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Abstract

Cysteine-rich intestinal protein 1 (CRIP1) has been identified as a novel marker for early detection of cancers. Here we report on
the use of phage display in combination with molecular modeling to identify a high-affinity ligand for CRIP1. Panning
experiments using a circularized C7C phage library yielded several consensus sequences with modest binding affinities to
purified CRIP1. Two sequence motifs, A1 and B5, having the highest affinities for CRIP1, were chosen for further study. With
peptide structure information and the NMR structure of CRIP1, the higher-affinity A1 peptide was computationally redesigned,
yielding a novel peptide, A1M, whose affinity was predicted to be much improved. Synthesis of the peptide and saturation and
competitive binding studies demonstrated approximately a 10–28-fold improvement in the affinity of A1M compared to that
of either A1 or B5 peptide. These techniques have broad application to the design of novel ligand peptides.
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Introduction

Cysteine-rich intestinal protein 1 (CRIP1) belongs to the LIM/

double zinc finger protein family, which includes cysteine- and

glycine-rich protein-1, rhombotin-1, rhombotin-2, and rhombotin-

3. Human CRIP1, primarily a cytosolic protein, was cloned in 1997

[1] using RT-PCR of human small intestine RNA and oligonucle-

otides whose sequence was derived from the human heart homolog

of this protein, CRHP [2]. Recently CRIP1 has been identified as a

very exciting biomarker for human breast cancers [3,4], cervical

cancers [5,6], pancreatic cancers [7,8] and potentially other cancers

[4,9]. In experiments comparing CRIP1 expression in human

breast cancer to matched normal breast tissue the mRNA for this

target was overexpressed 8–10-fold in approximately 90% of both

invasive and ductal carcinoma in situ [3]. Furthermore, in situ

hybridization studies demonstrated close association of the

expression with the ductal carcinoma cells [3]. CRIP1 overexpres-

sion has also been demonstrated to be the most highly differentially

expressed gene in invasive cervical carcinomas; 100-fold up-

regulation relative to normal cervical keratinocytes measured in

34 cervical tissues from different clinically defined stages [5,6].

CRIP1 was also found to have high levels of expression in

pancreatic adenocarcinoma, lung cancers and colorectal cancers

[7–9]. These data strongly support the development of imaging

probes targeting CRIP1 to improve cancer detection.

Phage display technology is a robust methodology for

identifying peptides that bind relatively tightly to target proteins.

This is especially true if the targeted protein’s function is to bind

peptides in vivo. In these applications, the first generation peptides

have a generally lower Kd (10–100 mM) for their target and

typically need to be structurally altered to improve binding before

the peptides exhibit robust binding suitable to image the target

protein. If structural data for the targeted protein exists, it should

be feasible to utilize the data to help redesign in silico the Phage

display-identified peptides thereby increasing their binding affinity.

This approach is much more cost efficient than exhaustive

screening of structured phage libraries or expansion of screening

assays to include other types of phage display libraries.

Despite the potential utility of CRIP1 [10] as an imaging target,

significant efforts to develop CRIP1-specific ligands have not been

attempted. Here we utilized phage display techniques [11–20] to

identify peptide ligands with micromolar binding affinity for
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purified human CRIP1 and exploited rational protein redesign

[21–27] to increase the peptide’s binding affinity. This approach

has yielded a peptide that has approximately 10–28-fold improved

binding affinity as measured by in vitro saturation and competitive

binding assays. This study is a significant advance to the ultimate

goal of synthesizing imaging probes that report CRIP1 expression

levels in vivo.

Results

We used phage display technology to identify peptides that bind

relatively tightly to CRIP1. Then, we utilized NMR structural data

of CRIP1 and computational methods to increase the peptide

binding affinity to CRIP1.

Expression of CRIP1 and Identification of Binding
Peptides

CRIP1 was initially cloned into a mammalian expression vector

and subsequently into pHAT10 for expression in bacteria. The

pHAT10/CRIP1 vector encodes a naturally occurring polyhisti-

dine epitope tag with the sequence of nonadjacent histidines that

enable purification of expressed proteins under native conditions

at neutral pH 7.0 (details of construct can be found in Figure S1

and Figure S2). Bacterial expression was chosen since it is a robust

expression system and presumably CRIP1 does not require post-

translational modifications for function. Cultures derived from

these bacteria were induced to express CRIP1 using IPTG. We

then isolated purified CRIP1 (see Methods). SDS-PAGE analysis

of the cell lysate and fractions containing eluted CRIP1 show a

single band for chimeric CRIP1 running approximately at the

calculated molecular weight for the chimeric protein, 12.8 KDa

(Figure S2 and Table S1). The yield of CRIP1 protein was

approximately 10 mg of recombinant protein per liter of culture.

In order to generate CRIP1 protein that was as similar as

possible to endogenous CRIP1, enterokinase cleavage was

performed on purified CRIP1. Uncleaved contaminating HIS-

tagged CRIP1 as well as HIS-tagged peptides were removed by re-

running the digest over the CellThru resin and retaining the flow

thru. This manipulation of the chimeric protein resulted in a

polypeptide almost completely devoid of other ‘‘non-CRIP1’’

amino acids and was used as the bait for phage display studies.

