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    Introduction 
 The anterior – posterior (A-P) axis is established early in mouse 

development. In this process, distal visceral endoderm (DVE) 

located at the distal tip of the embryo migrates toward the fu-

ture anterior side and becomes anterior visceral endoderm 

(AVE;  Beddington and Robertson, 1998 ,  1999 ). Several sig-

nals are necessary for A-P axis formation. For example, Nodal 

signaling from the epiblast induces DVE formation at embry-

onic day (E) 5.5 ( Lu and Robertson, 2004 ). Removal of the 

extraembryonic ectoderm (ExE) leads to expansion of DVE at 

the pregastrulation stage ( Rodriguez et al., 2005 ;  Mesnard 

et al., 2006 ). Asymmetrical expression of  Lefty1  and  Cerl  in 

DVE along the future A-P axis results in asymmetrical inhibi-

tion of Nodal signaling and thus determines the future anterior 

side ( Yamamoto et al., 2004 ). Inhibition of Wnt signaling by 

Dkk1 is also necessary for the anterior shift of DVE ( Kimura-

Yoshida et al., 2005 ). In addition, signaling from AVE has 

been proposed to induce anterior and suppress posterior iden-

tity in the epiblast ( Kimura et al., 2000 ;  Perea-Gomez et al., 

2002 ). However, the molecular mechanism of DVE formation 

has remained unknown. 

 Nodal, a secreted member of the TGF- �  superfamily of 

ligands ( Zhou et al., 1993 ), is required for DVE formation. 

ALK4 and ALK7 function as type 1 receptors for Nodal, 

whereas ActR2A and ActR2B function as type 2 receptors for 

this ligand. Nodal signaling is modulated by members of the 

EGF-CFC protein family and it is transduced by intracellular 

molecules including Smad2 and Smad3. With regard to forma-

tion of the A-P axis,  Nodal   � / �   embryos manifest a failure of 

DVE formation at E5.5 ( Brennan et al., 2001 ). However, a 

T
he anterior – posterior axis of the mouse embryo 

is established by formation of distal visceral endo-

derm (DVE) and its subsequent migration. The 

precise mechanism of DVE formation has remained 

unknown, however. Here we show that bone morpho-

genetic protein (BMP) signaling plays dual roles in DVE 

formation. BMP signaling is required at an early stage 

for differentiation of the primitive endoderm into the 

embryonic visceral endoderm (VE), whereas it inhibits 

DVE formation, restricting it to the distal region, at a 

later stage. A Smad2-activating factor such as Activin 

also contributes to DVE formation by generating a re-

gion of VE positive for the Smad2 signal and nega-

tive for Smad1 signal. DVE is thus formed at the distal 

end of the embryo, the only region of VE negative for 

the Smad1 signal and positive for Smad2 signal. An 

inverse relation between the level of phosphorylated 

Smad1 and that of phosphorylated Smad2 in VE sug-

gests an involvement of antagonism between Smad1- 

and Smad2-mediated signaling.
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 Tremblay et al., 2001 ). In the mouse embryo, anterior identity is 

established in the extraembryonic endoderm before formation 

of the primitive streak ( Thomas et al., 1998 ;  Beddington and 

Robertson, 1999 ). Some mutants that show a defect in meso-

derm formation also manifest defective anterior patterning 

( Conlon et al., 1994 ;  Brennan et al., 2001 ;  Mesnard et al., 2006 ). 

Indeed, depletion of BMP4 has been shown to affect AVE for-

mation ( Soares et al., 2005 ). These various observations thus 

suggest that BMP signaling might regulate formation of the A-P 

axis, and that of DVE in particular. 

 To investigate the mechanism of DVE formation, we have 

now examined mutant mice that lack BMPR2, ActR2B, Lefty1, 

or Nodal and performed experiments with embryonic explants. 

Our data demonstrate that DVE formation is regulated by an 

antagonism between BMP-Smad1 and Activin/Nodal-Smad2 

signaling. The DVE is thus formed at the distal region of the 

embryo where Smad2-mediated signal is present and Smad1-

mediated signal is absent. 

recent study ( Mesnard et al., 2006 ) showed that the visceral 

endoderm (VE) of  Nodal   � / �   embryos is abnormally specifi ed 

before DVE formation. The primary role of Nodal in DVE for-

mation is therefore to defi ne an embryonic VE compartment 

before DVE formation. 

 The ExE is the source of another signal that regulates 

DVE formation ( Rodriguez et al., 2005 ). Embryonic explants 

that lack ExE generate ectopic DVE, suggesting that a signal 

derived from ExE inhibits DVE formation ( Rodriguez et al., 

2005 ;  Mesnard et al., 2006 ). 

 Bone morphogenetic proteins (BMPs) are also secreted li-

gands of the TGF- �  superfamily and potential regulators of A-P 

patterning. BMPs function by binding to ALK1, ALK2, ALK3, 

or ALK6 as a type 1 receptor or to BMPR2, ActR2A, or ActR2B 

as a type 2 receptor ( Zhao, 2003 ;  Kishigami and Mishina, 2005 ). 

Gene targeting in the mouse has shown that BMP signaling is 

required for mesoderm formation ( Mishina et al., 1995 ,  1999 ; 

 Gu et al., 1999 ;  Beppu et al., 2000 ;  Lechleider et al., 2001 ; 

 Figure 1.    DVE formation requires BMP signaling in 
the extraembryonic region.  Expression of  Lefty1  
(A and A ’ ),  Cerl  (B and B ’ ),  Dkk1  (C and C ’ ),  Lim1  
(D and D ’ ),  Hex  (E, E ’ , I, and I ’ ),  Hnf4  (J and J ’ ),  Pem  
(K and K ’ ),  Bmp2  (L and L ’ ), and  Fgf8  (M, M ’ , and M ” ) 
was examined by in situ hybridization in wild-type 
( Bmpr2  +/+ ) and  Bmpr2   � / �   mouse embryos at E5.5 or 
the indicated stages. The DVE was absent (A ’  – E ’ ) in 
the mutant embryos. The primitive endoderm (I ’ ) and 
extraembryonic VE (J ’  and K ’ ) were formed, whereas 
embryonic VE was absent (L ’  and M ’ ) or impaired 
(M ” ). Arrowheads in J ’  indicate the junction between 
the extraembryonic and embryonic regions. Green ES 
FM260 cell ( Bmpr2  +/+ ) ←  →  Bmpr2  +/+  tetraploid (F – H) 
and green ES FM260 cell ←  →  Bmpr2   � / �   tetraploid 
(F ’  – H ’ ) chimeric embryos were recovered at E6.5 and 
examined for EGFP fl uorescence (F and F ’ ) or for ex-
pression of  Hex  (G and G ’ ) and  Lefty1  (H and H ’ ). The 
expression of  Hex  and  Lefty1  was absent in the green 
ES FM260 cell ←  →  Bmpr2   � / �   tetraploid chimeric em-
bryos. (N) The level of p-Smad1 staining and the level 
of expression of DVE markers are compared between 
 Bmpr2   � / �   and  Bmpr2   � / �   ,Actr2b  +/ �   embryos. Dark 
blue, light blue, orange, and red bars indicate normal 
expression, expression at a moderately reduced level, 
expression at a severely reduced level, and no expres-
sion, respectively. The numbers of embryos showing 
each expression pattern are indicated. Bars, 50  μ m.   
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embryos at E4.5 ( n  = 3;  Fig. 1, I and I ’  ). Expression of  Hnf4  

