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In this work, we explore the use of the semiclassical initédue representation (SC-IVR) method with first-
principles electronic structure approaches to carry @gsital molecular dynamics. The proposed approach can
extract the vibrational power spectrum of carbon dioxiderfa single trajectory providing numerical results that
agree with experiment and quantum calculations. The coatipnll demands of the method are comparable to
those of classical single-trajectory calculations, whigscribing uniquely quantum features such as the zero-
point energy and Fermi resonances. The method can also Hetwsdentify symmetry properties of given
vibrational peaks and investigate vibrational couplingssblected classical trajectories. The accuracy of the
method degrades for the reproduction of anharmonic stufthifjh-energy vibrational levels.

PACS numbers:

INTRODUCTION ing dependencies on the fictitious electronic masses [4, 6].
While the evaluation of the potentiah-the-flycan be eas-
ily integrated with classical simulations, the delocatizea-

ong o the fancamental toolset of modern heoreical chem(UTe Of duantum mechanical propagation has Ied o the devel-
'ong . ) . . opment of many alternative approaches for the simulation of
ical physics. Classical simulation methods are able toystud

. - . uantum dynamics. For example, the path-integral centroid
systems with up to millions of particles but are unable to de—q y P P 9

. . . .._molecular dynamics approach [7] includes quantum nuclear
scribe quantum effects such as tunelling and delocalizatio y PP [7] 9

. . effects employing an extended Lagrangian. Alternatively,
Exact quantum mechanical methods are restricted to a few ploying grang y

¢ icl v wh tod " In the variational multi-configuration Gaussian wavepacke
quantum particies, especially when pre-compute analytic method (vVMCG) [8] the quantum wavepackets are represented
potential energy surfaces (PES) are employed.

by fixed-width Gaussian functions for which the potential is
First-principles molecular dynamics (FPMD) algorithms approximated to be locally harmonic. Other approaches-intr
have been introduced as an alternative to the pre-calonlati duce a mean field approximation and then update the dynam-
of the PES. FPMD avoids any source of error originated fromcs in a time-dependent self-consistent fashion [9, 10].
the fitting of the PES. This is particularly true for many de-  Semiclassical molecular dynamics methods [11-20] are
grees of freedom, where the fitting procedure might not reprebased on classical trajectories and therefore are amenable
sent the many-dimensional surface accurately. In this famfor carrying outon-the-flycalculation of the potential. The
ily of methods, the potential and its derivatives are calcubenefits of calculating the potential only when needed have
lated on-the-flyas the dynamical simulation progresses ancheen suggested by Heller and co-workers [20, 21]. In be-
are directly obtained from electronic structure calcolasi.  tween formally exact quantum methods and classical dynam-
In the Born-Oppenheimer molecular dynamics (BOMD) ap-ics, semi-classical methods include quantum effects agppro
proach, the electronic structure calculations for a giviems mately. Two representative semi-classical approachethare
ulation step are converged based on previous step informgoupled coherent states (CCS) technique [22] and the b init
tion. This approach can lead to systematic energy drifts anehultiple spawing method (AIMS) algorithm [23]. In the CCS
several methods have been proposed to avoid this effect [1approach, several grids of coherent states are classiraly
Alternatively, extended Lagrangian molecular dynamics apagated and their trajectories can be derived from first jpiec
proaches (ELMD) [2-5] involve the propagation of nucleardynamics. In AIMS, the nuclear wavefunction are spawned
and electronic degrees of freedom simultaneously. The ele@nto a multiple potential surface basis set. This set is made
tronic degrees of freedom are assigned to classical vasabl of adaptive time-dependent fixed-width Gaussian functions
that are propagated using classical equations of motion anghich are generated by classical Newtonian dynamics.
these can be expanded in terms of plane waves [2], Gaussian
functions [4] or real-space grids [5]. Usually ELMD propa-
gation is computationally more efficient, however question FIRST-PRINCIPLES SC-IVR
have raised on whether the resultant energy surface remains

close to the actual Bom-Oppenheimer one and about disturb- In this work, we show how the semiclassical initial value

representation (SC-IVR) [12] method can be coupled tightly
and naturally, without any mayor change in formulation hwit

