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Missing Information for Hypothesis Testing
in Statistical and Genetic Studies
Dan L. Nicolae, Xiao-Li Meng and Augustine Kong

1. A PROFESSIONAL JOY

Few authors would not be pleased when discussants
implement their methods or follow-up on their ideas. It
is therefore a professional joy to see every discussant
doing both! Our heartfelt thanks go to all discussants,
and to the Executive Editor, Ed George, for bringing us
such joy!

Incidentally, the three discussions cover nicely the
three main parts of our paper. Zheng and Lo’s discus-
sion centers on our motivating application, namely, de-
signing follow-up strategies in genetic studies, but with
the additional consideration of the uncertainty in the
measures themselves. Doss’s discussion focuses on the
second part of our paper, namely, the likelihood-based
relative measure, but with applications to survival
analysis where the use of partial likelihood reveals very
interesting (and inevitably confusing) complications.
Chang, Chen, Chien and Hsing (hereafter C3H) com-
ment on the third part of our paper, the Bayesian mea-
sures for small samples, and implement variations that
are applied to problems in infectious disease research
and isotonic regression.

Our responses are organized in the aforementioned
order. We very much appreciate all the key messages
conveyed by the discussants, though for a few of
them we offer alternative explanations. Some questions
posed by the discussants make nice Ph.D. or master
thesis topics, so we summarize them at the end of this
rejoinder.

Dan L. Nicolae is Associate Professor, Departments of
Medicine and Statistics, The University of Chicago,
Chicago, Illinois 60637, USA (e-mail:
nicolae@galton.uchicago.edu). Xiao-Li Meng is Whipple
V. N. Jones Professor and Chair of Statistics, Harvard
University, Cambridge, Massachusetts, USA (e-mail:
meng@stat.harvard.edu). Augustine Kong is Vicè President
of Statistics, deCode Genetics, Sturlugata 8, IS-101
Reykjavik, Iceland (e-mail: kong@decode.is).

2. ZHENG AND LO: DESIGN WITH UNCERTAINTY

Zheng and Lo further emphasize the critical role of
measuring relative information in designing follow-up
studies, and touch upon the issue of optimal design
under a given measure. In particular, they consider a
setting with multiple variables, and suggest an exten-
sion of our harmonic rule (19) for combining multiple
studies to the setting of combining multiple variables.
Since our rule (19) was derived under the assumption
that individual studies are independent, we surmise that
Zheng and Lo’s setting is under similar considerations,
where variables are considered to be independent of
each other and their contributions to the overall log-
likelihood are additive. Otherwise we will need to con-
sider all variables jointly in measuring relative infor-
mation. Nevertheless, it would be useful to investigate
how Zheng and Lo’s combining rule (1) performs as a
quick approximation to the measure that uses the full
likelihood, when the independence assumption fails.
Zheng and Lo’s (1) could be quite appealing to a practi-
tioner who chooses to deal with multiple variables sep-
arately, especially for testing purposes, because of the
technical difficulty in specifying a reliable large joint
multivariate model.

Zheng and Lo also correctly point out that the ac-
tual test statistics (e.g., log-likelihood ratio) from a
follow-up study can be quite different from what is pre-
dicted by our measures of relative information, RI1
and RI0. There are several different ways of inves-
tigating this uncertainty. Zheng and Lo take a direct
approach, by simulating the actual ratio of complete-
data log-likelihood ratio versus the observed-data log-
likelihood ratio, which they denote by RIy , as a func-
tion of the missing data. The simulations are done by
drawing the missing data from the conditional distrib-
ution given the observed data and the parameter value
estimated by the observed-data MLE. In the binomial
example, a simulation study is used to demonstrate that
RI−1

1 is the average of RI−1
y , which itself exhibits

considerable variation.
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Here we wish to point out a subtlety. Whereas RI−1
1

has the nice interpretation of being the ratio of the
expected complete-data lod score to the observed-
data lod score, this expectation is calculated under
the assumption that the value of the parameter under
the alternative hypothesis is the same as the one un-
der which the (conditional) expectation is calculated.
There is no confusion about this assumption when the
alternative hypothesis is sharp, that is, when it has
a fixed known value. This is essentially what Zheng
and Lo assumed, as they considered a number of al-
ternative values (p = 0.525,0.55,0.65) for their sim-
ulation studies. It is clear that under such a setting,
E[RI−1

y |Yob; θ = θob] = RI−1
1 , by the definition of

RI1.
However, once we move away from this setting and

allow the use of the actual complete-data lod score
lod(θco, θ0|Yco), where θco is the complete-data MLE,
then things can become much more complicated. For
example, E[RI−1

y |Yob; θ = θob] = RI−1
1 no longer

holds because in general,

E[lod(θco, θ0|Yco)|Yob; θ = θob]
(1)

