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Illusory Stimuli Can Be Used to Identify Retinal Blind
Spots
Michael D. Crossland1*, Steven C. Dakin1, Peter J. Bex2

1 University College London (UCL) Institute of Ophthalmology, London, United Kingdom, 2 Schepens Eye Research Institute, Harvard University,
Cambridge, Massachusetts, United States of America

Background. Identification of visual field loss in people with retinal disease is not straightforward as people with eye disease
are frequently unaware of substantial deficits in their visual field, as a consequence of perceptual completion (‘‘filling-in’’) of
affected areas. Methodology. We attempted to induce a compelling visual illusion known as the induced twinkle after-effect
(TwAE) in eight patients with retinal scotomas. Half of these patients experience filling-in of their scotomas such that they are
unaware of the presence of their scotoma, and conventional campimetric techniques can not be used to identify their vision
loss. The region of the TwAE was compared to microperimetry maps of the retinal lesion. Principal Findings. Six of our eight
participants experienced the TwAE. This effect occurred in three of the four people who filled-in their scotoma. The boundary
of the TwAE showed good agreement with the boundary of lesion, as determined by microperimetry. Conclusion. For the first
time, we have determined vision loss by asking patients to report the presence of an illusory percept in blind areas, rather than
the absence of a real stimulus. This illusory technique is quick, accurate and not subject to the effects of filling-in.

Citation: Crossland MD, Dakin SC, Bex PJ (2007) Illusory Stimuli Can Be Used to Identify Retinal Blind Spots. PLoS ONE 2(10): e1060. doi:10.1371/
journal.pone.0001060

INTRODUCTION
The induced twinkle after-effect (TwAE), first described by

Ramachandran and Gregory in 1991, is a compelling illusion

observed in normally sighted subjects who are deprived of visual

input to a restricted area of retina using an artificial scotoma [1,2].

Subjects adapt to a dynamic noise stimulus containing a small mean

luminance region (the artificial scotoma). When the adaptation

pattern is replaced with a uniform screen, the area that contained

noise appears blank, while the area formerly occupied by the

artificial scotoma appears to contain ‘‘twinkling’’ noise: the TwAE.

The locus of the TwAE within the visual pathway is not known.

Ramachandran and Gregory proposed that ‘‘whatever mechanism

is responsible for this induction of twinkle…is unlikely to be very

different from the process causing the filling in of the scotoma in

the first place’’ [1]. Electrophysiological and imaging studies

indicate that filling in is likely to be mediated by higher level

cortical areas [3–5]. Hardage and Tyler identified several key

differences between filling-in and the TwAE including the larger

area over which the TwAE can be observed (at least 20u,
compared to 1.5u for filling-in), the absence of any chromatic

component to the TwAE, and the absence of the TwAE when the

temporal frequency of the dynamic noise is below 10Hz [6,7].

Functional MRI experiments add weight to their hypothesis that

the effect is mediated by an inhibitory rebound of high level large

receptive fields rather than a persistence of filling in [8].

The most common cause of retinal scotomas, and indeed the

principal cause of blindness, in Europe and the USA is age-related

macular disease (AMD)[9,10]. In advanced AMD central visual

field is lost through an atrophic or neovascular process [11]. Whilst

atrophic forms of macular disease remain untreatable, angiostatic

and antiangiogenic agents can be used to retard the development

of neovascularisation in AMD [12,13]. The gold standard

technique for identifying scotomas in people with AMD is retinal

specific microperimetry: a time consuming procedure requiring

the skilled use of specialised equipment limited to few clinical or

research centres. Conventional perimetric tests, whilst more widely

available, are not appropriate due to the poor fixation stability

[14,15] and noncentral fixation locus [16–18] of many people with

retinal disease. Campimetric techniques involve patients identify-

ing regions of absence within a homogenous field [19–21], but

perceptual completion may limit the ability of many patients to

identify visual field defects using this technique. Those at risk of

scotoma development are given a simple grid chart to observe on

a daily or weekly basis [22]: however this technique has poor

sensitivity, again due to perceptual completion over the scotoma

[23–26].

Given the difficulty of identifying retinal scotomas in people

who fill-in their blind spot, we sought to determine whether the

TwAE might be adapted to identify scotomas in people with

macular disease. To this end, we identified eight patients with

central and paracentral scotomas caused by macular disease. The

location, shape and extent of these scotomas was carefully mapped

with retinal specific microperimetery. Next we had subjects view

a large field of dynamic (60Hz) noise followed by a homogenous

grey test screen in thirty second cycles (figure 1). Patients were

asked to fixate a cross that was continuously present, although eye

movements during the noise phase were unimportant since the

stimulus was a uniform, spatially extensive noise field. During the

test phases, subjects were asked to identify areas of any perceived

anomaly in the blank screen by tracing around them with a stylus

on a touch-sensitive screen mounted over the computer monitor.

