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Abstract

Background: Methods of microarray analysis that suit experimentalists using the technology are
vital. Many methodologies discard the quantitative results inherent in cDNA microarray
comparisons or cannot be flexibly applied to multifactorial experimental design. Here we present
a flexible, quantitative Bayesian framework. This framework can be used to analyze normalized
microarray data acquired by any replicated experimental design in which any number of
treatments, genotypes, or developmental states are studied using a continuous chain of
comparisons.

Results: We apply this method to Saccharomyces cerevisiae microarray datasets on the
transcriptional response to ethanol shock, to SNF2 and SWI1 deletion in rich and minimal media, and
to wild-type and zap1 expression in media with high, medium, and low levels of zinc. The method is
highly robust to missing data, and yields estimates of the magnitude of expression differences and
experimental error variances on a per-gene basis. It reveals genes of interest that are differentially
expressed at below the twofold level, genes with high ‘fold-change’ that are not statistically
significantly different, and genes differentially regulated in quantitatively unanticipated ways.

Conclusions: Anyone with replicated normalized cDNA microarray ratio datasets can use the
freely available MacOS and Windows software, which yields increased biological insight by taking
advantage of replication to discern important changes in expression level both above and below a
twofold threshold. Not only does the method have utility at the moment, but also, within the
Bayesian framework, there will be considerable opportunity for future development.
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Background
Methods for analysis of cDNA microarray data include those

that cluster hierarchically [1] by principles of self-organiza-

tion [2] or by k-means [3]. These methods yield enormous

amounts of information about similarities of cell state and

coordination of gene regulation, and are useful for grouping

genes or transcriptional profiles by similarity. They have the

limitation that although experimental replication enhances

the significance of groupings observed, the groupings do not

inherently quantify signal and noise. A fold-value cutoff

originally was used for this purpose [4], and held double

duty as a signifier of true signal and a boundary beyond
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which observed fold-measures were considered to be reflec-

tive of actual fold-change. Other approaches use likelihood-

based methods [5,6] to obtain P-values for gene expression

differences in replicated comparisons. These methods make

the assumptions and have the power of model-based statis-

tics, but as yet are not formulated to handle more than two

genotypes, environments, or developmental states within a

single, cohesive framework.

One method for analyzing experiments that involve numer-

ous treatments is the use of analysis of variance on microar-

ray data. Methods have been developed that can yield a

profusion of information about the sources of experimental

variation [7,8] or, at a biological level, about the proportion

of variation in expression profile attributable to biological

factors such as sex or genotype [9]. These methods can esti-

mate the magnitude of effects as well as significance, but

also impose considerable constraints on experimental design

[10], and they are not robust to missing or excluded data.

Volcano plots [8] have highlighted well the important dis-

tinction between biological and statistical significance. There

are effects that may be biologically important that may not

be statistically significant, and vice versa. Because many

microarray experiments can have a complex and unbalanced

design, owing to the technical failure of certain hybridiza-

tions and the iterative nature of the work itself, we have

developed an approach for assessing statistical significance

that could potentially use all the available observations in

any transitively connected design. Our goal is to identify

effects of biologically significant magnitude to statistically

significant precision.

To that end, we introduce a Bayesian analysis of gene

expression level (BAGEL) model for statistical inference of

gene expression and demonstrate its utility by re-examining

cDNA microarray data on the response of yeast to ethanol

shock [11], on transcriptional regulation by SNF2 and SWI1

[12], and on zinc regulation [13].

Results and discussion 
Our model estimates gene-expression levels, �i, and error

variances, �i for each gene by Markov chain Monte Carlo

integration of the likelihood function of observed gene-

expression ratios, and incorporates a prior distribution for

the parameters. With an uninformative prior, statistical

analysis within this model is possible as long as there are as

many comparisons as there are parameters to be estimated.

Unfortunately, many cDNA microarray studies have been

carried out with minimal replication, and most use a refer-

ence-sample design (for example [4,14-16]) that yields weak

statistical information ([7,8]; see also below).

Figure 1 diagrams the experimental design of three recent

cDNA microarray studies [11-13] that have incorporated

some replication. Each expression node is diagrammed as a

circle, with genotype and environmental state inscribed. For

some studies (Figure 1a), n = 2: expression during normal

log growth, and expression after 30 minutes of ethanol

Figure 1
Experimental designs for three studies analyzed using the BAGEL
framework. Each circle represents an expression ‘node’, typically
characterized by a particular genotype, environment and developmental
state. Here, each circle is inscribed with a genotype and environment.
Arrows represent individual two-color cDNA microarray experiments,
with the arrowhead pointing toward the sample labeled with the Cy3
fluorophore. (a) A comparison of global gene expression of wild-type
(WT) yeast in rich medium at log-growth to that of yeast at log-growth
after 30 min exposure to 7% v/v ethanol [11]. (b) A comparison of swi1�
and snf2� mutants to wild type in rich and minimal media [12]. (c) A
comparison of wild-type yeast and zap1 mutants in synthetic complete
medium with three different concentrations of zinc [13], in a long,
unbroken, replicated chain of comparisons. Circles surrounded by a
double line highlight the samples that turned out to be most important to
their study.
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shock. For others, n is larger. For instance, the examination

of snf2�, swi1�, and wild-type genotypes in rich and

minimal medium, yields an n = 3 in each of two conditions,

and the study of zap1 and wild-type strains in high, medium,

and low zinc yields n = 6. These studies, in an exemplary

fashion [17], have incorporated replication into their experi-

mental design. As the experiments were not originally

designed for analysis by this method, analysis of these

datasets demonstrates some of the flexibility and utility of

the BAGEL statistical framework. Furthermore, data from

experiments following any of the replicated experimental

designs described in Yang and Speed [18] may be directly

and easily imported and analyzed by the BAGEL software.