After four rounds of positive selection against enterokinase-

truncated CRIP1, 29 phage DNA inserts were sequenced using

a 96 gIII primer (59-HOCCC TCA TAG TTA GCG TAA CG-39).

Sequencing verified that 18 of the 29 phagotopes were from the

cysteine-constrained phage library, Table 1. Many of the peptide

sequences contained similar motifs and six sequences occurred in

more than one phagotope. The peptides A1 and C5 were

identified four times, C1 three times, and A9, B1, and B5 twice.

However, even accounting for conserved amino acid substitutions,

no clear motif could be identified.

To select clones for further analysis, we used ELISA to

determine the relative binding affinities of selected individual

phage clones to purified CRIP1 (see Methods and Figure S3). For

these studies the purified chimeric CRIP1 was not reacted with

enterokinase. Clone A1 and Clone B5 were measured to possess

higher relative affinity. Although it occurred with the same

frequency as clone A1, clone C5 exhibited lower binding affinity.

With these results, inserts from the two clones with the highest

affinities (A1 and B5) were further investigated as potential ligands

to CRIP1.

Molecular Modeling
The computational optimization of the binding affinity of the

peptide initially identified from phage display involved three

stages. We first constructed a structural model of the cyclic peptide

A1, and then we identified putative binding sites on CRIP1 by

docking. Lastly, we searched for new peptide sequences that

optimize the stability of the peptide-CRIP1 complex.

Author Summary

Breast cancer is one of the most frequently diagnosed
malignancies in American females and is the second
leading cause of cancer deaths in women. Several
improvements in diagnostic protocols have enhanced
our ability for earlier detection of breast cancer, resulting
in improvement of therapeutic outcome and an increased
survival rate for breast cancer patients. However, current
early screening techniques are neither comprehensive nor
infallible. Imaging techniques that improve breast cancer
detection, localization, and evaluation of therapy are
essential in combating the disease. Cysteine-rich intestinal
protein 1 (CRIP1) has been identified as a novel marker for
early detection of breast cancers. Here, we report the use
of phage display and computational molecular modeling
to identify a high-affinity ligand for CRIP1. Phage display
panning experiments initially identified consensus peptide
sequences with modest binding affinity to purified CRIP1.
Using ab initio modeling of binding peptide structures,
computational docking, and recently developed free
energy estimation protocols, we redesigned the peptides
to increase their affinity for CRIP1. Synthesis of the
redesigned peptide and binding studies demonstrated
approximately a 10–28-fold improvement in the binding
affinity. The combination of computational and experi-
mental techniques in this study demonstrates a potentially
powerful tool in modulating protein–protein interactions.

Table 1. Peptide sequences that were enriched after phage
display panning experiments.

ID Sequence Frequency

A1a LKDNHRS 4

A3 SVPINDS 1

A5 DHRQGSS 1

A6 APYNTLA 1

A8 SPHIIAS 1

A9a MLHAYAQ 2

B1a FLGFSQQ 2

B2 YDPIWRT 1

B3 FSTNMKT 1

B4 RTTGAQT 1

B5a YDPIWRT 2

B7 PLFKGMS 1

B9 LPAYSTY 1

B10 RDSSAHQ 1

C1a CYTAALA 3

C2 HANFLHM 1

C5a TPRQSPI 4

C9 SLNTRSQ 1

aThe sets of identical sequences derived from different phage clones.
doi:10.1371/journal.pcbi.1000138.t001

A Novel Biomarker for Cancers

PLoS Computational Biology | www.ploscompbiol.org 2 August 2008 | Volume 4 | Issue 8 | e1000138



Shown in Figure 1C is the molecular model of the cyclic peptide

A1 (see Methods). To remove the bias on the docking that may be

introduced by using only one backbone peptide conformation, we

first generated several peptide backbone conformations from

snapshots of equilibrium molecular dynamics simulations. Each

peptide was docked to the 48 conformations of CRIP1 derived

from NMR [10]. By clustering the location of the peptides on the

CRIP1 surface, we were able to identify and rank the putative

binding sites (Figure 2). Interestingly, the peptides preferably bind

to one face of CRIP1 (Figure 2). This side of CRIP1 contains two

grooves, one formed by helix H3 and S6–S7 loop and another by

S2–S3 loop and the N-terminal loop. The binding site of the

successfully redesigned A1M is formed by Glu46, His45, Phe60,

Tyr56, and Lys48 (Figure 3).

In the second stage of the redesign, we searched for peptide

sequences that optimized the binding free energies of the peptide-

CRIP1 complexes using heuristic algorithms and a physical force-

field (see Methods). The methodology employs rapid side-chain

packing and backbone relaxation to calculate the free energy

change due to a mutation. For a given CRIP1-peptide complex,

we determined a set of mutations in the bound peptide that

resulted in the lowest free energy change, and thus, the highest

predicted increase in binding affinity. All CRIP1-peptide com-

plexes were subjected to redesign. All redesigned peptides were

then grouped according to their starting peptide backbone

conformation (1-ns, 9-ns, or 10-ns), and according to their putative

binding site. The redesigned sequence CLDGGGKGC, which we

denote here as A1M (‘‘modified A1’’), corresponds to a peptide

with the lowest binding free energy DDG among the redesigned

sequences in the highest-ranked binding mode. In Table 2 we list

representative peptide sequences with high binding affinity but

located in other putative binding sites and featuring backbone

conformations other than the 1-ns.

