

maximum protein expression from the gene. In the course of

simulation, cell states change in response to random epigenetic

perturbations according to the rules described above (see Table 1

for summary). There are two possible endpoints for the simulation

procedure: either the cell will assume a dead/arrested state, in

which case the simulation stops; or it will, as a consequence of a

random sequence of epigenetic transformations, be reprogrammed

to the ES-state, which is indicated by the stable turning on proteins

expressed by the of ES-regulatory module. In the latter case we
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stop the simulation procedure manually because, according to

experimental observations [2], stable expression of endogenous

Oct4 suppresses expression from the exogenous locus, thus

preventing future action of reprogramming factors.

In order to initialize simulations one has to specify either the

epigenetic or genetic state of the lattice (see Fig. 7). If we start by

specifying the protein expression pattern, computer simulations

are carried out to determine the epigenetic state that is realized in

telophase. A Monte-Carlo simulation algorithm is used in accord

with the following Hamiltonian, with its four terms representing

rules 1–4 (see Model development), respectively:

H½fSi
epg�~{G

X

i

vSi
gen

wSi
ep

zG
X

i,j[sibling,progeny of i

vSj
gen

wSi
ep

zG
X

i,j[parent of i

vSj
gen

wjSi
epj

zH
X

j,i=[progeny of j
and i=j

(vSj
gen

w{a)Si
ep

ð2Þ

Si
ep denotes the epigenetic spin state of the ith module, and Si

gen

specifies the protein expression level of the ith module. The angular

brackets denote the average expression level of the jth module

obtained during the preceding interphase, and could include

protein products of ectopic genes or signaling events. |Si
ep|

represents the absolute value of Si
ep. The quantity G is a positive

parameter that represents the strength with which the protein

atmosphere can modify the epigenetic state by altering histone

marks. H is a positive parameter that represents the strength of the

DNA methylation constraint. The quantity, a, is a positive

constant that favors values of Si
ep,a if proteins expressed by

gene, j, are present. As detailed in the Text S1 (see section 2), the

results of our simulations are inconsistent with experimental results

if H is not greater than G. As long as H.G, our qualitative results

do not depend upon the specific values of these parameters. The

specific value of a does not affect qualitative results. Results

presented in the main text are for a = 0, and G = 25, H = 40 (in

units described below).

During simulation of the telophase, the epigenetic state Sepigen of

each module fluctuates. The output of the telophase simulation is

,Sepigen., an average of these fluctuating values for each node of

the lattice (i.e. for each module). Because we have a discrete

Figure 7. Flow chart of the simulation procedure. The simulation essentially mimics progression through the cell cycle in accord with Fig. 2. In each
phase of the cell cycle, interactions within and between genetic and epigenetic lattices are enforced through the Hamiltonians of Eq. 2 and 3. Mathematical
structure and choice of parameters are such that rules depicted in Fig. 3 are obeyed. For analysis of sensitivity to parameter variations see Text S1.
doi:10.1371/journal.pcbi.1000785.g007
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representation for the epigenetic marks (+1, 0, or 21) while

actually each gene bears multiple marks, using the average allows

us to reflect intermediate levels of positive and negative histone

marks on a gene. For example, an average value near zero for the

epigenetic state of a gene module implies that both positive and

negative marks are present on histones associated with it, a value

close to one represents an open chromatin state, etc.

Average values of epigenetic state serve as input for simulation

of interphase. If ,Sepigen.,1 (gene is epigenetically available),

than it will favor protein expression during the interphase in

accord with the rules depicted on Fig. 3a. Similarly, if two

neighboring states are epigenetically available, only one protein

will be expressed due to mutual repression of neighboring master-

regulators. Separate Monte Carlo simulations are carried out to

establish gene expression patterns during interphase. The

following Hamiltonian, with the two terms in it corresponding to

rules 19 and 29 (see Model development), respectively, is used:

H fSi
geng½ �~{F

X

i

(vSi
ep

w{b)Si
gen

zJ
X

i=j[nearest neighbors

Si
genSj

gen
ð3Þ

The angular brackets denote the average value of epigenetic state

of the ith module obtained during the preceding telophase. F is a

positive constant that represents how strongly a protein is

expressed or repressed if it is in open chromatin state or in

heterochromatin, respectively. The parameter, b, is a positive

constant; protein expression is favored if ,Si
ep..b. Note that the

form of the first term in Eq. 3 implies that protein expression is

more strongly repressed if a gene is packaged in heterochromatin

compared to if it is bivalently marked. J represents the strength of

mutual repression by other proteins. As detailed in the Text S1

(section 2), our results are inconsistent with experiments if J is not

greater than F. As long as J.F, the specific values do not affect

qualitative results. As long as the parameter b is larger than the

typical size of fluctuations in ,Si
ep. (,0.1), the specific value of b

does not affect qualitative results. Results presented in the main

text correspond to b = 0.3, and F = 2000, J = 3000 (for units, see

below).

Values of Si
gen fluctuate during this Monte-Carlo procedure.

The output of the simulation of the interphase is ,Si
gen., which

represents the average expression level of the regulatory protein in

the interphase. These averages are further used in the next

telophase simulation, thus, completing the cycle.

The Monte-Carlo algorithm is standard [60]: the lattice spins

(+1/0/21 on epigenetic lattice; +1/0 on genetic lattice) are

initialized randomly. The move consists of 1) randomly choosing

the node on the lattice; 2) randomly deciding on the choice of new

value of Si for this node (i.e. if Si
epigen was 0 then it can become 21

or +1 with equal probability); 3) energy for this configuration is

computed according to the appropriate Hamiltonian; 4) attempted

changes in state are accepted with probability equal to min [1, exp

{ {bDHfSig½ �]. The parameter,b, is analogous to inverse

temperature used in simulation of thermal systems, and sets the

scale for the parameters, F, G, H and J. If we pick this effective

temperature to be too high (b%F, G, H, J), the system is

disordered; specific cellular identities are not established and the

model has no biological significance. We use b= 1 for results

reported in the main text. During each phase, the Monte-Carlo

procedure is carried out until running average values of

,Si
ep/gen. stop changing along the trajectory; i.e., they converge

to a single well-defined value. For the reported parameters

(Table 2), 50,000 updates are sufficient for accurate averaging

during each phase.

A computer code written using the C++ language is provided as

Text S2 allows calculation of all the results we report. For details

regarding the output and input formats see the Text S1.

Supporting Information

Text S1 Supporting material including parameter sensitivity

analysis and supplementary figures

Found at: doi:10.1371/journal.pcbi.1000785.s001 (1.34 MB

DOC)

Text S2 C++ source code for simulations of reprogramming

trajectories

Found at: doi:10.1371/journal.pcbi.1000785.s002 (0.01 MB TXT)
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