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ABSTRACT

Motivation: Certain chemical substructures are present in many
drugs. This has led to the claim of ‘privileged’ substructures
which are predisposed to bioactivity. Because bias in screening
library construction could explain this phenomenon, the existence
of privilege has been controversial.

Results: Using diverse phenotypic assays, we defined bioactivity
for multiple compound libraries. Many substructures were
associated with bioactivity even after accounting for substructure
prevalence in the library, thus validating the privileged substructure
concept. Determinations of privilege were confirmed in
independent assays and libraries. Our analysis also revealed
‘underprivileged’ substructures and ‘conditional privilege’—rules
relating combinations of substructure to bioactivity. Most previously
reported substructures have been flat aromatic ring systems.
Although we validated such substructures, we also identified
three-dimensional privileged substructures. Most privileged
substructures display a wide variety of substituents suggesting an
entropic mechanism of privilege. Compounds containing privileged
substructures had a doubled rate of bioactivity, suggesting practical
consequences for pharmaceutical discovery.

Contact: fritz_roth@hms.harvard.edu

Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION

The observation that commercially available drugs have physical
properties that distinguish them from other compounds led to the
establishment of Lipinski’s ‘Rule of 5’ to predict drug absorption
and permeation (Lipinski et al., 2001). While the likelihood that
any given compound which satisfies this rule will become a drug
remains small, the Rule of 5 has been a valuable guide for the design
of chemical libraries. The need exists to further enrich chemical
libraries with potential drug molecules.

The abundance of certain substructures in commercially available
drugs has motivated the search for privileged substructures,
i.e. substructures associated with biological activity (DeSimone
et al., 2004; Horton et al., 2003). Among the reported privileged
substructures are benzodiazepines (Evans er al., 1988) and
hydrophobic ring systems (Ariens et al., 1979, Fig. 1A) which are

*To whom correspondence should be addressed.

present in drugs active against various protein targets (Andrews and
Lloyd, 1982).

The shape of privileged substructures may be preferred by
hydrophobic pockets on protein surfaces (Bondensgaard et al., 2004;
Hajduk et al., 2000; McGaughey et al., 1998), or have structural
homology to biological substrates (Fig. 1B; Jacobson, 2001;
McGaughey et al., 1998). For example, the benzodiazepine scaffold
(Evans et al., 1988) (1) in drug compounds (9) (Fig. 1C) is active
against opioid receptors and other protein targets (Marsters, 1994;
Patchett and Nargund, 2000). This may be explained by structural
homology to endogenous biomolecules (8) (Sangameswaran et al.,
1986) or to peptide B-turns (Ripka et al., 1993). Similarly, Indole (2)
and Purine (3), present in many drug compounds (9, 10) (DeSimone
et al., 2004; Dinnell et al., 2001; Heinelt et al., 2001; Jacobson,
2001; Willoughby et al., 2002), are also present in endogenous
biomolecules such as tryptophan (7) and ATP (6).

While many of the reported privileged substructures are
flat, aromatic ring systems, there are exceptions. For example,
spiropiperidines (Klabunde et al., 2002; Patchett and Nargund, 2000;
Patchett et al., 1995) (4, 11) and cyclic peptides (seen in cyclosporin
A, for example) (Horton er al., 2002) have three-dimensional
geometries.

The activity of privileged substructures is distinct from that
of promiscuous inhibitors which act by molecular aggregation
and inhibit proteins non-selectively (McGovern et al., 2002).
Many compounds containing privileged substructures bind proteins
selectively, as revealed by NMR studies of biphenyl (5), for example
(Fig. 1A; Hajduk et al., 2000), also present in the drug diflunisal (12)
(Fig. 1C).

