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While combinatorial models of transcriptional regulation can be inferred for metazoan systems from a priori biological
knowledge, validation requires extensive and time-consuming experimental work. Thus, there is a need for
computational methods that can evaluate hypothesized cis regulatory codes before the difficult task of experimental
verification is undertaken. We have developed a novel computational framework (termed ‘‘CodeFinder’’) that
integrates transcription factor binding site and gene expression information to evaluate whether a hypothesized
transcriptional regulatory model (TRM; i.e., a set of co-regulating transcription factors) is likely to target a given set of
co-expressed genes. Our basic approach is to simultaneously predict cis regulatory modules (CRMs) associated with a
given gene set and quantify the enrichment for combinatorial subsets of transcription factor binding site motifs
comprising the hypothesized TRM within these predicted CRMs. As a model system, we have examined a TRM
experimentally demonstrated to drive the expression of two genes in a sub-population of cells in the developing
Drosophila mesoderm, the somatic muscle founder cells. This TRM was previously hypothesized to be a general mode
of regulation for genes expressed in this cell population. In contrast, the present analyses suggest that a modified form
of this cis regulatory code applies to only a subset of founder cell genes, those whose gene expression responds to
specific genetic perturbations in a similar manner to the gene on which the original model was based. We have
confirmed this hypothesis by experimentally discovering six (out of 12 tested) new CRMs driving expression in the
embryonic mesoderm, four of which drive expression in founder cells.

Citation: Philippakis AA, Busser BW, Gisselbrecht SS, He FS, Estrada B, et al. (2006) Expression-guided in silico evaluation of candidate cis regulatory codes for Drosophila
muscle founder cells. PLoS Comput Biol 2(5): e53. DOI: 10.1371/journal.pcbi.0020053

Introduction

A central challenge to determining the structure of
genetic regulatory networks is the development of systematic
methods for assessing whether a set of transcription factors
(TFs) co-regulates a given set of co-expressed genes.
Although classical genetics approaches allow the identifica-
tion of key regulating TFs and the determination of their
approximate ordering within the genetic hierarchy, demon-
strating that a collection of TFs forms a combinatorial code
acting to directly drive gene expression has required
laborious experimental identification and perturbation of
numerous individual cis regulatory modules (CRMs; [1]). To
speed this process, several groups have recently demonstra-
ted that computational approaches can rapidly identify
CRMs with considerable accuracy [2–17], especially when
performing computational searches with a collection of TFs
known a priori to co-regulate. This is perhaps best
exemplified by the dramatic progress made by several
groups in discovering CRMs for genes expressed during
segmentation of the Drosophila melanogaster embryo [2,3,6,14],
a system where years of genetic screens have identified the
regulating TFs [18]. In most biological systems, however, such
a set of co-regulating TFs is either merely hypothesized or
entirely unknown. Therefore, in order for these in silico

approaches to effectively identify the cis component of
regulation in novel biological systems (i.e., discover CRMs),
additional computational methods are needed that can
identify the trans component of regulation (i.e., the set of
co-regulating TFs).
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To address this question in metazoan systems, we have
developed an initial statistical framework for evaluating
hypothesized transcriptional regulatory models (TRMs; i.e.,
sets of TFs that together co-regulate a target gene set through
their combinatorial interactions at CRMs). As a model system,
we have examined the regulation of a class of Drosophila
myoblast genes for which a regulatory model has been
previously hypothesized [19,20] and for which extensive
transcriptional profiling datasets have been generated [21].
Muscle founder cells (FCs) are a sub-population of mono-
nucleate myoblasts that are specified by the Wingless (Wg),
Decapentaplegic (Dpp), and Ras signal transduction cascades
acting in combination within the somatic mesoderm [22,23]
(these pathways and some of their key regulators are
schematized in Figure 1). Prior experimental work using the
gene even-skipped (eve) to mark a single FC in each embryonic
hemisegment provided a detailed model for the integration
of these three signaling pathways at the transcriptional level:
the TFs activated by the Wg, Dpp, and Ras pathways—T cell
factor (dTCF), Mothers against dpp (Mad), and Pointed (Pnt),
respectively—were demonstrated to bind a transcriptional
enhancer driving expression of eve within dorsal FCs
[19,20,24,25]. Additional tissue specificity was shown to be
provided by two mesodermal selector TFs, Twist (Twi) and
Tinman (Tin; Figure 1B). Thus, from this single enhancer, a
combinatorial model of transcriptional regulation for genes
expressed in FCs (especially those with expression in the
dorsal mesoderm) was hypothesized, where exogenous signal-
ing cues and endogenous tissue-specific TFs jointly establish
the appropriate expression domain.