Ethanol shock 
Alexandre et al. [11] examined the effect of 30 minutes of

ethanol shock on a culture of yeast exposed during log-phase

growth, by comparing the global gene expression of the

ethanol-exposed cells to the global gene expression of cells in

the mid-log phase of growth (Figure 1a). If we arbitrarily assign

the node with the lower estimated expression to a level of unity

and assume an equal error variance in both treatment and

control, there are only two parameters to estimate: the mean

expression level � of the higher-expressed node, and their

common error variance �2. Figure 2a shows contour plots of

the likelihood functions �
k

f (zk) (see Materials and methods) for

genes for three yeast transcriptional regulators (MSN4, HSF1

Figure 2
Estimates of gene expression levels for three yeast transcription factors after 30 minutes of exposure to 7% vol/vol ethanol during peak growth phase.
(a) Likelihood contour plots for the relative gene-expression level (�) and experimental error variance (�2). For each gene, surfaces have a single peak.
(b) Credible intervals for gene-expression level for three yeast transcription factors that are candidates for the ethanol shock response, taken from
cultures at log-phase growth either unexposed or exposed to 30 min of 7% v/v ethanol. Because the slope of the likelihood is much steeper to the right
than to the left of this ridge represented in (a), credible intervals with two-sample data such as this are highly asymmetric. More balanced experimental
designs have more symmetric credible intervals. Using a conservative gene-by-gene criterion of nonoverlapping 95% credible intervals, none of these
transcription factors shows statistically significantly differential gene expression, although GCR1 is close. MSN4 is the gene for a zinc-finger transcriptional
activator for genes regulated through Snf1p. A general regulator for stress response, it does not seem to be responsible for upregulation of stress genes
in response to ethanol. HSF1 is the gene for a heat-shock transcription factor that binds to the heat-shock DNA element at both normal and elevated
temperatures. Although the difference in estimates observed here is suggestive of regulatory action of the heat-shock response, these differences are not
statistically significant. GCR1 encodes a positive regulator of glycolytic genes, including GLK1. Although the difference in estimates observed here is
suggestive of regulatory action on transcription of transposable elements and the trehalose pathway, the differences are not statistically significant by a
conservative criterion of nonoverlapping 95% credible intervals.
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and GCR1) that could potentially be responsible for observed

downstream changes discussed later in this text. These three

genes demonstrate typical two-dimensional likelihood sur-

faces in which the most likely expression levels are equiva-

lent, different, and very different, respectively. Msn4p is a

zinc-finger transcriptional activator for many genes regu-

lated by Snf1p. When MSN4 has a null allele, stress-response

genes including HSP12, HSP26, HSP42, HSP78 and HSP104

are upregulated [19]. Hsf1p is a heat-shock transcription

factor that binds to the heat-shock DNA element at both

normal and raised temperatures. Abundant transcripts from

MSN4 and HSF1 could have a role in the upregulation of

heat shock genes after ethanol shock (see below). Abundant

transcripts of MSN4 and GCR1 could have a role in the con-

comitant upregulation of the trehalose pathway (see below).

The observed MSN4 ratios in two replicate microarrays were

inconsistent (0.6- and 2-fold). This, in fact, gives very weak

support to the hypothesis that the nodes are expressed at

nearly the same level. This is in part because, conditional on

higher error variances, larger differences in expression

become increasingly likely. This effect is seen more dramati-

cally in the contour plot for HSF1, for which the highly dis-

persed, somewhat inconsistent ratios of 0.9-fold, 3-fold and

5-fold were observed. Consistent data, even when relatively

dispersed (ratios 3-fold, 5-fold and 10-fold), as for GCR1,

shows this effect but with a greater slope in the likelihood

surface. Although Figure 2a depicts two-dimensional sur-

faces from an ordinary treatment-reference experimental

design with a common variance term, it shows typical simple

topologies of the likelihood surface. Increasing the amount

of data in larger datasets accelerates reliable convergence

upon the stationary distribution of the Markov chain, which

is required for inference of the posterior distributions of the

parameters of interest. Furthermore, in larger datasets,

these posterior unconditional distributions of the parame-

ters are unimodal. By inference, the multidimensional likeli-

hood surfaces are expected to be fairly simple.

These likelihood plots clearly convey the most probable

expression levels. To determine statistical significance, we

examine the posterior distributions of the parameters, as

determined by Markov chain Monte Carlo simulation. In

fact, the credible intervals for the expression level for all

three of these genes overlap (Figure 2b). There is not enough

information in the replicated comparisons of each gene’s

ratio of expression to constrain the variance parameter to a

small enough value so that expression levels could be

inferred to lie within a small range.

In contrast to the lack of statistical significance of the expres-

sion differences observed in these three upstream transcription

factors, many of the downstream conclusions of the original

study are not only consistent with BAGEL estimates, but are

4 Genome Biology Vol 3 No 12 Townsend and Hartl

Figure 3
Stress-induced chaperonins are abundant in log-phase yeast culture shocked by 30 min exposure to 7% ethanol. (a) BAGEL estimates and confidence
intervals for seven heat-shock genes. The first four were mentioned by [11], and are significantly abundantly expressed after ethanol shock. HSP30 and
HSP42 are also significantly abundant, whereas HSP82 is not. (b) Except for SSA4, these genes of the HSP70 family are not statistically significantly
differentially expressed after ethanol shock. Note, however, that estimates for their expression level are consistently higher.
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statistically significant by the conservative gene-by-gene crite-

rion of nonoverlapping 95% credible intervals. For instance,

the authors concluded that the stress-induced chaperonins

(‘heat-shock’ genes) were upregulated by 30 minutes of expo-

sure to 7% v/v ethanol [11]. Many of these genes are clearly sig-

nificantly abundant in the stressed state (Figure 3a), although

there is not enough data to conclude that all of the set of

HSP70-family genes is significantly abundant in the stressed

state (Figure 3b). On the basis of the large estimated expression

differences (nearly always twofold or greater), an effect on the

HSP70 family may yet be large and biologically important.

In addition, the trehalose pathway, whose product aids the cell

in dealing with excess ethanol [20], is clearly upregulated

(Figure 4). Interestingly, the six genes HXK2, PGM1,

YHL0012w, TSL1, TPS2 and ATH1, form a completely

parallel pathway from �-D-glucose to �,�-trehalose to

D-glucose. Of those genes, none is significantly upregulated.

Teasing apart the biochemical modes of action of these iso-

forms (‘redundant’ genes) will lead to a better understand-

ing of the modularity of genomes and of the varied methods

of response to environmental challenges of organisms.

Alexandre et al. propose a futile trehalose cycle after

observing high ratios of expression of NTH1 in their

ethanol-shocked sample [11]. However, the wide credible

intervals around the expression levels of the genes for the

neutral trehalase NTH1 (Figure 4) and the acid trehalase

ATH1, the observed accumulation of trehalose in fermenta-

tions [21], and the potential for compartmentalization [22]

indicate that more data are needed before one can infer the

extent of such a cycle.