To identify the dominant motifs in the redesigned peptides, we

show in Figure S5 the dominant sequence motifs in the top three

candidates binding sites for each peptide model. There is a

prevalence of Gly, presumably due to the strongly curved backbone

that prefers more flexible Gly over any other residue when the

peptide is in the context of the protein but not when the peptide is

isolated (Figure S6). The redesigned sequences also exhibit a

preference for charged residues (mostly Asp, Glu, and Lys) in at least

two positions (Figure S5). These charged residues, we believe, are

what attributes the redesigned peptides their specificity to CRIP1.

In particular, the designed sequence A1M (Figure S5), which is a

member of the largest cluster in the CRIP1 and 1-ns peptide

complexes, exhibits a preference for either Lys or Glu in the 2nd

position, Asp in the 5th, Lys in the 7th, and Gly in the rest.

A closer inspection of the specific energy contributions to the

DDG of A1M (Table S2), we found that the largest contributions to

DDG arises from more favorable van der Waals interaction

between the peptide and CRIP1, which we believe is reflected in

the preference for Gly in some sites of the binding peptide. The

CRIP1-peptide complex also exhibits more favorable solvation

energy after the redesign. This observation is also reflected

structurally in Figure 3. In particular, the peptide side chains in A1

(such as 4D, 5N, 6H, and 8S) that point toward the CRIP1 surface

are replaced by Gly, while those pointing to solution (3K and 7R)

retain their polar nature.

Binding Affinity
We computationally redesigned A1 resulting in a peptide with a

new sequence (denoted as A1M) predicted to bind to CRIP1 with

Figure 1. CRIP1 and the designed biomarker. (A) CRIP1 is composed of 2 LIM domains and a C-terminal loop that is unstructured. (B) The
designed CRIP1 probe consists of a cyclic ligand peptide with a fluorescent molecule. (C) Cyclic peptide model corresponding to A1 derived from
phage display experiments.
doi:10.1371/journal.pcbi.1000138.g001

A Novel Biomarker for Cancers
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higher affinity. To test this prediction, A1, B5 and A1M peptides

were all synthesized and labeled with FITC for binding studies.

Since the peptides encoded by the C7C phage library are at the N-

terminus of the minor phage coat protein pIII followed by a short

phage encoded spacer Gly-Gly-Gly-Ser, we included this 4-mer in

the synthesized peptide. An additional C-terminal Lys was also

included in order to enable fluorescent labeling of the peptide.

Thus, the different selected mimotopes were produced as synthetic

peptides with Gly-Gly-Gly-Ser-Lys and then labeled by adding a

fluorescent molecule to the C-terminal lysine. We synthesized the

cyclic form of the peptides, A1, B5 and A1M and determined their

ability to bind CRIP1 using saturation binding experiments. The

value for the apparent equilibrium dissociation constant (Kd

apparent) of the FITC-A1M peptide determined by saturation

binding was 2.6 mM, Figure 4A. This was substantially lower than

that obtained for either the parent A1 peptide (Kd apparent =

34.4 mM) or the estimate for the Kd apparent of the B5 peptide (Kd

apparent = 62.5 mM) derived using similar assays, data not shown.

To directly compare the affinity of the A1 and A1M peptides for

CRIP1 protein, we performed a competitive binding assay and

Figure 2. Putative binding sites on CRIP1. Three peptide models 1-ns, 2-ns, and 3-ns were docked onto the CRIP1 structure. The centers of mass
of each peptide’s Ca atoms are shown as spheres on the CRIP1 surface. The binding poses of each peptide model were clustered to determine
putative binding sites. Spheres that belong to the same cluster are colored similarly. The largest cluster of docked 1-ns peptides, which is also the
binding site of A1M (Figure 3), is shown with an arrow. On the left panel, we plot the number of clusters and the size of the largest cluster to
determine the optimal cutoff for clustering. The final cutoff used in the clustering is shown by an arrow.
doi:10.1371/journal.pcbi.1000138.g002

A Novel Biomarker for Cancers
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determined the IC50 for each of the peptides using FITC-A1M as

the ligand. These studies demonstrated that the binding affinity of

the A1M peptide to CRIP1 was approximately 27.5 times better

than that of the original A1 peptide, Figure 4B (A1 peptide IC50 =

8.8 mM, A1M peptide IC50 = 0.32 mM). Since each peptide was

effective at displacing FITC-A1M and reached the same minimal

binding these data also suggest that ligand binding to CRIP1

occurs at a single site. Further analysis of the binding data with

multiple binding site models clearly showed that the best fit of the

data was obtained with a one binding site model. Both

experimental results are further supported by the predicted

binding sites for each peptide to CRIP1 as depicted in Figure 3.

Interestingly, when the Ki for the A1M peptide is calculated (Ki =

0.067 mM), it is not the same as the apparent Kd for FITC-A1M

(Kd = 2.6 mM) determined by saturation binding experiments.

Based on this observation, the FITC label likely reduces the

affinity of the peptide for CRIP1, which is not uncommon with

labeled peptides. However, this observation does not alter the

interpretations of the data comparing the affinity of the unlabeled

peptides A1 and A1M.