Privileged substructures remain controversial because their
abundance in drug compounds may be a trivial consequence of their
abundance in chemical libraries (DeSimone et al., 2004). Numerous
computational analyses have identified privileged substructures
abundant in bioactive compounds (Bemis and Murcko, 1996; Lewell
et al., 1998; Nilsson et al., 2001; Sheridan, 2003; Wagener and
van Geerestein, 2000), without considering bias towards some
substructures in compound library construction. In contrast, others
have employed decision trees (Rusinko et al., 1999, 2002; van
Rhee, 2003; Young and Hawkins, 1995) to identify substructures
that discriminate activity from inactivity within a given collection of
compounds. The decision tree estimates the conditional probability
of activity given the combination of substructures present (or absent)
in a compound, while accounting for the abundance of substructures
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Fig. 1. Reportedly privileged substructures and related compounds. (A)
Reportedly privileged substructures. 1,4-benzodiazepin-2-one (1), indole (2),
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purine (3), spiropiperidine (4) and biphenyl (5) are reported as privileged.
The wavy line on spiropiperidine (4) indicates that ring can have variable
composition and size. (B) Examples of endogenous molecules containing
reportedly privileged substructures. ATP (6) contains purine, the amino acid
tryptophan (7) contains indole, and nordiazepam (8), which occurs naturally in
mammalian brains, contains 1,4-benzodiazepin-2-one. (C) Examples of drugs
with reportedly privileged substructures. Devazepide (9) is a cholecystokinin
A antagonist that contains indole and 1,4-benzodiazepin-2-one. Acyclovir (10),
used to treat herpes, contains purine. Spiperone (11), a dopamine D2 antagonist,
contains spiropiperidine. Diflunisal (12), an anti-inflammatory analgesic, contains
biphenyl.

within the library. Although these studies identified some enriched
substructures, the activity for which enrichment was shown was
defined narrowly according to a single biological assay or specific
class of protein targets (Muller, 2003).

To assess reportedly privileged substructures and to identify
new ones, we evaluated diverse high-throughput phenotypic assays
applied to a commercially available chemical library. ‘Active’
compounds were defined as those showing activity in at least one of
these assays. Decision trees were then used to identify substructures
that best discriminated active from inactive compounds. Once
identified, each of these discriminating substructures were tested
statistically for enriched activity and compared with the privileged
substructures reported in the literature. In addition, substructures
were independently assessed for their ability to broadly enrich for
compound activity across different assays of different chemical
libraries. Strikingly, we found that top-ranked lead compounds
yielded more than twice the rate of bioactives in many cases.

2 METHODS
2.1 Assay data

We examined 24 cell-based phenotypic assays (including four assays of
zebrafish embryos) applied at the Harvard Institute of Chemistry and
Cell Biology to the 16 320-compound Chembridge Diverse Set E library.
A compound was deemed positive for a particular assay if it was reported
to induce a visually detectable phenotype (qualitative scoring facilitated
by automated microscopy) or if it achieved a quantitative score in the top
1% for an assay. Alternatively, we defined positives for quantitative scores
according to a factor of three departure of assay signal from baseline. After
pooling the data, a compound was considered active if it was positive
in at least one assay (18.4% of all compounds) and inactive otherwise.
A similar procedure was used to identify active compounds among a
37 330-member National Cancer Institute (NCI) chemical library tested for

growth inhibition in 70 cancer cell lines. Compounds in the NCI library
scoring in the top 3% of at least one assay were identified as active
(11.4% of all compounds); the more liberal assay threshold of 3% was
used because compounds meeting this threshold were active below the
reported Chembridge screening concentration of 10 uM. Because most of
the compounds in the Chembridge library had molecular weights below 500,
only compounds with a molecular weight below 500 were examined in the
NClI library. In addition, we studied an assay of the Chembridge Microformat
library measuring inhibition of histone acetylation and two assays of the
Chembridge Diverse Set E library (not included above) measuring arginine
methyltransferase inhibition (Cheng et al., 2004) and selective killing of
Neu-overexpressing cells (Fantin ez al., 2002).

2.2 Fragmentation of compounds

The structure of each compound was converted to a SMILES string using
Daylight’s mol2smi algorithm. A collection of 4860 unique substructures
were generated by fragmenting each compound SMILES in the Chembridge
Diverse Set E library using the Daylight SMARTS and SMIRKS toolkits
and one of six fragmentation strategies, including RECAP (Csizmadia,
2000; Lewell er al., 1998, see Supplementary Material) which employs
retrosynthetic analysis and tends to produce substructures that would be
useful in guiding medicinal chemistry optimization and combinatorial library
design. Each fragmentation strategy was applied exhaustively using a series
of virtual chemical reactions (represented by SMIRKS strings). The resulting
substructures were represented as SMARTS strings (symbols representing
the non-hydrogen wild-card ‘[!#1]" were used where appropriate). The
generated substructures were then pooled and those appearing at least five
times in the library were retained, yielding a non-redundant set of 4860
chemical substructures. We note the analogy of this strategy to previous
graph mining methods (Cook and Holder, 2006; Nijssen and Kok, 2004;
Rosenkranz and Klopman, 1990). The Daylight SMARTS toolkit was applied
to generate an array of 1’s and 0’s indicating the presence or absence of each
substructure in each molecule in each library.