In addition to the results previously noted, it is interesting to

observe significant abundant expression of numerous open
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Figure 4
Trehalose pathway transcripts are significantly abundant along the
pathway from D-glucose to trehalose 6-phosphate in yeast cultures
exposed to 7% ethanol for 30 min at log-phase growth. Trehalose has a
protective role after ethanol exposure. Although estimates of trehalase
expression are consistent with an increase in transcripts responsible for
degradation of trehalose (NTH1, shown; ATH1, not shown but very
similar), neither gene has nonoverlapping 95% credible intervals in the
two conditions.
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Transposable-element transcripts are abundant after 30 min ethanol
shock to a yeast culture in log-phase growth. The high sequence
homology of these ORFs means that the effects charted above cannot be
considered independent as observed on a cDNA microarray. The high
level of general transposable-element transcript abundance, however,
remains interesting.
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reading frames (ORFs) containing transposable-element

sequence under ethanol shock (Figure 5). Although robust

inferences are compromised by the high sequence homology

of these ORFs, the fact that six were significantly abun-

dant and none was meagerly expressed suggests an inter-

esting biological phenomenon. One possible effector is the

transcriptional regulator Gcr1p, whose BAGEL estimate in

ethanol shock is fivefold greater than in normal log growth

and whose credible intervals in the two conditions barely

overlap (Figure 2). Gcr1p elevates transcription of transpos-

able elements Ty2-917 and Ty1-912 [23] as well as of GLK1 of

the trehalose pathway ([24], and Figure 4).
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Figure 6
Statistical and biological significance of inferred gene expression levels in swi1�, snf2�, and zap1 mutants compared to wild type (WT). (a) Scatterplot of
the log2 BAGEL estimate of fold-change in the swi1� mutant compared to wild type for all genes (on the x-axis) versus the negative overlap of BAGEL
credible intervals for the swi1� mutant compared to wild type. Points above zero on the y-axis have nonoverlapping 95% credible intervals. Dashed lines
indicate a twofold difference in estimate of gene-expression level. Points outside the region defined by these dashed lines and below zero on the y-axis
have low statistical significance despite their high estimated fold-change. Points within the region defined by these dashed lines and above zero on the
y-axis have high statistical significance and a low fold-change. Note that these points are very densely packed and appear close to zero on the y-axis
because the difference between confidence intervals cannot exceed the difference between estimates. (b) Scatterplot of log2 fold-change of gene-
expression levels in the swi1� mutant compared to wild type against gene-expression levels of the snf2� mutant. Genes shown have nonoverlapping 95%
credible intervals with wild type. The regression passes through zero without forcing. (c) Scatterplot of the log2 BAGEL estimate of fold-change in the
zap1 mutant in zinc-deficient medium compared to wild type in zinc-deficient medium for all genes (on the x-axis) versus the negative overlap of BAGEL
credible intervals for the zap1 mutant compared to wild type in zinc-deficient medium. (d) Scatterplot of log2 fold-change of gene-expression levels in
zap1 mutant compared to wild type in zinc-deficient medium versus wild type in zinc-replete medium compared to wild type in zinc-deficient medium.
The regression is forced through zero; its y-intercept and slope are slightly lower when not forced. Genes shown have nonoverlapping 95% credible
intervals with wild type.
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There are many reasons why data points in microarray

experiments are wisely excluded from analysis. Whole

sectors occasionally fail due to premature drying during

hybridization, spots are occasionally malformed, and exper-

imental signal is frequently so low compared to background

that a spot is best excluded from the data. Only 2,041 genes

of 6,138 in these data passed the spot background-fore-

ground acceptance criteria (see Materials and methods) in

all three experiments. Of these genes, 65 were significantly

different by a gene-by-gene criterion, demanding nonover-

lapping 95% confidence intervals. A further 2,337 genes had

one observation missing; their credible intervals were

appropriately wider after BAGEL analysis of the data and

only 22 were statistically significant. Genes with one accept-

able observation were not analyzed. Use of an informative

prior distribution on the variance, however, would allow

such analysis.

Table 1 gives an overview of informative pairwise compar-

isons from the experiments analyzed here. In the ethanol-

shock experiments, only the 87 genes listed in Table 1 are

statistically significantly different out of the, on-average,

1,851 genes measured as greater than twofold differentially

expressed in these single microarray experiments. BAGEL

analysis allows unambiguous inference as to the expression

levels and confidence intervals of these genes of interest. In

this dataset with only three replicates, we detect no signifi-

cant differences at below a twofold level. Datasets with

greater direct replication, or with less dispersed ratios, or

with transitively informative comparisons (see below and

J.P.T., unpublished data) promise to do so.

Deletion of SWI1 and SNF2 
Sudarsanam et al. undertook a study to ascertain which

genes were controlled by the Snf2p/Swi1p chromatin-

remodeling and transcriptional-activator complex subunits,

whether the genes had any distinct regulatory roles, and how

their regulatory roles compare in rich and minimal media

([12], and Figure 1b). In rich medium, the credible intervals

among mutant and wild-type expression levels do not

overlap for 251 genes (more than 4% of the genome). Impor-

tantly, 46 genes with estimated ratios greater than twofold

have overlapping credible intervals (Figure 6a, lower left and

lower right quadrants). Moreover, almost one quarter of the

251 significantly different genes have estimated ratios less

than twofold (densely packed between the dashed lines

because the difference between estimates cannot exceed the

distance between credible intervals, Figure 6a). In minimal

medium, similar results were acquired; a greater number of

significant results were obtained, due in part to greater repli-

cation (Figure 1b, Table 1). The credible intervals of mutant

and wild-type expression levels do not overlap for 604 genes,

almost 10% of the genome. Interestingly, 14 genes with esti-

mated ratios greater than twofold have overlapping credible

intervals, and 361 (more than 50%) of the 604 significantly

differentially expressed genes are differentially expressed

below the twofold level.

Whether these genes represent all of the genes controlled by

the Snf/Swi complex depends, of course, on what level of dif-

ference is deemed biologically significant, which in many

cases depends upon the gene of interest. For many transcrip-

tion factors, it may be that small changes in expression level
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Table 1

Pairwise comparisons of gene-expression level category by mean log2 ratio and by Bayesian estimation with statistical significance

Strain Environment Category* Mean log2 ratio Significant† Not significant Total

S288C Ethanol shocked > 2-fold 2,235 87 1,523 1,610
S288C versus mid-log growth < 2-fold 3,504 0 2,767 2,767

Excluded 399 1,761 6,138

swi1� and snf2� Rich medium > 2-fold 114 170 46 216
versus S288C Rich medium < 2-fold 5,987 81 5,704 5,785

Excluded 41 141 6,142

swi1� and snf2� Minimal medium > 2-fold 218 243 14 257
versus S288C Minimal medium < 2-fold 5,883 361 4,890 5,251

Excluded 41 634 6,142

DY1457 versus Zinc-limited > 2-fold 1,034 419 471 890
DY1457 versus zinc-replete < 2-fold 5,118 309 4,953 5,262

Excluded 0 0 6,152

DY1457 versus Zinc-limited > 2-fold 678 198 310 508
DY1457 zap1 Zinc-limited < 2-fold 5,474 122 5,522 5,644

Excluded 0 0 6,152

*Genes were excluded by necessity because of poor quality or insufficient replication of measurement. †Numbers are not corrected for multiple tests.



cause very large changes in biological state [25-27], and for

many metabolic genes, very large changes in expression may

change pathway throughput very little [28]. Note also that

these criteria do not distinguish between cis and trans

effects on expression level. Presumably, many trans effects

percolate into much or all of the genome in very small ways;

some of these effects may be overwhelmed by systematic

error induced by the technology, but most should be

detectable with sufficient replication.

