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We study the origin of evolution. Evolution is based on replication, mutation, and selection. But how

does evolution begin? When do chemical kinetics turn into evolutionary dynamics? We propose

‘‘prelife’’ and ‘‘prevolution’’ as the logical precursors of life and evolution. Prelife generates sequences of

variable length. Prelife is a generative chemistry that proliferates information and produces diversity

without replication. The resulting ‘‘prevolutionary dynamics’’ have mutation and selection. We propose

an equation that allows us to investigate the origin of evolution. In one limit, this ‘‘originator equation’’

gives the classical selection equation. In the other limit, we obtain ‘‘prelife.’’ There is competition

between life and prelife and there can be selection for or against replication. Simple prelife equations

with uniform rate constants have the property that longer sequences are exponentially less frequent

than shorter ones. But replication can reverse such an ordering. As the replication rate increases, some

longer sequences can become more frequent than shorter ones. Thus, replication can lead to ‘‘reversals’’

in the equilibrium portraits. We study these reversals, which mark the transition from prelife to life in

our model. If the replication potential exceeds a critical value, then life replicates into existence.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The attempt to understand the origin of life has inspired much
empirical and theoretical work over the years. Some basic
building blocks of living systems can be produced under simple,
prebiotic conditions (Miller, 1953; Szostak et al., 2001; Benner
et al., 2002; Ricardo et al., 2004), although many questions are
still unanswered (Shapiro, 2006). RNA can store genetic informa-
tion and catalyze certain reactions (Ellington and Szostak, 1990;
Cech, 1993; Sievers and von Kiedrowski, 1994; Ferris et al., 1996;
Joyce, 1989, 2002; Johnston et al., 2001). This idea has led to the
hypothesis of an RNA world, where both genetics and metabolism
are governed by RNA alone. In one experiment, Bartel and Szostak
(1993) isolated a ribozyme from a large number of randomly
generated sequences. This ribozyme can ligate two RNA molecules
that are aligned on a template. Subsequent experiments have
resulted in the shortening of this ribozyme and the enhancement
of its catalytic activity (Steitz and Moore, 2003).
ll rights reserved.

tionary Dynamics, Harvard

6 4737; fax: +1617496 4629.

. Nowak).
Eigen (1971) and Eigen and Schuster (1977, 1979) have
introduced a chemical theory for the origin of life. They study
populations of binary sequences under mutation and selection. A
central result of their celebrated ‘‘quasispecies theory’’ is the error
threshold: adaptation is only possible if the mutation rate per bit
is less than the inverse of the sequence length (Swetina and
Schuster, 1982; McCaskill, 1984; Eigen et al., 1988; Nowak and
Schuster, 1989; Nowak, 1992). They also propose the hypercycle as
a concept for the evolution of further complexity.

Kauffman (1986, 1983) investigates catalytic protein networks
in the context of the origin of life. Szathmáry and Demeter (1987)
study replicating units within randomly dividing vesicles. Fontana
and Buss (1994a, b) use the l-calculus as a tool for investigating
how a generative chemistry can lead to biological organization
and evolution. For further theoretical approaches to questions
concerning the origin of life, see Dyson (1982, 1999), Stein and
Anderson (1984), Maynard Smith and Szathmáry (1995), and
Segre et al. (1998, 2000).

Evolutionary dynamics need populations of individuals that
are capable of reproduction and inheritance. Offspring inherit
some information from their parents. If the term ‘‘replication’’ is
used specifically to denote the reproduction of information, then
biology becomes the study of replication.

www.sciencedirect.com/science/journal/yjtbi
www.elsevier.com/locate/yjtbi
dx.doi.org/10.1016/j.jtbi.2008.10.006
mailto:martin_nowak@harvard.edu
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Mutation arises if replication is not perfectly accurate but can
also generate mistakes. Selection emerges if mutants differ in
their replication rate, which is also called their ‘‘fitness.’’ Thus,
evolutionary dynamics are based on replication, mutation,
and selection.

It is generally assumed that mutation and selection are
consequences of replication, but here we want to challenge this
perspective. We propose a generative chemistry (prelife) that is
capable of mutation and selection prior to replication. We study
how selection can favor (or oppose) replication.

Consider a binary soup of activated monomers, 0� and 1�.
These monomers are produced and removed at certain rates. In
addition, the following chemical reactions are possible:

iþ 0� ! i0,

iþ 1� ! i1. (1)

Here i denotes any binary sequence (including the null sequence).
We make several assumptions about this chemical system. First,
we assume that some buffering mechanism exists so that the
concentrations of the activated monomers are always at a fixed
steady-state level. Second, we assume that elongation can occur in
only one direction: sequence i can become i0 or i1. This is
analogous to the polymerization of DNA where a new base can
only be added to the 30 end. Under this assumption, each string
has a unique chemical precursor and exactly two successors. For
example, the precursor of sequence 001 is 00 and its two
successors are 0010 and 0011. In particular, each string has a
unique production lineage: the lineage of 0010 is
0! 00! 001! 0010. Finally, we assume that strings of all
lengths are removed at a fixed ‘‘death-rate’’ d. One can view
sequence death as the degradation of the string into its
constituent monomers, which are then absorbed into the buffered
pool of activated monomers.

The dynamics within this binary soup are described by the
following system of infinitely many differential equations, where
the abundance of sequence i is given by

_xi ¼ aixi0 � ðai0 þ ai1 þ dÞxi; i ¼ 0;1;00;01; . . . . (2)

The parameter ai denotes the rate constant of the chemical
reaction which produces sequence i from its precursor i0. For the
abundances of the precursors of 0 and 1, we set x00 ¼ x10 ¼ 1. All
sequences are removed at rate d. The above system converges to a
unique equilibrium where, typically, longer sequences are ex-
ponentially less common than shorter ones. For a discussion of
prevolutionary dynamics, see Nowak and Ohtsuki (2008).