All participants were unfamiliar with the TwAE before the study
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and were asked to describe the appearance of the adapting and test

screens.

RESULTS
Four of the eight subjects reported that the noise pattern appeared

to fill in across their scotoma. Six of the eight experienced a TwAE

during the test phases and could easily trace around its perimeter.

The effect was variously described as an ‘‘aberration’’, a ‘‘twin-

kling’’, or most descriptively, as a ‘‘moving cumulus cloud’’

(table 1). Of the four subjects who experienced filling-in (who

would not respond to conventional campimetric tests), three

experienced the TwAE.

All subjects who experienced the TwAE were able to fully

describe the boundary of their scotoma within the test phase. For

the two subjects who did not experience the TwAE immediately,

the size of each square element in the noise pattern was varied to

have side of between 0.05u and 0.8u, and the stimuli were

presented many times under these different conditions. Neither

subject reported any TwAE even after these manipulations.

Figure 2 compares the location of visual field loss defined by

microperimetry with the location of the TwAE mapped by the

observers. The white lines show the boundary of scotomas defined

by microperimetry. The red lines show the geometric mean of the

apparent perimeter of the TwAE mapped by the observers. The

shaded grey areas indicate 95% confidence intervals on this mean,

based on a minimum of five repetitions. There was excellent

agreement between both measures of the scotoma.

DISCUSSION
We have demonstrated that the induced TwAE can be used to

map retinal scotomas accurately in some patients with central and

paracentral scotomas arising from macular disease. Our findings

build on earlier anecdotal reports of the TwAE in patients with

retinal scotomas [2,27], and provide the first quantification of the

TwAE in patients with eye disease. We believe that this is the first

time patients have been asked to report the presence of an illusory

stimulus, rather than the absence of a real stimulus, to determine

the area of non-seeing retina.

Although it is difficult to determine exactly what participants

perceived during the test phase, their eloquent and unprompted

descriptions (table 1) indicate that they were experiencing the

TwAE. No participants perceived any irregularity on a uniform

Figure 1. Stimulus presentation. The control screen was an isoluminant grey screen presented for 15 seconds to determine whether subjects could
trace their scotoma boundary against a regular background. The adaptation phase was a dynamic field of random greyscale noise presented at 60Hz
for 15 seconds. The test phase was a further isoluminant grey screen presented for 15 seconds. Subjects were asked to mark the boundary of any
illusory area by means of a touchscreen mounted to the monitor. A red cross of arm length 1u was present throughout to guide fixation for the
drawing phase. Adaptation and test phase were repeated to a total of five times.
doi:10.1371/journal.pone.0001060.g001

Table 1. Patient characteristics and results
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Initials Age (years) Diagnosis Visual acuity (logMAR) Filling in Description of TwAE

PF 82 AMD:CNVM 0.92 No ‘aberration’

KJ 78 AMD:CNVM 1.50 Yes No effect

SP 35 Traumatic maculopathy 0.32 No ‘twinkling’

EP AMD:CNVM 0.82 No ‘dark patch’

TK 79 AMD: GA 0.30 Yes ‘mistiness’

GW 77 AMD: GA 1.36 Yes ‘cumulus cloud’

VA 69 AMD&IPCV 0.62 No No effect

MK 76 AMD:CNVM&GA 1.06 Yes ‘grey shimmer’

Diagnosis and visual acuity are given for poorer eye. Filling in: Whether participant reports perceptual completion in everyday life. TwAE: Twinkle after-effect. AMD: Age-
related macular disease. CNVM: choroidal neovascular membrane. GA: geographic atrophy. IPCV: Idiopathic polypoidal choroidal vasculopathy.
doi:10.1371/journal.pone.0001060.t001..
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grey field without the period of adaptation, indicating that the

effect described was not simple mapping of the apparent scotoma

boundary. As the adaptation and test stimuli were of equal mean

luminance, it is unlikely that patients were reporting a simple

luminance afterimage during the test phase.

Three of our participants did not experience perceptual

completion over their scotomas yet did experience a TwAE. This

observation supports Hardage and Tyler’s proposal that filling-in

and the TwAE are complementary mechanisms. More encourag-

ingly, three of our patients described the TwAE despite

experiencing completion of the dynamic noise pattern and not

responding to a standard campimetric test.