“On the anniversary of the 100th year of foundation of the k&acChimica ISt PrinCiples electronic S_trUCture approaches to cauy o
Italiana” classical molecular dynamics. We show how the method is
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able to reproduce approximately quantum effects such as thees well as a set of reference statég|p(t),q(t)) =
vibrational power spectra using a single, short classieal t M (M/n)F/4exp[ V- (g —qi (1) /2+ipi (t)- (a — g (1)) /A
jectory using computational resources comparable to thosef fixed width y;. For bound systems, the widths are usually
employed in first-principles molecular dynamics calcalai.  chosen to match the widths of the harmonic oscillator approx
Calculations employing multiple trajectories can in piple  imation to the wave function at the global minimum and no
be more accurate (and more computational intense as wellgignificant dependency has been found under width variation
but here we focus on analyzing the predictive power of singlg13]. By introducing a £ x 2F symplectic (monodromy)
trajectory runs. Finally, we describe how different aptees  matrix M (t) = 9 ((pt,qt) /2 (Po,do)), one can calculate the
can be used in conjunction with this method for studying thepre-factor of Eq. (2) from blocks df x F size and monitor
symmetry of the vibrational states either by arrangingtite i  the accuracy of the classical approximate propagation @y th
tial conditions of the classical trajectory or by employthe  deviation of its determinant from unity. Wargal. suggested

symmetry of the coherent state basis. _ - calculating the determinant of the positive-definite matri
In the SC-IVR method, the propagatorkndimensionis  MTM instead [25] and we monitored the same quantity
approximated by the phase space integral, for this work. The spectral density is obtained as a Fourier

transform of the surviving probability[19]. The SC-IVR
expression of the probability of survival for a phase-space

g Y/ _ W fdp( 0) fdq(0) G (p(0),q(0)) reference statg() = | pn,gn) is
&S PO/ (), q(t))(p(0),a(0)| (1)

where(p(t),q(t)) are the set of classically-evolved phase
space coordinate§ is the classical action an@ is a pre-
exponential factor. In the Heller-Herman-Kluk-Kay [19,]24
version of the SC-IVR, the prefactor involves mixed phase
space derivatives

(x[e % x) = — = [dp(0) [ da(0)C (p(0).q(0) &SP iy p(t).q(v) (p(0).aO) ). (3

(2rth)

The phase-space integral of Eq. (3) is usually computeglemented by Kaledin and Miller [26] to obtain the TA (Time
using Monte Carlo methods. If the simulation time is long Averaging [27]) SC-IVR approximation for the spectral den-
enough, the phase space average can be well approximated iy,

a time average integral. This idea has been suggested and im-

18) = e [0(0) [00) 72 (ot [ ey (p().atw)

X (x| P(t2).0(t2)) (%P0 <°>>+Et2>/ﬁ[<x|p(m,q(tl»e‘( S4(P(O4(0)+Ew)/M)° )

where (p(t1),q(t1)) and (p(t2),q(t2)) are variables that limit of a single trajectory. Calculations of the vibratain
evolve from the same initial conditions but to differentéisy  spectra of systems such as the water molecule have proved to
and T is the total simulation time. The advantage of thisbe very accurate using the TA-SC-IVR approach and its inex-
approach is that the additional time integral can in prilecip pensive single-trajectory variant showed significant iover
replace the need for phase-space averaging in the large-tinments over the simple harmonic approximation for excited vi



brational levels [26]. In order to make Eq. (4) less compu- Time
tationally demanding, one can employ the separable approx oersble
mation [26], where the pre-factor of Eq. (4) is approximated, __,, ue->r)
as a phas&, (P (t),q (1)) = Expli (9 (t2) - @(t2)) /], and gt