2.3 Decision trees

In order to find the substructures most associated with biological
activity, decision trees (Rusinko et al., 1999, 2002; van Rhee, 2003;
Young and Hawkins, 1995) were used to partition compounds in the
Chembridge Diverse Set E library based on the presence or absence
of highly discriminating substructures chosen from the set of 4860
substructures. The most discriminating substructures were identified based
on mutual information between substructure presence and compound
activity. Compounds were then partitioned into subgroups depending
on the presence or absence of a given discriminating substructure,
and those subgroups were further partitioned (recursively) based on
additional discriminating substructures. To avoid overfitting, discriminating
substructures were chosen using the Bayesian information criterion (BIC)
(Friedman and Goldszmidt, 1996; King et al., 2003, see Supplementary
Material). The final partitions (‘leaf nodes’ in the decision tree) represent
sets of compounds with (or without) specific substructures that are enriched
or depleted in activity relative to other compounds in the library.

2.4 Significance of substructure activity

Each discriminating substructure selected by the decision tree was tested for
association with activity within each individual assay and using the definition
of activity based on multiple assays. The cumulative hypergeometric test of
association was used (Klekota et al., 2005, see Supplementary Material).
For each substructure, the number of individual assays yielding significant
(P <0.01) associations (either positive or negative) was counted.

2.5 Ability of the decision tree to enrich for bioactivity

The ability of the decision tree to enrich for compound activity in various
assays and compound libraries was determined. Compounds assigned to
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a given leaf in the decision tree are assigned an activity score equal to
the fraction of active compounds observed in that leaf (to avoid small
sample effects on estimated proportions, one pseudocount was distributed
according to the overall fraction of active compounds within the library).
The tree was also used to assign leaf nodes and corresponding activity
scores to compounds not used in tree construction. Rates of bioactivity
among compounds ranked by the decision tree were compared with randomly
permutated compound rankings. The number of active compounds in the
Chembridge Diverse Set E, the Chembridge Microformat and the NCI
libraries recovered by ranking according to activity scores was compared
with randomly ranked lists.

3 RESULTS

3.1 Using substructures to group compounds according
to bioactivity

We examined 24 cell-based phenotypic assays applied to the
16 320-compound Chembridge Diverse Set E library. These assays
encompass a variety of chemical-induced phenotypes including
mitotic arrest, endocytosis inhibition and histone acetylation (Boyce
et al., 2005; Feng et al., 2003; Haggarty et al., 2000, 2003; Mayer
etal., 1999; Nieland et al., 2002; Yarrow et al., 2003, 2005). This set
of assays was selected from an original set of 85 assays, excluding
assays with phenotypes attributable to compound fluorescence,
toxicity (cell-death), non-specific transcriptional upregulation or
inhibition of luciferase (a commonly used assay reporter). Because
false positive ‘promiscuous inhibitors’ form molecular aggregates
that are less membrane permeable (McGovern et al., 2002), we used
only cell-based assays.

We focused primarily on the Chembridge Diverse Set E library,
since it is not highly biased towards particular protein target
classes. We confirmed its diversity, showing that the average
pairwise Tanimoto coefficient—a measure of chemical substructure
similarity—is 0.2 within this library. This is well below the threshold
of 0.85 that is widely used to classify compounds as similar.

The set of 16320 Chembridge Diverse Set E compounds was
partitioned using a decision tree (Fig. 2). In this tree, the ‘root’
node corresponds to the set of all compounds. Compounds were
successively divided into ever smaller subsets according to the
presence or absence of ‘discriminating’ substructures. The ‘X’
symbol indicates a non-hydrogen atom and all hydrogen atoms
in ‘X’-containing substructures (whether shown or implied) must
be exactly matched. All other substructures have unspecified
patterns of hydrogen and non-hydrogen atom substitution. At each
node, the discriminating substructure that was used to divide the
corresponding set of compounds was chosen using an unbiased
information-theoretic criterion (see Section 2). Each compound
was ultimately classified into one of 44 ‘leaf nodes’—compound
subsets that are enriched or depleted in biological activity relative
to the rest of the library—based on the presence or absence of 43
‘discriminating’ substructures (Fig. 2).