From the apparent equilibrium dissociation constants, we

calculate the experimental free energy change to be DDG = RT

ln Kd,A1M 2 RT ln Kd,A1 = 21.6 kcal mol21, which is smaller

than the estimated computational free energy change DDG =

283 kcal mol21 (Table 2). This difference between the experi-

mental and computational free energy changes is primarily

contributed by the van der Waals repulsion term (Table S2),

suggesting initial clashes in the docking of the A1 peptide to the

CRIP1 structure. However, since the docking protocol (ZDOCK)

is consistently implemented, we still expect strong correlation

between the computational and experimental free energy changes,

that is, those redesigned peptides with lower computational DDG is

also expected to have low experimental DDG, although the

absolute values may not be directly comparable. In a separate

Figure 3. Peptide Redesign. (A) A1 peptide docked to groove formed by the S6–S7 turn and the helix H3 (left panel). CRIP 1 residues that form the
putative A1 binding site (right panel). (B) Redesigned A1 (A1M) peptide that is predicted to have a higher affinity to CRIP1.
doi:10.1371/journal.pcbi.1000138.g003

A Novel Biomarker for Cancers
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study benchmarking the Medusa force field [28,29], experimental

and computational DDG values exhibited a correlation of 0.75

(P = 102108).

Discussion

CRIP1 is an extremely compelling marker to exploit for

enhanced detection of breast and other cancers. However, its

cytosolic expression makes it hard to measure by conventional

means, e.g., antibodies. The cell membrane increases the

pharmacological barriers that must be overcome to bind and

consequently image the expression of this protein in cancer cells.

Thus, we developed methodologies to generate high affinity

peptides to purified cytosolic proteins with the ultimate aim of

designing these peptides to cross membranes and serve as imaging

ligands. To rapidly identify peptides that will bind to CRIP1, we

utilized phage display technology and purified CRIP1 protein.

This technology identifies relatively low affinity (10–100 mM)

ligands to target proteins. To increase the affinity of the peptides

identified using phage display, we developed a protocol for

rational peptide redesign that utilizes computational techniques.

This protocol successfully increased peptide affinity by approxi-

mately 10–28-fold.

Computational design methods have been employed to

modulate protein-protein interactions. Major challenges in protein

design include (1) identification of ligand-peptide binding site and

(2) optimization of affinity of the peptides that bind to that

particular protein [30]. In practice, sequence and conformational

space need to be adequately sampled [30]. There is also the need

for accurate energy functions that identifies protein sequences

corresponding to the global free energy minimum of a given

protein conformation [30]. Several studies have been reported to

identify protein interaction specificity [31–35]. For example,

Shifman and Mayo computationally redesigned the promiscuous

binding site of calmodulin to increase its specificity to one of its

ligand peptides [36]. The authors performed iterative optimization

of the rotamers. In another study, Reina et al. computationally

engineered a small protein-protein interaction motif of the PDZ

domain to bind novel target sequences [37]. The study

demonstrated that by combining different backbone templates

with computer-aided protein design, PDZ domains could be

engineered to specifically recognize a large number of proteins

[37]. Another example of successful redesign was the engineering

of coiled-coil interfaces that direct the formation of either

homodimers or heterodimers [38]. The design protocol involved

both positive design, stabilization of desired interaction, and

negative design, the destabilization of undesired interactions [38].

The problem of redesigning ligand peptides initially identified from

phage display is challenging because the structure of the peptides are

not known and the peptides do not have a known binding site in

CRIP1. While there have been successes in the redesign of protein-

protein interfaces and location of binding site through computational

docking, there is yet no study where the system being designed face

these two major challenges simultaneously. We computationally

modeled the cyclic peptide and performed molecular dynamics to

find the equilibrium conformation of the peptide. To diversify the

backbone conformation of the peptide included in the redesign, we

selected 3 peptides from the equilibrium molecular dynamics and

docked them to 48 CRIP1 conformations from NMR. Interestingly,

Figure 4. Binding affinity of the ligand peptides to CRIP1 from
saturation binding (apparent Kd) and from competitive binding
(IC50). (A) The apparent Kd for binding of FITC-A1M to CRIP1 protein
was determined by a saturation binding experiment using 1 mM of
unlabeled A1M peptide to assess non-specific binding, Kd apparent =
2.6 uM. Error bars represent the S.E. of the corrected mean. (B) To
compare the binding affinity of A1M and A1 to CRIP1 we performed a
competitive binding assay. The concentration of the labeled ligand
(FITC-A1M) was held constant and increasing concentrations of either
unlabeled A1M or unlabeled A1 peptides were used to compete the
binding. From these binding curves regression analysis was used to
calculate the IC50 for each of the competitors. Both peptides competed
off FITC-A1M suggesting that there is only a single binding site for this
peptide on the CRIP1. A1M was approximately 27.5 times more
effective than A1 at competing for FITC-A1M binding to CRIP1. Error
bars represent S.E. of the corrected mean.
doi:10.1371/journal.pcbi.1000138.g004

Table 2. Peptide sequences determined by molecular
modeling.