@(t) = phaséC; (p(0),q(0))]. Using this approximation, Eq.
(4) becomes

FPMD step n FPMD step n+1

—» * get position

* get gradient

save wavefunction save wavefunction

Thread 2 Compute

1 1 ' ' )
I(E) = Wﬁ/dp(o)/dwo) e
T Thread 3 ﬁgsms?::\e
< | [ ettxipw.ae) ®
X el (S (p(o)q(o))+Et+(ﬂ (p(o) q(o))/ﬁ) ‘ 2 Thread 4 FP-SC-IVR integrator

leading to a simplification of the double-time integratiant ) o ) )
Figure 1: First-principles SC-IVR algorithm: At each tintes elec-

a single time integral. The resulting integral is positiedfid . .
9 9 9 9 P tronic wavefunction are saved to calculated nuclear HassMu-

nite, m.aklng more amenable for Monte Carlo |r_1tegrat|0n_. Ourclear positions, gradients and Hessian are accumulataddapec-
numerical tests show that the results of carrying out this apy| time-average integral.
proximation are essentially identical to the double timte-in

gral approach when using a single trajectory. In this pa@er r

sults will be reported by use of this last approximationcsit The calculation of the full dimensional vibrational power
is computationally cheaper and numerically more stabla thaspectrum of the C®molecule is a challenging test for FP-SC-
Eq. (4). IVR method: A successful method should reproduce spectral

For this work, we compute the potential energy surface ateatures such as degenerate bending modes, strong int@rmod
each nuclear configuration directly from the Kohn-Sham or<ouplings and Fermi resonances. To evaluate the FP-SC-IVR
bitals expanded on a non-orthogonal Gaussian basis. Gradhethod, we compare vibrational spectrum of O@olecule
ents and Hessians at each nuclear configuration are obtaing@m FP-SC-IVR method to numerically-exact discrete vari-
analytically from electronic orbitals. The evaluation bt able representation (DVR) eigenvalue calculations on a po-
potential represents most of the computational effort af outential fitted to a set of first-principles points obtainedtat
approach, which is roughly few hours of computer time usingsame level of theory. The next section describes the details
standard desktop machines for a I¢nspectrum resolution.  of the potential fitting and DVR calculation. Following, we

The nuclear equations of motion are continue on the discussion of the FP-SC-IVR method.
- min
MR = -0 "~ Epr7 [C,R] (6)
POTENTIAL FITTING AND GRID CALCULATIONS

whereC is the rectangular matrix of the lowest occupied or-
bitals and the classical propagation is performed accgmjjn TheCOz molecule is a linear molecule with four vibrational
the velocity-Verlet algorithm, as implemented in the Q-@he Normal modes: a symmetric stretching modg)(degenerate
package [28]. At each time step, the potential, nuclearigrad bending modesy, andvy) , and an antisymmetric stretching
ent and Hessian are used to calculate the action, pre-tandor mode {’3). A 3d potential energy grid in internal coordinates
coherent state overlaps necessary for the TA-SC-IVR metho§ calculated using the B3LYP density functional [29] with
(Egs. 4 and 5). A schematic representation of an implemerthe cc-pVDZ basis set [30]. The grid points are then fitted to
tation of the algorithm for a multithreaded machine is shown? potential energy surface [31] represented by a fourtlerord
in Fig. (1). At each time step, results are accumulated foMorse-cosine expansion
time-average integration. The results presented on thik wo A .
were carried out on a single thread. For each classicaktraje V(ri,r2,0) = Ko (1_ e—al(rl—re))l

. . . . . 1,12, ijk
tory, the procedure is repeated and the final integratioasgiv i j;:O
the spectrum intensity(E) for a given parametric value of , K
E. The same procedure is repeated for iextAE, where in x (cos — cobe)’ (1— efaZ(rr@) (7)
our calculatioAE = 1cm 1. As previously mentioned, the
trajectory is monitored by calculating at each time step thevhere the parameteg = 2.206119 a.u. an@. = 180 specify
deviation of the determinant of the monodromy matrix fromthe equilibrium coordinates of the G@olecule. The Morse
unity. The difference in the determinants was always smalleparameters; = a, = 1.2489 a.u. were determined so as to
than 10°° during the course of the calculations. A time step ofminimize the standard deviation of the differences of the fit
10 a.u. has been always found to satisfy the strict monodromted potential from the ab initio result using the Levenberg-
matrix restrictions even for the lightest atoms. Marquardt non-linear least square algorithm [32] . Instead



coeff. attod ||coeff. attoJ part of the Hamiltonian fod = 0 is
Koo1 +0.000000| Kigo = Kooz 2 2 i2 i2
. P32 J J p1p2cosd