Guided by this genetic analysis of eve expression, a series of
gene expression profiles has been determined for purified
embryonic myoblasts by Estrada et al. [21]. In addition to
profiling wild-type cells, these investigators performed
expression array analyses of myoblasts in which the Wg,
Dpp, Ras, and Notch pathways were variably perturbed by 12

informative gain-of-function (gof) and loss-of-function (lof)
genetic manipulations (we note that the Notch pathway also
functions in the mesoderm to distinguish the cell fates of FCs
from those of fusion competent myoblasts [26]). Each of these
12 genetic perturbations was predicted, based on the
example of eve, to increase or decrease expression of those
genes with localized expression in FCs (henceforth referred
to as ‘‘FC genes’’). These 12 expression arrays were then
combined into a single weighted ranking (henceforth
referred to as the ‘‘composite FC ordering’’), which was used
to predict additional FC genes. Estrada et al. [21] performed
over 200 in situ hybridizations on predicted FC genes from
the top of this composite FC ordering, and their experiments
(as well as a review of the literature) yielded a list of 159
validated FC genes.
In the present work, we utilize the expression data of

Estrada et al. [21] to evaluate the roles of dTCF/Mad/Pnt/Twi/

Figure 1. Genetic Regulation of Founder Cell Fates

(A) Schematic of Wg, Ras, and Dpp signal transduction cascades
responsible for specifying FC fates. Transmembrane receptors (fork-
shapes), their ligands (squares), intracellular signaling molecules
(octagons), and target TFs (ovals) are shown and colored by pathway.
(B) Schematic of eve transcriptional regulation. Shown in thick solid
arrows are the signaling inputs from the Wg, Dpp, and Ras pathways.
Shown in thinner arrows are the genetic interactions linking these signals
to their downstream TFs; solid arrows indicate interactions between
proteins of the same pathway, and dotted arrows indicate known
interactions between pathways. Colored circles indicate the five TFs
(dTCF, Mad, Pnt, Twi, and Tin) known to drive eve expression within FCs.
DOI: 10.1371/journal.pcbi.0020053.g001
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Synopsis

Although genome sequences and much gene expression data are
readily available, the determination of sets of transcription factors
regulating particular gene expression patterns remains a problem of
fundamental importance. Tissue-specific gene expression in devel-
oping animals is regulated through the combinatorial interactions of
transcription factors with DNA regulatory elements termed cis
regulatory modules (CRMs). Although genetic and biochemical
experiments allow the identification of transcription factors and
CRMs, those experiments are laborious and time-consuming.
Philippakis et al. introduce a new approach (termed ‘‘CodeFinder’’)
for quantifying the enrichment for particular combinations of
transcription factor binding site motifs within predicted CRMs
associated with a given gene set of interest, identified from gene
expression data. The authors’ analyses allowed them to discover a
specific combination of transcription factor binding site motifs that
constitute a core cis regulatory code for expression of a particular
subset of genes in muscle founder cells, an embryonic cell
population in the developing fruit fly (Drosophila melanogaster)
mesoderm, and also led them to the discovery and subsequent
experimental validation of novel, tissue-specific CRMs. Importantly,
the CodeFinder approach is generally applicable, and thus could be
used to support, refute, or refine a known or hypothesized cis
regulatory code for any biological system or genome of interest.

Evaluation of Cis Regulatory Codes



Tin as generalized regulators of FC gene expression. A
previous computational scan for windows of sequence
containing these five TFs successfully identified an additional
enhancer for the gene heartbroken (hbr) that drove expression
in dorsal FCs and contained matches to these five tran-
scription factor binding site (TFBS) motifs, demonstrating
that the example of eve was not unique [20]. However, the
generality of the model could not be established by those two
examples alone, and we therefore developed a method of
quantifying enrichment for these five TFBS motifs in
localized windows of non-coding sequences flanking or
intronic to FC genes. Importantly, this approach, which we
term ‘‘CodeFinder,’’ quantifies the relevance of not only each
TF individually, but also of all combinations of the given set
of TFs. From this analysis, we hypothesized that the eve TRM
is unlikely to apply to all FC genes. Rather, we found that
three TFs—Pnt, Twi, and Tin—are likely to regulate a specific
subset of FC genes that share characteristic changes in their
gene expression profiles in response to the genetic perturba-
tions used by Estrada et al. [21]. Thus, by combining TFBS and
gene expression data, our analysis allows a refinement of the
initial model such that a subset of the original TFs appears to
regulate a subset of FC genes. As a test of this hypothesis, we
have empirically validated four candidate FC enhancers that
conform to our modified TRM (as well as two additional
enhancers driving expression in other domains of the
embryonic mesoderm).