Discriminating substructures selected by the decision tree (Fig. 2
and Supplementary Fig. S1) include many which were reported
as privileged (DeSimone et al., 2004; Horton et al., 2003).
For example, indole is associated with an increase in biological
activity in the Chembridge library assays among compounds
lacking the substructures shown at nodes 1, 3, 5, 8 and 11.
Interestingly, the selected indole substructure (node 16) had multiple
non-hydrogen atoms (‘X’) attached to it, supporting previous

intuition that privileged substructures may represent molecular
scaffolds enriched for favorable binding entropy rather than enthalpy
or complementary charge (Bondensgaard er al., 2004; Hajduk
et al., 2000; Jacobson, 2001; McGaughey et al., 1998). Other
potential scaffolds with multiple non-hydrogen substituents were
also associated with activity: these include pyrrole (substructure at
node 23) and benzene (substructures at nodes 32 and 39), which
are components of indole and certain amino acids. Quinoline (13)
(Fig. 3A) with an attached hydroxyl group (substructure at node
43) was also associated with increased activity. This substructure
resembles the reportedly privileged substructures quinoxaline (14)
(Fig. 3A) and quinazoline (15) (Fig. 3A) (Horton et al., 2003).
(The numbers of hydrogen atoms on quinoline and other aromatic
substructures were not explicit leaving their preferred role as
scaffolds or substituents ambiguous; however, enrichment in assay
activity generally correlated with increasing number of explicit
non-hydrogen substituents, P =0.0242; see Supplementary Fig. S2).
These and many of the other discriminating substructures, e.g.
naphthalene (node 13), are aromatic ring systems which are
consistent with previous claims of general privilege for bicyclic
aromatic substructures.

Interestingly, many of the discriminating substructures we
identified have structural homology to naturally occurring
molecules. For example, naphthoquinone (18) (substructure at
node 25) (Fig. 3B) was identified as enriched in biological activity
in the Chembridge library. This substructure comprises a significant
portion of vitamins K1 (16) and K2 (17) (Fig. 3B). Vitamins
K1 and K2 are essential nutrients involved in the regulation
of at least 11 Gla-proteins involved in blood coagulation, bone
metabolism and vascular biology. Interestingly, the non-hydrogen
atom substitutions on substructure at node 25 correspond perfectly
to the substituents present in vitamin K (Shearer, 2000). Another
enriched substructure, 1,3-indandione (substructure at node 28) (19)
is structurally similar to naphthoquinone (18) and is present in
a variety of biologically active compounds including the FDA-
approved anti-coagulant phenindione (20) and pesticides (Braselton
et al., 1992) (Fig. 3B). 1,3-indandione has homology to a structural
component of vitamins K1 and K2 and competes with vitamin K
binding (Mount and Feldman, 1983).

In contrast to reportedly privileged substructures, some of the
discriminating substructures associated with bioactivity are neither
flat nor aromatic (Fig. 2 and Fig. S1; substructures at nodes
7 and 35). These substructures contain rings and double bonds
that contribute to rigidity (a feature of many reported privileged
substructures), but they also have sp3 -hydridized atoms that make
them richer in three-dimensional geometry. Notably, compounds in
the Chembridge Diverse Set E library containing the substructure
at node 7 are structurally homologous to three compounds present
in the NCI library—NSC636679 (21), NSC634791 (22) and
NSC618757 (23) (Fig. 3C). These compounds have been reported
to inhibit cancer cell growth through inhibition of ABCB1 (MDR1),
a membrane transport protein implicated in multi-drug resistance
of cancers (Szakacs et al., 2004). Each of the compounds contain
the substructure at node 7 flanked by aromatic rings, forming
a symmetric molecule. Examination of the ABCBI structure
(Seigneuret and Garnier-Suillerot, 2003) suggests that molecules
may interact with ABCB1’s two ATP-binding sites. This observation
motivates the exploration of other molecular scaffolds with rich
three-dimensional geometries and symmetries.
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Fig. 2. Discriminating substructures identified by the decision tree. The substructures were selected by the decision tree to discriminate active and inactive compounds
in the Chembridge library. The ‘X’ symbol indicates a non-hydrogen atom, and hydrogen atoms (whether shown or implied) in ‘X’-containing substructures must
be matched. All other substructures have unspecified patterns of hydrogen and non-hydrogen atom substitution. The symbols ‘+’ and ‘-’ indicate whether or not
the node substructure is associated with an increase or decrease in compound activity relative to its parent node in the tree. Bold arrows pointing away from a
substructure indicate its presence and dotted arrows indicate its absence. The substructure composition of each leaf (blue circle or red diamond) is constrained by
the intersection of statements about the presence or absence of substructures traced from the tree root (node 1) to each leaf. The nodes containing the substructures
are numbered and the fraction of active compounds is listed in each node and leaf. Leaves shown as blue circles are enriched in activity and leaves shown as red
diamonds are depleted in activity relative to the entire library (18.4% of the library is active as indicated by the tree root, node 1). For space considerations, a subtree
stemming from node 25 has been excluded (indicated by an enclosing box; see Supplementary Fig. S1 for this subtree). Supplementary Table S1 details the prevalence
of selected substructures within the library as well as their enrichment in bioactivity when considered individually (without respect to the presence of any other
substructure).