( n  = 13),  Gata4  ( n  = 4), and  Pem  ( n  = 7) was maintained in the 

extraembryonic VE of  Bmpr2   � / �   embryos at E5.5 ( Fig. 1 , J ’  and 

K ’ ; and Fig. S2 O ’ ). However, expression of  Bmp2  ( n  = 4),  Fgf8  

( n  = 7), and  Hnf4  ( n  = 13) in the embryonic VE was down-

regulated in the mutant embryos at E5.2 and E5.5 ( Fig. 1 , J, J ’ , L, L ’ , 

M, M ’ , and M ” ). Staining for phosphorylated ERK and expression 

of the ExE marker genes  Eomes ,  Bmp4 , and  Mash2  were nor-

mal, whereas that of  Wnt7b  was slightly decreased, in the mutant 

embryos (Fig. S2, Q – W and Q ’  – W ’ ). These results suggested 

that BMPR2 is not essential for formation of the primitive endo-

derm or extraembryonic VE, but rather is specifi cally required 

for specifi cation of embryonic VE. The failure of DVE forma-

tion in  Bmpr2   � / �   embryos is thus likely caused by the impaired 

differentiation of the primitive endoderm into embryonic VE. 

 Smad1-mediated signaling is reduced 
in  Bmpr2   � / �   embryos 
 To evaluate how the lack of BMPR2 affects BMP signaling in 

the embryo, we examined the distribution of phosphorylated 

Smad1/5 (p-Smad1) in  Bmpr2   � / �   embryos by immunohisto-

fl uorescence staining. In wild-type embryos, p-Smad1 was found 

in the nuclei of epiblast and primitive endoderm cells at E4.5 

and of epiblast and VE cells at E5.2 ( Fig. 1 N  and  Fig. 2, A and 

B ). The distribution of p-Smad1 changed quickly between E5.2 

and E5.5 and had shifted to the proximal epiblast and VE, ex-

cluding DVE, at E5.5 ( Fig. 2 C  and Fig. S3, A – J, available at 

http://www.jcb.org/cgi/content/full/jcb.200808044/DC1). In 

 Bmpr2   � / �   embryos, the distribution of p-Smad1 was similar to 

that in wild-type embryos at E4.5 but showed two distinct pat-

terns at later stages ( Fig. 1 N  and  Fig. 2 , A ’  – C ’ ). In severely af-

fected mutant embryos (8/14 embryos at E5.2 and 8/15 embryos 

at E5.5), p-Smad1 was apparent only in the proximal VE at E5.2 

(8/8 embryos;  Fig. 2 B  ’ ) and was barely detected at E5.5 (8/8 

embryos;  Fig. 2 C  ’ ). In mildly affected embryos (6/14 embryos 

at E5.5 and 7/15 embryos at E5.5), p-Smad1 was found in the 

same regions as in wild-type embryos at E5.2, but its abundance 

was lower than that in the wild type (6/6 embryos;  Fig. 1 N  and 

Fig. S2). It was not detected in the epiblast and there were fewer 

positive cells in the VE of the mildly affected embryos at E5.5 

 Results 

 DVE formation is impaired in  Bmpr2   � / �   
embryos 
 Formation of the primitive streak is impaired in  Bmpr2   � / �   em-

bryos ( Beppu et al., 2000 ). To determine whether formation of 

the A-P axis occurs normally in these mutant embryos, we fi rst 

examined the expression of AVE or DVE marker genes at E6.5 

and E5.5, respectively. In wild-type embryos at E5.5, fi ve DVE 

marker genes,  Lefty1 ,  Cerl ,  Dkk1 ,  Lim1 , and  Hex , are expressed 

in VE at the distal tip ( Fig. 1, A – E ). Expression of  Hex ,  Hesx1 , 

and  Cerl  is absent at E5.2 but is apparent at E5.5 (Fig. S1, A – C 

and E – G, available at http://www.jcb.org/cgi/content/full/jcb

.200808044/DC1), whereas  Lefty1  expression is maintained be-

tween E4.0 and E5.5 ( Takaoka et al., 2006 ; Fig. S1, D and H), 

indicating that cells positive for a full range of DVE markers are 

formed between E5.2 and E5.5. In  Bmpr2   � / �   embryos, how-

ever, expression of AVE marker genes at E6.5 was absent or re-

duced compared with that in wild-type embryos (Fig. S2, A – D, 

A ’  – D ’ , and A ’  ’  – D ’  ’ ).  Dkk1  expression was lost (Fig. S2 C ’ ) or 

remained relatively normal (Fig. S2 C ’  ’ ). At E5.5, expression of 

 Lefty1 ,  Cerl ,  Dkk1 , and  Lim1  was absent (4/7, 3/7, 3/7, and 3/6 

embryos, respectively) or markedly reduced (3/7, 4/7, 4/7, and 

3/6 embryos, respectively), and that of  Hex  was also lost (3/3 

embryos;  Fig. 1 , A ’  – E ’  and N; and Fig. S2, I and I ’ ). 

 To determine the region of the embryo in which BMP 

signaling exerts the observed effects, we examined expression 

of DVE marker genes in green embryonic stem (ES) FM260 

cell ←  →  Bmpr2   � / �   tetraploid chimeric embryos, which were 

generated by aggregation of ES cells expressing EGFP with 

 Bmpr2  � / �    tetraploid embryos. In such chimeras, expression of 

 Hex  ( n  = 3) and  Lefty1  ( n  = 3) was absent at E6.5 ( Fig. 1 , F – H 

and F ’  – H ’ ). This phenotype was indistinguishable from that of 

 Bmpr2   � / �   embryos, suggesting that BMPR2 in the extra-

embryonic region is required for DVE formation. 