Results

FC Genes Are Enriched for Clusters of dTCF/Mad/Pnt/Twi/
Tin Motifs in Their Flanking and Intronic Non-Coding
Sequences

We first compiled from the literature, experimentally
verified binding sites for each of the five TFs dTCF/Mad/
Pnt/Twist/Tin (see Protocol S1). Additionally, we obtained a
collection of 159 genes validated by in situ hybridization to be
FC genes [21]; see Protocol S1). A common approach for
determining whether a set of genes is targeted by a collection
of TFs is to look for instances of the corresponding TFBS
motifs immediately upstream of transcriptional start [27–29].
In preliminary analyses, we determined that the proximal 1–2
kb of flanking sequences upstream of these 159 FC genes were
not significantly enriched for the dTCF/Mad/Pnt/Twist/Tin
motifs relative to the corresponding regions of randomly
selected genes taken as a background set (p . 0.05 after
Bonferroni correction for multiple hypothesis testing, see
Materials and Methods). Because we did not uncover any
clues to the mechanisms underlying transcriptional regula-
tion of FC genes from an analysis of their proximal promoter
regions, we sought to develop a framework that could
evaluate the over-representation of the dTCF/Mad/Pnt/
Twist/Tin motifs in the extended flanking and intronic
sequences of these genes.

In approaching this problem, we were influenced by the
strategy of Mootha et al. [30], who looked at the aggregate
behavior of entire gene sets, rather than individual genes, in
analyzing gene expression microarray data. In their method,
genes were ranked by expression change, and independently
defined gene sets were then inspected to see if their positions
within this ranking were non-randomly distributed. From
that analysis, they were able to observe trends in the

aggregate behavior of the gene set that were not significant
when looking on a gene-by-gene basis. Our approach borrows
from this method, but utilizes a sequence-based (rather than
expression-based) method of ranking genes. Here, genes are
ordered according to their enrichment for various combina-
tions of TFBS motifs in localized windows of sequence, and a
given foreground gene set is then inspected to see if its
distribution of ranks within this list is non-random. The goal
of this analysis is to uncover effects that are otherwise small
in size, but that can be statistically quantified.
For each of the 159 validated FC genes, we searched the

entire non-coding upstream, downstream and intronic
regions with a CRM identification tool named ModuleFinder
that was previously developed by our group [31]. This
program is one of a number of approaches that scores
windows of genomic sequence according to the degree of
TFBS clustering and/or evolutionary conservation
[3,7,9,13,16,31–33] (our approach most resembles that of
Lifanov et al. [13], but extends it by incorporating a measure
of evolutionary conservation in addition to binding site
clustering). Next, we assigned to each gene the ModuleFinder
score of the most significant window adjacent to it (i.e., a
ModuleFinder ‘‘hit’’; see Materials and Methods). Under the
hypothesis that dTCF/Mad/Pnt/Twi/Tin are widely acting
regulators of FC genes, we anticipated that many of these
159 genes would be enriched for significant ModuleFinder
scores in their surrounding non-coding sequence, as com-
pared with a suitable background set (Figure 2).
In an initial application, we used the remaining D.

melanogaster genes as a background set. As this was being
implemented, however, another group observed that regu-
latory genes such as TFs and kinases typically had more
flanking sequence [34]. Our FC gene list was substantially
enriched for TFs and signaling proteins [21]; consistent with
this, we observed that the median amount of non-coding,
non-repetitive sequence flanking these 159 FC genes was
approximately 15.2 kb, whereas the remaining D. melanogaster
genes had a median of only approximately 3.4 kb of non-
coding, non-repetitive flanking sequence (p , 1 3 10�20 by
Wilcoxon-Mann-Whitney [WMW] statistic, Figure 2A). In
order to remove the possibility that any observed enrichment
for ModuleFinder hits could be explained solely by a larger
search space, we selected a length-matched set of D.
melanogaster background sequences. We note that this match-
ing was performed such that not only the average or median
lengths between foreground and background regions were
matched, but rather so that the entire foreground and
background length distributions were matched (see Figure
2B and Materials and Methods).
In order to evaluate the enrichment of the TFBS motifs

under consideration in the foreground gene set, we sought a
metric that could quantify the degree to which the foreground
genes ranked higher than the background genes on the basis
of their ModuleFinder scores. The WMW statistic specifically
tests this null hypothesis [35]; however, the p-value attached to
it reflects both the degree of foreground enrichment and the
sample sizes of the foreground and background. Therefore, we
used an additional measure of enrichment that is less
dependent on the number of foreground and background
genes, so that effects between gene sets of different sizes could
be compared. For this we utilized the area between the
detection rate curves shown in Figure 2, because one can show
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that the area between these curves is a geometric representa-
tion of the WMW statistic scaled to be independent of sample
size (see Materials and Methods).