Some substructures (notably the substructures at nodes 10, 24 and
27) are ‘underprivileged’, i.e. associated with decreased biological
activity. Among these substructures are long carbon chains and
chains of other sp3 -hybridized atoms which are highly flexible and
therefore likely increase the entropic cost of protein binding, in
contrast to the privileged ring systems, which have less flexibility
and predictably smaller entropic barriers to binding drug pockets:
substructures only containing sp3—hybridized carbons were enriched

in significantly fewer assays than substructures only containing
aromatic carbons (P =0.0006, see Supplementary Fig. S2) and
substructures lacking rings were enriched in significantly fewer
assays than substructures containing rings (P =0.0036, see
Supplementary Fig. S2). Underprivileged substructures should not
necessarily be excluded from chemical libraries, as they may
provide binding specificity, an important property of successful
drugs; in fact, certain substructures (notably those at nodes 37
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Fig. 3. Validated discriminating substructures and related compounds. (A)
Structures of quinoline, quinoxaline and quinazoline. Quinoline (13) (present
at node 43) is associated with an increase in activity and similar to reported
privileged substructures quinoxaline (14) and quinazoline (15). (B) Structure
of vitamin K1, vitamin K2, naphthoquinone, 1,3-indandione and phenindione.
Naphthoquinone (18) and 1,3-indandione (19), similar to vitamin K1 (16)
and vitamin K2 (17), were identified as enriched in activity by the decision
tree. Phenindione (20) which is an FDA-approved anti-coagulant containing
1,3-indandione is shown. (C) Structures of NSC636679, NSC634791 and
NSC618757. NSC636679 (21), NSC634791 (22) and NSC618757 (23) contain
the substructure at node 7 identified as enriched in the tree; these compounds
inhibit cancer cell growth by inhibiting the ABCB1 (MDR1) membrane transport
protein. (D) Structure of NIH. NIH is (24) a metal chelator containing the most
discriminating substructure (node 1, root of the tree).

and 40) become favorable in the presence of other substructures
as depicted by the tree, but are not favored when considered
individually (Table S1), demonstrating the ‘conditional’ privilege of
certain substructures. Different aliphatic carbon chains distinguish
the various K vitamins suggesting physiological significance of these
substructures (Fig. 3B). It is also interesting that twice as many
substructures were found to be enriched in activity than were found
to be deficient.

The most discriminating substructure (node 1, the root node
of the tree) represents the entire active portion (having sigma-
orbital electron pairs) of the known metal chelator NIH (24)
(Darnell and Richardson, 1999; Le and Richardson, 2004; Liang
and Richardson, 2003) (Fig. 3D). This substructure is associated
with a significant increase in biological activity. Metal chelators
are reported to promote transcription non-specifically (Darnell and
Richardson, 1999; Le and Richardson, 2004; Liang and Richardson,
2003) and inhibit other proteins affecting cell growth (Darnell and
Richardson, 1999), so that this substructure is expected to correlate
with bioactivity; many metal chelators were observed to confound
our excluded gene reporter assays of the Chembridge Diverse Set E
library (Randy King, HMS, personal communication).

To provide intuition about the compound sets corresponding to
nodes in the tree, Supplementary Figure S3 shows representative
structures for each leaf node of the tree shown in Figure 2 and
Supplementary Fig. S1.