 We next examined whether VE is formed normally in 

 Bmpr2   � / �   embryos. VE, which is composed of embryonic VE 

and extraembryonic VE at E5.5, is derived from the primitive 

endoderm of the E4.0 – 4.5 embryo. Expression of  Hex , which is 

a marker of the primitive endoderm, was maintained in  Bmpr2   � / �   

 Figure 2.    p-Smad1 in wild-type and  Bmpr2   � / �   embryos.  Wild-type (A – C) or  Bmpr2   � / �   (A ’  – C ’ ) embryos at the indicated stages of development were 
subjected to immunohistofl uorescence staining with antibodies to p-Smad1 (pS1; green); merged images with staining of nuclei by YOYO-1 (Nuc; red) are 
also shown. Staining for p-Smad1 was decreased in  Bmpr2   � / �   embryos. Bars, 50  μ m.   
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p-Smad1 staining was observed in green ES FM260 cell ←  →
  Bmpr2   � / �   ,Actr2b  +/ �   tetraploid chimeric embryos (Fig. S3, K 

and L). These results suggested that both BMPR2 and ActR2b act 

as receptors for BMP in VE. We next examined DVE markers in 

 Bmpr2   � / �   ,Actr2b  +/ �   embryos at E5.5 to determine whether BMP 

signaling is required for DVE formation. Expression of DVE 

markers was detected in some of the  Bmpr2   � / �   embryos exam-

ined (Fig. S2). However, expression of  Lefty1  ( n  = 5),  Cerl  ( n  = 4), 

 Dkk1  ( n  = 3),  Lim1  ( n  = 4), and  Hex  ( n  = 3) was always lost in 

 Bmpr2   � / �   ,Actr2b  +/ �   embryos ( Fig. 3 , I – M and I ’  – M ’ ). We also 

examined endoderm markers in  Bmpr2   � / �   ,Actr2b  +/ �   embryos 

from E4.5 to E5.5.  Hnf4  ( n  = 5) and  Pem  ( n  = 3) were expressed 

normally at E5.5 ( Fig. 3 , N, N ’ , O, and O ’ ), whereas expression 

of  Bmp2  ( n  = 4) and  Fgf8  ( n  = 4) was abolished at E5.2 ( Fig. 3 , 

P, P ’ , Q, and Q ’ ), in the double mutant embryos. At E4.5, expres-

sion of  Hex  ( n  = 3) and  Lefty1  ( n  = 4) was maintained ( Fig. 3 , R, 

R ’ , S, and S ’ ), suggesting that the primitive endoderm is cor-

rectly formed at E4.5 in the double mutant embryos. 

 We then examined the expression of genes for Nodal sig-

naling components and the distribution of phosphorylated 

Smad2/3 (p-Smad2) in  Bmpr2   � / �   ,Actr2b  +/ �   embryos ( Whit-

man, 2001 ).  Nodal ,  Foxh1 , and  Cripto  ( n  = 7, 4, and 4, respec-

tively) were all expressed normally in the double mutant 

embryos at E5.5 ( Fig. 3 , T – V and T ’  – V ’ ). The distribution of 

p-Smad2 in the double mutant embryos remained similar to that 

(7/7 embryos; Fig. S2). These data suggested that BMP signaling 

is not completely lost but is reduced in  Bmpr2   � / �   embryos. Other 

type 2 receptors may thus play a redundant role in this mutant. 

Variability in the phenotype of  Bmpr2   � / �   embryos is most likely 

caused by the variable level of BMP signaling that remains. 

 BMP signals via BMPR2 and ActR2B 
in the mouse embryo 
 The residual level of p-Smad1 in  Bmpr2   � / �   embryos suggested 

that additional type 2 receptors may compensate for the lack of 

BMPR2. ActR2A and ActR2B were potential candidates for 

such receptors because they transduce the BMP signal as well 

as that of other TGF- �  superfamily members ( Massague and 

Chen, 2000 ;  Zhao, 2003 ). Expression of  Bmpr2  was detected in 

both embryonic and extraembryonic regions of the wild-type 

conceptus up to E6.5 ( Fig. 3, A – C ;  Roelen et al., 1997 ;  Beppu 

et al., 2000 ). Expression of  Actr2b  was also apparent in the 

same regions up to E5.5 as well as in the epiblast and overlying 

VE at E6.5 ( Fig. 3 D – F ;  Beppu et al., 2000 ), suggesting that 

ActR2B and BMPR2 may play redundant roles. We therefore 

generated  Bmpr2   � / �   ,Actr2b  +/ �   double mutant mice. 

 Removal of one copy of  Actr2b  from  Bmpr2   � / �   mice had 

pronounced effects. Staining for p-Smad1 was reduced at E4.5 

and was not detected at E5.2 in the double mutant embryos ( n  = 4; 

 Fig. 1 N  and  Fig. 3 , G, G ’ , H, and H ’ ). A similar pattern of 

 Figure 3.    BMP signaling is required for embryonic VE dif-
ferentiation independently of Nodal signaling.  Expression of 
 Bmpr2  (A – C) and  Actr2b  (D – F) in wild-type (WT) embryos as 
well as expression of p-Smad1 (pS1; green) and merged im-
ages of p-Smad1 with nuclear staining (Nuc; red) for wild-type 
(G and H) and  Bmpr2   � / �   ,Actr2b  +/ �   (G ’  and H ’ ) embryos at 
the indicated stages are shown. Expression of  Lefty1  (I, I ’ , S, 
and S ’ ),  Cerl  ( J and J ’ ),  Dkk1  (K and K ’ ),  Lim1  (L and L ’ ),  Hex  
(M, M ’ , R, and R ’ ),  Hnf4  (N and N ’ ),  Pem  (O and O ’ ),  Bmp2  
(P and P ’ ),  Fgf8  (Q and Q ’ ),  Nodal  (T and T ’ ),  Foxh1  (U and 
U ’ ), and  Cripto  (V and V ’ ) in wild-type or  Bmpr2   � / �   ,Actr2b  +/ �   
embryos at E5.5 or the indicated stages was determined by 
in situ hybridization. Expression of p-Smad2 (pS2; green) and 
merged images of p-Smad2 with nuclear staining (Nuc; red) 
are shown for wild-type (W),  Bmpr2   � / �   ,Actr2b  +/ �   (W ’ ), or 
 Bmpr2   � / �   (X) embryos at E5.5. Bars, 50  μ m.   
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removed at E5.5 ( Fig. 5, A – E and K ;  Rodriguez et al., 2005 ). 