Let us now assume that (some) sequences can reproduce. In
the simplest scenario, they use activated monomers to make
copies of themselves. This is called ‘‘direct replication’’ rather than
replication via the complimentary bitstring (Eigen and Schuster,
1979). Suppose the relative replication rate (i.e., the fitness) of
sequence i is given by f i. We then have the following ‘‘originator
equation’’:

_xi ¼ aixi0 � ðai0 þ ai1 þ dÞxi þ rxiðf i � fÞ; i ¼ 0;1;00;01; . . . . (3)

The parameter r determines the relative magnitude of replication
and prelife dynamics. It could depend on the supply of activated
monomers or other chemical and physical properties of the
system, such as the temperature. In the limit r! 0, the originator
equation describes prelife, (2). In the limit r!1, we obtain the
standard selection equation of evolutionary dynamics (Nowak,
2006). The parameter f is chosen so that the total population
size is constant. Without loss of generality we set

P
i xi ¼ 1,

so xi denotes the frequency of sequence i. Since we must require
that
P
_xi ¼ 0, we obtain

f ¼ f̄ þ
a0 þ a1 � d

r
. (4)

The average fitness of the population is f̄ ¼
P

i f ixi. If we set
a0 þ a1 ¼ d, then f ¼ f̄ .

In this paper, we will study some aspects of system (3), but we
will mostly investigate a somewhat simpler equation which
shares many properties with (3). This unary originator equation
has the form

_xi ¼ ai�1xi�1 � ðai þ dÞxi þ rxiðf i � fÞ; i ¼ 1;2;3; . . . . (5)

Here xi is the abundance of the sequence of length i. As before,
sequences grow on one side by the addition of activated
monomers, but now there is only one type of monomer, 0�. Thus
we study the unary sequences 0;00;000; . . .. For the abundance of
the precursor of 0, we set x0 ¼ 1. We can interpret the unary
model as a binary model where all the properties of a sequence
depend only on its length: the abundance xi in the unary model
corresponds to the total abundance of all strings of length i in the
binary model. In addition, if we assume that all sequences of a
given length and greater have the same fitness, the unary
originator equation (5) can be written as a quasispecies equation
with a very special mutation–selection matrix. The details of this
reduction are described in Appendix A.

We will investigate the equilibrium structure of (5) as function
of the replication potential, r. If r is less than a critical value, then
the basic equilibrium structure of prelife prevails. Our focus will
be on the ‘‘supersymmetric’’ case given by ai ¼ a for i40 and
a0 ¼ d, which implies that f ¼ f̄ . Note that f is a function of xi and
not a constant. For r ¼ 0 (prelife), longer sequences are always less
frequent than shorter ones. But as r increases there can be
‘‘reversals’’ in the equilibrium portrait after which some se-
quences become more frequent than their precursors.

The structure of this paper is as follows. In Section 2, we
introduce the unary model and establish lower bounds for the
values of the replication potential, r, at which reversals can occur.
In Section 3, we compute an intersection point exactly for a
certain fitness landscape. In Section 4, we study another class of
fitness landscapes, show that the reversal points are given
(approximately) by the roots of a simple polynomial, and then
use this fact to derive a result on the replication potential required
for the fittest sequence to dominate. In Section 5, we comment on
the binary model, and in Section 6 we draw some conclusions.
2. The unary model

We study system (5) where x0 ¼ 1, a0 ¼ d, and ai ¼ a for all
i40. In this supersymmetric case, the system becomes

_x1 ¼ d� ðaþ dÞx1 þ rx1ðf 1 �fÞ,
_xi ¼ axi�1 � ðaþ dÞxi þ rxiðf i �fÞ; i ¼ 2;3; . . . ,

f ¼
X1
i¼1

f ixi. (6)

Here xi denotes the frequency (i.e., the relative abundance) of the
sequence of length i. We will assume that all sufficiently long
sequences have the same fitness. This assumption allows us to
perform exact numerical simulations and also guarantees that the
system has a unique, globally stable equilibrium in the infinite
simplex

P
i xi ¼ 1, xiX0 for all i. Appendix A has a detailed

discussion of how we simulate the system along with a discussion
of its stability properties.

We will focus on the ‘‘reversal points’’ in the equilibrium
portraits of these systems: for each value of r, we plot the
equilibrium frequencies, x�i ðrÞ. As r varies, these frequencies can



ARTICLE IN PRESS

10−2 10−1 100 101 102 103
10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Replication potential, r

Fr
eq

ue
nc

y

Fig. 1. The equilibrium portrait of the unary originator equation with a ¼ d ¼ 1.

Sequences 5–24 (dark blue) have fitness values sampled from the uniform

distribution on ½1;1:1�. All other sequences have fitness 0. Each curve is the graph

of the equilibrium frequency x�i ¼ x�i ðrÞ of a sequence of a particular length. The red

curve is the graph of x�14ðrÞ, the equilibrium frequency of sequence 14, which is the

fittest sequence in this landscape. Surprisingly, the frequency of the fittest

sequence does not increase monotonically: between r � 1 and � 10, x�14ðrÞ actually

decreases.
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change order, and the values of r at which they do so are what we
call reversal points. We are interested in these points because they
mark the transition from prelife dynamics to evolutionary
dynamics in the originator equation. Before a reversal, the
chemically-determined structure of prelife is dominant; after a
reversal, replication dominates.

Fig. 1 shows the equilibrium portrait of a random fitness
landscape: sequences of length 5–24 have fitness values chosen
from the uniform distribution on ½1;1:1�. The sequence of length
14 (in red) has the highest fitness. We will find lower bounds for
the values of r at which reversals such as those near r ¼ 1 can
occur. This will allow us to make statements about necessary
conditions on replication rates for life to dominate prelife.