"= E[lod(θob, θ0|Yco)|Yob; θ = θob].
Mathematically, our key identity (13) requires both θ1
and θ2 to be fixed known constants (given the ob-
served data), so one cannot take θ1 = θco, which would
be a random variable, even after conditioning on Yob.
This technical requirement, however, is a reflection of
a more fundamental difficulty in measuring (relative)
information. If the additional data change the MLE
(i.e., from θob to θco), which can be viewed as a “cen-
ter” of the likelihood, then measuring relative infor-
mation, in terms of relative strength against a null hy-
pothesis, becomes a very tricky task. Perhaps this is
more clearly seen by viewing the likelihood function
as an un-normalized posterior density, and imagining
that there are two posterior densities. One is centered
around a value close to θ0 with a small posterior vari-
ance (i.e., the one based on Yco) and the other is cen-
tered around a value farther away from θ0 but also with
larger spread (i.e., the one based on Yob). It is then de-
batable how to compare the two posteriors’ respective
strengths in discrediting the value of θ0; certainly it is
a much harder task than when both posteriors are cen-
tered at the same location.

With our measures we circumvent this problem by
first calculating the log-likelihood ratio or lod score
for the same null value θ0 and same alternative value
θ1, given both the observed data and complete data.

We then estimate the unknown value of θ1, or even θ0
when the null is not sharp, by the MLE under the alter-
native and null hypotheses, respectively. Alternatively,
as we demonstrated via the simple binomial example,
when the complete-data likelihood is from an exponen-
tial family [which is the case for the binomial when p is
restricted to (0, 1)], what we proposed was to measure
how anti-conservative our test would be if we imputed
the complete-data sufficient statistics under the alterna-
tive hypothesis and then pretended that they were real
data (for RI1), or how conservative our test procedure
would be if we imputed under the null and then pre-
tended that they were real data (for RI0).

In that sense, the only uncertainty in our measures
is the uncertainty caused by using the observed-data
MLEs for θ1 and θ0. This is different from Zheng and
Lo’s simulation and variance calculation, which at-
tempts to capture the conditional variation in RI−1

y
given the observed data. However, it is important to
point out that, because Zheng and Lo’s setting treats
the alternative value of the hypothesis as known, their
variation is also different from the actual (conditional)
variation in the ratio of the complete-data lod score and
the observed-data lod score. The latter would be

Var[lod(θco, θ0|Yco)|Yob, θ ]
lod2(θob, θ0|Yob)

,(2)

which then can be evaluated at θ = θob, as Zheng and
Lo suggested. Which of these variance calculations is
most relevant for practical purposes is worthy of ex-
ploring, and we thank Zheng and Lo for their recogni-
tion of this issue.

It is worth reiterating here that the range of genet-
ics/genomics applications of the proposed measures of
information is expanding with every high-throughput
technology that is developed in this rapidly moving
field. For example, in many applications, the individ-
ual genotypes on the genome are not measured de-
terministically; instead, a distribution on all possible
states is inferred from the raw data. Examples of this
include: (i) genotype calling using data from the new
sequencing technologies such as those from Solexa and
Applied Biosystems, where uncertainty in calls comes
from technical errors, sequence assembly and sequence
similarity (Brockman et al., 2008); (ii) imputation of
genotypes for untyped markers using information from
a reference database such as HapMap, where uncer-
tainty is caused by imperfect prediction and by the size
of the training data set (Nicolae, 2006); and (iii) calling
genotypes of Copy Number Variation (CNV), where
the variability is caused by uncertainty in the bound-
aries of the CNVs and by technical variability in the
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probe measurements (Redon et al., 2006). In all of
these situations, instead of data yielding a genotype, G,
the raw information is processed into a distribution on
all possible values for G, P(G|data). These distribu-
tions can be used, for example, in testing for genetic
association of a disease or quantitative trait with the
marker under investigation. The measures proposed in
our paper can be applied directly (similarly to the hap-
lotype application presented in the paper) to quantify
the amount of information relative to having observed
the genotypes. The measures are important because it
is possible, with additional laboratory work, to deter-
mine the genotypes with certainty. The complications
arise when information on different markers that are in
the same biological unit (such as a gene or a pathway)
are combined into a single association test. This is the
case where the discussion above is relevant and further
research is necessary.