Using criteria in which any combination of the five TFs of
interest can contribute to the ModuleFinder score for each
gene, we observed enrichment for high-scoring Module-
Finder hits adjacent to FC genes as compared to the length-

matched background sequences (p , 0.02 by WMW statistic,
area ¼ 0.051; see Figure 2C). The degree of this enrichment
was slight, however, suggesting one of the following two
scenarios: 1) the five TFs (dTCF/Mad/Pnt/Twi/Tin) are target-
ing a large fraction of the 159 FC genes, but our basic
approach of quantifying binding site enrichment has limited
statistical power to observe it, or 2) only a subset of the 159
FC genes is targeted by some combination of these five TFs
with higher frequency than the genomic background. In
order to address this second possibility, we set out to utilize
the gene expression data of Estrada et al. [21] to systemati-
cally identify whether particular subsets of the original 159
FC genes are likely to be targeted by the hypothesized FC
TRM or a modified version of it.

Differential Response of FC Genes to Gof of Pnt, a Ras-
Dependent TF
In constructing the composite ordering of newly identified

FC genes, Estrada et al. [21] weighted each of the 12 mutant
expression profiles according to the degree to which a
training set of 33 previously known and validated FC genes
responded in the expected fashion (i.e, were up- or down-
regulated) within that genetic background. A somewhat
surprising result of their analysis was that, although arrays
performed on gof genetic backgrounds corresponding to
upstream regulators of the Ras pathway (i.e., constitutively
activated forms of EGFR, FGFR, Ras, and armadilloþRas)
caused the training set of FC genes to be up-regulated, gof
of Pnt—a TF acting downstream of these factors—had little
aggregate effect on the same FC gene training set [21] (see
Figure 3).
Since the model enhancer eve responded strongly to Pnt gof

and was known to contain functionally validated TFBSs for
Pnt [19], we re-inspected the Pnt expression profile to see how
all FC genes responded to Pnt gof. We first ranked all genes
according to their up- and down-regulation in the Pnt gof
background, and we then looked at the positions of the 159 FC
genes within this ranking (see Figure 3A). Interestingly, the
curve showing the rate at which these 159 FC genes were
detected had a sigmoidal shape, suggesting that Pnt gof has a
dual role as both an activator and a repressor of different
subsets of FC genes. Because the Pnt gof profile was weighted
so little in constructing the composite ordering of FC genes, it
is important to note that the shape of this curve is not a result
of ascertainment bias in how FC genes were discovered. In
addition, since this microarray experiment involved a strong,
constitutively activated form of Pnt [19,21], it is inferred that
the observed repressive effect is likely to be indirect.
Utilizing the ‘‘leading edge’’ analysis of Subramanian et al.

[36], we took as a foreground gene set those genes ranking
higher than the point at which the foreground and back-
ground detection curves maximally diverged (Figure 3B). We
shall henceforth refer to this gene set as the ‘‘Pnt leading
edge’’ (PLE). This set of 25 genes corresponded roughly to
those genes up-regulated in the Pnt gof array with a q-value
of 0.1 or less, or equivalently as having a t-statistic score of
roughly 7.9 or greater (Figure 3C; see Estrada et al. [21] for
details relating to statistical analyses of microarrays). Thus, in
calling these genes up-regulated in the Pnt gof background,
one would expect only a few to be false positives. As further
confirmation that the PLE was not merely a statistical artifact,
we independently validated the microarray results by