A separate tree generated using the same assay data with a
fold-change threshold for activity yielded similar discriminating

substructures (data not shown). Interestingly, the new tree
included an additional three-dimensional substructure—a tricyclic
ring system with a seven-membered ring resembling that of
benzodiazepine (see Supplementary Fig. S4). The privileged status
of this ring system was not evident in the original tree (perhaps due
to the selection of two of its component rings in the original tree).

We explored an alternative definition of activity, requiring
compounds to score in two or more assays. A tree trained using
this definition contained many of the substructures present in the
original tree and was similarly predictive of activity in independent
assays despite the exclusion of 75% of compounds defined as active
under the more permissive definition of activity (Fig. S9).

3.2 Substructures associated with general bioactivity

The significance of each substructure’s enrichment or depletion for
activity in the decision tree was also confirmed by a statistical
test of association («¢=0.01). Here, we tested the association of
each substructure with activity in each individual assay. Because
this test considered all compounds, significant associations indicate
‘unconditionally’ privileged (or underprivileged) substructures. An
expanded set of 59 assays was examined (Table S1), including
additional pure protein- or cell-extract-based assays and cellular
toxicity assays, in addition to the 24 assays used to develop
the decision tree. Substructures showing significant enrichment or
depletion (o =0.05) in three or more assays were considered broadly
enriched. Nearly all discriminating substructures selected for use
in the decision tree were corroborated by significant enrichment or
depletion (the enrichment of many tree nodes in bioactivity exceeded
the frequency of actives in our training set, Table S2). For example,
the Indole scaffold (substructure at node 16) was enriched in 18
individual assays—consistent with its role as enriching for activity in
the decision tree. There were however, a number of exceptions, e.g.
substructures at nodes 9, 14, 37 and 40. These substructures, selected
as discriminating in the presence of other substructures (marked
‘Combo’ in Table S1), did not show enhanced activity in individual
assays or tended to be depleted in activity. These substructures are
conditionally privileged, i.e. are associated with heightened activity
only in the presence of other substructures. Thus, the decision tree
reveals ‘rules of privilege’ that associate biological activity with
specific combinations of substructures.

Given that the decision tree selected only 43 substructures out
of 4860 available, many other privileged substructures are likely
present in the Chembridge Diverse Set E library. Some of these
unselected substructures may not have been selected due to their
similarity to substructures already selected. Examination of recent
chemical literature (DeSimone et al., 2004; Horton et al., 2003)
identified additional substructures previously reported to be
‘privileged’ in the Chembridge Diverse Set E library. We
found that many of these are indeed broadly enriched
(as defined above) (Fig. S5), including biphenyl (25), 1,
4-dihydropyridine (27), chromone (31), quinoxaline (33), indole
(35) and benzimidazole (36).

3.3 The ability of discriminating substructures to
enrich for bioactivity

We wondered whether these substructures in combination could

enrich for activity to an extent that would be practically useful. To

examine this question, we trained a decision tree using a randomly
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Fig. 4. Enrichment of compounds for bioactivity based on substructure
composition. (A) Recovery of active compounds in the 10% Chembridge Diverse
Set E Test Set. A decision tree built using 90% of the Chembridge Diverse Set E
library was used to rank the remaining 10% of compounds by rate of bioactivity
expected given the substructure composition. The number of actives retrieved
by the decision tree (wide black line) is 2-5 times greater than that retrieved by
random selection indicated by the gray shaded area showing the mean & 1 SD.
(B) Recovery of compounds that inhibit cancer cell growth in the NCI Library.
The original decision tree was used to rank NCI compounds according to the rate
of activity against cancer cell growth expected given substructure composition.
The number of actives retrieved by the decision tree rankings (wide black line) is
1.5-3 times greater than that retrieved by random selection indicated by the gray
shaded area showing the mean & 1 SD.

selected 90% of Chembridge Diverse Set E library compounds,
reserving the remaining 10% of compounds for testing. The resulting
tree contained 39 discriminating substructures. Comparing these to
the 43 discriminating substructures in the original tree, we found
that 31 were identical, three differed only by a few explicit hydrogen
atoms and the remaining five were structurally homologous. Each
compound in the test set was mapped to a leaf node in the new tree
based on substructure composition and assigned the corresponding
activity score. Ranking compounds by activity score (Fig. 4A)
revealed a substantial enrichment for active compounds; strikingly,
there were 2-5 times more active compounds amongst the top
240-scoring compounds than among randomly chosen compounds.
Similar results were obtained from a tree trained on only 50% of
the data.