Credible intervals determined using BAGEL make it clear

that even SER3, which Sudarsanam et al. examine as a can-

didate gene differentially affected in the snf2� and swi1�

strains on the basis of cDNA microarray and northern data

[12], should not be inferred to be differentially affected

solely on the basis of their cDNA microarray data. Although

estimates of the abundance of SER3 transcript differ by

more than twofold, the credible intervals for these two

mutants have extensive overlap (Figure 7a). Examining the

rich-media cDNA microarray dataset for other candidates

for differential expression, we observe that there are 27

genes in which only one of the two mutants has nonoverlap-

ping credible intervals with the wild type.

More important, there are just two genes in this global

dataset for which the credible intervals of expression levels

in snf2 and swi1 mutants do not overlap. This answers a

question posed by Sudarsanam et al. as to whether the dif-

ferences in gene expression between these mutants that they

observed were due to variation in microarray measurements

or to real differences between the mutants [12]. Nearly all

differences they observed in the transcriptional profiles of

these two mutants are potentially due to variation in

microarray experiments. A scatterplot of the log2 estimates

of gene-expression levels for genes significantly different

from wild type, in the two deletion mutants compared to

wild type, yields a linear correlation of 0.97 (Figure 6b). The

large number of genes meagerly expressed compared to wild

type in both deletion mutants is consistent with the roles of

Snf2p and Swi1p as transcriptional activators. In addition,

globally, not a single gene shows a contrasting change in

expression in comparison to wild type. This affirms the con-

clusion [12] that the two genes work almost entirely in

concert in the media conditions tested. The expression levels

of the two genes detected by BAGEL as having significantly

different expression in the two mutants, ECM33 and

YOL154w, are shown in Figure 7b. The small magnitude of

the difference observed in ECM33 between the two strains

may indicate that this highly statistically significant differ-

ence is biologically irrelevant, but certainly further investiga-

tion of the significantly different gene-expression levels

observed in YOL154w is warranted.

Quantitation of short transcript sequence tags by serial

analysis of gene expression (SAGE) [29] yields absolute

counts of expressed sequences in the yeast genome [30].

These quantitations may be used to put relative expression

values obtained from BAGEL on an absolute scale. There are

issues with sampling error and non-uniqueness of sequence

tags in SAGE assays [31] as well as with the linearity of

cDNA microarray ratio measures [17], and with differences

between the ‘wild-type’ strain used in SAGE and in cDNA

microarray experiments. These sources of error are many,

8 Genome Biology Vol 3 No 12 Townsend and Hartl

Figure 7
Candidates for genes differentially expressed in mutants snf2� and swi1�.
(a) SER3 is an example of a gene that should not be inferred to be
differentially expressed on the basis of this microarray data despite a
greater than twofold difference in estimated expression level. Credible
intervals for gene expression of SER3 in swi1� and snf2� mutants do not
overlap with the credible interval for wild-type gene expression, but have
extensive overlap with each other. (b) Two genes detected by BAGEL as
differentially expressed in the two mutants.
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but small and uncorrelated. With these caveats in mind,

Figure 8a assumes that SAGE counts are exact in order to

provide absolute expression levels inferred using BAGEL,

normalized so that the wild-type strain on rich medium is

assumed to have the same expression levels as indicated by

SAGE assay [30]. Figure 8a shows that, as observed by

Sudarsanam et al. [12], the acid phosphatase genes are mea-

gerly expressed in snf2� and swi1� mutants.

Note that although there is esthetic appeal to having the

measurements reported on an absolute basis of transcripts

per cell, little additional information is obtained by this

transformation for most experimental questions, as the

result is simply a rescaling of the y-axis for each gene. Also,

whereas the statistical significance of BAGEL results is

robust to considerable deviation from general linearity of

cDNA microarray results, the quantitative result using SAGE

counts as a basis depends critically upon the linearity of

cDNA microarray measurements. Lastly, it is unclear how to

scale meagerly expressed genes that had a count of zero in a

SAGE analysis. PHO4 is such a gene; in Figure 8b, we have

arbitrarily charted a frequency that would be appropriate if

it were present at approximately one order of magnitude

below the SAGE experiment’s detection threshold of 0.1 mol-

ecules per cell. Neither PHO2 nor PHO4 shows significant

evidence of differential expression in snf2�/swi1� mutants.

Consideration of the raw ratio data led Sudarsanam et al.

[12] to thus conclude that PHO5 gene expression is directly

controlled by Snf2p/Swi1p. PHO3, a ‘constitutive’ acid phos-

phatase, shows the same relative abundance across

snf2�/swi1� mutants as does PHO5 (data not shown). The

87% identity of the nucleotide sequence of these genes

means that cross-hybridization may confound inference

about their regulation. However, unlike PHO5, there is cur-

rently no evidence that PHO3 is regulated by PHO2 or

PHO4. PHO5 may share a direct Snf2p/Swi1p regulatory

mechanism with PHO3.