Removal of ExE also induced the complete loss of p-Smad1 

( Fig. 5, A – G and L ) and up-regulation of p-Smad2 ( Fig. 5, I and J ). 

Several observations suggested that the BMP signal disappears 

from the prospective DVE before, not after, DVE formation (be-

tween E5.2 and E5.5 in the wild-type embryo). First, loss of the 

BMP signal was not caused by expression of the DVE-specifi c 

in wild-type or  Bmpr2   � / �   embryos at E5.5 ( Fig. 3 , W, W ’ , and X). 

Unlike  Bmpr2   � / �   ,Actr2b  +/ �   embryos in which expression of 

DVE markers was always absent, it was detected in some of the 

 Bmpr2   � / �   ,Nodal +/    –   embryos examined (Fig. S4, A – M, available 

at http://www.jcb.org/cgi/content/full/jcb.200808044/DC1). 

Furthermore, p-Smad1 and p-Smad2 staining patterns of the 

 Bmpr2   � / �   ,Nodal +/    –   embryos were similar to those of the  Bmpr2   � / �   

embryos (Fig. S4, N – P). These results (summarized in  Fig. 1 N ) 

thus indicated that both BMPR2 and ActR2B function as type 2 

receptors for BMP signaling during formation of embryonic VE 

and DVE. 

 Smad1 signaling is absent when and where 
DVE is newly formed 
 Staining for p-Smad1 was apparent throughout the primitive en-

doderm and VE until E5.2 ( Fig. 2, A and B ). At E5.5, however, 

p-Smad1 had disappeared from DVE while it was still apparent 

in the proximal portion of VE ( Fig. 2 C  and Fig. S3). In  Lefty1   � / �   

embryos ( n  = 5), the region of VE negative for p-Smad1 ex-

panded ( Fig. 4, A and C ) along with the expansion of the region 

positive for DVE markers ( Fig. 4, E – H ). Thus, p-Smad1 is lost 

when and where DVE is formed. 

 We next examined the distribution of p-Smad1 in embryo 

explants lacking ExE. An inhibitory signal derived from ExE 

has been shown to restrict induction of DVE to the distal tip of 

the E5.5 embryo ( Rodriguez et al., 2005 ). Ectopic expression of 

a  Hex-Venus  transgene was thus induced in VE when ExE was 

 Figure 4.    Expansion of the region positive for DVE markers and negative 
for p-Smad1 in  Lefty1  mutant embryos.  Wild-type (A and B) or  Lefty1   � / �   
(C and D) embryos at E5.5 were subjected to immunohistofl uorescence 
staining with antibodies to p-Smad1 (pS1; A and C, green) or to p-Smad2 
(pS2; B and D, green). Merged images with nuclear staining (Nuc; red) 
are also shown. Green color in merged images indicates increased level 
of p-Smad1 or p-Smad2 staining. Bracket in D indicates the region (the 
epiblast and VE in the distal region) with increased p-Smad2 staining. 
Wild-type ( L1  +/+ ) or  Lefty1   � / �   ( L1   � / �  ) embryos at E5.5 were also examined 
for expression of  Hex  (E and F) and  Cerl  (G and H). Bars, 50  μ m.   

 Figure 5.    BMP signaling is lost when and where DVE is newly formed.  
The DVE region was monitored by detection of the expression of a  Hex-
Venus  transgene (blue) before (A) or at the indicated times after (C – E) 
removal of ExE. Wild-type (A, F, and I) or  Cerl   � / �   (H) embryos or wild-
type embryo explants stripped of ExE (C – E, G, and J) at E5.5 were sub-
jected to immunohistofl uorescence staining with antibodies to p-Smad1 
(pS1; A and C – H, green) or to p-Smad2 (pS2; I and J, green). Merged 
images with nuclear staining (Nuc; red) are also shown. Green color in 
merged images indicates increased level of p-Smad1 or p-Smad2 stain-
ing. The explants shown in G and J were examined after culture for 6 h. 
Arrowheads in C – E indicate the boundaries of  Hex-Venus  expression. 
The experimental strategy for explant experiments is shown in B. The ExE 
was separated from the epiblast and embryonic VE by a cut along the 
embryonic – extraembryonic junction at E5.5. The epiblast and embryonic 
VE were then cultured alone. The effects of ExE removal on expression of 
 Hex-Venus  (K) and p-Smad1 staining (L) at the indicated times of culture 
are summarized. Blue and orange bars indicate no change and expan-
sion of the Venus positive domain (K) or no change and down-regulation 
of p-Smad1 (L), respectively. The numbers of embryos showing each pat-
tern are indicated. Bars, 50  μ m.   
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detect Nodal activity in DVE, we fi rst examined the distribution 

of p-Smad2 in wild-type embryos at E5.5. Staining for p-Smad2 

was apparent in the epiblast (especially on the distal side) and 

VE including DVE ( Fig. 3 W, Fig. 4 B, and Fig. 7 A ). We also 

examined the distribution of p-Smad2 in  Nodal   � / �   embryos at 

E5.5. Unexpectedly, however, staining for p-Smad2 was still 

apparent in the VE, including DVE, of these mutant embryos 

( Fig. 7, B and C ), suggesting that the appearance of p-Smad2 in 

DVE is induced by another TGF- �  – related factor. Activin is the 

most likely candidate because Activin- � A and Activin- � B are 

expressed in the decidual zone of the dam, and recombinant Ac-

tivin is able to induce ectopic DVE ( Jones et al., 2006 ;  Mesnard 

et al., 2006 ). GDF1 and GDF3 may be other candidates that 

trigger Smad2-mediated signaling because DVE formation is 

impaired in a portion of the mutant mice lacking  Gdf3  or  Gdf3  

and  Gdf1  ( Chen et al., 2006 ;  Andersson et al., 2007 ). However, 

recent evidence ( Andersson et al., 2007 ;  Tanaka et al., 2007 ) has 

shown that the native form of GDF1 and GDF3 is incapable of 

inducing downstream signaling. GDF1 and GDF3 act as co-

ligands of Nodal, which interact with Nodal and stimulate Nodal 

activity ( Tanaka et al., 2007 ). 