The equilibrium structure in supersymmetric prelife is char-
acterized by an inverse relationship between frequency and
sequence length: longer sequences are less common than shorter
ones. When some sequences have positive fitness, however, they
may become more abundant than shorter sequences if r is large
enough. In Fig. 1, the sequence of length 14 has the highest fitness
and eventually becomes the most frequent sequence. However, its
frequency does not increase monotonically as a function of r. From
r � 1 to � 10, the frequency of the fittest sequence actually
decreases.

We start by establishing a lower bound for the values of r at
which reversals can occur. In the following, we will speak of
‘‘sequence i,’’ by which we mean the sequence of length i, the
‘‘frequency of i,’’ by which we mean the equilibrium frequency of
sequence i, and of ‘‘frequencies’’ generally, by which we mean the
equilibrium frequencies of the sequences as functions of the
parameter r. When we describe the behavior of sequences (e.g., in
phrases such as ‘‘sequence i crosses sequence j at r0’’), we are
referring to the equilibrium frequencies of the sequences as
functions of r.
2.1. General lower bounds for reversals

We begin with the basic requirements that f iX0 for all i, at
least one sequence has positive fitness, and all sufficiently long
sequences have the same fitness. These conditions ensure that (6)
has a unique, globally stable equilibrium. Observe that the first
intersection of sequences must involve the intersection of a
sequence and its precursor. Therefore, it is enough to find a value
of r below which a sequence and its precursor cannot intersect.
From (6), we have at equilibrium

x�iþ1 ¼
a

ðaþ dÞ � rðf iþ1 �f�Þ
x�i , (7)

where f� ¼
P

f ix
�
i . If x�iþ1 ¼ x�i , we must have

a

ðaþ dÞ � rðf iþ1 � f�Þ
¼ 1. (8)

This equality holds if rðf iþ1 �f�Þ ¼ d, and for this we must have
f iþ14f�. These conditions become

r ¼
d

f iþ1 � f�
4

d

f iþ1
. (9)

Thus, if the frequencies of i and iþ 1 intersect, they do so only if
r4d=f iþ1.

We can justify this result intuitively as follows: each sequence
has an input flow from its precursor (rate a), an output flow to its
successor (rate a), and a death rate d. The absolute replication rate,
rf iþ1, of sequence iþ 1 must exceed the death rate, d, to make net
replication possible; the result is the bound r4d=f iþ1.

We note that (9) implies that a nonreplicating sequence, iþ 1,
will never cross its precursor, i: if f iþ1 ¼ 0, the bound becomes
infinity.

Taking into account all pairs of frequencies, we find that an
intersection between any sequences can happen only if

r4min
i

d

f i

. (10)

If r is less than the quantity on the right, then the equilibrium
structure of prelife is maintained; as r increases beyond that
value, we can have a transition after which the balance is tipped in
favor of life (though nonreplicating sequences may still be more
frequent than replicating ones). We collect the results above in the
following theorem.

Theorem 1. Let ff ig
1
i¼1 be a fitness landscape such that f iX0 for all i,

f j40 for some j, and f k ¼ f for all sufficiently large k (f a fixed

nonnegative number). Then
1.
 The equilibrium frequencies x�i ðrÞ and x�iþ1ðrÞ do not intersect for

rpd=f iþ1.

2.
 A nonreplicating sequence never intersects its precursor (the

sequence of length one less).

3.
 There are no intersections between any sequences for rpmini d=f i.

Theorem 1 gives necessary but not sufficient conditions on r for
reversals to occur. A reversal can fail to occur, even if r is
sufficiently large, in one of two ways. First, the sequences can fail
to intersect at all. In Section 2.3, we give an example of a fitness
landscape in which many sequences can replicate but for which
there are no intersections. Second, even if a group of sequences
meets at a certain point, their order does not necessarily have to
change after that point—the frequencies can be mutually tangent.
Equality (8) is technically only a condition for intersection and not
one for reversal. However, we have not observed, numerically, any
situations in which two frequencies are tangent.
2.2. Sequences m to n replicate

Suppose sequences m to n have fitness f40 and all other
sequences have fitness 0. Fig. 2 shows the equilibrium portrait for
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Fig. 2. The equilibrium portrait of the unary originator equation (6) with

a ¼ d ¼ 1. Sequences 3–15 (dark blue) have fitness 1, and all other sequences

have fitness 0. Each curve is the graph of the equilibrium frequency x�i ¼ x�i ðrÞ of a

sequence of a particular length. The equilibrium frequencies of sequences 2–15 all

intersect at r � 3:31. In general, if sequences m to n have the same fitness f and all

other sequences have fitness 0, then the frequencies of sequences m� 1 to n will

intersect for the first time in a single point.
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Fig. 3. The equilibrium portrait of the unary originator equation (6) with

a ¼ d ¼ 1. Sequences 3–8 and 15–20 (dark blue) have fitness 1, and all other

sequences have fitness 0. Each curve is the graph of the equilibrium frequency

x�i ¼ x�i ðrÞ of a sequence of a particular length. The frequency of sequences 2–8 all

intersect at r � 2:27 as do the frequencies of sequences 14–20 since all replicating

sequences have the same fitness. In general, if sequence i has fitness f and x�i ¼ x�i�1

at r ¼ r0, then x�j ¼ x�j�1 at r ¼ r0 for all sequences j with fitness f.
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m ¼ 3, n ¼ 15, and f ¼ 1. Surprisingly, the frequencies of
sequences m� 1 (¼ 2) to n (¼ 15) intersect in a single point at
r � 3:31. To see this, observe that (8) implies that sequence n

crosses sequence n� 1 at values of r satisfying

r ¼
d

f
þ

rf�

f
. (11)

The same is true for sequences n� 1 and n� 2, n� 2 and n� 3,
etc., up to m and m� 1 since sequences m to n all have the same
fitness. Thus at any r at which a replicating sequence crosses its
precursor, all the replicating sequences cross their precursors and
the frequencies of m� 1 to n are equal. Generalizing to arbitrary
fitness landscapes, we observe that a sequence of fitness f

intersects its precursor at values of r satisfying (11) and that this
r is independent of the length of the sequence. We thus obtain the
following theorem:

Theorem 2. Under the assumptions of Theorem 1, if a sequence with

fitness f crosses its precursor at r ¼ r0, then all sequences with fitness

f cross their precursors at r ¼ r0. In particular, the value of r0 does not

depend on the fitness of the precursor.