What is the mechanism driving this phenomenon? As the

TwAE can not be induced at temporal frequencies of less than

10Hz, a location within the magnocellular pathway seems likely

[7]. The large area over which the TwAE can be experienced (up

to 20u) suggests that a likely locus would be a later area of the

visual pathway such as the middle temporal complex (MT+) where

neurones have very large receptive fields, frequently extending 10u
into the ipsilateral visual field[28]. Further, MT neurons in the

macaque have been shown to respond to stimuli presented well

outside their classical receptive fields (by distances of .15u) even

without stimulation within the receptive field[29]. An alternative

candidate location is far earlier in the visual pathway: y-type retinal

ganglion cells are known to have extensive horizontal connections

and which respond preferentially to dynamic stimuli [30,31].

Unlike retinal ganglion cells, MT+ neurons do not show any

preference for the eye of stimulation, so should the effect be

cortical in origin we would expect the TwAE to transfer between

the eyes. Whilst Hardage and Tyler [6] found no interocular

transfer of the TwAE in normally-sighted observers, recent work

by Morgan and colleagues demonstrates interocular transfer of

a facilitatory effect induced under similar circumstances to the

TwAE [32]. To determine whether the effect could be transferred

in patients with visual field loss, we performed further examination

of one of our subjects who had highly incongruous scotomas: MK.

We did not attempt to induce a transferred TwAE in any other

observer. MK’s right eye had small areas of paracentral scotoma

caused by geographic atrophy, whereas his left eye had a large

central scotoma. We presented the adapting stimulus to his poorer

(left) eye whilst occluding the right eye. On a given signal, the test

screen was displayed, the left eye was uncovered and the right eye

was covered. MK then reported a robust TwAE, but only in the

areas corresponding to the locations of scotoma in his left eye

(figure 3).

The reason that MK experienced the induced twinkle only in

the areas of scotoma in his left eye (and not within the region of

scotoma in the right eye) may explain the lack of transfer

experienced by control subjects. We speculate that rivalry is

introduced between the salient test screen in one eye and the

TwAE in the other. Such rivalry could suppress the presence of the

TwAE in normally-sighted observers and limit inter-ocular

transfer of the TwAE. However, patient MK’s vision contains

regions where no retinal input is present in the test eye: that is,

within the scotoma. These regions of sighted and non-sighted

vision in the test eye set up ‘‘piecemeal’’ rivalry across his visual

field[33]. Under these conditions, perception of the test screen

dominates in sighted areas of the test eye but the TwAE dominates

perception in the non-sighted areas of the test eye. We conclude

that the TwAE is likely to manifest within MT+.

It is not clear why two of our participants (KJ and VA) did not

experience a TwAE. No apparent differences were identified in

their scotoma properties, duration of disease, fixation locus or

Figure 2. Scotomas identified by the dynamic after effect. Red line
represents mean scotoma boundary; grey region indicates 95%
confidence interval of estimate. White line represents boundary of
dense scotoma identified from microperimetry assessment (except
subject TK where scotoma is larger than the area measured using
microperimetry, and GW and MK where only the upper boundary of the
scotoma could be identified). Where present, white cross indicates
centre of fixation. EP, PF: microperimetry performed using Rodenstock
SLO-101 scanning laser ophthalmoscope. TK, SP, GW, MK: microperi-
metry performed using Nidek MP-1 microperimeter.
doi:10.1371/journal.pone.0001060.g002

Figure 3. Transferred after image for subject MK. Red line indicates
mean scotoma boundary assessed using dynamic after effect. Subject
observed the adapting pattern with his left eye which has a dense
central scotoma (figure 1) whilst covering the right eye. On a given
signal MK moved his hand from his right to his left eye and observed
the isoluminant screen. No dense scotoma was identified using
microperimetry in the right eye but paracentral areas of relative
scotoma were present.
doi:10.1371/journal.pone.0001060.g003
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visual function. Nor was it related to the occurrence of filling in–

one did and one did not experience filling-in. In order to

determine whether visibility of the noise was the limiting factor,

the size of the inducing noise stimulus was varied by a factor of 16:

from squares of side 0.05u of visual angle to 0.8u. One explanation

could be that these two patients were unable to divide their attention

between the fixation point and the region of the TwAE. People with

macular disease are known to adopt a preferred retinal locus (PRL)

for fixation in peripheral retina and, in some respects, reference their

eye movements to this ‘‘pseudofovea’’ [16,17,34]. It is not clear

whether plasticity exists in the primary visual cortex in humans with

macular disease [35,36]. It is possible that different levels of cortical

reorganisation had occurred in patients who did experience the

TwAE compared to those who did not.

Unlike subjects with artificial scotomas [27] our patients did not

systematically underreport the size of their scotoma. Although the

95% confidence interval on our estimates of scotoma size are

large, it took under three minutes to perform five trials on the

TwAE test, compared to around 20 minutes per eye for

microperimetry. If determining scotoma size is critical then further

repetition of our test would reduce the size of the confidence

intervals. Alternatively, the TwAE test could be used as a screening

test to identify scotomas prior to detailed microperimetric testing

within this region. It should be noted that confidence limits of

scotoma size are not produced by commercially available

microperimeters, yet quantification of uncertainty in the measure-

ment of the scotoma boundary are critical for assessing changes in

scotoma area during disease progression or following treatment.