3. DOSS: SO WHAT WENT WRONG WITH PARTIAL
LIKELIHOOD?

We very much appreciate Doss’s exploration of ap-
plying our measures to the survival analysis setting,
and were very intrigued by the problems he reported
with Cox’s partial likelihood. As we stated in the first
section of our paper, one basic requirement in measur-
ing relative information is that we need to assume that
the procedure under investigation is “optimal” in some
sense (e.g., being full-likelihood based). This require-
ment is needed to prevent paradoxical situations where
less data can lead to more information, much like the
“self-efficient” requirement in Meng (1994). A good
illustration of such a situation is a least-square regres-
sion in which the variance depends on the value of the
covariate. While the ordinary least-square estimators
enjoy the robustness in the sense of still being con-
sistent in the presence of heteroscedasticity, they are
not self-efficient (Meng, 1994) because one can have a
much more efficient least-square estimator with fewer
data if the additional data happen to be those with much
higher variances; see Meng (2001) for a detailed illus-
tration. So Doss’s finding, that RI1 may not be less
than 1 for some of the data sets he used, reminded us
to look into the possibility that the partial likelihood
approach may fail this basic requirement.

When “partial likelihood” is taken to mean literally
any part of a full likelihood, this failure is obvious, be-
cause it would be trivial to construct many examples
where the part chosen is so inefficient compared with
the full likelihood that “self-efficiency” cannot possi-
bly hold (even taking into account that “self-efficiency”

is a weaker requirement than the usual full efficiency).
So the question of real interest here is what happens in
the specific case of Cox’s partial likelihood for the pro-
portional hazard model, an approach that is often con-
sidered to produce results as good as the full likelihood
method, at least for practical purposes. The answer to
this question, however, is not straightforward.

The simplest situation is when there is no censor-
ing, in which case it is known that Cox’s partial likeli-
hood for the proportional hazard model is also a gen-
uine likelihood based on part of the data, that is, on
the ranks of all the observed failure times (Fleming and
Harrington, 1991, Chapter 4). Since it is a genuine like-
lihood, it must be self-efficient, and there should be no
problem to apply our (16) or any subsequent formulas,
as long as they are implemented correctly (see below).
When there is censoring, the discussion in Fleming and
Harrington (1991) shows that a further sacrifice of effi-
ciency is needed in order to arrive at Cox’s partial like-
lihood via the rank-data formulation. Currently we are
unable to determine the impact of this further sacrifice
on self-efficiency.

What we are able to determine, or rather to detect,
however, is that there is another reason that can explain
Doss’s “surprising findings,” even if the self-efficiency
issue is not relevant. The problem lies in how one de-
fines observed data, and by comparison, what consti-
tutes complete data. One might find this is a rather odd
inquiry—how hard could it be to determine what is ob-
served and what is missing?

To see why this can be a problem, let us set up the no-
tation carefully. Using Doss’s D notation for data, we
distinguish three data sets: Dfull is the full data set that
would be observed if there were no censoring, Dcens
is the available/observed censored data, and Dpart is
Cox’s partial data, that is, the actual data used for cal-
culating Cox’s partial likelihood function.

Given this setup, we can use RI1 to measure the
loss of information due to censoring by setting {Yob =
Dcens, Yco = Dfull}, using our generic notation; we be-
lieve Doss’s first reported RI1 value, 0.987, is for this
purpose. We can also measure the loss of informa-
tion from using the partial likelihood approach com-
pared with the full-likelihood approach, which corre-
sponds to setting {Yob = Dpart, Yco = Dcens}. Doss does
not seem to provide such a measure. We remark that
we may also measure the loss of information of using
Yob = Dpart compared with using Yco = Dfull, though
this RI1 may not be numerically the same as the prod-
uct of the previous two because they assume different



328 D. L. NICOLAE, X.-L. MENG AND A. KONG

observed data in computing the MLEs and take differ-
ent conditional expectations over the missing data.