 To examine further whether Activin signaling contributes to 

the appearance of p-Smad2 in DVE, we cultured wild-type em-

bryos at E5.5 with follistatin, which inhibits Activin signaling but 

not Nodal signaling. Staining for p-Smad2 was maintained in the 

epiblast, but was lost in most part of the VE of follistatin-treated 

embryos (7/10 embryos;  Fig. 7, D and E ), indicating that Activin 

activates Smad2 in DVE. Moreover, expression of the DVE 

marker genes  Hex ,  Cerl , and  Lefty1  was reduced in the follistatin-

treated embryos compared with that in control embryos ( Fig. 7, 

M – R and V ).  Fgf8  expression was maintained in follistatin-

treated embryos, suggesting that follistatin does not impair em-

bryonic VE formation (Fig. S5, G and H). Although follistatin has 

been shown to inhibit BMP signaling ( Yamashita et al., 1995 ), 

p-Smad1 staining in follistatin-treated embryos was increased or 

normal in DVE ( Fig. 7, G – I ). Conversely, treatment of embryos 

with Activin resulted in up-regulation of p-Smad2 and down-

regulation of p-Smad1 on the distal side ( Fig. 7, D, F, G, and L ). 

Moreover, expression of DVE maker genes was markedly ex-

panded and/or up-regulated in the Activin-treated embryos 

( Fig. 7, S – V ). Treatment of E5.5 embryos with SB431542, a drug 

that inhibits Activin and Nodal signaling, resulted not only in loss 

of p-Smad2 and up-regulation of p-Smad1 in DVE but also in 

down-regulation of the expression of DVE markers (Fig. S5, 

K – R;  Mesnard et al., 2006 ). These results suggested that Smad2 

signaling, most likely triggered by Activin, plays an essential role 

in DVE formation. Furthermore, an inverse relation between the 

level of p-Smad1 and that of p-Smad2 suggests that antagonism 

between Smad1 and Smad2 signaling operates in VE. 

 Antagonism between Smad1 and Smad2 signaling is also 

apparent in the mutant embryo lacking Lefty1, an inhibitor of 

Nodal signaling. The distribution of p-Smad2 in  Lefty1  +/ �   em-

bryos at E5.5 was similar to that in the wild type (unpublished 

data). However, the level of p-Smad2 was increased on the dis-

tal side of  Lefty1   � / �   embryos at this stage ( n  = 5;  Fig. 4, B and D ). 

In contrast, the level of p-Smad1 was decreased on the distal 

side of  Lefty1   � / �   embryos ( n  = 5;  Fig. 4, A and C ). In addition, 

gene  Cerl , whose product can inhibit BMP signaling ( Belo et al., 

2000 ), because the distribution of p-Smad1 appeared normal in 

 Cerl   � / �   embryos ( Fig. 5 H ). Second, in explants lacking ExE, 

expansion of DVE begins  � 90 min after removal of ExE, 

whereas p-Smad1 staining is lost from VE much earlier,  � 30 

min after ExE removal ( Fig. 5, C – E, K, and L ). These results 

suggested that loss of the BMP signal from prospective DVE, 

which coincides with the onset of DVE formation, may be re-

quired for DVE formation. 

 BMP is the ExE-derived inhibitory signal 
that restricts DVE formation 
 The loss of p-Smad1 immediately before DVE formation suggests 

that the ExE-derived signal that inhibits DVE formation may be 

the BMP signal itself. Previous observations support this notion. 

First, expression of  Bmp4  and  Bmp8b  is apparent in ExE 

( Coucouvanis and Martin, 1999 ;  Ying et al., 2000 ). Second, the 

DVE region expands in response to removal of ExE ( Rodriguez 

et al., 2005 ;  Mesnard et al., 2006 ), although such DVE expansion 

was not observed in a third study ( Georgiades and Rossant, 2006 ). 

The knockout serum replacement used for culture in this latter study 

is known to contain a high level of BMP signaling activity ( Xu et al., 

2005 ), however, which may explain why DVE failed to expand. 

 To examine whether the ExE-derived inhibitory signal is 

indeed the BMP signal, we examined the response of DVE to 

BMP or a BMP inhibitor. When wild-type embryos were cul-

tured from E5.2 to E5.5 in the presence of BMP4, expression of 

 Hex ,  Lefty1 , and  Cerl  was lost (Fig. S5, A – F, available at http://

www.jcb.org/cgi/content/full/jcb.200808044/DC1). Whereas 

staining for p-Smad1 was lost in VE in response to removal of 

ExE at E5.5 ( Fig. 6 A ), p-Smad1 staining was maintained in 

VE if the explants lacking the ExE were cultured with BMP4 

( Fig. 6 C ). Moreover, expansion of the DVE region in such explants 

was inhibited by BMP4 ( Fig. 6, B and D ; and Fig. S5, T – W). 

In contrast, the region positive for DVE markers expanded and 

the level of expression of DVE markers increased when whole 

embryos at E5.2 were cultured with Noggin ( Fig. 6, E – J ), which 

induced down-regulation of p-Smad1 ( Fig. 6, K and L ). 

 Finally, we generated chimeric explants composed of an em-

bryonic portion harboring the  Hex-Venus  transgene and an extra-

embryonic portion treated with Noggin or with BSA as a control 

( Fig. 6, O – X ). The extraembryonic portion treated with BSA in-

hibited expansion of the DVE region ( Fig. 6, P – R ), showing typi-

cal ExE activity. However, the extraembryonic portion treated 

with Noggin allowed expansion of DVE, indicating that the inhibi-

tory ExE activity was abolished by Noggin ( Fig. 6, S – U ). If the 

Noggin-treated ExE was attached to the side of a whole embryo 

harboring the  Hex-Venus  transgene ( Fig. 6 O ), DVE formation was 

not affected ( Fig. 6, V – X ). These results indicate that the BMP 

signal is the inhibitory signal derived from ExE. We therefore con-

clude that DVE is formed in a portion of embryonic VE that is 

negative for BMP signaling and positive for Activin signaling. 