We do not aim to suggest that the limited number of subjects in

this study is sufficient to imply that this type of test should be

introduced into routine clinical practice: nor do we suggest that a test

with sensitivity of 75% is suitable for screening for this condition.

However, we feel that the concept of using illusory stimuli to

determine the absence of function is appealing and novel. We

suggest that similar illusory techniques could be used by colleagues in

clinical ophthalmology and other areas of the cognitive neuros-

ciences to determine and investigate the absence of function.

MATERIALS AND METHODS
All subjects had age-related macular disease causing a central

scotoma diagnosed by a consultant ophthalmologist (other than SP

who had a traumatic maculopathy caused by a road traffic

accident). No subjects had any other eye disease or any history of

neurological disease. All participants had binocular scotomas

except SP, who had one eye enucleated in adulthood due to ocular

trauma. The study was approved by the Camden&Islington PCT

Local Research Ethics Committee of the UK National Health

Service. Subjects gave their informed consent prior to data

collection and the study conformed to the tenets of the Declaration

of Helsinki.

Microperimetry
Microperimetry was performed using either the SLO-101

Scanning laser ophthalmoscope (Rodenstock, Germany) or the

Nidek MP-1 microperimeter (Nidek, Italy). In both cases, subjects

were asked to observe a central fixation cross whilst retinal specific

perimetry was performed of the central retina. Stimuli were

Goldmann III targets presented against a dark background. In the

MP-1, the automated 10-2 strategy was used to measure threshold

retinal sensitivity. In the SLO, manual perimetry was performed at

one intensity (200 cd/m2). In both cases microperimetry maps

were automatically superimposed on the retinal image by tracking

a retinal landmark.

Determining the TwAE
Stimuli were created on an Apple computer using custom functions

written in Matlab (v.7.3; Mathworks, Natick, MA) based on elements

of the Psychophysics toolbox[37],[38] and were presented on an 18’’

CRT monitor (Ultrascan P991; Dell, Round Rock, TX) with a 60Hz

refresh rate. The peak screen luminance, measured using a photom-

eter (Minolta CS-100, Konica Minolta, Japan) was 145 cd/m2 when

viewed through the touch screen panel.

Subjects observed the stimuli monocularly with their better eye,

whilst the contralateral eye was occluded with an opaque eye

patch. Subjects sat 50cm from the computer screen. Appropriate

refractive correction was worn using full-aperture trial lenses.

The experimental procedure is illustrated in Figure 1. First,

a mean luminance grey screen was presented for a period of

15 seconds. Subjects were asked to identify any missing or

irregular areas on the screen. Next, dynamic greyscale noise was

presented for a period of 15 seconds. Each element of noise was

square, of side 12 pixels (29 min arc) and was randomly assigned

a new luminance value between 1 and 145 cd/m2 every 17 msec

(60Hz). Finally, an isoluminant grey screen was presented for

15 seconds. Subjects were asked to draw around the edge of any

area of irregularity with a stylus using a touchscreen (MagicTouch

KTMT-1921; Keytec Inc., Garland, TX). Screen coordinates of

the stylus location were recorded at 60Hz. A central fixation cross

of arm length 1u was displayed throughout, and subjects were

asked to maintain fixation on this point. The adaptation and test

phase was repeated to a total of five presentations.

Additional testing for inter-ocular transfer of the TwAE was

performed on subject MK. He viewed the 15 sec dynamic noise

stimulus with his poorer (left) eye. At the onset of the adapting

noise, an audible stimulus was heard, the test screen was displayed,

his left eye was uncovered and his right eye was occluded. As

before the subject was asked to indicate any anomalous areas of

the display by marking the touch screen as above.

All data were analysed with Matlab. The Cartesian pixel

coordinates of cursor position were converted to polar values with

respect to the centre of the drawn area for each trial. The orientation of

each co-ordinate (h) was rounded into 30u bins from 0 deg. The mean

distance from the centre and standard deviation (s) of that value were

calculated for each of the 12 polar coordinates. A dodecagon was

constructed for the mean and mean 61.96s of the data at each

coordinate. Using Photoshop (v.7.0; Adobe, San Jose, CA) these

dodecagons were flipped vertically to correctly represent visual field

space. For each subject, the dodecagons were resized to the retinal

image obtained by the microperimeter/SLO by equating 5u of visual

space to the horizontal extent of the optic disc[39]. The resized

dodecagons were superimposed on the fundus image. For clarity, the

dodecagon representing the mean position was drawn in red, and the

area between the 5% and 95% dodecagons was shaded grey.
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