Kooz +1.442886| Koo = Kooz T = > + > + 2 r2 + 2 r2 + me
Koos -0.032128 Kaop = Koos Hco <Hco 2Hco 1_2 II;CO 2
Kooa +0.003630| Kagg = Kooa _ P1Pe _ P2Pe _ CO§J + ) cosd (8)
Koo +0.726891| K111 +0.392310 Mer2  Mer2 2merara
Ko]_]_ -0.443422 KllO :Ko]_]_ Where
Koiz -0.162970| Ko19 = Ko12
Kois -0.101077| Ksio = Kois Pk = —i i, k=12 9)
Kozo +0.488451| Kip1 +0.606572 ork
Ko21 -0.358126G| K120 = Ko21
Kozo -0.210888| Kazo = Kooo .0

Py = —i—=—=Ssinb (20)
Kozo +0.175981| Kooz +0.097300 206
Koz1 -0.184503| K =K
031 130 031 and
K112 +0.103208| Ko11 =Ki12
K101 +0.210532| Koo +0.155374 2o 1 9 .99 (11)
Kioz +0.067998| Koo = Kigo sing 06 o0
Kios +0.068693 Kso1 = Kios The carbon mass were taken torhe= 12.0 a.m.u., while the

Table I: Expansion coefficientsjjc for the CQ B3LYP/cc-pvVDZ oxygen massio = 15.9949 a.m.u. and the reduced mass is as

fitted potential energy surface in attoJoule units. usual ¥ pco = 1/me+1/mo.
As previosuly mentioned, in order to calculate exact eigen-

values, a sine-DVR basis for the coordinatesindr, and a
Legendre-DVR basis fof has been used [33]. For each de-
was obtained by geometry optimization within the Q-Chemgree of freedom 50 DVR functions were used and eigenvalues
ab initio package [28]. were converged to at least 1&m L. The sine-DVR ranged
from 1.51 a.u. to 378 a.u. and the magnetic quantum number
The 35Kjk coefficients were subject to the non-linear leastm of the Legendre-DVR was zero.
square fitting procedure to the DFT energies. Since these co- Because of the restriction of total angular momengum0,
efficients must be the same ongeandr; are swapped, 13 \ye couldn’t observe all degenerate bending excitationsv-Ho
linear constraints of the typ&x = Kyji were imposed during ever, ZPE and several vibrational energy levels were obthin

the f|tt|ng procedure. Add|t|0na”y, to ensure that the equi and Compared with that ones Coming from a S”’[g‘ethe-ﬂy
librium geometry was fitted to the predetermined equilibriu - semiclassical trajectory.

parametric distance, the coefficiettgo andKgg1 were con-
strained to be zero. Consequently, we employed a total num-

ber of 14 fitting constraintdKpgo term is always constant). A FIRST-PRINCIPLES SC-IVR CALCULATIONS
total of 2500 ab initio grid points were chosen for the fitting
process. These grid points range from2a.u. to 709 a.u. The full power spectrum obtained using Eq. (4) after

forry andry, and from 1136 to 180 for the angle variable. The 3000 BOMD steps of 10 a.u. each is shown on the bot-
calculated expansion coefficierigy are reported in Tab.(I).  tom of Fig. 2. For longer simulations, the monodromy ma-

As far as the numerically exact eigenvalues calculationérix symplectic properties_as well as the resolution of_the
is concerned, we used an exact DVR (Discrete Variabl&Pectrum started to deteriorate. The calculated vibration
Representation) matrix diagonalization procedure. The co?ero-point energy (ZPE) \ialue was 2518.dm\/ersus the
molecule was described for grid calculations in internal co exact v:_;\lue of 2514.7 cm ~ and both are in good agree-
ordinates, whilen-the-flyclassical trajectories and the semi- ment with th? experimental value c_)f 2508¢h In con-
classical calculations described previously were peréatin trast, harmonic normal-mode analysis (whose frequencies a