For r ¼ 0, the prelife equilibrium structure is intact and
sequences are ordered by sequence length. As r increases and
selection dynamics become important, there is a value of r at
which the frequencies of m� 1 to n are all equal. Thus if we have a
series of consecutive sequences of the same fitness, they first
intersect in a single point. Life is then selected over prelife
only after all replicating sequences have achieved the same
(equilibrium) frequency.

The equilibrium portrait of Fig. 3 shows two groups of
replicating sequences: 3–8, which have fitness 1, and 15–20,
which also have fitness 1. The frequencies of sequences 2–8 meet
at r � 2:27 as do those of 14–20—the first intersections occur at
the same r since all replicating sequences have the same fitness.

Now suppose sequences m to n have fitness 1, with the
exception of sequences i to j (moipjon), which have fitness f41.
The fittest sequences cannot cross their precursors before r ¼ d=f
and the sequences of intermediate fitness cannot cross their
precursors before r ¼ d. However, from our simulations, we
know that there are not necessarily going to be intersections of
both types.

In Fig. 4(a), sequences 4–18 have fitness 1, with the
exception of sequence 10, which has fitness 1:5. Sequence 10
(the dashed line) crosses sequence 9 at r � 0:91 whereas the
sequences with fitness 1 do not cross their precursors. In
Fig. 4(b), sequences 4–18 have fitness 1, with the exception of
sequence 10, which has fitness 1:1. Sequence 10 crosses sequence
9 at r � 1:41 whereas sequences 3–9 cross at r � 2:19, as do
sequences 10–18.
2.3. Sequences 1 to n replicate

While life cannot dominate before r ¼ mini d=f i, it is possible
for the prelife structure to remain intact in some cases regardless
of how large r is. Here we give an example of such a landscape.

Consider the situation in which sequences 1 to n have the same
fitness f. Fig. 5 shows the case n ¼ 20 and f ¼ 1. We know that a
nonreplicating sequence never intersects its precursor. If there are
any intersections, they must involve two replicating sequences
and thus must be preceded by the intersection of a replicating
sequence and its precursor, say i and iþ 1 (1pion). From the
analysis above, we know that sequences with the same replication
rate intersect their precursors at the same values of r. Thus if
sequences i and iþ 1 first intersect at r0, then sequences 1 to n

must all intersect at r0. To show that there are no intersections,
then, it is enough to show that sequences 1 and 2 never meet.
We have

x�1 ¼
d

ðaþ dÞ � rðf � f�Þ
,

x�2 ¼
x�1

ðaþ dÞ � rðf � f�Þ
. (12)

Sequences 1 and 2 have the same frequency only if x�1 ¼ x�2 ¼ d.
If d41=2, this cannot happen.
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Fig. 4. The equilibrium portrait of the unary originator equation (6) with

a ¼ d ¼ 1. (a) Sequences 4–18 (dark blue) have fitness 1, with exception of

sequence 10 (red), which has fitness 1:5, and all other sequences have fitness 0.

Each curve is the graph of the equilibrium frequency x�i ¼ x�i ðrÞ of a sequence of a

particular length. According to (9), the frequency of sequence 10 can intersect the

frequency of sequence 9 only when rX1=1:5 ¼ 0:66 and the frequencies of the

sequences of fitness 1 can intersect their predecessors only when rX1. In this case,

however, there are no intersections of the latter type. (b) The same fitness

landscape as in (a), but now sequence 10 has fitness 1:1. In this case there are five

intersections: sequence 10 crosses its predecessor at r � 1=1:1, sequences 3–9

cross at r � 1 and then again at r � 10, and sequences 10–18 cross at r � 1 and

r � 10 as well. The sequences within each of these two groups cross at the same

values of r since sequences with the same fitness cross their predecessors at the

same values of r.
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Fig. 5. The equilibrium portrait of the unary originator equation (6) with

a ¼ d ¼ 1. Sequences 1–20 (dark blue) have fitness 1, and all other sequences

have fitness 0. Each curve is the graph of the equilibrium frequency x�i ¼ x�i ðrÞ of a

sequence of a particular length. Even if sequences 1–20 replicate, there are no

reversals: the prelife structure of the population is maintained even in the limit

r!1.
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Fig. 6. The equilibrium portrait of the unary originator equation (6) with

a ¼ d ¼ 1. Sequences 2–20 (dark blue) have fitness 1, and all other sequences

have fitness 0. Each curve is the graph of the equilibrium frequency x�i ¼ x�i ðrÞ of a

sequence of a particular length. In contrast to the fitness landscape of Fig. 5, here

the frequencies of sequences 1–20 meet at r ¼ ð19þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
192
þ 4

p
Þ=2 � 20.
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3. Analytic calculation of an intersection in a special case

In the previous section, we found a lower bound for the
values of r at which sequences can intersect, but there was no
guarantee that there would be a reversal—or even just an
intersection—if r exceeded that bound. In this section, we give
an example in which we can guarantee—and compute the
coordinates of—an intersection.

