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First-Principles Semiclassical Initial Value Representation Molecular Dynamics ∗
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In this work, we explore the use of the semiclassical initialvalue representation (SC-IVR) method with first-
principles electronic structure approaches to carry out classical molecular dynamics. The proposed approach can
extract the vibrational power spectrum of carbon dioxide from a single trajectory providing numerical results that
agree with experiment and quantum calculations. The computational demands of the method are comparable to
those of classical single-trajectory calculations, whiledescribing uniquely quantum features such as the zero-
point energy and Fermi resonances. The method can also be used to identify symmetry properties of given
vibrational peaks and investigate vibrational couplings by selected classical trajectories. The accuracy of the
method degrades for the reproduction of anharmonic shifts for high-energy vibrational levels.

PACS numbers:

INTRODUCTION

Algorithms for the simulation of molecular dynamics be-
long to the fundamental toolset of modern theoretical chem-
ical physics. Classical simulation methods are able to study
systems with up to millions of particles but are unable to de-
scribe quantum effects such as tunelling and delocalization.
Exact quantum mechanical methods are restricted to a few
quantum particles, especially when pre-computed analytical
potential energy surfaces (PES) are employed.

First-principles molecular dynamics (FPMD) algorithms
have been introduced as an alternative to the pre-calculation
of the PES. FPMD avoids any source of error originated from
the fitting of the PES. This is particularly true for many de-
grees of freedom, where the fitting procedure might not repre-
sent the many-dimensional surface accurately. In this fam-
ily of methods, the potential and its derivatives are calcu-
lated on-the-flyas the dynamical simulation progresses and
are directly obtained from electronic structure calculations.
In the Born-Oppenheimer molecular dynamics (BOMD) ap-
proach, the electronic structure calculations for a given sim-
ulation step are converged based on previous step informa-
tion. This approach can lead to systematic energy drifts and
several methods have been proposed to avoid this effect [1].
Alternatively, extended Lagrangian molecular dynamics ap-
proaches (ELMD) [2–5] involve the propagation of nuclear
and electronic degrees of freedom simultaneously. The elec-
tronic degrees of freedom are assigned to classical variables
that are propagated using classical equations of motion and
these can be expanded in terms of plane waves [2], Gaussian
functions [4] or real-space grids [5]. Usually ELMD propa-
gation is computationally more efficient, however questions
have raised on whether the resultant energy surface remains
close to the actual Born-Oppenheimer one and about disturb-
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ing dependencies on the fictitious electronic masses [4, 6].
While the evaluation of the potentialon-the-flycan be eas-

ily integrated with classical simulations, the delocalized na-
ture of quantum mechanical propagation has led to the devel-
opment of many alternative approaches for the simulation of
quantum dynamics. For example, the path-integral centroid
molecular dynamics approach [7] includes quantum nuclear
effects employing an extended Lagrangian. Alternatively,
in the variational multi-configuration Gaussian wavepacket
method (vMCG) [8] the quantum wavepackets are represented
by fixed-width Gaussian functions for which the potential is
approximated to be locally harmonic. Other approaches intro-
duce a mean field approximation and then update the dynam-
ics in a time-dependent self-consistent fashion [9, 10].

Semiclassical molecular dynamics methods [11–20] are
based on classical trajectories and therefore are amenable
for carrying outon-the-flycalculation of the potential. The
benefits of calculating the potential only when needed have
been suggested by Heller and co-workers [20, 21]. In be-
tween formally exact quantum methods and classical dynam-
ics, semi-classical methods include quantum effects approxi-
mately. Two representative semi-classical approaches arethe
coupled coherent states (CCS) technique [22] and the ab initio
multiple spawing method (AIMS) algorithm [23]. In the CCS
approach, several grids of coherent states are classicallyprop-
agated and their trajectories can be derived from first principle
dynamics. In AIMS, the nuclear wavefunction are spawned
onto a multiple potential surface basis set. This set is made
of adaptive time-dependent fixed-width Gaussian functions,
which are generated by classical Newtonian dynamics.