 Antagonism between Smad2- and Smad1-
mediated signaling in VE 
 A recent study showed that induction of DVE depends on Nodal 

and proprotein convertase activities ( Mesnard et al., 2006 ). To 
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 Smad4  or  Actr2a + Actr2b  expression vector into a p-Smad1 –

 positive cell in the distal region of E5.2 embryo and examined 

if such cells would maintain or lose p-Smad1 12 h later (equiva-

lent to E5.7;  Fig. 8 ). Normally, such p-Smad1 – positive cells at 

E5.2 ( Fig. 2 B ) lose p-Smad1 by E5.5 ( Fig. 2 C ). However, if a 

limiting factor commonly used for both signaling is over-

expressed into such a cell, it would prevent the antagonism and 

the cell would remain positive for p-Smad1 at E5.5. This is what 

we observed when  Actr2  was overexpressed ( Fig. 8 A ). 

 Expression of  EGFP  alone (10/10 embryos) or  EGFP + Smad4  

(8/8 embryos) did not infl uence the level of p-Smad1. Thus, the 

cell in the distal region of the E5.7 embryo that received  EGFP  or 

 EGFP + Smad4  lost p-Smad1 ( Fig. 8, B and C ). In contrast, the 

the expression domains of  Hex  ( n  = 5) and  Cerl  ( n  = 5) were 

markedly expanded in the distal region of  Lefty1   � / �   embryos 

( Fig. 4, E – H ). 

 ActR2A and ActR2B are rate-limiting 
factors involved in the antagonistic balance 
 We next examined the molecular basis of the antagonism be-

tween BMP and Activin – Nodal signaling. Activin – Nodal and 

BMP share common signaling components, extracellular com-

ponents such as ActR2A and ActR2B as well as intracellular 

components including Smad4. If the amount of a common com-

ponent is limited, an increase in one signal would result in a 

decrease in the other. To test this possibility, we introduced a 

 Figure 6.    Identifi cation of BMP as the inhibitory sig-
nal from ExE that restricts DVE formation.  The DVE 
region was monitored by detection of the expression 
of a  Hex-Venus  transgene (B, D, Q, R, T, U, W, and X, 
green) at the indicated times after removal of ExE 
(B and D) or after ExE attachment (Q, R, T, U, W, and X) 
at E5.5. Embryo explants stripped of ExE (A and C) 
or normal embryos (K – N) at E5.5 were subjected to 
immunohistofl uorescence staining with antibodies to 
p-Smad1 (pS1; green) or to p-Smad2 (pS2; green), as 
indicated. Merged images with nuclear staining (Nuc; 
red) are also shown. Green color in merged images 
indicates increased level of p-Smad1 or p-Smad2 
staining. The explants or embryos were cultured with 
BSA (A, B, K, and M), BMP4 (C and D), or Noggin 
(Nog; L and N) for 6 h or the indicated times. Expres-
sion of  Lefty1  ( L1 ),  Cerl , and  Lim1  was determined 
in E5.2 embryos cultured for 8 h with either BSA 
(E, G, and I) or Noggin (F, H, and J). The experimen-
tal strategy for the explant experiments involving re-
moval and attachment of ExE (P – X) is shown in O. 
Chimeric explants were composed of an embryonic 
portion harboring the  Hex-Venus  transgene and an 
extraembryonic portion treated with BSA or Noggin, 
as indicated. Bright-fi eld images alone are shown in 
P, S, and V. Fluorescence images superimposed on 
bright-fi eld images (B, D, Q, R, T, U, W, and X) are 
also shown. Bars, 50  μ m.   
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distal portion of embryonic VE becomes DVE. We have now 

shown that BMP signaling plays dual roles in DVE formation. 

 At early stages of development (until E5.2), BMP signal-

ing is required for formation of embryonic VE. BMP signaling, 

together with Nodal signaling, thus promotes the differentiation 

of VE into embryonic VE rather than into extraembryonic VE. 

This conclusion is supported by previous observations ( Mesnard 

et al., 2006 ) as well as by our present data. First, extra embryonic 

VE markers remain ectopically expressed at high levels in the 

embryonic region and embryonic VE markers fail to be in-

duced in  Nodal   � / �   embryos ( Mesnard et al., 2006 ). In addition, 

given that the p-Smad1 staining observed in wild-type embryos 

at E5.5 is lost in  Nodal   � / �   embryos ( Fig. 7 ), Nodal signaling is 

necessary for the appearance of BMP signaling. Nodal signal-

ing may therefore induce the BMP signal in VE. Second, em-

bryonic VE markers also failed to be induced in  Bmpr2   � / �   ,Actr2b  +/ �   

embryos, in which p-Smad1 staining was absent at E5.2 ( Fig. 3 ). 

However, extraembryonic VE markers were maintained in such 

cells that received  Actr2a + Actr2b  expression vectors remained 

positive for p-Smad1 (25/25 embryos;  Fig. 8, D and E ). These 

results suggest that the limited level of ActR2A and ActR2B is 

responsible for the antagonistic balance between Smad2 and 

Smad1 signaling. 

 Discussion 
 Dual roles of BMP signaling in DVE 
formation 
 Four different types of endoderm are formed from the primitive 

endoderm before gastrulation: parietal endoderm, extraembry-

onic VE, embryonic VE, and DVE ( Fig. 9 ). Primitive endoderm 

cells that maintain contact with the ectoderm differentiate into 

VE, whereas those that migrate away from the ectoderm along 

the inner surface of the trophectoderm form parietal endoderm 

( Nadijcka and Hillman, 1974 ;  Enders et al., 1978 ). VE cells 

give rise to both extraembryonic VE and embryonic VE, and the 

 Figure 7.    Smad2 signaling in VE is essential for specifi cation 
of DVE.  (A – L) Expression of p-Smad2 (pS2; green) or p-Smad1 
(pS1; green), and merged images with nuclear staining (Nuc; 
red), for wild-type (WT; A and J) or  Nodal   � / �   (B, C, and K) 
embryos at E5.5 as well as for E5.5 wild-type embryos 
treated with BSA (D and G), follistatin (Fol; E, H, and I), or 
Activin (Act; F and L) for 7 h. Arrowheads indicate loss of 
p-Smad2 fl uorescence from DVE of the follistatin-treated embryo 
(E). Green color in merged images indicates increased level 
of p-Smad1 or p-Smad2 staining. Bracket in F indicates the 
region with increased p-Smad2 staining. (M – U) Expression of 
 Hex  (M, P, and S),  Cerl  (N, Q, and T), and  Lefty1  ( L1 ; O, R, 
and U) in E5.5 wild-type embryos treated with BSA, follistatin, 
or Activin, as indicated, for 7 h. (V) Summary of the effects 
of treatment with BSA, follistatin, or Activin on the expres-
sion of p-Smad1 in DVE, p-Smad2 in DVE, and the indicated 
genes. Light blue, dark blue, orange, and red bars indicate 
normal expression, expanded expression, no expression, and 
expanded no expression portion, respectively. The numbers 
of embryos showing each expression pattern are indicated. 
Bars, 50  μ m.   
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( Fig. 6 ) or with knockout serum replacement that contains BMP 

activity ( Georgiades and Rossant, 2006 ), the  Hex -expressing do-

main fails to expand. These results indicate that loss of the BMP 

signal from embryonic VE results in its conversion to DVE. 