For simplicity, we set f 2 ¼ � � � ¼ f n ¼ 1, all other f i ¼ 0,
and a ¼ d ¼ 1, though what follows also applies for general a

and d. Fig. 6 shows the n ¼ 20 case. At equilibrium, system (6)
becomes

1� 2x�1 � rx�1f
�
¼ 0,

x�1 � 2x�2 þ rx�2ð1�f�Þ ¼ 0,

..

.

x�n�1 � 2x�n þ rx�nð1�f�Þ ¼ 0,

x�n � 2x�nþ1 � rx�nþ1f
�
¼ 0,

..

.
(13)

We know from Section 2.2 that if there are intersections involving
any of the sequences 1; . . . ;n, they must be preceded by the
simultaneous intersection of all n sequences. We will thus attempt
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to find a point at which such an n-way intersection occurs: we
seek an intersection point of sequences 1 and 2 while assuming
that sequences 1 to n meet there. This will give us an analytic
condition on r. If we can find an r that satisfies it, we will have
both confirmed the existence of the intersection point and
determined the value of r at which it occurs. Now at this point,
we have

rf� ¼ r
Xn

i¼2

x�i ¼ ðn� 1Þrx�. (14)

Here x� denotes the common equilibrium frequency of the first n

sequences. Thus, the first two equations in (13) become

� ðn� 1Þrx�2
� 2x� þ 1 ¼ 0,

ðn� 1Þrx� � ðr � 1Þ ¼ 0. (15)

Solving (15) gives us

r ¼
ðn� 1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þ2 þ 4

q
2

(16)

and

x� ¼
ðn� 3Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þ2 þ 4

q
ðn� 1Þ2 þ ðn� 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þ2 þ 4

q . (17)

For n ¼ 20, this gives r � 19:0525 and x� � 0:0499. Note that there
are two solutions for r in system (15), but one is negative and one
is positive. Hence, there is precisely one positive value of r at
which the frequencies of sequences 1 to n are equal. For large n,
we obtain r ¼ n from (16) and x� ¼ 1=n from (17).
10−2 10−1 100 101 102 103
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Fig. 7. The equilibrium portrait of the unary originator equation (6) with a ¼ d ¼ 1.

(a) Sequence 10 (red) has fitness 1, sequence 11 (dark blue) has fitness 0:95, and all

other sequences have fitness 0. Each curve is the graph of the equilibrium

frequency x�i ¼ x�i ðrÞ of a sequence of a particular length. Even if sequence 10 has an

initial (when r ¼ 0) frequency greater than that of sequence 11 and a higher fitness,

between r � 1 and � 20, x�114x�10. The real positive roots of the polynomial

0:05x10 � x9 þ 1 are the values of r at which x�10ðrÞ ¼ x�11ðrÞ. (b) A comparison of the

average fitness at equilibrium, f�ðrÞ, of the fitness landscape of (a) to the

perturbation theory estimate (19). The actual average fitness and the estimate

essentially coincide for rX2.
4. The fastest replicator is not always the most abundant

Fig. 7(a) is an equilibrium portrait of the fitness landscape
f 10 ¼ 1, f 11 ¼ 0:95, and f i ¼ 0 for all ia10;11. Despite the facts
that the initial (prelife) frequency of sequence 10 is greater than
that of sequence 11 and that sequence 10 has a higher fitness than
sequence 11, between r � 1 and � 20, the longer, less fit sequence
(11) is more frequent. In fact, for r between approximately 2 and
20, sequence 11 dominates the entire population. We now study
this phenomenon.

We consider fitness landscapes with f iof Nþ1of N for all
iaN;N þ 1. We would like to approximate the values of r for
which the longer, less fit sequence can be more frequent than the
fittest sequence. A perturbation theory argument allows us to
estimate the average fitness f� at equilibrium for landscapes of
this type (see Appendix C):

f�ðrÞ ¼ f N �
aþ d

r
þ

1

rN

aN�1dQN�1
i¼1 ðf N � f iÞ

þ O
1

rNþ1

� �
. (18)

For the fitness landscape of Fig. 7(a) and our choice of
parameters (a ¼ d ¼ 1), the approximation becomes

f�ðrÞ ¼ f N �
aþ d

r
þ

a9d

r10
þ O

1

r11

� �

¼ 1�
2

r
þ

2

r10
þ O

1

r11

� �
. (19)

Fig. 7(b) is a comparison of this estimate to the actual average
fitness; the estimate essentially coincides with the actual average
fitness for r42.

Now as we saw above, the frequency of sequence N þ 1 will be
greater than the frequency of sequence N precisely when

a

aþ d� rðf Nþ1 �f�Þ
40. (20)
Substituting (18) into (20) and rearranging terms, we see that
sequence N þ 1 will be more frequent than sequence N if

rðf Nþ1 � f NÞ þ a�
aN�1d

rN�1P
40, (21)

where P ¼
QN�1

i¼1 ðf N � f iÞ. Without loss of generality, we set a ¼ 1,
f N ¼ 1, and f Nþ1 ¼ 1� s, where 0oso1 (we are thus assuming
that f io1� s for iaN;N þ 1). Condition (21) then becomes

gðrÞ:¼srN � rN�1 þ
d

P
o0. (22)

The real roots of this polynomial (if there are any) give
approximations to the values of r at which the frequencies of
sequences N and N þ 1 cross.

We study this polynomial in the special case d ¼ P ¼ 1 (the
fitness landscape in Fig. 7(a) satisfies these conditions). Let
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Table 1
A comparison of the actual and estimated values of r at which the equilibrium

frequencies of sequences N and N þ 1 cross (rl is the r value of the first reversal and

rh the value of the second) when sequence N has fitness 1, sequence N þ 1 has

fitness 1� s, sequences of length oN have a fixed fitness less than 1� s, and all

other sequences have fitness 0.