FIRST-PRINCIPLES SC-IVR

In this work, we show how the semiclassical initial value
representation (SC-IVR) [12] method can be coupled tightly
and naturally, without any mayor change in formulation, with
first principles electronic structure approaches to carry out
classical molecular dynamics. We show how the method is
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able to reproduce approximately quantum effects such as the
vibrational power spectra using a single, short classical tra-
jectory using computational resources comparable to those
employed in first-principles molecular dynamics calculations.
Calculations employing multiple trajectories can in principle
be more accurate (and more computational intense as well),
but here we focus on analyzing the predictive power of single
trajectory runs. Finally, we describe how different approaches
can be used in conjunction with this method for studying the
symmetry of the vibrational states either by arranging the ini-
tial conditions of the classical trajectory or by employingthe
symmetry of the coherent state basis.

In the SC-IVR method, the propagator inF dimension is
approximated by the phase space integral,

e−iĤt/h̄ = 1
(2π h̄)F

∫

dp(0)
∫

dq(0) Ct (p(0) ,q(0))

eiSt(p(0),q(0))/h̄ |p(t) ,q(t)〉〈p(0) ,q(0)| (1)

where(p(t) ,q(t)) are the set of classically-evolved phase
space coordinates,St is the classical action andCt is a pre-
exponential factor. In the Heller-Herman-Kluk-Kay [19, 24]
version of the SC-IVR, the prefactor involves mixed phase
space derivatives

Ct (p(0) ,q(0)) = (2)
√

1
2

∣

∣

∣

∣

∂q(t)
∂q(0)

+
∂p(t)
∂p(0)

− ih̄γ
∂q(t)
∂p(0)

+
i

γh̄
∂p(t)
∂q(0)

∣

∣

∣

∣

as well as a set of reference states〈q | p(t) ,q(t)〉 =

∏i (γi/π)F/4exp[−γi · (qi −qi (t))/2+ ipi (t) · (qi −qi (t))/h̄]
of fixed width γi . For bound systems, the widths are usually
chosen to match the widths of the harmonic oscillator approx-
imation to the wave function at the global minimum and no
significant dependency has been found under width variation
[13]. By introducing a 2F × 2F symplectic (monodromy)
matrix M(t) ≡ ∂ ((pt ,qt)/∂ (p0,q0)), one can calculate the
pre-factor of Eq. (2) from blocks ofF ×F size and monitor
the accuracy of the classical approximate propagation by the
deviation of its determinant from unity. Wanget al. suggested
calculating the determinant of the positive-definite matrix
MTM instead [25] and we monitored the same quantity
for this work. The spectral density is obtained as a Fourier
transform of the surviving probability[19]. The SC-IVR
expression of the probability of survival for a phase-space
reference state|χ〉 = |pN,qN〉 is

〈

χ
∣

∣

∣
e−iĤt/h̄

∣

∣

∣
χ
〉

=
1

(2π h̄)F

∫

dp(0)

∫

dq(0) Ct (p(0) ,q(0))eiSt(p(0),q(0))/h̄ 〈χ | p(t) ,q(t)〉 〈p(0) ,q(0) | χ〉 . (3)

The phase-space integral of Eq. (3) is usually computed
using Monte Carlo methods. If the simulation time is long
enough, the phase space average can be well approximated by
a time average integral. This idea has been suggested and im-

plemented by Kaledin and Miller [26] to obtain the TA (Time
Averaging [27]) SC-IVR approximation for the spectral den-
sity,

I (E) =
1

(2π h̄)F

∫

dp(0)

∫

dq(0)
Re

π h̄T

∫ T

0
dt1

∫ T

t1
dt2Ct2 (p(t1) ,q(t1))

× 〈χ | p(t2) ,q(t2)〉ei(St2(p(0),q(0))+Et2)/h̄
[

〈χ | p(t1) ,q(t1)〉ei(St1(p(0),q(0))+Et1)/h̄
]∗

(4)

where (p(t1) ,q(t1)) and (p(t2) ,q(t2)) are variables that
evolve from the same initial conditions but to different times,
and T is the total simulation time. The advantage of this
approach is that the additional time integral can in principle
replace the need for phase-space averaging in the large-time

limit of a single trajectory. Calculations of the vibrational
spectra of systems such as the water molecule have proved to
be very accurate using the TA-SC-IVR approach and its inex-
pensive single-trajectory variant showed significant improve-
ments over the simple harmonic approximation for excited vi-
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brational levels [26]. In order to make Eq. (4) less compu-
tationally demanding, one can employ the separable approxi-
mation [26], where the pre-factor of Eq. (4) is approximated
as a phase,Ct2 (p(t1) ,q(t1)) = Exp[i (φ (t2)−φ (t1))/h̄] , and
φ (t) = phase[Ct (p(0) ,q(0))]. Using this approximation, Eq.
(4) becomes