Cartesian coordinates. No significant contamination betwe 6?25656%%634?’ 2?5347r\l/va_\r/zng(r:nl|3\%s) prer:jk(:jts afrequfer;lcy
the rotational (set to zero kinetic energy) and vibrational 0 cr . Thus, the TA-SC- method successtully

tion was found within the simulation time. To this end, the de reproduces the ZPE anharmonic effects with the use of a sin-

viation from simplecticity of the monodromin matrix in the v gle classical trajectory. Some representative frequerie

brational sub-space were never more than®l#s previously th‘? power spectrum are p_resent_ed in Table . The ZPE was
mentioned. shifted to zero for comparison with reported classical ELMD

simulations on the same system that cannot reproduce the ZPE
The coordinates; andr, are CO distances, arfillis the  or higher vibrational states [34, 35] but only single modes f
angle between the CO bonds. In these coordinates the kinetguencies. For these studies of Refs. [34, 35], the vibration



Exp@ modd Harmoni€ FP-SCIVR-SA DVR Ref.[36]

(d) 667.4 01,0 656.62 644 657.2

1285.4' 0,2°,0 1313.24 1288 1252.91 1283.4

1388.2' 1,0°.,0 1363.46 1381 137229 1408.8

4 ' ' A 3 19325 0,3',0 1969.86 1932 1930.2

(¢c) 2003.2 03%,0 1969.86 2024 2004.9

2076.9 1,11,0 2020.08 2106 2098.5

2349.1 Q00,1 2423.47 2388 2359.51 24115

—~ 2548.4 0490 2626.48 2515 2482.95 25533
= - 2585.0° 0,42,0 2626.48 2578 2591.2
(b) 2671.7 0,440 2626.48 2669 2640.15 2716.5

2760.7 1,22,0 2676.70 2759 2796.3

2797.% 2,0°0,0 2726.92 2793 2757.14 28452

4673.3 00°,2 4846.94 4690  4693.24 4797.8

(a) 6972.6 Q00,3 7270.41 6803  6821.35 7152.9

agxperimental frequencies in crh from Ref. [41]

PFirst number is the symmetric stretch quantum, second ardefenerate
bendings, and third one is the asymmetric stretch. The eiaf the second
number is thd; degeneracy index.
eedi LAl ieArsohnd ®Vibrational levels according to a normal modes harmonic ehod

6000 7000 8000 9000 dUsing the Separable approximation of Eq.(5)

3000 ‘ 4 '“
E[cm 1]

1000 2000
Table II: Some of the calculated vibrational energy eigkres All

Figure 2:CO, Vibrational Power Spectrum: Initial kinetic energy on: data are in wavenumbers. Fermi Resonances group of freigsenc

(a) all modes; (b) symmetric mode; (c) one bending and symieet are indicated by the same superscript symbols. Uncertaikspare

modes; (d) bending and asymmetric modes. marked with(+). The first column represents the experimental vi-
brational frequencies associated with the modes listeti@sécond
column. The third column shows the harmonic DFT results.hin t

data were obtained from the Fourier transform of correfatio fourth and fifth columns, we show our FP-SCIVR and exact nismer
cal DVR calculations in the B3LYP/cc-PVDZ model chemistged

functions of classical trajectories in plane-wave DFT galC ¢, the EP-SCIVR calculations. The fifth column shows pedtive

lations. The ELMD approach predicts the following funda- prT calculations carried out using a similar functional asis set.
mental frequencies 648368 1428 and 2353 for Ref. [34]