Design ID Sequence DDG (kcal/mol)
Peptide
model

Binding
mode ranka

M1 CLDGGGKGC 283 1-ns 1

M2 CLGGEKGGC 263 10-ns 4.5b

M3 CGNDAGLGC 255 10-ns 4.5

M4 CVGNSEPGC 226 9-ns 8

M5 CGDKKQGGC 224 9-ns 4.5

All docked peptide structures were subjected to the redesign protocol. Shown
below are representative redesigned sequences from different peptide
backbone conformations (1-ns, 9-ns, or 10-ns) and from different binding sites.
The peptide A1M (CLDGGGKGC) exhibited both a high binding mode rank and
a low DDG value; thus we select it for experimental testing.
aBinding mode rank pertains to the order of the cluster size to which the
peptide complex belongs. A binding mode of rank 1 implies that the peptide is
positioned on the site to which most other structures are also docked.

bM2 and M3 come from different binding sites but with equal number of
docked peptides.

doi:10.1371/journal.pcbi.1000138.t002

A Novel Biomarker for Cancers
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this procedure of diversifying protein and ligand peptide conforma-

tion is sufficient to identify putative binding sites on the protein. We

believe that the cyclic structure of the peptide was an important factor

to the success of the procedure, because the error from enthalpy-

entropy compensation is reduced when docking a cyclic peptide

compared to docking a linear peptide.

Another important factor that contributed to the success of the

peptide design is the conformational sampling introduced in the

design steps to maximize the coverage of sequence-structure space

available to the CRIP1-peptide complex. First, we performed

multiple docking simulations that allowed us to identify various

poses for binding. Second, we allowed backbone of the peptide to

be flexible during sequence design procedure, thereby significantly

diversifying the designed sequences [28,29]. Hence, the combina-

tion of the restricted conformational space available to a peptide

due to circularization and our flexible-backbone sampling

technique [28,29] allowed us to sufficiently sample the conforma-

tional space of the peptide during design, thereby contributing to a

successful peptide binder to CRIP1. Our approach can be further

extended to other systems of interest.

In this study, we combine empirical and computational

approaches to develop a novel paradigm to improve ligand affinity

when limited structural information is available. CRIP1, a

potentially powerful biomarker for several cancers, was purified

and used in an empirical phage display assay to identify short amino

acid peptides with modest affinity for the protein. The resulting

peptides were then structurally modeled, based on the structures of

other known but unrelated peptides of similar size. Using the limited

NMR structure available for CRIP1 the modeled peptides were

then computationally docked to CRIP1 resulting in identification of

several potential structural motifs responsible for the binding

interaction. The modeled interactions were then optimized and

peptides were redesigned based on these data.

Interestingly, even after 4 rounds of phage display isolation, no

consensus sequence for CRIP1 binding peptides emerged. These data

might possibly suggest that a strong binding ‘‘natural’’ peptide did not

exist on the CRIP1 protein. Remarkably, however, computational

manipulation of the amino acids contained within the peptide, based

on energy minimization, significantly increased the affinity of the

peptide. This suggests that: (1) conditions for phage-CRIP1 binding

were not optimal for peptide identification; (2) the phage library did

not contain all possible combinations of amino acids; and/or (3) the

library was not exhaustively screened. In any of these cases, however,

the use of computational redesign combined with empirically derived

initial binding data significantly improved the quality of final peptide

ligands. As our database of redesigned peptides and resulting Kd’s

accumulates, the approaches described here potentially can be

generalized and could be implemented for peptide ligand generation

routinely. The resulting peptide from these studies, A1M, will be

further developed as an imaging probe.

Methods

Construction of Vectors pHat10-CRIP1 and
Transformation into E. coli

The coding region of the CRIP1 cDNA was removed from

CRIP1 in pcDNA3.1+ using BamH1 and Xba1 restriction enzymes

and subsequently subcloned into the BamHI and EcoRI sites of the

vector pHAT10 (BD Clontech) which contains an N-terminal

histidine affinity tag. The construct was confirmed by sequencing.

CRIP1 Protein Expression and Purification
Bacterial cells expressing the pHAT10-CRIP1 were cultured in

LB media containing 50 mg/ml ampicillin until reaching OD of

0.6 at which time they were induced to express the protein by

adding IPTG to a final concentration of 0.5 mM IPTG. The

bacteria were then harvested and resuspended in Equilibration/

Wash Buffer (50 mM sodium phosphate pH 7.0, 300 mM NaCl)

containing 0.75 mg/ml lysozyme and 0.0174 mg/ml PMSF and

sonicated with three 10 s pulses (medium power, Sonic Dismem-

brator Model 100, Fisher Scientific), with a pause for 30 s on ice

between sonication cycles. Following sonication, the lysates were

cleared by centrifugation, and incubated with TALON CellThru

Resin (BD Biosciences, Palo Alto, CA) in Extraction/Wash Buffer.

The tagged protein was eluted from the washed column with

0.15 M imidazole in Extraction/Wash Buffer. The purity of

CRIP1 in fractions was confirmed by SDS-PAGE [39]. The

concentration of CRIP1 in fractions was determined by Bradford

Assay using IgG as a standard [40].

Phage Display
CRIP1 was digested with enterokinase (Roche Diagnostics, Inc.)

to remove the His tag and then was used as bait for 4 rounds of

panning with the Ph.D.-C7C Phage Display Peptide Library (New

England Biolabs). The nucleotide sequence of the gene III insert

was determined by sequencing the phage, and the amino acid

sequence of the insert was deduced from the nucleotide sequence,

shown in Table 1.