I (E) =
1

(2π h̄)F

1
2π h̄T

∫

dp(0)

∫

dq(0)

×
∣

∣

∣

∣

∫ T

0
dt 〈χ | p(t) ,q(t)〉 (5)

× ei(St(p(0),q(0))+Et+φt(p(0),q(0))/h̄)
∣

∣

∣

2

leading to a simplification of the double-time integration to
a single time integral. The resulting integral is positive defi-
nite, making more amenable for Monte Carlo integration. Our
numerical tests show that the results of carrying out this ap-
proximation are essentially identical to the double time inte-
gral approach when using a single trajectory. In this paper re-
sults will be reported by use of this last approximation, since it
is computationally cheaper and numerically more stable than
Eq. (4).

For this work, we compute the potential energy surface at
each nuclear configuration directly from the Kohn-Sham or-
bitals expanded on a non-orthogonal Gaussian basis. Gradi-
ents and Hessians at each nuclear configuration are obtained
analytically from electronic orbitals. The evaluation of the
potential represents most of the computational effort of our
approach, which is roughly few hours of computer time using
standard desktop machines for a 1 cm−1 spectrum resolution.
The nuclear equations of motion are

MI R̈I = −∇I
min
C

EDFT [C,RI ] (6)

whereC is the rectangular matrix of the lowest occupied or-
bitals and the classical propagation is performed according to
the velocity-Verlet algorithm, as implemented in the Q-Chem
package [28]. At each time step, the potential, nuclear gradi-
ent and Hessian are used to calculate the action, pre-factorand
coherent state overlaps necessary for the TA-SC-IVR method
(Eqs. 4 and 5). A schematic representation of an implemen-
tation of the algorithm for a multithreaded machine is shown
in Fig. (1). At each time step, results are accumulated for
time-average integration. The results presented on this work
were carried out on a single thread. For each classical trajec-
tory, the procedure is repeated and the final integration gives
the spectrum intensityI (E) for a given parametric value of
E. The same procedure is repeated for nextE + ∆E, where in
our calculation∆E = 1cm−1. As previously mentioned, the
trajectory is monitored by calculating at each time step the
deviation of the determinant of the monodromy matrix from
unity. The difference in the determinants was always smaller
than 10−6 during the course of the calculations. A time step of
10 a.u. has been always found to satisfy the strict monodromy
matrix restrictions even for the lightest atoms.

Figure 1: First-principles SC-IVR algorithm: At each time step elec-
tronic wavefunction are saved to calculated nuclear Hessian. Nu-
clear positions, gradients and Hessian are accumulated forthe spec-
tral time-average integral.

The calculation of the full dimensional vibrational power
spectrum of the CO2 molecule is a challenging test for FP-SC-
IVR method: A successful method should reproduce spectral
features such as degenerate bending modes, strong intermodal
couplings and Fermi resonances. To evaluate the FP-SC-IVR
method, we compare vibrational spectrum of CO2 molecule
from FP-SC-IVR method to numerically-exact discrete vari-
able representation (DVR) eigenvalue calculations on a po-
tential fitted to a set of first-principles points obtained atthe
same level of theory. The next section describes the details
of the potential fitting and DVR calculation. Following, we
continue on the discussion of the FP-SC-IVR method.

POTENTIAL FITTING AND GRID CALCULATIONS

TheCO2 molecule is a linear molecule with four vibrational
normal modes: a symmetric stretching mode (ν1), degenerate
bending modes (ν2 andν2) , and an antisymmetric stretching
mode (ν3). A 3d potential energy grid in internal coordinates
is calculated using the B3LYP density functional [29] with
the cc-pVDZ basis set [30]. The grid points are then fitted to
a potential energy surface [31] represented by a fourth-order
Morse-cosine expansion

V (r1, r2,θ ) =
4

∑
i, j ,k=0

Ki jk

(

1−e−a1(r1−re)
)i

× (cosθ −cosθe)
j
(

1−e−a2(r2−re)
)k

(7)

where the parameterre = 2.206119 a.u. andθe = 180 specify
the equilibrium coordinates of the CO2 molecule. The Morse
parametersa1 = a2 = 1.2489 a.u. were determined so as to
minimize the standard deviation of the differences of the fit-
ted potential from the ab initio result using the Levenberg-
Marquardt non-linear least square algorithm [32] . Instead, re
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coeff. attoJ coeff. attoJ