and 6631379 1456 and 2355 for Ref. [35]. These classical
results are similar but limited to a normal mode analysis. quency of 1285 cmt. Another Fermi doublet results from the
Table Il compares our TA-SC-IVR results with the exact addition of a quantum of bending mode to the previous Fermi
ones and to those obtained by Filho [36] with the same densitgoublet to yield the following stateszlvz(lllo) , at an ex-
functional and a basis set of comparable quality (6-31+G*perimental frequency of 2077 crh and thev3 (030) state,
[37], using a perturbative approximation of the eigenvale  at an experimental frequency of 1932ch Higher-energy
pansion. One can see how a different basis set results a sigermi resonances are indicated in Table Il by using the same
nificant deviation of vibrational levels spacing, once tbee  superscript symbols. The first Fermi terms are located a8 131
parison is performed in units of wavenumbers. and 1363 in a harmonic approximation and corrected to 1288
A major difficult on the CQ power spectrum simulations and 1381 wavenumbers for FP-TA-SC-IVR. Thus, the origi-
is the calculation of the Fermi resonance splittings. Tle@se nal levels have been repelled by Fermi couplings. One mode
the result of anharmonic couplings, and they represenira str is located at a higher frequency than the harmonic predictio
gent test for a semi-classical method that relies on a singlghile the other is at a lower frequency. The latter effectidou
short trajectory. The Fermi resonances occur when an accbe explained also by simple anharmonicity, but the former
dental degeneracy between two excited vibrational levels ois evidence of the ability of the single trajectory FP-TA-SC
the same symmetry exists and it results in a repulsion betweg\VVR method even when the separable approximation is used
the corresponding energy levels. The sources of these res@ capture Fermi resonance effects partially. The same rea-
nances are purely anharmonic and are only present in polysoning can explain the second Fermi doublet located at 1932
atomic potentials. For the GOnolecule, the unperturbed fre- and 2106 for FP-TA-SC-IVR, while the harmonic estimate at
guencies for the symmetric stretching are roughly equdleéot 1970 and 2020 wavenumbers.
first bending overtoney = 2v;). For these modes, the wave-  With the FP-TA-SC-IVR method, one can also identify the
functions are transformed as the irreducible represemati  couplings between vibrational modes and the appearance of
Deoh, i-€. v1(10°0) asZy, at the experimental frequency of Fermi resonance splittings by carrying out simulationshwit
1388cnrt, andvs (02°0) asZ§ +Ag, at an experimental fre-  different initial conditions. This can be achieved by selec



tively setting the initial velocity of some vibrational mesito

zero. The anharmonic coupling between levels leads to a con- (e)
sistent reproduction of the ZPE peak in the spectrum for all
simulations. However the excited vibrational peaks reldte = A

the modes with zero initial kinetic energy show a very small
signal in the power spectrum. Vibrational energy redistrib
tion processes can be studied as well, by carrying out simula | L
tions at different timescales. In Fig. 2, we show the resglti
power spectra for different initial conditions. If the iitstate
contains only purely symmetric motion, the lowest Fermi res
onance peaks in Fig. 2(b) are absent as well as for a bending
(without symmetric stretching) motion in Fig. 2(d). These
results and the intensity of their peaks respect to that lines
cated at the same frequencies in Fig. 2(a) suggest that the
Fermi resonance is indeed originated from the coupling be-
tween bending and the symmetric modes. One can reach the J
same conclusions by inspecting the lower Fermi doubletpeak —r
intensity: by adding a bending mode (from Fig. 2(b) to Fig. (a)
2(c)) and a second one (from Fig. 2(c) to Fig. 2(a)) the inten-

sity of both peaks is gradually raised. This is called “irsign JLLJLJ UL | m

borrowing” and it arises from the strong mixing of the zero el T o
order states. These observations reinstate that “repudsid El crri]]

mixing are the hallmarks of Fermi resonances” [38]. Alsa, fo

a dlsltmct set of initial cond|t|o_ns, an additional peak 806 _ Figure 3: CO, Vibrational Power Spectrum (Separable approxi-
cm™~ related to the asymmetric stretch was observed. Usinghation): Different basis set symmetries fof(symmetric stretch-
the proposed approach, one can carefully detect the ckaracting mode),v, and v, (bending modes) ands(asymmetric mode)
istics of each peak even for complicated power spectra. and the correspondinD,y, irreducible representation; (a) aé are