The setting Doss provided is, however, more compli-
cated. Imagine that we had collected additional sam-
ples, possibly censored. Let Daug

cens denote the aug-
mented data set that includes Dcens; Dcens ⊂ Daug

cens. We
then obviously can ask what is the relative information
in Yob = Dcens compared with the augmented sample
Yco = Daug

cens. This is, we believe, what Doss intended.
However, since Cox’s partial likelihood is a very pop-
ular approach, Doss wanted to measure the relative in-
formation when using the partial likelihood, not the full
likelihood.

Because Cox’s partial likelihood uses the partial data
Dpart, we then should set {Yob = Dpart, Yco = Daug

part},
where Daug

part is Cox’s partial data from the augmented
sample Daug

cens. That is, the moment we decide to mea-
sure the relative information for using Cox’s partial
likelihood approach, our relative information is no
longer about Yob = Dcens relative to Yco = Daug

cens, but
rather about Yob = Dpart relative to Yco = Daug

part , be-
cause the latter are the actual data sets used by the Cox
regression.

Recognizing the correct Yob and Yco directly affects
how we compute, among other things, the denomina-
tor of RI1. With Yob = Dpart and Yco = Daug

part , the con-
ditional expectation called for by the denominator of
RI1 of (18) in our paper should be with respect to

f (Yco|Yob; θob) = f (Daug
part |Dpart; θob).(3)

However, the conditional distribution Doss actually
used in his Monte Carlo simulation appears to be

f (Ỹco|Ỹob; θob) = f (Daug
cens|Dcens; θob).(4)

The critical difference between (3) and (4) is in what
is being conditioned upon, namely, Dpart versus Dcens.
(The difference between Yco and Ỹco is less important
here because Daug

part is a deterministic function of Daug
cens,

so if we can calculate or simulate with respect to a cor-
rectly specified conditional distribution of Daug

cens, then
we can do so for any of its functions/margins.) We
point out this difference because the use of (3) is con-
sistent with our original definition, as it uses the same
observed data set for both the numerator and denomi-
nator of RI1. Using (4), however, will result in unclear
consequences. For one thing, our key inequality (16) is
no longer guaranteed to hold because the “Kullback–
Leibler information” part would then be of the form∫

p1(x) log[p2(x)/p0(x)]µ(dx), which is not guaran-
teed to be nonnegative when p1(x) "= p2(x).

Doss’s explanation of his “surprising findings” is
also based on an inconsistency, but it is the inconsis-
tency between including some censored observations
for the denominator versus only using the uncensored
cases for the numerator. Our investigation above, how-
ever, reveals that the problem lies in using the ranks
of the failure times, as in Dpart and Daug

part , which is not
the same as using the failure times themselves, as in
Dcens and Daug

cens. This difference is irrespective of cen-
soring, because even without censoring, in which case
Dcens = Dfull, the critical difference between the con-
ditioning in (3) and in (4) remains.

Intriguingly, the need for setting up notation care-
fully is demonstrated by another more subtle difference
between (3) and (4), at least when there is no censoring.
In both (3) and (4), we used the generic notation θob to
denote an estimator of θ based on the observed data.
However, in the current setting, θ consists of both the
parameter of interest, β , and the (infinite-dimensional)
nuisance parameter #0, the baseline cumulative haz-
ard. This recognition immediately reveals a problem
for (3), because there is little information in Dpart for
estimating #0. After all, the most celebrated feature of
Cox’s partial likelihood is its ability to estimate β with-
out having to deal with #0.

When there is no censoring, this problem also turns
out to be the solution because f (Daug

part |Dpart; θ) is ac-
tually free of #0, a consequence of the fact that Cox’s
partial likelihood is identical to the full likelihood of β

based on the ranks alone. One therefore can carry
out (3) by calculating or simulating with respect to
f (Daug

part |Dpart;β = βob), where βob is the Cox regres-
sion estimator based on Dpart.