K001 +0.000000 K100 = K001

K002 +1.442886 K200 = K002

K003 -0.032125 K300 = K003

K004 +0.003630 K400 = K004

K010 +0.726891 K111 +0.392310

K011 -0.443422 K110 = K011

K012 -0.162970 K210 = K012

K013 -0.101077 K310 = K013

K020 +0.488451 K121 +0.606572

K021 -0.358126 K120 = K021

K022 -0.210888 K220 = K022

K030 +0.175981 K202 +0.097300

K031 -0.184503 K130 = K031

K112 +0.103205 K211 = K112

K101 +0.210532 K040 +0.155374

K102 +0.067998 K201 = K102

K103 +0.068693 K301 = K103

Table I: Expansion coefficientsKi jk for the CO2 B3LYP/cc-pVDZ
fitted potential energy surface in attoJoule units.

was obtained by geometry optimization within the Q-Chem
ab initio package [28].

The 35Ki jk coefficients were subject to the non-linear least
square fitting procedure to the DFT energies. Since these co-
efficients must be the same oncer1 and r2 are swapped, 13
linear constraints of the typeKi jk = Kk ji were imposed during
the fitting procedure. Additionally, to ensure that the equi-
librium geometry was fitted to the predetermined equilibrium
parametric distance, the coefficientsK100 andK001 were con-
strained to be zero. Consequently, we employed a total num-
ber of 14 fitting constraints (K000 term is always constant). A
total of 2500 ab initio grid points were chosen for the fitting
process. These grid points range from 1.42 a.u. to 7.09 a.u.
for r1 andr2, and from 113.6 to 180 for the angle variable. The
calculated expansion coefficientsKi jk are reported in Tab.(I).

As far as the numerically exact eigenvalues calculations
is concerned, we used an exact DVR (Discrete Variable
Representation) matrix diagonalization procedure. The CO2

molecule was described for grid calculations in internal co-
ordinates, whileon-the-flyclassical trajectories and the semi-
classical calculations described previously were performed in
Cartesian coordinates. No significant contamination between
the rotational (set to zero kinetic energy) and vibrationalmo-
tion was found within the simulation time. To this end, the de-
viation from simplecticity of the monodromin matrix in the vi-
brational sub-space were never more than 10−6 as previously
mentioned.

The coordinatesr1 and r2 are CO distances, andθ is the
angle between the CO bonds. In these coordinates the kinetic

part of the Hamiltonian forJ = 0 is

T =
p2

1

2µCO
+

p2
2

2µCO
+

j2

2µCOr2
1

+
j2

2µCOr2
2

+
p1p2cosθ

mC

− p1pθ
mCr2

− p2pθ
mCr2

− cosθ j2 + j2cosθ
2mCr1r2

(8)

where

pk = −i
∂

∂ rk
, k = 1,2 (9)

pθ = −i
∂

∂θ
sinθ (10)

and

j2 = − 1
sinθ

∂
∂θ

sinθ
∂

∂θ
(11)

The carbon mass were taken to bemC = 12.0 a.m.u., while the
oxygen massmO = 15.9949 a.m.u. and the reduced mass is as
usual 1/µCO = 1/mC +1/mO.

As previosuly mentioned, in order to calculate exact eigen-
values, a sine-DVR basis for the coordinatesr1 andr2 and a
Legendre-DVR basis forθ has been used [33]. For each de-
gree of freedom 50 DVR functions were used and eigenvalues
were converged to at least 10−3cm−1. The sine-DVR ranged
from 1.51 a.u. to 3.78 a.u. and the magnetic quantum number
mof the Legendre-DVR was zero.

Because of the restriction of total angular momentumJ = 0,
we couldn’t observe all degenerate bending excitations. How-
ever, ZPE and several vibrational energy levels were obtained
and compared with that ones coming from a singleon-the-fly
semiclassical trajectory.