N s f i ðioNÞ rl (actual) rl (estimate) rh (actual) rh (estimate)

10 0.01 0 1.014 1.001 100.000 100.000

10 0.05 0 1.057 1.006 20.000 20.000

10 0.10 0 1.116 1.012 10.000 10.000

10 0.01 0.33 1.520 1.495 100.000 100.000

10 0.05 0.33 1.619 1.506 20.000 20.000

10 0.05 0.33 1.762 1.520 10.000 10.000

10 0.01 0.5 2.047 2.005 100.000 100.000

10 0.05 0.5 2.230 2.024 20.000 20.000

10 0.10 0.5 2.511 2.052 10.000 10.000

20 0.01 0 1.010 1.001 100.000 100.000

20 0.05 0 1.053 1.003 20.000 20.000

20 0.10 0 1.111 1.006 10.000 10.000

20 0.01 0.33 1.515 1.494 100.000 100.000

20 0.05 0.33 1.613 1.499 20.000 20.000

20 0.10 0.33 1.754 1.505 10.000 10.000

20 0.01 0.5 2.041 2.002 100.000 100.000

20 0.05 0.5 2.222 2.011 20.000 20.000

20 0.10 0.5 2.500 2.024 10.000 10.000

We set a ¼ d ¼ 1. The estimates are obtained by finding the real positive roots of

polynomial (22).
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k ¼ 1=s. Finding the roots of g is equivalent to finding the roots of
hðrÞ:¼rN � krN�1

þ k. Taking derivatives, we have

h0ðrÞ ¼ rN�2ðNr � kðN � 1ÞÞ,

h00ðrÞ ¼ ðN � 1ÞrN�3ðNr � kðN � 2ÞÞ. (23)

There is precisely one positive root r0 ¼ kðN � 1Þ=N of h0 (and this
root is not a root of h00) and the condition hðr0Þo0 is equivalent to

kN�1

N � 1
1�

1

N

� �N

41. (24)

When k and N satisfy this condition, hðrÞ will have exactly two
positive real roots. The smaller one is the value of r at which the
frequency of sequence N þ 1 exceeds that of sequence N. The
larger one is the value of r at which sequence N starts to dominate
the population. For large N, (24) can be rewritten as kN4eN.

When inequality (24) holds and h has two real roots, the larger
one is approximately equal to k. To see this, observe that hðkÞ ¼

k40 and h0ðrÞ40 for rXk, so h can have no roots larger than k.
Since hðr0Þo0, it follows that h has a root between r0 ¼ k� k=N

and k. In fact it can have only one root in that interval since h0

never vanishes for r4r0. We can interpret this in the following
way: if the fittest sequence has advantage s over the next fittest
sequence, then the fittest sequence can dominate the population
only if

rX
1

s
. (25)

For ro1=s, sequences of intermediate fitness can be most
frequent. Table 1 gives the values for the real and estimated
crossing points of sequences N and N þ 1 for various values of N

and s. In all cases, the estimate 1=s for the second point, after
which sequence N can dominate, coincides with the numerical
determination of the last crossing point.
5. The binary model

The results above apply to the case of the binary originator
equation with slight modifications. Here we carry out one explicit
computation. The analogue of (6) in the binary case is

_xi ¼ aixi0 � ðai0 þ ai1 þ dÞxi þ rxiðf i �fÞ; i ¼ 0;1;00;01; . . . . (26)

As in (7), we can write

x�i ¼
ai

ðai0 þ ai1 þ dÞ � rðf i � f�Þ
x�i0 . (27)

For the frequencies of i and i0 to cross, the fractional quantity must
be 1. This condition becomes

r ¼
ai0 þ ai1 � ai þ d

f i

þ
rf�

f i

. (28)

For the supersymmetric case (ai0 ¼ ai1 ¼ ai ¼ a) we have

r ¼
aþ d

f i

þ
rf�

f i

X
aþ d

f i

. (29)

In supersymmetric binary prelife, all sequences of the same
length have the same equilibrium frequency; for the fre-
quency of a sequence to increase above that of its precursor,
we need r4ðaþ dÞ=f i. In contrast to the unary case, the net
flow to successors due to prelife occurs at rate aþ d (since
there are now two downstream flows of rate a to a
sequence’s successors). Net replication then becomes
possible when the absolute replication rate rf i exceeds aþ d,
giving (29).
6. Conclusion

We have introduced the originator equation, a model
that allows us to study the transition from the gene-
rative chemistry of prelife—a system that proliferates information
without replication—and its prevolutionary dynamics to life
and its evolutionary dynamics. The equilibrium portraits asso-
ciated to this model show how the frequencies of sequences vary
as a function of the replication potential, r. When these
frequencies intersect, we have a transition after which life
dominates prelife.

We derived a ‘‘local’’ lower bound (9) for r below which a
sequence and its precursor cannot cross and a ‘‘global’’ lower
bound (10),

r4min
i

d

f i

,

below which no sequences can cross. We showed that r excee-
ding this bound is necessary but not sufficient for a
reversal to occur: when sequences 1 to n replicate with the
same fitness, replication cannot break the symmetry of the
prelife structure.

For a special fitness landscape—when sequences 2 to n

replicate with the same fitness—the first and only n-way
intersection of sequences 1 to n occurs at

r ¼
ðn� 1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þ2 þ 4

q
2

.