 How is the BMP/Smad1 signal down-
regulated in the region of DVE formation? 
 Although it is not clear how BMP signaling is down-regulated in 

the DVE region at E5.5, several mechanisms are possible. First, a 

BMP antagonist (or antagonists), such as Cerl, may be responsi-

ble. However, p-Smad1 was also absent in DVE of  Cerl   � / �   em-

bryos ( Fig. 5 H ), suggesting that Cerl is either not involved in or 

alone is not suffi cient for the down-regulation of BMP signaling. 

Second,  Bmp4  and  Bmp8b , which encode the major BMP ligands 

at this stage, are expressed in ExE ( Coucouvanis and Martin, 

1999 ;  Ying et al., 2000 ); elongation of the embryo at the egg cyl-

inder stage along the proximodistal axis between E5.2 and E5.5 

may therefore prevent BMPs from reaching the distal end of the 

embryo. Also, a low level of  Bmp2  expression that can be detected 

in the distal region of the E5.2 embryo disappears by E5.5 

(Fig. S5, I and J). Finally, an antagonism between Smad2 and 

Smad1 signaling may play the major role in down-regulation of 

the BMP signal. An inverse relation between the level of p-Smad1 

and p-Smad2 was thus repeatedly observed in E5.2 – 5.5 embryos. 

In the wild-type embryo at E5.5, for instance, BMP signaling via 

p-Smad1 was detected predominantly in the proximal epiblast, a 

distribution opposite to that of p-Smad2 ( Fig. 2 C  vs.  Fig. 4 B ; and 

 Fig. 7 , A vs. J and D vs. G). Furthermore, p-Smad1 was lost from 

the distal half of VE in E5.5  Lefty1   � / �   embryos ( Fig. 4 C ) and 

Activin-treated wild-type embryos ( Fig. 7 L ), whereas the level of 

p-Smad2 was increased in this region. Staining for p-Smad1 was 

also lost from the entire VE, whereas that for p-Smad2 was 

increased in embryo explants stripped of ExE ( Fig. 5 ) and in 

Noggin-treated embryos ( Fig. 6, L and N ). Staining for p-Smad2 

was completely lost, whereas that for p-Smad1 was increased in 

embryos treated with SB431542 (Fig. S5, K – N). The antagonism 

between Smad1 and Smad2 signaling may convert a small shift of 

the balance to a robust difference. 

 Antagonism between Smad1 and 
Smad2 signaling 
 Our data suggest a previously unknown role for Activin in mouse 

embryonic patterning. Inhibition of Activin action by follistatin 

( Fig. 7, P – R ) or SB431542 (Fig. S5, P and R) thus abolished 

DVE formation. Such treatment not only down-regulated p-Smad2 

in DVE but also slightly up-regulated p-Smad1 on the distal 

side of the embryo. Conversely, treatment with Activin expanded 

the site of DVE formation by up-regulating p-Smad2 and down-

regulating p-Smad1 on the distal side of the embryo ( Fig. 7 ). 

These observations are again indicative of an antagonism be-

tween Smad1 and Smad2 signaling during DVE formation. 

Treatment of explants lacking ExE with SB431542 induced the 

loss of both p-Smad1 and p-Smad2. DVE formation was abol-

ished in such explants ( Mesnard et al., 2006 ; this study), sug-

gesting that DVE formation requires both the absence of Smad1 

signal and the presence of Smad2 signal. The balance between 

the ratio of p-Smad1 and p-Smad2 may determine whether or 

embryos at E5.5. Embryonic VE markers were also down-

regulated in  Bmpr2   � / �   embryos, in which p-Smad1 staining 

was reduced at E5.2 ( Fig. 2 ). These results indicate that BMP 

signaling is essential until E5.2 for formation of embryonic VE, 

whereas it is dispensable for formation of extraembryonic VE. 

 At E5.5, DVE cells arise from a portion of embryonic VE 

that lacks the BMP signal. Whereas embryonic VE cells that 

have lost the BMP signal appear to be induced to differentiate 

into DVE, extraembryonic VE is not competent to become DVE 

even if it loses the BMP signal. First, in wild-type embryos at 

E5.2, before DVE formation, the entire embryonic VE is posi-

tive for the BMP signal. At E5.5, however, the BMP signal is 

lost specifi cally from DVE, with the remainder of the embry-

onic VE remaining positive for this signal ( Fig. 2 ). Second, in 

 Lefty1   � / �   embryos, the BMP-negative region of embryonic VE 

expands to the proximal side, toward which DVE formation also 

expands ( Fig. 4 ). Third, the portion of embryonic VE that is con-

verted to DVE was found to be increased in Noggin-treated em-

bryos ( Fig. 6 ). Although the BMP signal disappeared in both 

embryonic VE and extraembryonic VE of such embryos, extra-

embryonic VE was not converted to DVE. Fourth, in embryo ex-

plants stripped of ExE, in which  Bmp4  and  Bmp8b  are expressed 

( Coucouvanis and Martin, 1999 ;  Ying et al., 2000 ), the loss of BMP 

signaling precedes DVE expansion, suggesting that the former 

may be responsible for the latter. Expansion of  Hex  expression 

thus begins  � 90 min after the removal of ExE, whereas the BMP 

signal is lost from VE much earlier,  � 30 min after ExE removal 

( Fig. 5 ). Finally, in ExE-stripped embryos treated with BMP4 

 Figure 8.    A limited level of type II Activin receptors is responsible for 
antagonistic balance between Smad1 and Smad2 signaling in the mouse 
embryo.  (A) Experimental strategy. An effector gene, together with a GFP 
expression vector, was introduced into epiblast cells on the distal side of 
E5.2 mouse embryos. The embryos were cultured for 12 h and were ex-
amined for the distribution of p-Smad1 by immunohistofl uorescence stain-
ing. (B – E) Localization of p-Smad1 (pS1; green) and merged images of 
p-Smad1 with GFP-positive cells (GFP; red). Arrowhead indicates the GFP-
positive cell. S4,  Smad4 ; Actr2,  Actr2a  plus  Actr2b . Bars, 50  μ m.   
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 Xenopus , Chordin and Noggin prevent BMPs from interacting 