‘We wondered whether a decision tree trained on one set of assays
to enrich for activity would be practically useful when applied to
an independent set of assays. To this end, we labeled compounds
in the Chembridge Diverse Set E library as active or inactive based
on an assay measuring arginine methyltransferase inhibition (Cheng
et al., 2004), which was not included in the original training set of

24 assays. Among the top-ranked 1200 compounds, the frequency
of active compounds was 1.5-3 times greater than among randomly
ranked compounds (Supplementary Fig. S6). Another assay not used
in training, the extent of killing of Neu-overexpressing ‘oncogenic’
cells (Fantin et al., 2002) relative to wild-type cells, yielded a
frequency of activity among top-ranked compounds that was 1.5-4
times higher than random compounds (Supplementary Fig. S7).
Thus, the rules of privilege learned from one set of assays can be
generally applied to substantially enrich for independent biological
activities.

Because chemical libraries vary in their substructure composition,
we wondered whether the rules of privilege learned from one
chemical library would apply to independently constructed chemical
libraries. To examine this question, we examined an assay of
inhibition of histone acetylation in the Chembridge Microformat
library. (This assay was among those applied to the Chembridge
Diverse Set E library, which were used to train the original
decision tree.) Each Microformat compound was mapped to a
leaf node in the original decision tree (Fig. 2) and assigned
the corresponding activity score. Amongst the top-ranked 450
compounds, the frequency of activity was 1.5—4 times higher than
that of randomly chosen compounds (Supplementary Fig. S8).
Repeating all of the above analyses after first removing compounds
containing the substructure at node 1, the suspected metal chelators
produced similar results. Thus, the rules of privilege determined
from one chemical library allow substantial enrichment for activity
within independent chemical libraries.

We wondered whether rules of privilege also had the power to
enrich for bioactivity when both the chemical library and biological
assays were independent of those used to train the decision tree
(Fig. 2). Compounds of an NCI compound library were examined
and identified as active if they scored in at least one assay measuring
cancer cell line growth inhibition. Each NCI compound was mapped
to a leaf node in the original decision tree (Fig. 2) and assigned the
corresponding activity score. Amongst the top 1000 compounds, the
frequency of activity was 1.5-3 times higher than that of randomly
chosen compounds (Fig. 4B). This finding validates the concept
of privileged substructure and shows that substructure properties
learned from one dataset may be applied generally to multiple
independent chemical libraries and bioactivities.

Activity of large NCI compounds (molecular weight >500)
was poorly predicted based on substructures trained on the
Chembridge library. The contributions of privileged substructures
that we identified in a low-molecular weight library are likely
to be diluted in larger molecules; furthermore, the mechanism of
action of compounds with large molecular weights is likely to be
qualitatively different from that of smaller compounds. Although
privileged substructures may well exist among higher molecular
weight compounds, these may need to be learned from a similar
analysis applied to diverse biological assays of high-molecular
weight compounds.

4 DISCUSSION

Our results validate the concept of privileged substructures, showing
that many privileged substructures remain even after accounting
for their overall abundance in the screened library. Moreover,
privileged substructures identified as enriched for bioactivity in
one library were also enriched for bioactivity within independent
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chemical libraries and assays were not used to learn rules of
privilege. We confirmed several previously reported privileged
substructures. We also identified ‘underprivileged’ substructures
depleted in biological activity, e.g. long chains of sp3—hybridized
atoms. While previously reported privileged substructures have had
flat aromatic ring systems, we identified privileged substructures
with three-dimensional geometries and others may be found in the
analysis of libraries containing more three-dimensional substructure.
Furthermore, the observation that privileged scaffolds contain
diverse substituents suggests the broad activity associated with
privileged substructures is the result of favorable scaffold entropy,
while activity against a given target is determined by entropic
contributions in combination with complementarity of shape and
charge resulting from enthalpic contributions of substituents. For
many assays, prioritization of compounds based on substructure
double the frequency of active compounds. Therefore, the use of
‘rules of privilege’ to design new chemical libraries with a preference
for particular combinations of substructure could have important
implications for pharmaceutical discovery.
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