For large n, this is intersection point occurs at r � n.
For the fitness landscape in which sequence N has fitness 1,

sequence N þ 1 has fitness 1� s (0oso1), and all other sequences
have fitness 0, we showed that the real positive roots of
polynomial

hðrÞ ¼ srN � rN�1 þ 1

approximate the values of r at which the equilibrium frequencies
of sequences N and N þ 1 intersect. We have condition (24) under
which the polynomial will in fact have two real positive roots and
showed that the larger of these roots is (to good approximation)



ARTICLE IN PRESS

M. Manapat et al. / Journal of Theoretical Biology 256 (2009) 586–595 593
equal to 1=s. Thus, if we have two replicating sequences, N and
N þ 1, and sequence N has a fitness advantage of s, then the
replication potential must be at least 1=s for the fittest sequence
to dominate—before that, sequence N þ 1 can be more abundant
than sequence N.

In supersymmetric prelife, longer sequences are exponentially
less frequent than shorter sequences. When sequences replicate,
however, the symmetry of the prelife ordering can be disrupted,
and the equilibrium distribution can be far from exponential: as r

increases, selection becomes increasingly efficient in removing all
but the fittest sequences.
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Appendix A

In this appendix, we describe how we transform (6) to make it
a finite system, and we deduce the uniqueness and stability of its
equilibrium point in the simplex by reduction to the quasispecies
equation. We will assume that all sequences of length 4N have
the same fitness f.

We start with system (6),

_x1 ¼ d� ðaþ dÞx1 þ rx1ðf 1 � fÞ,
_xi ¼ axi�1 � ðaþ dÞxi þ rxiðf i � fÞ; i ¼ 2;3; . . . ,

f ¼
X

f ixi,

where a; d40, but now we assume that f i ¼ f for all i4N. We
introduce a new variable y representing the aggregate frequency
of all strings of length 4N:

y ¼
X1

i¼Nþ1

xi. (A.1)

We then have

_y ¼
X1

i¼Nþ1

_xi

¼ a
X1
i¼N

xi � ðaþ dÞ
X1

i¼Nþ1

xi þ rðf � fÞ
X1

i¼Nþ1

xi

¼ axN � dyþ ryðf �fÞ. (A.2)

We thus obtain a finite system of differential equations:

_x1 ¼ d� ðaþ dÞx1 þ rx1ðf 1 �fÞ,
_xi ¼ axi�1 � ðaþ dÞxi þ rxiðf i �fÞ; i ¼ 2;3; . . . ;N,

_y ¼ axN � dyþ ryðf �fÞ, (A.3)

where f ¼ f 1x1 þ � � � þ f NxN þ fy. We can simulate the finite
system (A.3) numerically without introducing any approxima-
tions: the trajectories and the equilibrium frequencies of
sequences 1; . . . ;N determined by the simulation will be the same
as the equilibrium frequencies of those sequences in the infinite
system.
We now investigate the equilibrium properties of (6). Let

W ¼

f 1r þ d d d � � � d d

a f 2r 0 � � � 0 0

0 a f 3r � � � 0 0

..

. . .
. ..

.

0 0 0 � � � a fr þ a

0
BBBBBBB@

1
CCCCCCCA
; ~x ¼

x1

x2

..

.

xN

y

0
BBBBBBB@

1
CCCCCCCA

. (A.4)

W is nonnegative and always irreducible. We will assume that
r40 and that at least one f i40 so that W is also aperiodic. When
r ¼ 0, originator dynamics reduce to prelife dynamics, for which
the uniqueness and stability of the equilibrium is well-known
(Nowak and Ohtsuki, 2008).

On the simplex x1 þ � � � þ xN þ y ¼ 1, (A.3) is equivalent to the
matrix equation

_~x ¼W~x� rf~x� ðaþ dÞ~x

¼W~x� ðrfþ aþ dÞ~x: (A.5)

Note that, formally, (A.5) is the quasispecies equation (Eigen,
1971; Eigen and Schuster, 1977; Nowak, 2006). The equilibrium of
originator dynamics is given by

W~x ¼ ðrfþ aþ dÞ~x. (A.6)

This is, formally, exactly the equation for the equilibrium of
quasispecies dynamics—W can be viewed as an ergodic (i.e.,
irreducible and aperiodic) mutation–selection matrix—so there is
a unique, globally stable equilibrium in the ðN þ 1Þ-dimensional
simplex (Bürger, 2000). This implies that originator dynamics
(of the infinite system) converge to a ‘‘quasiequilibrium’’ where
the frequencies of sequences 1 to N and the aggregate frequency of
strings of length 4N are given by the equilibrium frequencies of
the finite system (A.3). This does not immediately show, however,
that the frequencies xNþ1; xNþ2; . . . have unique and stable
equilibrium values.

We can now proceed by induction for MXN given our
assumption that f i ¼ f for iXN. For M, we obtain an equilibrium
solution of the finite-dimensional system that has the property
that the equilibrium frequencies x�i of the system of dimension
M þ 1 coincide with those of dimension M if ipM. This implies
that the infinite-dimensional system has an equilibrium solution
that can be constructed in this way (clearly it sums to 1) and it is
unique. Since we obtain global convergence to the unique
equilibrium solution for every transformed system (of dimension
M), we obtain convergence of all trajectories in the infinite system.
Appendix B

The originator equation (A.3) is a system of (deterministic)
differential equations that is meant to describe what, in reality, is
a stochastic system with a finite—sometimes small—number of
molecules. To check that stochastic effects do not dominate, we
performed two sets of simulations (with several values of r) for a
representative fitness landscape—sequences of length 7 and 8
have fitness 1 and all other sequences have fitness 0. Our
methodology was based on the Gillespie algorithm (Gillespie,
1977). In the first set of simulations, we started with 100;000
(unactivated) monomers and allowed one billion random reac-
tions to occur (this was enough for the distribution of frequencies
to be stationary). Each reaction was a sequence elongation,
sequence death, or sequence replication. We then computed the
frequency of each sequence. We repeated this procedure five
times and computed the average frequency of each sequence over
all the trials. In the second set of simulations, we started the
system with an equal number of sequences of length 1–10, but all
other aspects were the same. In both cases, we found that the
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Table 2
A comparison of the equilibrium frequencies computed by a deterministic

simulation of (A.3) to the stationary frequencies computed by stochastic

simulations.