with their cognate receptors and thus allow underlying Activin 

signaling in the dorsal region of the embryo to induce dorsal 

mesoderm ( Piccolo et al., 1996 ;  Zimmerman and Mathews, 

1996 ). Expression of  Nodal  is observed in the deep region of the 

involuting marginal zone, which is equivalent to AVE in mouse, 

before the onset of gastrulation in  Xenopus  embryos ( Jones et al., 

1995 ). Whereas p-Smad2 is present in these cells, p-Smad1 is 

absent ( Schohl and Fagotto, 2002 ). In the mouse,  Chordin  and 

 Noggin , in addition to  Nodal , are expressed in the future node 

region ( Conlon et al., 1994 ;  Bachiller et al., 2000 ), and they 

may similarly shift the balance toward Activin – Nodal signaling. 

Indeed, the reduction in the level of Nodal signaling in  Foxh1   � / �   

embryos prevents node formation ( Hoodless et al., 2001 ;  Yama-

moto et al., 2001 ). These observations suggest that the antago-

nism between Activin – Nodal and BMP signaling may play a 

role in organizer formation in vertebrates. 

 What is the molecular basis of the antagonism between 

BMP and Activin – Nodal signaling? Our result suggests that com-

mon signaling components, ActR2a and ActR2B, are rate-limiting 

not a cell in the VE will become DVE. To test this, it would be 

necessary to quantify the amounts of p-Smad1 and p-Smad2 in 

individual cells and to monitor their interaction with Smad4, 

such as by FRET analysis. 

 Mutant embryos lacking Activin establish a normal A-P 

axis, most likely because Activin is provided by the decidual 

zone of the dam, not by the embryo ( Albano et al., 1994 ;  Jones 

et al., 2006 ). Maternally derived molecules of a large molecular 

weight can cross Reichert membrane and be transferred to the 

embryo. For example, maternal immunoglobulins ( Bernard et al., 

1977 ) and maternal and DiI-labeled high density lipoprotein 

intravenously injected into a pregnant mother ( Smith et al., 2006 ) 

have been found in the embryo. In fact, maternally derived Ac-

tivin proteins have been detected within the embryo including 

the VE between E3.5 and E6.5 ( Jones et al., 2006 ). 

 Antagonism between Smad2 and Smad1 signaling may 

play a role in vertebrate development more generally. For ex-

ample, BMP4 blocks the dorsal mesoderm-inducing activity of 

Activin in  Xenopus laevis  ( Dale et al., 1992 ;  Jones et al., 1992 ; 

 Piccolo et al., 1996 ;  Zimmerman and Mathews, 1996 ). Also in 

 Figure 9.    The location of DVE formation is deter-
mined by the concerted action of Smad1- and Smad2-
mediated signals.  (A) BMP signaling promotes the 
differentiation of primitive endoderm (PrE) into VE until 
E4.5. (B) VE differentiates into embryonic VE as a re-
sult of the concerted action of BMP and other signals 
until E5.2. (C) DVE arises from a region of embryonic 
VE in which Activin signaling is present and BMP sig-
naling is absent at E5.5. (D and E) VE gives rise to 
extraembryonic and embryonic VE until E5.2. (F) Sum-
mary of the relation between endoderm development 
and signaling by multiple TGF- �  superfamily members 
from E4.5 to E5.5. a, Activin; b, BMP; Epi, epiblast; 
ICM, inner cell mass; l, Lefty1; n, Nodal; PE, parietal 
endoderm; PrE, primitive endoderm; s1 p , phosphory-
lated Smad1/5; s2 p , phosphorylated Smad2/3; s4, 
Smad4; TE, trophectoderm. Broken arrows indicate 
the mechanism is obscure.   
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Noggin, BMP4, follistatin, Activin (R & D Systems), and SB431542 (Sigma-
Aldrich) were used at concentrations of 500 ng/ml, 50 ng/ml, 1.2  μ g/ml, 
50  μ g/ml, and 10  μ mol/l, respectively. Images were analyzed using a 
laser scanning confocal microscope (LSM 510) mounted on an inverted 
microscope (Axiovert 100M) using Plan Apochromat 20 × /0.75 NA and 
C-Apochromat 40 × /1.2 NA objectives (Carl Zeiss, Inc). Images were 
processed with Photoshop CS software. 

 Introduction of expression vectors into the epiblast 
 Introduction of expression vectors (a GFP expression alone or with various 
effectors;  Mizushima and Nagata, 1990 ) into the epiblast was performed 
as described by  Yamamoto et al. (2004) . Embryos were cultured for 12 h 
under a humidifi ed atmosphere of 5% CO 2  at 37 ° C in dishes containing 
DME supplemented with 75% rat serum. 

 Online supplemental material 
 Fig. S1 shows expression of DVE markers in the wild-type mouse embryos 
at E5.2 and E5.5. Fig. S2 shows phenotype of AVE, VE, and ExE in 
 Bmpr2   � / �   embryos. Fig. S3 shows p-Smad1 staining in wild-type E5.5 em-
bryos and in the chimeric embryo at E5.0. Fig. S4 shows phenotype of DVE 
in  Bmpr2   � / �   ,Nodal  +/ �   embryos. Fig. S5 shows effects of SB431542, folli-
statin, and BMP4 on DVE formation. Online supplemental material is avail-
able at http://www.jcb.org/cgi/content/full/jcb.200808044/DC1. 
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factors in the E5.5 mouse embryo ( Fig. 8 ). However, these re-

sults obtained by overexpression experiments need to be con-

fi rmed by other approaches because overexpressed type II 

receptor molecules may bind to type I receptor easily, which is 

often suffi cient to activate signaling, or may interact with non-

physiological type I receptors. In  Xenopus  animal caps, Activin 

and BMP signaling have been shown to antagonize each other 

through the intracellular component Smad4 ( Candia et al., 1997 ). 

However, the level of Smad4 was not low enough to cause the 

antagonism at least in the E5.5 mouse embryo. Different mech-

anisms may underlie the antagonism between BMP and Ac-

tivin – Nodal depending on the cell type. 
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