FIRST-PRINCIPLES SC-IVR CALCULATIONS

The full power spectrum obtained using Eq. (4) after
3000 BOMD steps of 10 a.u. each is shown on the bot-
tom of Fig. 2. For longer simulations, the monodromy ma-
trix symplectic properties as well as the resolution of the
spectrum started to deteriorate. The calculated vibrational
zero-point energy (ZPE) value was 2518 cm−1 versus the
exact value of 2514.27 cm−1 and both are in good agree-
ment with the experimental value of 2508 cm−1. In con-
trast, harmonic normal-mode analysis (whose frequencies are
656.62, 1363.46, 2423.47 wavenumbers) predicts a frequency
of 2550.08 cm−1. Thus, the TA-SC-IVR method successfully
reproduces the ZPE anharmonic effects with the use of a sin-
gle classical trajectory. Some representative frequencies of
the power spectrum are presented in Table II. The ZPE was
shifted to zero for comparison with reported classical ELMD
simulations on the same system that cannot reproduce the ZPE
or higher vibrational states [34, 35] but only single modes fre-
quencies. For these studies of Refs. [34, 35], the vibrational
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Figure 2:CO2 Vibrational Power Spectrum: Initial kinetic energy on:
(a) all modes; (b) symmetric mode; (c) one bending and symmetric
modes; (d) bending and asymmetric modes.

data were obtained from the Fourier transform of correlation
functions of classical trajectories in plane-wave DFT calcu-
lations. The ELMD approach predicts the following funda-
mental frequencies 648, 1368, 1428 and 2353 for Ref. [34]
and 663, 1379, 1456 and 2355 for Ref. [35]. These classical
results are similar but limited to a normal mode analysis.

Table II compares our TA-SC-IVR results with the exact
ones and to those obtained by Filho [36] with the same density
functional and a basis set of comparable quality (6-31+G*)
[37], using a perturbative approximation of the eigenvalueex-
pansion. One can see how a different basis set results a sig-
nificant deviation of vibrational levels spacing, once the com-
parison is performed in units of wavenumbers.

A major difficult on the CO2 power spectrum simulations
is the calculation of the Fermi resonance splittings. Theseare
the result of anharmonic couplings, and they represent a strin-
gent test for a semi-classical method that relies on a single
short trajectory. The Fermi resonances occur when an acci-
dental degeneracy between two excited vibrational levels of
the same symmetry exists and it results in a repulsion between
the corresponding energy levels. The sources of these reso-
nances are purely anharmonic and are only present in poly-
atomic potentials. For the CO2 molecule, the unperturbed fre-
quencies for the symmetric stretching are roughly equal to the
first bending overtone (ν1

∼= 2ν2). For these modes, the wave-
functions are transformed as the irreducible representation of
D∞h, i.e. ν1

(

1000
)

asΣ+
g , at the experimental frequency of

1388cm−1, andν2
2

(

0200
)

asΣ+
g +∆g, at an experimental fre-

Exp.a modeb Harmonicc FP-SCIVR-SAd DVR Ref. [36]

667.4 0,11,0 656.62 644 657.2

1285.4∧ 0,20,0 1313.24 1288 1252.91 1283.4

1388.2∧ 1,00,0 1363.46 1381 1372.29 1408.8

1932.5† 0,31,0 1969.86 1932 1930.2

2003.2 0,33,0 1969.86 2024 2004.9

2076.9† 1,11,0 2020.08 2106 2098.5

2349.1 0,00,1 2423.47 2388 2359.51 2411.5

2548.4‡ 0,40,0 2626.48 2515 2482.95 2553.3

2585.0⋆ 0,42,0 2626.48 2578 2591.2

2671.7‡ 0,44,0 2626.48 2669 2640.15 2716.5

2760.7⋆ 1,22,0 2676.70 2759 2796.3

2797.2‡ 2,00,0 2726.92 2793 2757.14 2845.2

4673.3 0,00,2 4846.94 4690+ 4693.24 4797.8

6972.6 0,00,3 7270.41 6803+ 6821.35 7152.9

aExperimental frequencies in cm−1 from Ref. [41]
bFirst number is the symmetric stretch quantum, second are the degenerate

bendings, and third one is the asymmetric stretch. The exponent of the second
number is theli degeneracy index.

cVibrational levels according to a normal modes harmonic model
dUsing the Separable approximation of Eq.(5)

Table II: Some of the calculated vibrational energy eigenvalues. All
data are in wavenumbers. Fermi Resonances group of frequencies
are indicated by the same superscript symbols. Uncertain peaks are
marked with(+). The first column represents the experimental vi-
brational frequencies associated with the modes listed on the second
column. The third column shows the harmonic DFT results. In the
fourth and fifth columns, we show our FP-SCIVR and exact numeri-
cal DVR calculations in the B3LYP/cc-PVDZ model chemistry used
for the FP-SCIVR calculations. The fifth column shows perturbative
DFT calculations carried out using a similar functional andbasis set.