Analysis presented here supports the result that SWI1 and

SNF2 work almost entirely in concert within the cell in rich

medium [12]. As Sudarsanam et al. noted, however, the

proteins may not always be produced together in all condi-

tions. Moreover, it should be noted that their experimental
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Figure 8
Estimates of absolute gene-expression level, in molecules per cell,
assuming that the SAGE counts for each gene are typical of wild-type
strains. The 95% credible intervals indicated are those for relative gene
expression among samples, and do not incorporate sampling variance in
the SAGE assay. (a) Acid phosphatase genes are similarly meagerly
expressed in swi1� and snf2� mutants. (b) Acid phosphatase regulators
PHO4 and PHO2 are not significantly differentially expressed in swi1� and
snf2� mutants, so that Snf2p/Swi1p control may be direct. cDNA
microarray measurements of PHO4 gene-expression levels show that it is
not significantly abundant or meager in swi1� or snf2� mutants, even
though a large SAGE assay could detect no transcript sequence tags for
this gene. PHO4 expression level shown here was arbitrarily set to 0.1
molecules per cell, an order of magnitude below the experiment’s
detection threshold [30].



design has the least power to detect these specific differ-

ences. This is because all comparisons of expression level

between the mutant strains are transitive comparisons,

which inherit the variance associated with the intermediary

wild-type expression level as well as the variance associated

with the expression levels of the two mutant strains. The

result is that on a log scale the credible intervals of gene-

expression level are broader for the two mutants than for the

wild type. This outcome is a recurrent problem with a

repeated reference-sample experimental design: one learns

the most information about the reference sample, which is

frequently arbitrary and not necessarily of interest. An ideal

addition to the experimental design in Figure 1b would be

several direct comparisons of the mutant strains. Then, both

transitive and direct information would contribute to the

statistical power of a BAGEL analysis for any comparison. It

is also clear that an increase in number of comparisons

would yield more power to detect differentially expressed

genes, and would indeed find more of them. Every single

gene that was detected as significantly differentially

expressed in only one of the two mutants compared to wild

type in the rich medium was significantly different in expres-

sion level only in the swi1� mutant. The swi1� mutant com-

parison to wild type had one more replicate than did the

comparison of the snf2� mutant (Figure 1b).

Zinc regulation 
Lyons et al. examined wild-type and zap1 mutant strains of

yeast growing in cultures containing three different con-

centrations of zinc ([13], and Figure 1c). Zap1p is a tran-

scriptional activator that appears to regulate transcription

of the zinc-uptake system genes in response to zinc [32].

Using the nonoverlapping 95% credible interval criterion, a

BAGEL analysis on this data reveals 469 genes signifi-

cantly more abundantly expressed in cells grown in zinc-

deficient medium compared to cells grown in

zinc-supplemented medium, and reveals 261 genes signifi-

cantly less abundant in the same comparison. This is a

total of about 10% of the genome, and is two thirds of the

number found by use of an averaged twofold criterion. A

considerable number of the genes viewed as abundant by a

twofold criterion, then, are not significantly different by

the credible interval criterion (Table 1, Figure 6c, lower left

and lower right quadrants). Moreover, 42 of the genes sig-

nificantly different by the credible-interval criterion are

significantly different at a ratio of below twofold

(Figure 6c, densely packed between the dashed lines delim-

iting a twofold change). As one might generally expect,

making ZAP1 nonfunctional in a zinc-deficient environ-

ment creates a similar relative effect on most significantly

differentially expressed genes to that created by providing

zinc to a zinc-deficient wild-type strain (Figure 6d).

A common technique to discover candidate genes of interest

in microarray studies is to pick out overlapping sets of genes

expressed at a ratio greater than some cutoff from replicate

and/or different microarray experiments (for example,

Figure 1 of [13], Figure 1 of [33]). BAGEL supplants any need

to examine overlapping gene sets in replicate experiments.

Moreover, it provides a statistically rigorous method for

comparison of multiple different experiments. The equiva-

lent of an overlap in two lists of highly expressed genes is

that neither of the credible intervals for gene-expression

level in a given gene in two experimental conditions overlaps

the reference condition.

For instance, BAGEL analysis of the zinc-regulation data

revealed 96 genes whose levels of gene expression in a wild-type

genotype and zinc-deficient medium were significantly

greater than both zinc-supplemented wild-type and zap1 in

zinc-deficient medium. This is 31 more genes than were

detected using the twofold criterion. Figure 9 shows BAGEL

results for two genes, PHM7 and YGL121c, discussed by [13],

as well as results on four other genes. A zinc-responsive

element (ZRE) consensus DNA sequence, ACCYTNARGGT

(in the single-letter amino-acid code, where N is any

nucleotide, Y is C or T, and R is A or G) (compare Figure 2 of

[13]), is located in close proximity to CTT1 (chromosome

VII, location 65270-80), MNT2 (VII, 20659-69 and 20774-

84), YOL083w (XI, 442975-85) and YNL253w (XIV,

169669). BAGEL results shown in Figure 9 convey not just

the significance but also the extent of differential regulation.

CTT1 and YOL083w are like the two genes PHM7 and

YGL121c discussed by [13], in that having the zap1::TRP1

genotype does not entirely eliminate transcriptional

response to zinc deficiency. These intermediate levels of

expression indicate the action of auxiliary zinc-regulatory

mechanisms.

Figure 10 charts several transcription factors that are sig-

nificantly differentially expressed below the twofold level.

For every gene shown, the credible intervals between wild

type in 3 mM zinc and wild type in < 100 nM zinc do not

overlap. For VPS20, in contrast to the other four genes,

expression is greater when in zinc-deficient medium.

Expression levels in Figure 10 are graphed cosequentially

with the experimental design structure (Figure 1c). As a

result, the increasing size of credible intervals as one scans

from the middle expression nodes to the expression nodes

at the ends of the chain of experiments is clear. The largest

credible interval is for the zap1 strain grown in 10 �M zinc,

on the far right of each cluster of columns. This is as

expected, given that it is at the end of the line of compar-

isons and is informed by only one cDNA microarray com-

parison. In a balanced linear set of comparisons such as

this, it turns out that for any gene on a log scale, the credi-

ble intervals around the gene-expression values of the ends

are greater than the credible intervals around those in the

middle of the chain (data not shown).

For an analysis such as this one, the statistical power could

be improved if expression nodes were compared to more

10 Genome Biology Vol 3 No 12 Townsend and Hartl



than two neighbors. Specifically, direct comparisons

between wild type in 3 mM Zn and zap1 in 3 mM Zn would

complete a circle of comparisons, increasing transitive infor-

mation on all expression nodes. Cross-circle comparisons

would also contribute considerable power. Generally, elimi-

nating ‘ends’ of chains of comparisons should be a goal of

any cDNA microarray experimental design.