Molecular Modeling and Redesign
Computational optimization of the peptide binding affinities

consists of three major steps: (1) structural modeling of cyclic

peptides initially identified from phage display experiments, (2)

finding putative binding sites of the peptides on CRIP1, and (3)

searching for sequences that optimize the stability of the peptide-

CRIP1 complex.

Peptide model. We first constructed a linear peptide model

of A1. To circularize the linear peptide, we assigned a disulfide

bond between the sulfur atoms of the terminal cysteines and

performed rapid descent energy minimization. Peptide modeling

was performed in InsightII (Accelrys, San Diego, CA), a molecular

modeling suite.

To further relax the structure of the cyclic peptide, we

performed all-atom 10 ns equilibrium molecular dynamics

simulation of A1 in GROMACS [41,42] (see Figure 1C for cyclic

peptide structure after 10 ns simulation.) The peptide was solvated

in a rectangular box filled with SPC water molecules [43]. A

chloride ion was added to the system such that the net charge of

the system is zero. OPLSAA force field was used to define

interactions between protein atoms [44]. We employed the

Particle Mesh Ewald (PME) method to calculate the electrostatics

interactions in the system [45,46]. The system was coupled to an

external thermal bath at 300 K with a coupling constant of tT =

0.1 ps [47]. The system pressure was also maintained at 1.0 bar by

an isotropic pressure coupling with time constant tP = 0.5 ps

[47]. In both the peptide redesign and identification of binding

sites, we selected the peptide conformations from the equilibrium

simulation corresponding to 1 ns, 9 ns, and 10 ns, which are

labeled as 1-ns, 9-ns, and 10-ns, respectively.

Putative binding sites on CRIP1. To increase the binding

affinity of the initially identified peptide A1, we needed structures

of peptides docked to CRIP1. To arrive at the CRIP1-peptide

complexes, we docked the three peptides to the 48 CRIP1

conformations derived from NMR (Figure 2). CRIP1 structure

contains a long unstructured N-terminal loop, which include

residues G61 to K76 (Figure 1A). Peptides that docked exclusively

to this loop were excluded in the redesign. We used ZDOCK to

find candidate peptide binding sites on CRIP1 [48,49]. ZDOCK
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performs a fast Fourier transform search of all possible binding

modes for proteins based on shape complementarity, desolvation

energy, and electrostatics [48,49].

For each candidate peptide, we identified the dominant binding

modes by clustering them according to their position on the

CRIP1 surface (Figure 2). We first defined the position of the

peptide by the center of mass of its Ca atoms. Then, using a

hierarchical clustering algorithm, we were able to group the

centroids. To find the optimal number of clusters, we first varied

the cutoff (maximum distance between two subnodes that belong

to the same cluster) (Figure 2). In clustering, there are two

competing parameters, the number of clusters and the similarity

between elements within a cluster. In the maximum number of

clusters, each element is itself a cluster, and the single element is

perfectly similar to itself. However, this limit does not reveal the

underlying structure of the data points. In the opposite limit where

we have only one cluster, all objects belong to the same cluster,

which is still not informative. But as shown in Figure 2, the optimal

balance between number of clusters and similarity is attained

when the cutoff is 6.9 Å for 1-ns peptides. For the two other

peptides, the cutoffs were 6.4 and 7.4 Å, respectively.

We show in Figure 2 the positions of the peptides that were

docked to CRIP1. Docking sites that belong to the same cluster are

colored similarly. The redesigned peptide A1M, belongs to the

largest cluster.

Peptide redesign. All the CRIP1-peptide complexes derived

from the docking were subjected to redesign. We optimized the

binding of the peptide by computationally mutating each peptide

residue and searching for the peptide sequence with low

DDG =DGMUT 2DGA1, where DGMUT and DGA1 are the free

energies of the redesigned peptide and original peptide A1,

respectively. The detailed methodology of the computational DDG

estimation is described in an earlier study [28,29,50] (see also the

freely accessible server for the DDG estimation ERIS, http://

dokhlab.unc.edu/tools/eris/index.html). ERIS uses a united atom

model, which includes all heavy atoms and polar hydrogen atoms,

to represent proteins. ERIS likewise employs a physical force field

(called Medusa [51]) coupled with fast side-chain packing and

backbone relaxation algorithms. The calculated free energy is a

weighted sum of van der Waals interaction, solvation energy,

hydrogen bonding, and backbone-dependent statistical energy for

any given amino acid and rotamer state. The ERIS DDG

estimation protocol has been benchmarked in earlier study

[28,29] by comparing calculated free energy changes with

experimental values.

We ranked according to DDG values the peptide sequences that

were redesigned from the same backbone conformation and were

docked on the same cluster of binding sites. In Table 2, we show

some representative sequences from the peptide redesign. In these

calculations, the peptide A1M (CLDGGGKGC) exhibited both a

high binding mode rank (most other A1 peptides docked to the

same site) and a low DDG energy, which we selected as the

candidate for experimental verification.

Peptide Synthesis
Peptide on resin. Peptide was synthesized on a Peptide

Synthesizer 433A (Applied Biosystems) using Fmoc chemistry

protocols with HBTU activation (please see schema in Figure S4).