An attractive method for obtaining the symmetry prop-2e% (B)(Bw): €(v1) = 0.£(vz) = 1,£(V2) = 0, (v3) = ~1; ()

erties of the eigenstates involves arranging the initial ba(()Ag)(:V;(Vj) :11;%(3)7:00’;(53)7:10’(se()v(%:)ls; gsz)ﬂiz‘gig:/’;)) -
. . . . g - T4 — Y — 4 u — Y% -
sis vectors [26, 39]. The basis for this method is the d"O,s(Vz) — _1,¢(vs) = 1. By, andBay, representations are degener-

rect product of coherent statdg) = |‘|f<‘:1|pi<k),qi<k)>5k . ated in theDep Subspace as shown.
These states can be chosen to have an initial symmetry by

employing linear combinations of the forﬂTpi(k>,qi(k>>£k = _ _ s with _ culat "

® (K ) ) ings are in agreements with previous calculations on thesam
('pi G >+gk!_p’_qi >) /\/i Thekth mode can be propagator [24]. Interestingly, a different distributiorpeaks
made symmetricey = 1), antisymmetricc = —1) orhave no  intensity were found in each panel. Since the peaks magitud
symmetry restrictionse( = 0). In order to assign the proper s proportional to the overlap between the reference stade a
symmetry to each peak on Fig. 3, the redubef symme-  the actual eigenfunction, the anharmonic choige=(ca /2) is

try group was adopted. All irreducible representationsewver g more suitable solution as clearly showed on panel (c) of Fig
reproduced and peaks were grouped by symmetry as reportgd

in Fig. 3. Note that (d) and (e) plots are identical since they
only differ trivially by swapping coefficients between the-d
generate bending modes in the origiBal, symmetry group. CONCLUSIONS

Finally we have investigated the stability of the propagato
versus variations of the coherent states gaussian widémpar  In conclusion, we have shown that SC-IVR can be imple-
etersy;. Previous calculations [24] have shown that there is nanented easily and efficiently using first principles molacul
significant depedency on energy and norm conservation faynamics. With the modest computational cost of a single
the semiclassical propagator if suitable valueg;aire cho-  classical trajectory, the vibrational density of statethefCG;
sen. For power spectra calculation we have chosen to lookolecule was calculated. On Fig. 5 we report a graphical
at vibrational levels variations under different valuescof  comparison between the harmonic and the FP-TA-SC-IVR ap-
eherent states width. Since a single trajectory was usdtkin t proximations, versus the exact vibrational value for therke
FP-TA-SC-IVR approach, no Monte Carlo integration is per-resonance multiplets. One can notice how the single trajec-
formed in phase space coordinates and the changgsaoé  tory FP-TA-SC-IVR goes far beyond the harmonic approxi-
confined to the coherent states overlap and to the prefactor mation by removing the harmonic degenerancy and including
Eq. (2). Asreported in Fig. 4 and checked on a finer scale, npart of anharmonicity. Fermi splittings are well mimiced no
significant variation was observed beyond 1éniThese find-  only for the first doublet, but also for the higher ones. The
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Figure 4: Gaussian width variations and related power speef)  Figure 5: Fermi Resonance states vibrational energy I¢xin har-
¥ = @; b)y = 2w; ¢)y = w /2, wherew are thei — esimenormal ~ monic approximation; (b) single FP-SC-IVR trajectory eaétion;
mode frequency. The FP-SCIVR power spectra are fairly isiiea  (C) exact grid calculation on splined potential.

to variations in the value of the coherent state width.

obtain anharmonic vibrational effects. Finally, we expbet

numerically exact DVR vibrational energy levels constegin the representation of the potential energy in terms of nbrma
by J = 0 are represented on the last column. The FP-TAcoordinates will become less suitable when large amplitude
SC-IVR values are similar to the DVR results, when comparsmotions or non adiabatic effects come into play.
ison is possible. However, a closer look at Table (II) shows
how these single trajectory FP-TA-SC-IVR calculations can
include only part of the anharmonicity and that their preci- Acknowledgement
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