quency of 1285cm−1. Another Fermi doublet results from the
addition of a quantum of bending mode to the previous Fermi
doublet to yield the following states:ν1ν2

(

1110
)

, at an ex-
perimental frequency of 2077 cm−1 and theν3

2

(

0310
)

state,
at an experimental frequency of 1932 cm−1. Higher-energy
Fermi resonances are indicated in Table II by using the same
superscript symbols. The first Fermi terms are located at 1313
and 1363 in a harmonic approximation and corrected to 1288
and 1381 wavenumbers for FP-TA-SC-IVR. Thus, the origi-
nal levels have been repelled by Fermi couplings. One mode
is located at a higher frequency than the harmonic prediction,
while the other is at a lower frequency. The latter effect could
be explained also by simple anharmonicity, but the former
is evidence of the ability of the single trajectory FP-TA-SC-
IVR method even when the separable approximation is used
to capture Fermi resonance effects partially. The same rea-
soning can explain the second Fermi doublet located at 1932
and 2106 for FP-TA-SC-IVR, while the harmonic estimate at
1970 and 2020 wavenumbers.

With the FP-TA-SC-IVR method, one can also identify the
couplings between vibrational modes and the appearance of
Fermi resonance splittings by carrying out simulations with
different initial conditions. This can be achieved by selec-
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tively setting the initial velocity of some vibrational modes to
zero. The anharmonic coupling between levels leads to a con-
sistent reproduction of the ZPE peak in the spectrum for all
simulations. However the excited vibrational peaks related to
the modes with zero initial kinetic energy show a very small
signal in the power spectrum. Vibrational energy redistribu-
tion processes can be studied as well, by carrying out simula-
tions at different timescales. In Fig. 2, we show the resulting
power spectra for different initial conditions. If the initial state
contains only purely symmetric motion, the lowest Fermi res-
onance peaks in Fig. 2(b) are absent as well as for a bending
(without symmetric stretching) motion in Fig. 2(d). These
results and the intensity of their peaks respect to that oneslo-
cated at the same frequencies in Fig. 2(a) suggest that the
Fermi resonance is indeed originated from the coupling be-
tween bending and the symmetric modes. One can reach the
same conclusions by inspecting the lower Fermi doublet peaks
intensity: by adding a bending mode (from Fig. 2(b) to Fig.
2(c)) and a second one (from Fig. 2(c) to Fig. 2(a)) the inten-
sity of both peaks is gradually raised. This is called “intensity
borrowing” and it arises from the strong mixing of the zero
order states. These observations reinstate that “repulsion and
mixing are the hallmarks of Fermi resonances” [38]. Also, for
a distinct set of initial conditions, an additional peak at 5500
cm−1 related to the asymmetric stretch was observed. Using
the proposed approach, one can carefully detect the character-
istics of each peak even for complicated power spectra.

An attractive method for obtaining the symmetry prop-
erties of the eigenstates involves arranging the initial ba-
sis vectors [26, 39]. The basis for this method is the di-
rect product of coherent states|χ〉 = ∏4

k=1 |p
(k)
i ,q(k)

i 〉εk .
These states can be chosen to have an initial symmetry by

employing linear combinations of the form|p(k)
i ,q(k)

i 〉εk =
(

|p(k)
i ,q(k)

i 〉+ εk|−p,−q(k)
i 〉

)

/
√

2. The k-th mode can be

made symmetric(εk = 1), antisymmetric (εk =−1) or have no
symmetry restrictions (εk = 0). In order to assign the proper
symmetry to each peak on Fig. 3 , the reducedD2h symme-
try group was adopted. All irreducible representations were
reproduced and peaks were grouped by symmetry as reported
in Fig. 3. Note that (d) and (e) plots are identical since they
only differ trivially by swapping coefficients between the de-
generate bending modes in the originalD∞h symmetry group.