The starting resin was Fmoc-Rink-Amide resin (Elim

Biopharmaceuticals) or Fmoc-Knorr Amide Resin (Case Western

Reserve University). All amino acids used standard side chain

protecting groups, except for the C-terminal lysine residue, which

contained a (4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethyl (Dde)

functionality protecting the e-amino group to allow orthogonal

synthesis by selective deprotection of the Dde while the peptide

was attached to the resin. The N-terminal cysteine residue was

protected by a Boc group. To provide a linker and a conjugation

site, a Lys and the sequence Gly-Gly-Gly-Ser derived from the

phage sequences immediately downstream of the C7C insert, were

added to the synthesized peptides. After completion of the

synthesis, the peptide resin was washed with DIPEA and DCM

and kept dry for the next reaction.

FITC-peptide on resin. The Dde protecting group was

removed by suspending the resin in 2% hydrazine monohydrate in

DMF (25,100 ml/g, 3,10 times63,60 min). After thorough

washing with DMF and methanol, 2 eq of 5-carboxyfluorescein

was added with 2 eq of TBTU, 2 eq of HOBt, and 8 eq of

diisopropylethylamine in NMP. The coupling of 5-

carboxyfluorescein was allowed to proceed for 24 h at room

temperature. The FITC-peptide on resin was then washed with

NMP, methanol, and kept dry for the next reaction [52].

FITC-peptide. FITC-peptide was cleaved from the resin

support using 2.5% EDT, 1% TIS, 94.5% TFA and 2.0% water

for 2 h at room temperature and precipitated in ether. The FITC-

peptide was purified by reverse phase HPLC (Shimazu LC-20AT,

SPD-10 UV detector) on a Luna 5 m C18(2) column

(250 mm610 mm, Phenomonex Corp.) using a linear gradient

system of 0.1% TFA aqueous solution with an initial concentration of

acetonitrile 5%. The calculated mass was confirmed by mass

spectrometry (PE Biosystem, ProTOF ). FITC-A1 peptide with

sequence NH2-C-L-K-D-N-H-R-S-C-G-G-G-S-K-(FITC)-CONH2:

m/z: 1818.7; calculated mass: C77H107N23O25S2, 1817.7. FITC-B5

peptide with sequence C-Y-D-P-I-W-R-T-C-G-G-G-S-K-(FITC)-

CONH2: m/z: 1898.6; calculated mass: C87H110N20O25S2, 1897.6.

FITC-A1M peptide with sequence NH2-C-L-D-G-G-G-K-G-C-G-

G-G-S-K-(FITC)-CONH2: m/z: 1552.6; calculated mass:

C66H89N17O23S2, 1551.0.

Cyclization of FITC-peptide [53]. FITC-peptide was

resuspended at 0.5-1 mg/ml and oxidized in 10,20% DMSO

aqueous solution adjusted to pH 7 by (NH4)2CO3. At the completion

of the reaction, usually 4,10 hours, the solution was purified by

reverse phase HPLC (Shimazu LC-20AT, SPD-10 UV detector) on a

Luna 5 m C18(2) column (250 mm610 mm, Phenomonex Corp.)

using a gradient system of 0.1% aqueous TFA with an initial

concentration of acetonitrile 5%. The calculated mass was confirmed

by mass spectrometry (PE Biosystem, ProTOF). FITC-cyclic-A1

peptide with sequence NH2-C-L-K-D-N-H-R-S-C-G-G-G-S-K-

(FITC)-CONH2: m/z: 1816.8; calculated mass: C77H105N23O25S2,

1815.7. FITC-cyclic-B5 peptide with sequence C-Y-D-P-I-W-R-T-

C-G-G-G-S-K-(FITC)-CONH2: m/z: 1896.6; calculated mass:

C87H108N20O25S2, 1895.6. FITC-cyclic-A1M peptide with

sequence NH2-C-L-D-G-G-G-K-G-C-G-G-G-S-K-(FITC)-

CONH2: m/z: 1550.6; calculated mass: C66H87N17O23S2, 1549.0.

The synthesis was shown in Scheme 1. Circularization resulted in a

loss of 2 protons as measured by Mass Spec analysis.

Measurement of Binding Affinity
The binding affinity of the peptides for CRIP1 protein was

determined by saturation binding experiments [54,55]. Ninety-six

well plates were coated with 150 ml of PBS buffer containing

100 mg/ml of CRIP1 and incubated overnight at 4uC. The wells

were then washed three times with 50 mM Tris, 150 mM NaCl,

pH 7.5 (TBS) containing 0.1% Tween-20 (TBST), and then each

well filled completely with blocking buffer (TBS containing 0.5%

BSA), incubated at least 1 hour at 4uC, and then rapidly washed 3

times with TBST. Following washing 100 ml of binding buffer

containing different concentrations of FITC-labeled peptides

(ranging from 50 nM to 100 mM) were added to the CRIP1
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containing wells and incubated for 1 hour at 37uC with rocking.