Conclusions 
Small datasets such as the ethanol dataset are very good can-

didates for use of a more informative prior distribution to

keep variances within a reasonable range and yield better

results. Analysis of larger datasets indicates that true vari-

ances for microarray data within this model are not larger

than one. The impact of using less-vague priors, especially
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Figure 9
A sample of genes differentially expressed between (wild type, 3 mM zinc) and (wild type, < 100 nM zinc) expression nodes. Six genes located in
proximity to zinc-responsive element consensus sequence ACCYTNARGGT that are meagerly expressed in both wild-type genotype grown with 3 mM
zinc and zap1 genotype grown with < 100 nM zinc. PHM7 and YGL121c were identified and remarked upon in [13] for the difference in expression level
between (wild type, < 100 nM zinc) and (zap1, < 100 nM zinc), which reflects the action of zinc-regulatory mechanisms auxiliary to Zap1p.
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Figure 10
Six transcription factors that are significantly differentially expressed at below the twofold level between wild type, 3 mM zinc and wild type, < 100 nM
zinc. Note that each column cluster above is arranged in the linear order of the experimental comparison chain, from wild type, 10 �M zinc to zap1,
10 �M zinc; credible intervals for expression levels obtained for expression nodes at the ends of the chain are wider than those obtained for expression
nodes in the middle of the chain.
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for the variance, when there are few comparisons, is under

investigation by a number of researchers. A hierarchical

Bayesian model [34] has been used to analyze ratio data and

provide 95% confidence intervals for the log ratio of gene

expression from reference to control. This method assumes

normal distributions of the log ratios rather than ratios of

normal distributions. It has a hierarchical structure that

allocates error variance among microarrays and experi-

ments. The authors suggest use of calibration data, or, alter-

natively, empirical evaluation of the distribution of variances

across all other genes in order to construct a prior. A subset

of genes of nearly equal intensity can be used to form a prior

for variances [35]. This prior was used by the authors to

input reliable variances in t-tests of significance. Promising

advances have been made on Bayesian methods for correct-

ing misleading fold-change measurements made from low-

intensity spots [36], using a gamma rather than normal

model of ratio results.

All these methods have considerable potential to be incorpo-

rated as priors into a framework such as that presented here,

so that the prior may be applied to multiple samples from

different genotypes, environments or developmental states.

Priors such as those above should result in smaller credible

intervals and detection of increasingly significant differences

because they curtail the exploration of unrealistically high

variances that small datasets have too few observations to

rule out ‘on their own’. Continued work in this area, using an

increased amount of non-ratio data provided from scanned

microarrays, should be very fruitful [10]. Furthermore, pos-

terior distributions from such analyses of gene-expression

level have subsequent use in Bayesian methodologies for

clustering [37] and tumor identification [38].

In summary, the model-based approach we have imple-

mented can accommodate complex and unbalanced experi-

mental designs. Some research will continue to be carried

out comparing just two samples multiple times. However,

complex designs will increase in popularity as investigators

explore multiple genotypes, environments and develop-

mental states within a single research project [18]. The

utility of this approach in determining levels of gene

expression may be maximized if these designs incorporate

certain features.

First, compare samples of direct interest directly. When

interested in the differences between two samples, compare

them to each other rather than to an arbitrary reference

sample [7,8]. Whenever possible, study a few expression

nodes thoroughly, rather than many superficially.

Second, replicate each comparison at least once [39].

Whether this is done directly by incorporation of dye during

reverse transcription, or, preferably, by labeling incorpo-

rated amino-allyl-dUTP, reverse the dye labeling to amelio-

rate any dye effect thereof [9,10,18].

Third, eliminate ‘ends’ of comparison chains by carrying out

hybridizations comparing one end to another. This allows

reconciliation of transitive data around a circle of compar-

isons. The more circles created, the more reconciliation

occurs. The smaller the circumference of the circle created,

the stronger the transitive power.

Fourth, connect nodes otherwise distantly located on a chain

of comparisons with extra cross-comparisons. The number

of ‘extra’ comparisons to make depends on what size of effect

is of interest. The observation of a small but significant effect

on key regulatory genes may be of greater biological interest

than the same observation on a metabolic enzyme. The

appropriate weighing of the cost of additional comparisons

against the greater precision of measurement depends criti-

cally upon the question being asked.

For time-course experiments or any other experiment with

an explicit ordered x-axis these guidelines may still be fol-

lowed, as long as replicate comparisons are made among

nodes. Inferred estimates at each node are assessed inde-

pendently of location along the x-axis, so that regressions

across them are valid. Ultimately, experimental design may

be subject to limitation owing to lack of resources or experi-

mental failure. Fortunately, within a framework such as that

developed here, missing spots or missing comparisons do

not require any special consideration or any change in

methodology. Credible intervals acquired for less well deter-

mined genes or less well determined expression nodes are

correspondingly larger. This quantitative information on

gene-expression levels tendered by a thorough analysis of

microarray results should be carefully considered in assess-

ments of the biological effects of genetic or environmental

differences upon cellular state.

Materials and methods 
Normalization 
For the ethanol-shock dataset [11], raw data from GenePix

files was processed as follows. Any spot was excluded from

analysis if both the Cy3 and Cy5 fluorescence signals were

within two standard deviations of the distribution of intensi-

ties of the background pixels for that spot. These low-inten-

sity spots are those most aberrant in fold-change and are

those for which the magnitude is adjusted most by the model

of Newton et al. [36]. Expression values were normalized by

linear scaling of the Cy5 values so that the mean Cy5 and Cy3

values of nonexcluded spots were equal. Two of three experi-

ments thereby achieved a linear log-log intensity plot for

included spots, with slope approximately 1. The third was

linearized by exponentiation of the Cy3 channel to 0.8,

before normalization of the means.

For other experiments, ratio and spot pass criteria were used

as reported in the papers. In the dataset released by

Sudarsanam et al. [12], one of the three reported microarray
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hybridizations between wild-type and snf2 nodes was

excluded from analysis because it had an anomalous global

mean log ratio of -0.26, whereas for all others that value was

very nearly zero. For the zinc-regulation dataset [13], no pass

criterion had been used to ensure each spot on each microar-

ray carried considerably more signal than noise. The data

appeared to be of high quality. However, in a few cases, one

or two misleading data points from low-intensity spots may

have led to especially high gene-by-gene error variance esti-

mates and thus concealed otherwise significant differences.

The best normalization method and spot pass criteria are

highly dependent on cDNA microarray protocol, methodol-

ogy, experimental experience and analytical resources. As long

as normalization method and spot pass criteria are applied

uniformly within a dataset, the resulting ratios should be

appropriate for analysis by the model described here.