Finally we have investigated the stability of the propagator
versus variations of the coherent states gaussian width param-
etersγi . Previous calculations [24] have shown that there is no
significant depedency on energy and norm conservation for
the semiclassical propagator if suitable values ofγi are cho-
sen. For power spectra calculation we have chosen to look
at vibrational levels variations under different values ofco-
eherent states width. Since a single trajectory was used in the
FP-TA-SC-IVR approach, no Monte Carlo integration is per-
formed in phase space coordinates and the changes ofγi are
confined to the coherent states overlap and to the prefactor in
Eq. (2). As reported in Fig. 4 and checked on a finer scale, no
significant variation was observed beyond 1cm−1. These find-

2000 3000 4000 5000 6000 7000 8000 9000 10000

E [ cm
-1

]

I(
E

)

( a )

( b )

( c )

( d )

( e )

Figure 3: CO2 Vibrational Power Spectrum (Separable approxi-
mation): Different basis set symmetries forν1(symmetric stretch-
ing mode),ν2 and ν2 (bending modes) andν3(asymmetric mode)
and the correspondingD2h irreducible representation; (a) allεs are
zero; (b)(B1u): ε (v1) = 0,ε (v2) = 1,ε (ν2) = 0,ε (v3) = −1; (c)
(Ag): ε (v1) = 1,ε (v2) = 0,ε (ν2) = 0,ε (v3) = 1; (d) (B2u):ε (v1) =
0,ε (v2) = −1,ε (ν2) = 0,ε (v3) = 1, (e) (B3u) ε (v1) = 0,ε (v2) =
0,ε (ν2) = −1,ε (v3) = 1. B2u andB3u representations are degener-
ated in theD∞h subspace as shown.

ings are in agreements with previous calculations on the same
propagator [24]. Interestingly, a different distributionin peaks
intensity were found in each panel. Since the peaks magnitude
is proportional to the overlap between the reference state and
the actual eigenfunction, the anharmonic choice (γi = ωi/2) is
a more suitable solution as clearly showed on panel (c) of Fig.
4.

CONCLUSIONS

In conclusion, we have shown that SC-IVR can be imple-
mented easily and efficiently using first principles molecular
dynamics. With the modest computational cost of a single
classical trajectory, the vibrational density of states ofthe CO2

molecule was calculated. On Fig. 5 we report a graphical
comparison between the harmonic and the FP-TA-SC-IVR ap-
proximations, versus the exact vibrational value for the Fermi
resonance multiplets. One can notice how the single trajec-
tory FP-TA-SC-IVR goes far beyond the harmonic approxi-
mation by removing the harmonic degenerancy and including
part of anharmonicity. Fermi splittings are well mimiced not
only for the first doublet, but also for the higher ones. The
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)
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E
)
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E [ cm
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( c )

( b )
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Figure 4: Gaussian width variations and related power spectra: a)
γi = ωi ; b)γi = 2ωi ; c)γi = ωi/2, whereωi are thei −esimenormal
mode frequency. The FP-SCIVR power spectra are fairly insensitive
to variations in the value of the coherent state width.

numerically exact DVR vibrational energy levels constrained
by J = 0 are represented on the last column. The FP-TA-
SC-IVR values are similar to the DVR results, when compar-
ison is possible. However, a closer look at Table (II) shows
how these single trajectory FP-TA-SC-IVR calculations can
include only part of the anharmonicity and that their preci-
sion gets worse for higher vibrational levels. In particular, the
spacing of the higher-energy states is harmonic-like and thisis
the mayor limitation of using a single classical trajectory.

These and previous calculations on model potentials [26]
has shown how the single trajectory TA-SC-IVR gives rea-
sonable results and performs better for higher frequencies
modes. The computational cost of the method is essentially
the same as classical propagation, and therefore, if broadly
implemented in electronic structure codes, it can provide a
description of quantum effects at a comparable computational
cost to that of classical approaches. Possible applications of
this method or related ones are the study of excited electronic
states and Franck-Condon transitions, such as vibrationalab-
sorption spectra [42]. Although this single trajectory approach
may be a practical tool for the simulation of more complex
systems, the use of more trajectories is probably required to
remove any harmonic“ghost states”. We are currently explor-
ing the use of a small number of a set of systematically de-
termined trajectories for further improvement of the results.
If the number of required trajectories grows as a low polyno-
mial of the system size, semi-classical methods could be com-
petitive with currently-employednumerical approximations to
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Figure 5: Fermi Resonance states vibrational energy level:(a) in har-
monic approximation; (b) single FP-SC-IVR trajectory calculation;
(c) exact grid calculation on splined potential.

obtain anharmonic vibrational effects. Finally, we expectthat
the representation of the potential energy in terms of normal
coordinates will become less suitable when large amplitude
motions or non adiabatic effects come into play.
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