When there is censoring, the picture becomes less
clear, because it is then possible for f (Daug

part |Dpart; θ)

to depend on the baseline #0. This is not a contra-
diction to the celebrated feature of Cox’s partial like-
lihood, that is, its robustness to the specification of #0.
The relative information RI1 itself may well depend
on the actual distribution of the failure time when there
is censoring, because the probability of censoring gen-
erally depends on the actual distribution of the failure
time. What this means is that whereas we can still de-
fine RI1 theoretically as we did, it cannot be estimated
using Dpart alone. This dilemma could be taken as a de-
fense for using (4), at least for practical purposes, espe-
cially considering the difficulties in implementing (3)
even if θ is known.

However, to avoid the type of “surprising findings”
that Doss found, we would resolve this dilemma by
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nonetheless using (3) but with the nuisance parame-
ter #0 estimated from Dcens, for instance using the
Nelson–Aalen estimator used by Doss. That is, Dcens
enters the calculation only through the estimation of
#0. This dependence on Dcens will not cause the type
of problems that Doss reported, because it does not al-
ter the conditioning as called for by (3) and because
our (18) permits its numerator and denominator to de-
pend on different parts of the same θob. Of course, this
dependence makes uncertainty quantifications, such as
those emphasized by Zheng and Lo, even more impor-
tant, as well as more complicated, because #0 is an
infinite-dimensional nuisance parameter.

In a nutshell, all these complications remind us of the
great caution we must exercise once we deviate from
the full-likelihood setting. Indeed, whereas we recog-
nized early the existence of an alternative explanation
of Doss’s finding, one of our initial explanations itself
was a product of our lacking full appreciation of the
theoretical intricacy of Cox’s partial likelihood. We are
certainly grateful to Doss for providing such a rich and
intricate example, even though, or perhaps especially
because, we were nearly tripped up by it!

We also very much appreciate Doss’s attempt to gen-
eralize our measure to the nonlikelihood setting. In-
deed, our motivating examples, both the toy example
with the binomial distribution and the real genetic ap-
plications, are for nonlikelihood types of testing, either
with a Wald-type test in the binomial case or with non-
parametric lod scores in the genetic setting. However,
precisely for the “non-self-efficient” reason discussed
above, it soon became clear to us that in order to avoid
paradoxical situations where fewer data may lead to
more information, we need to associate a test with a
model in order to proceed, as we did in Section 2.3.

If we understand Doss’s notation correctly, his RIw

can be obtained from our RI1 by first associating his
tests with normal models, and hence the likelihood ra-
tio test is the same as the Wald test. It is easy to ver-
ify that once we associate the complete-data test with
the normal model (i.e., pretending the large-sample ap-
proximation is exact), the denominator of RI1 is the
same as the denominator of Doss’s RIw as given in
his (5). If we further associate the observed-data test
with the normal model, then the numerators of RI1 and
RIw will be the same, and hence RIw will be identical
to RI1.

An astute reader might question why we need
to associate the normal model with the complete-
data test and observed-data test separately. Should
not the complete-data model automatically imply the

observed-data model? The answer is “yes” if both the
complete-data test and the observed-data test are de-
rived from a coherent probability model (e.g., if both
are likelihood ratio tests). However, when tests are
derived nonparametrically, or even parametrically but
without following the full-likelihood recipe (for in-
stance, using a partial likelihood), there is no guaran-
tee that the two tests are “coherent” with each other
in the sense that by integrating out the missing values
in the complete-data associated model one would au-
tomatically obtain the observed-data associated model.
Indeed, Doss’s RIw can also exceed 1 if the variance
of the complete-data test statistic is larger than that of
the observed-data test statistic, a phenomenon that can
occur with an ordinary least square estimator, as dis-
cussed above. A logical conclusion is then that even
when RIw seems to be “likelihood free,” fundamen-
tally its rationality is guaranteed only when a (normal)
likelihood family can be associated with it.

4. C3H: INFECTIOUS DISEASE STUDIES AND
ISOTONIC REGRESSION

We are pleased to see that C3H took on the task of
implementing our suggested Bayesian measures in the
context of infectious disease and regression. For infec-
tious disease, C3H’s goal was to decide whether to in-
vest in finding out the infectious times for the existing
cases for which only the removal times are known, or in
finding additional families/individuals whose removal
times are known (but whose infectious times are un-
known). This consideration is important here because
identifying the infection time is typically much harder
(if possible at all) than identifying the removal time
(e.g., death time). For the isotonic regression applica-
tion, C3H considered the design issue: whether to add
more measurements at the existing design points or to
add new design points that interlace with the existing
design points.