After incubation, the plates were washed three times with binding

buffer. The fluorescence intensity in each well was determined on

Infinite M200 Tecan Instrument (Tecan, NC) (Excitation

wavelength: 494 nm, Emission wavelength: 530 nm). The appar-

ent equilibrium dissociation constant, Kd,apparent, was calculated by

non-linear regression using GraphPad Prism (GraphPad Prism 4.0

Software, San Diego, CA). Each data point is the average of three

determinations. Nonspecific binding was defined in the presence of

1 mM unlabeled peptide. All binding experiments (saturation

binding and competitive binding experiments) were conducted

under equilibrium binding conditions and under conditions where

total ligand added was essentially equivalent to the amount of free

ligand after the binding reaction occurred.

Competitive Binding Assay
The binding affinity of the A1 and A1M peptides for CRIP1

protein was directly compared by a competitive binding

experiment [55,56]. Labeled A1M peptide (FITC-A1M) was

competed with increasing concentrations of either unlabeled A1M

peptides or A1 peptide and the IC50 for each peptide calculated.

Ninety-six well plates were coated with 150 ml of PBS buffer

containing 100 mg/ml of CRIP1 and incubated overnight at 4uC.

The wells were then washed 3 times with 50 mM Tris, 150 mM

NaCl, pH 7.5 (TBS) containing 0.1% Tween-20 (TBST), and then

each well filled completely with blocking buffer (TBS containing

0.5% BSA), incubated at least 1 hour at 4uC, and then rapidly

washed 3 times with TBST. Following washing 150 ml of binding

buffer containing FITC-A1M peptides of 10 mM and appropriate

dilutions of unlabeled A1 and A1M peptides (ranging from 0 to

300 mM) were added to the CRIP1 containing wells and incubated

for 1 hour at 37uC with rocking. After incubation, the plates were

washed three times with binding buffer. The fluorescence intensity

in each well was determined on Infinite M200 Tecan Instrument

(Tecan, NC) (Excitation wavelength: 494 nm, Emission wave-

length: 530 nm). Ki was calculated by non-linear regression with

one binding site using GraphPad Prism (GraphPad Prism 4.0

Software, San Diego, CA). Each data point is the average of three

determinations, shown in Figure 4B. Data was analyzed using

several different binding models and was found to only fit a one

binding site model. When no competitor was added the data point

was graphed as 0.1 nM to satisfy software requirements. This has

no effect on calculations of the IC50’s.

Supporting Information

Figure S1 The cDNA and amino acid sequences of CRIP1.

After cloning, the insert was confirmed by sequencing and the

deduced amino acid sequences for the human CRIP1 shown in

Figure 1S. Excluding the vector sequence and the poly A region,

the cDNA insert is 243 base pairs in length. The start site for

transcription is at nucleotide position 73 (not shown in figure) with

the start of translation at nucleotide position 162. This open

reading frame expresses the amino acids encoding the His-tag (nt:

186–242) and encoding an enterokinase clevage site (nt: 246–260).

The sequences encoding the human CRIP1 protein begin at

nucleotide 273 and continue through nucleotide 503. Translation

of these sequences results in a polypeptide 114 amino acids in

length, the majority of which, 77 amino acids, make up CRIP1

protein. The start (ATG) and stop (TAA) codons are underlined.

The sequence of nonadjacent 6 histidines on HAT epitope is in

bold. The poly A tail at the end is not shown.

Found at: doi:10.1371/journal.pcbi.1000138.s001 (0.80 MB TIF)

Figure S2 CRIP1 purity. Comassie Blue stained-SDS-PAGE

analysis of CRIP1 lysate and elutions after purification. Lane 1:

standard molecular marker; Lane 2: lysate before incubation with

Resin; Lane 3: lysate after incubation with Resin; Lane 4,5:

fractions through Clontech TALON CellThru column.

Found at: doi:10.1371/journal.pcbi.1000138.s002 (1.30 MB TIF)

Figure S3 Relative estimates of peptide affinity for CRIP1.

Phage binding against immobilized CRIP-1.

Found at: doi:10.1371/journal.pcbi.1000138.s003 (0.38 MB TIF)

Figure S4 Synthesis of FITC-peptides. Please see Methods for

detailed description.

Found at: doi:10.1371/journal.pcbi.1000138.s004 (0.92 MB TIF)

Figure S5 Sequences of redesigned peptides. Sequence motifs of

the redesigned peptides for the starting peptide structure models 1-

ns, 9-ns, and 10-ns. The rank pertains to the order putative the

binding site on CRIP1 defined from clustering.

Found at: doi:10.1371/journal.pcbi.1000138.s005 (0.68 MB TIF)

Figure S6 Residue preference without CRIP context. To verify

that the observed preference for Gly in some sites in the peptide is

not due to a bias in the force field, we employed the protocol to

find the optimal peptide sequence when the peptide is not bound

to CRIP1. We used 50 independent redesign runs. The preferred

sequences are expectedly highly polar which maximize the peptide

solvation energy.

Found at: doi:10.1371/journal.pcbi.1000138.s006 (0.09 MB TIF)

Table S1 Analysis of CRIP1.

Found at: doi:10.1371/journal.pcbi.1000138.s007 (0.04 MB

DOC)

Table S2 Contribution of individual energy terms to the DDG of

the redesigned peptide A1M CLDGGGKGC.

Found at: doi:10.1371/journal.pcbi.1000138.s008 (0.04 MB

DOC)
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