Model 
In microarray experiments, the original idea was that, with

current technology, spots on a cDNA microarray had a

number of confounding pseudolinear terms - whose varia-

tion from experiment to experiment could be minimized but

not eliminated - which contributed to the intensity measure-

ments observed when a hybridization was scanned. Model

parameters under this scheme differ from those used for

high-density oligonucleotide microarrays [40]. These terms

included the density and size of the cDNA deposition, the

correspondingly larger or smaller amount of labeled mRNA

hybridized to the microarray, the hybridization conditions

and the sequence of the gene [41]. With these assumptions,

the post-normalization intensity in one fluorescence channel

at a reporter spot may be modeled linearly as

��
q

m=1
cm �

t

l=q+1

cl + �, (1)

where � is the absolute quantity of mRNA per cell, the cm are

terms for any q multiplicatively confounding factors, the cl

are terms for any q - t linearly confounding factors, and � is

an error term accounting for mild pseudorandom departures

from linearity and unavoidable small variations in cell-

growth conditions. Note that multiplicative error associated

with the sample must have been compensated for by an

appropriate normalization ([42], reviewed by [43]); if, on the

other hand, there are considerable multiplicative factors that

are common to a spot, they are accommodated by the cm

above. This model cannot be directly implemented because

experimental replication to estimate each confounding term

is technically difficult. These difficulties led to a rapid con-

clusion that the information that can be best obtained from a

cDNA microarray experiment is ratio information rather

than absolute quantification. This is because the confound-

ing spot terms above will apply equally to two samples com-

petitively hybridized against a single spot on a single

microarray, yielding a ratio that correctly represents the

ratio of expression levels in the comparison of interest.

When comparing just two samples, ratio measurements are

nearly as good as absolute data. However, when more than

one genotype or environmental condition or cell develop-

mental stage is examined, ratio measurements rapidly

become cumbersome because comparing across numerous

states requires a common unit of measurement. Therefore it

is of interest to use these ratio measurements within a statis-

tical model to estimate gene-expression levels in a common

(if arbitrary) unit, and also to assess the significance of such

a difference.

Consistent with the original interpretation of cDNA microarray

data that privileged ratio over absolute quantification [41],

the observed ratios of intensities, yij, may be modeled as

�i ��
q

m=1
cm �

t

l=q+1

cl� + �i

yij = ———————————————————— , (2)  

�j ��
q

m=1
cm �

t

l=q+1

cl� + �j

where �i and �j are the scaled quantities of mRNA in

samples i versus j. This expression is true for any terms that

are consistent for both mRNA preparations, regardless of

linearity, which is fortunate, as there are known nonlineari-

ties in microarray data acquisition [17]. This yields

�i

�i + ———————————

��
q

m=1
cm �

t

l=q+1

cl�
yij = ———————————————————— , (3)

�j

�i + ———————————

��
q

m=1
cm �

t

l=q+1

cl�
Assuming that error terms are composed of many small,

unbiased effects, and scaling the error terms �i and �j by 

�
q

m=1
cm �

t

l=q+1

cl, 

a constant for every microarray spot, so that they are distrib-

uted with variances specific to each sample, �i
2 and �j

2, it

follows directly that the observed ratio data, zij, are drawn

from 

N(�i, �
2
i )

———————. 

N(�j, �
2
j )

This can be true even if the distribution of intensities across

spots and arrays is decidedly not Gaussian, because con-

founding factors which vary linearly or multiplicatively or

even interactively across spots or arrays are commonly pre-

sumed not to be different between two labeled samples

hybridized to a single spot [41]. Note that samples may,
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under this formulation, have different variances as well as

different means.

The ratio of standard normal distributions is a Cauchy distri-

bution, which has the unpleasant property that it has no

moments. The ratio of nonstandard normal distributions is

not much better. Fortunately, the infinite tails of the normal

distributions that result in this property are not generally

observed in real data; in fact, a model that allows negative

gene expression levels is not valid. The joint normal distribu-

tion may be truncated at a considerable distance from its

peak, along an elliptical probability contour within the posi-

tive quadrant [44], yielding a ratio zij distributed approxi-

mately as

(�i - �jz)
2

�i
2
,�j + �j

2
, �iz - —————

f �zij ��i ,�i
2
,�2

j � = ——————————————      e 2(�i
2+ �j

2z2)   . (4)
�2�——��i

2
+ �j

2
z

2�
3
--2

This approximation of the density of the ratio of two nonstan-

dard normal distributions is extremely good as long as �i >> �i

and �j >> �j, which is certainly true for informative cDNA

microarray experiments. It is not symmetrical like a normal

distribution, but skewed with a long right-hand tail, like gene

expression data. Moreover, as implied above, if microarray

data contain no negative expression levels (a natural proposi-

tion), it is likely that the distribution of z above is closer to the

true distribution of microarray data than is the distribution of

the ratio of true normal distributions.

Let us consider how this result may be used. An ideal statis-

tical framework for the analysis of microarray ratio data

could be used to analyze microarray data of any experimen-

tal design including any number of treatments, genotypes, or

developmental states; would be highly robust to missing

data; and would yield estimates of the magnitude of expres-

sion differences and measures of statistical significance

across all treatments, genotypes, and developmental states.

The number of expression nodes, n, is equal to the number

of permutations of strain, treatment, and developmental

state that are examined. Unless informative prior informa-

tion about expression levels or error variance is used, the fol-

lowing (minimal) requirements must be met. First, every

node of interest must be present in at least one comparison.

Second, every node of interest must be connected to every

other node of interest by an unbroken chain of comparisons.

And third, there must be as many comparisons as there are

mean and variance parameters to be estimated.

If separate error variances for each sample are to be esti-

mated as well as means, the last requirement indicates that

there must be at least 2n - 1 measurements when each

expression node is assumed to have an independent vari-

ance, and there must be at least n measurements when each

expression node is assumed to have the same error variance.

A few measurements beyond the minimum contribute

greatly to the power to detect differences in gene expression

and to the ease with which significance of results is ascer-

tained within the Bayesian framework. Figure 1 shows the

comparison structure of experiments examined in this

paper. The three-dimensional matrix of ratio results from

these comparisons, Z, may be constructed, with dimensions

i denoting the sample labeled with one fluorophore, j denot-

ing the sample labeled with another, and k denoting the

replicate ordinate of that particular comparison. Then, for

any continuous structure of comparisons among the nodes

of interest, the likelihood density for the parameters �l and

�l
2, 1 	 l 	 n, is, by Bayes’ rule,

h(�1,�i
2
…�l, �l

2
|Z) =

��i=1

n    

f �zijk|�i,�i
2
,�j,�j

2 �� g��i,�i
2
,�j,�j

2 �
j=1
k

————————————————————————––––-————, (5)

Ml�l ���i=1

n    

f �zijk|�i,�i
2
,�j,�j

2 �� g��i,�i
2
,�j,�j

2 �� d�l
2 

d�l

j=1
k

where g(�i, �i
2, �j, �j

2) is the prior distribution of the para-

meters, and where the probability f(zijk) of empty elements

in the data matrix Z is evaluated as 1.