While we are excited by these new applications, we
are somewhat puzzled, and worried, by C3H’s findings
in both examples. For the infectious disease example,
our intuition would suggest that identifying infection
times would be more important for testing efficacy of
vaccine than finding more individuals with only re-
moval times known, especially when it is not clear (at
least to us from the model description given by C3H)
whether “removal” here means death or cure (and thus
possible immunity). C3H gave an example where the
measured relative information in 20 households with
only removal times is about 80% compared with the
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situation in which everyone’s infection time is also
known. But it is only about 30% relative information
compared with having four additional households with
removal times only. This sharp difference is a surprise
to us, and makes us wonder whether it is a reflection of
issues with C3H’s (BI3) or a defect in implementation
(e.g., failure of an MC algorithm).

Similarly, we are surprised to see that, in the context
of testing for monotonicity of a regression function,
doubling the measurements at existing design points
creates substantially more information than adding an
equal amount of new design points interlaced with ex-
isting design points. C3H gave an example where the
observed data only have about 15% information rel-
ative to the former design, compared with 35% in-
formation relative to the latter design. This is rather
counterintuitive, because for estimating a response sur-
face with a fixed number of measurements, it is of-
ten wise to spread out more design points rather than
to take more measurements on fewer design points.
For example, for the simple linear regression yi =
βxi + εi (the one that generated C3H’s data), the
variance of the least-square estimator would be in-
versely proportional to Sx = ∑

i x
2
i ; for C3H’s set-

ting, Sx = ∑9
i=0(i/9)2 = 95/27. Doubling the num-

ber of measurements at each existing design point
clearly will double Sx : Sx = 190/27 = 7.037. On
the other hand, C3H’s second design, if we under-
stand their description correctly, is to use i/12, i =
1, . . . ,5,7, . . . ,11, as the additional 10 design points.
Under this design, Sx = ∑9

i=0(i/9)2 + ∑11
i=1(i/12)2 −

(6/12)2 = 1465/216 = 6.78. So while the first design
is indeed slightly better, the relative variance ratio is
96%, nowhere near the 2.5-fold increase in informa-
tion suggested by C3H’s results (0.346/0.139 = 2.5).
Of course, we understand that C3H are measuring in-
formation in testing, not estimation, and their method
is far more sophisticated than the simple linear regres-
sion. Nevertheless, we find the 2.5-fold increase rather
counterintuitive, and would be very interested in seeing
it confirmed independently in a different way.

C3H also touch on the intricate issue of dealing with
nuisance parameters under the null. They suggest two
ways of averaging: either averaging the numerator and
denominator separately and then taking the ratio (BI3),
or directly averaging the ratio (BI4). Here all averag-
ing is performed with respect to the posterior distri-
bution of the nuisance parameter under the null. As
we discussed in Section 6.3 (and elsewhere) of our pa-
per, dealing with nuisance parameters is a complicated
issue, even with the Bayesian approach, because we

do not have reliable priors for them, nor do we know
enough about the sensitivity of these measures, includ-
ing C3H’s, to the choice of priors. Therefore, under-
standing the theoretical properties of C3H’s (BI3) and
(BI4) could be an important step toward establishing a
general scheme for dealing with nuisance parameters
in the context of measuring the fraction of missing in-
formation.

5. POSSIBLE THESIS TOPICS

As we concluded in our paper, much remains to be
done, especially with small sample sizes. The three dis-
cussions vividly demonstrate this, and point clearly to
a number of concrete research directions. Here are a
few possible thesis titles inspired by the discussions:

• On Optimal Follow-up Designs in Genetic Hypoth-
esis Testing Problems.

• Measuring Uncertainty in Relative Information Es-
timation.

• On Measuring Relative Information for Semipara-
metric Models.

• Measures of Information for Artificial Likelihoods.
• Implementing Bayesian Relative Information Mea-

sures for Designing Infectious Disease Studies.
• Optimal Design Strategies for Testing Regression

Functions Under Constraints.
• Dealing with Nuisance Parameters in Measuring

the Fraction of Missing Information.

Some of these topics are middle-hanging fruits wait-
ing to be picked, so if you are a thesis-topic seeking
student reading this set of discussions in the reverse or-
der, go to the first page as soon as possible!
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