r Sequence length Deterministic Stochastic (M) Stochastic (E)

0 1 0.500000 0.500072 0.501320

2 0.250000 0.249553 0.250157

3 0.125000 0.125287 0.124887

4 0.062500 0.062594 0.061808

5 0.031250 0.031095 0.031161

6 0.0156250 0.015618 0.015249

7 0.007813 0.007959 0.007679

8 0.003906 0.004069 0.003885

9 0.001953 0.001820 0.001935

10 0.000977 0.001027 0.000921

410 0.000977 0.000906 0.000998

1 1 0.493187 0.493156 0.493147

2 0.243233 0.243205 0.243206

3 0.119959 0.119959 0.120018

4 0.059162 0.059153 0.059162

5 0.029178 0.029193 0.029187

6 0.014390 0.014400 0.014390

7 0.014003 0.013996 0.014010

8 0.013627 0.013665 0.013624

9 0.006721 0.006722 0.006720

10 0.003314 0.003319 0.003315

410 0.003225 0.003231 0.003221

2 1 0.441400 0.441449 0.441402

2 0.194834 0.194908 0.194810

3 0.086000 0.086001 0.860050

4 0.037960 0.037973 0.037961

5 0.016756 0.016763 0.016750

6 0.007396 0.007403 0.007397

7 0.027855 0.027812 0.027800

8 0.104905 0.104837 0.104907

9 0.046305 0.046274 0.046306

10 0.020439 0.020426 0.020437

410 0.016151 0.016154 0.016145

We simulated the fitness landscape in which sequences 7 and 8 have fitness 1 and

all other sequences have fitness 0.

The ‘‘Deterministic’’ column gives the equilibrium frequencies computed by the

deterministic simulation, ‘‘Stochastic (M)’’ gives the (average) stationary frequen-

cies when the system was started with 100;000 unactivated monomers and

nothing else, and ‘‘Stochastic (E)’’ gives the (average) stationary frequencies when

the system was started with an equal number of sequences of length 1–10 (10;000

each).
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stochastic simulations agreed with our deterministic ones. Table 2
presents the detailed results.
Appendix C

Here we derive the asymptotic expansion (18) of the
equilibrium average fitness f�. For the unary model (6), we
obtain the equilibrium solution

x�1 ¼
d

ðaþ dÞ � rðf 1 �f�Þ
, (C.1a)

x�n ¼
axn�1

ðaþ dÞ � rðf n �f�Þ
¼

an�1dQn
i¼1½ðaþ dÞ � rðf i �f�Þ�

. (C.1b)

Since we are seeking an asymptotic expansion in the limit r!1,
we set � ¼ 1=r and let �! 0. From C.1, we obtain straightfor-
wardly

x�1 ¼
�d

�ðaþ dÞ þ ðf� � f 1Þ
¼ �

d

f� � f 1

þ Oð�2Þ, (C.2a)
x�n ¼
�axn�1

�ðaþ dÞ þ ðf� � f nÞ
¼ �

axn�1

f� � f n

þ Oð�2xn�1Þ, (C.2b)

where in both cases the second equality requires f� � f i ¼ Oð1Þ for
i ¼ 1 or i ¼ n, respectively. In particular, if f� � f i ¼ Oð1Þ for every
i ¼ 1; . . . ;n, we obtain from (C.2) by iteration

x�n ¼ �
n an�1dQn

i¼1ðf
�
� f iÞ

þ Oð�nþ1Þ. (C.3)

Now assume that sequence N has the highest fitness, N þ 1 has the
second highest fitness, and all other sequences are less fit, i.e.,
f iof Nþ1of N for all iaN;N þ 1. If � ¼ 0, then f� ¼ f N and xN ¼ 1.
Hence, for small �, we have x�N ¼ 1þ Oð�Þ. From (C.2b), we infer
that this requires

1þ Oð�Þ ¼
�ax�N�1

�ðaþ dÞ þ ðf� � f NÞ
. (C.4)

Since we must also have f� ¼ f N þ Oð�Þ and because f iof N for
every i, (C.3) yields

x�N�1 ¼ �
N�1 aN�2dQN�1

i¼1 ðf N � f iÞ
þ Oð�NÞ. (C.5)

By rearranging (C.4) and substituting (C.5), we obtain

f� ¼ f N � �ðaþ dÞ þ
�ax�N�1

1þ Oð�Þ

¼ f N � �ðaþ dÞ þ �N aN�1dQN�1
i¼1 ðf N � f iÞ

þ Oð�Nþ1Þ as �! 0. (C.6)

Because � ¼ 1=r, this is equivalent to (18).
Now, it is straightforward to derive from (C.2) and (C.6)

asymptotic expansions for the equilibrium frequencies, x�n. If N41,
one obtains

x�nð�Þ ¼ �
n�1 an�2dQn�1

i¼1 ðf n � f iÞ
þ Oð�nþNÞ ðnoNÞ,

x�Nð�Þ ¼ 1�
X
iaN

xi,

x�Nþ1ð�Þ ¼ �
a

f N � f Nþ1

� �2 a2

ðf N � f Nþ1Þ
2
þ

ad

ðf N � f 1Þðf N � f Nþ1Þ

" #
þ Oð�3Þ,

x�Nþkð�Þ ¼ �
k akQk

i¼1ðf N � f NþiÞ
þ Oð�kþ1Þ ðk41Þ.
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