Any genes for which �
i,j,k

I(zijk
1) < v, where I is an indicator

variable and v = n when variances are common among all

samples within a gene and v = 2n - 1 when variances are not,

yield improper posteriors unless an informative prior is

used. These few genes are not analyzed here, nor are genes

whose matrix Z is reducible. Note that diagonal entries in Z

are control, self-self hybridizations, in which the same

expression node has been labeled with two different dyes. In

this framework, these controls can and should be included in

the dataset if performed with all sources of experimental

error included in their preparation. They contribute to esti-

mation of the error variance of genes.

Appropriate informative priors for the variance of microarray

data are currently under investigation by a number of groups

[34-36]. An informative prior must be clearly justified in

order to prevent inappropriate conclusions of statistical sig-

nificance. In this paper, a noninformative prior distribution,

uniform across positive real numbers, has been used for both

the expression levels and for their variance. In theory, we use

a uniform prior for the variance, bounded from 0 to 100. In

practice, the upper limit, beyond 20 or so, makes no differ-

ence, as such high values are very improbable and are never

sampled by the chain in the datasets analyzed here. This

uniform prior gives the microarray data itself the greatest

impact on the inferred means and variances, and implies that
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credible intervals constructed are close to those that would

be found by maximum likelihood if analytical integration of

the full multidimensional parameter surface were feasible. A

frequently used ‘noninformative’ prior such as �-1 [45] is in

this case not desirable, because, in practice, the most likely

variances observed are so small that this prior has a consid-

erable impact on the posterior distribution.

Fortunately, we may use the constant denominator of the

Bayes’ rule formulation (Equation 5) to assert that

h(�1,�1
2
…�l, �l

2
|Z) � ��i=1

n    

f �zijk|�i,�i
2
,�j,�j

2 �� g��i,�i
2
,�j,�j

2 �.
j=1
k

(6)

This may be used to construct a Markov chain whose station-

ary distribution is the posterior distribution of the parame-

ters given the data. A vector �2
�

and a vector �
�

of initial

expression levels, [�1, …, �n] is chosen such that 1—
n

�
n

1
�l = 1 at

step t = 0, and subsequent values in the chain are deter-

mined iteratively by choosing successive proposed values

according to an acceptance rule.

Our proposed values are constructed in two separate steps.

First, two of the n gene-expression level parameters from  �
�

are chosen at random. A step size is drawn at random from a

triangular distribution centered at zero with range

[-��, +��]. The first of the two chosen parameters is incre-

mented by the chosen step size, and the second is decre-

mented by the same quantity, so that 1—
n

�
n

1
�l� = 1 is

maintained, where the apostrophe indicates a proposed

parameter value. In the next iteration, the variance parame-

ters, �l
2 are incremented by an amount drawn at random

from a triangular distribution with range [-��2, + ��2] to

form �l
2�. Because these operations have probabilities of

transitions from the current state to the proposed state equal

to the probabilities that the converse transitions would have,

this proposal scheme satisfies Hastings [46] and can be

implemented in the Metropolis [47] algorithm. Thus the con-

jecture is accepted for the next state of the Markov chain if

��i=1

n    

f �zijk|�i�,�i
2�,�j�,�j

2� �� g��i�,�i
2�,�j�,�j

2� �
j=1
k

RANDOM(0,1) < ——————————————————––––————, 

��i=1

n    

f �zijk|�i,�i
2
,�j,�j

2 �� g��i,�i
2
,�j,�j

2 �
j=1
k

(7)

Otherwise the original state is retained for the next iteration

of the Markov chain.

These steps are repeated over many generations in order to

‘burn in’ the chain, so that it converges from the initial

parameter settings to a stationary distribution. Subse-

quently, states are sampled from the chain at regular inter-

vals to build a posterior distribution for each parameter,

integrated across the probable states of all other parameters.

An easy-to-use stand-alone software program entitled

BAGEL, which implements this Bayesian analysis of gene

expression levels on MacOS or Windows platforms, is avail-

able on the web with an online manual [48]. It accepts tab-

delimited text files of ratio data as input.

To decrease the number of parameters that must be esti-

mated, we estimate a single variance parameter for each

gene across all expression nodes, which is equivalent to the

assumption that �i and �j from the same distribution for

every sample. On larger, more highly replicated datasets,

where all parameters could be estimated, constraining the

variance has not led to substantially different results (J.P.T.,

unpublished data and J.M. Ranz, personal communication).

All analyses in this paper were performed with 20,000 gen-

erations of burn-in, followed by 200,000 generations during

which the chain was sampled every 20 generations to con-

struct the posterior distribution. Runs using multiple start-

ing vectors �
�

and �2
�

were performed and always converged

to the same, unimodal, posteriors, indicating that this is a

well-behaved multidimensional likelihood surface (see

Figure 2a). Results reported here were the outcomes of

Markov chains started with the elements of �
�

all equal to

one, and started with the elements of �2
�

all equal to 0.03.

Step sizes �� and ��2 were tuned for each gene so that accep-

tance ratios for each parameter update were in the efficient

and well-mixed range (0.15, 0.50) [49]. If acceptance ratios

for either parameter jump were less than 0.15 or greater

than 0.5, the chain was run again with a better-tuned jump

size, until acceptable ratios for both parameters were

obtained. In this way, there is no alteration of the jump size

during any run. There is only the evaluation of pilot Markov

chains to optimize jump size.

Output from the BAGEL software is in the form of a tab-

delimited text file with one header row. Each row thereafter

displays the results for a single gene, including columns with

the estimate of expression level for each sample (the median

of the posterior distribution); the additions and subtractions

to make 95% upper and lower bounds on that estimate; the

stationary acceptance rates for the Monte Carlo steps for

that gene; and a column that reads ‘TRUE’ when those rates

are acceptable. Further columns contain the posterior prob-

abilities for whether that gene’s expression level in each

expression node is greater, or lesser, than that gene’s expres-

sion level in each other expression node.

Additional data files 
Estimates and credible intervals for expression levels of

all genes assayed in these experiments in all conditions

are available with the online version of this manuscript as
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tab-delimited text output files, with columns of data as

described in the methods section. The files are entitled

'EtOH.txt', 'SwiSnfMin.txt' and 'SwiSnfRich.txt', and 'Zinc.txt’.
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