Figure 2. Inspection of an FC TRM Composed of dTCF/Mad/Pnt/Twi/Tin

(A) Detection rate of the 159 known FC genes as compared to all other D.
melanogaster genes, when genes are ranked by the amount of
associated non-coding, non-repetitive sequence. The X-axis indicates a
given cutoff rank; the Y-axis indicates the fraction of either the 159 FC
genes (solid line) or the non-FC genes (dotted line) observed to have a
length greater than the corresponding cutoff rank.
(B) Detection rates of the 159 known FC genes (solid line) and a set of
length-matched background sequences (dashed line; see Materials and
Methods) when ranked by length; it can be seen that these curves are
largely overlapping.
(C) Detection rates of the 159 known FC genes as compared to length-
matched background sequences, when genes are ranked by Module-
Finder scores using a scan in which any combination of the five TFs can
contribute to the score. Again, the X-axis indicates a given cutoff rank
and the Y-axis indicates the fraction of the 159 FC genes (solid curve) or
background sequences (dotted curve) with ModuleFinder scores better
than the given cutoff rank. For all panels, the area between these curves
is computed, and its statistical significance is computed using the WMW-
statistic (see Materials and Methods).
DOI: 10.1371/journal.pcbi.0020053.g002
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performing in situ hybridizations in a Pnt gof background for
15 of the 25 genes in the PLE, and observed that 14 of them
did, in fact, have visible expansion of their embryonic
expression domains.

When we inspected the PLE (Figure 4), we noticed that it
showed greater enrichment for the five TFs dTCF/Mad/Pnt/
Twi/Tin (area ¼ 0.110; p , 0.04; Figure 4A) than the original
collection of 159 FC genes (area¼0.051; p , 0.02). Because this
gene set was defined to be the collection of FC genes most up-
regulated in a Pnt gof background, we inspected whether the
Pnt TFBS motif was, by itself, enriched in the non-coding
sequences associated with these genes. Surprisingly, we
observed that it was more enriched than the pooled collection
of all five TFs (area ¼ 0.137; p , 0.02; Figure 4B), suggesting
that one or more of the TFs under consideration was not
contributing to the observed foreground enrichment. There-
fore, we developed a systematic means of determining which
TFBS motifs and combinations of TFBS motifs were most
likely contributory, an approach which we call CodeFinder.

CodeFinder Provides a Systematic Examination of TFBS
Combinatorics in Reference to a Set of Co-Expressed
Genes
Given foreground and background gene sets F and B, and a

set of transcription factor binding site motifs M, it is desired
to provide confirming or refuting evidence for the over-
representation of M in F relative to B. Three concerns must
be addressed in order to effectively evaluate combinatorial
interactions between the TFs considered. First, any given
motif set M is unlikely to be necessary or sufficient for
regulation of F (i.e., not all genes in F will actually be targeted
by M, and there may be motifs other than those of M that
contribute to the regulation of F). Thus, the metric must be
able to quantify even only slight degrees of foreground
enrichment. Second, because the score responsible for
ranking the foreground and background genes is a linear
sum of scores for the input motifs, if one of the input motifs
is not enriched in F, then omitting it from the search should
result in a greater degree of left-shifting for F, as it is acting
only to increase score variability (noise) in F and B. Hence, it
is necessary to inspect subsets of TFBS motifs comprising the
TRM. Finally, there is the possibility that a combination of
TFBS motifs shows increased enrichment relative to its
subsets not because the combination is truly co-regulating,
but because the genes in F are being targeted by overlapping
subsets of that combination. Hence, a mechanism is needed
to distinguish between these possibilities.
To address these concerns, we systematically inspected

combinations of the five TFs dTCF/Mad/Pnt/Twi/Tin. First, we
looked at each of the five TFs individually and observed that
only Pnt was significantly enriched in the foreground set
(areas reported in Figure 4C). Next, we inspected whether
genes up-regulated in the Pnt gof background were likely to
follow the eve TRM by simultaneously having binding sites for
all (or nearly all) five of the TFs dTCF/Mad/Pnt/Twi/Tin. To
address this, we looked at all combinations involving four or
five TFs and added the constraint that any window not
containing at least one match to each of the motifs utilized in
the search be scored as ‘‘0’’ (we henceforth refer to these as
‘‘AND’’ combinations of the motifs, and refer to those
combinations where this restriction is not imposed as ‘‘OR’’
combinations; thus the curve shown in Figure 2C is the OR
combination involving all five TFs). In looking at AND and
OR combinations involving four or five of the TFs, we
observed that the AND combinations reliably showed less
foreground enrichment than their OR counterparts (Figure
4D). Finally, we looked at all AND combinations involving
three combinations of the TFBS motifs in order to inspect
putative modes of combinatorial regulation between the
preceding two extremes, and observed that nearly all
combinations showed only slight foreground enrichment.
Indeed, in looking at all combinations of the five TFBS motifs,
we observed that none showed as much foreground enrich-
ment as Pnt alone (see Figure 4C–4E and Table S1).
Throughout this analysis, the foreground and background

sequence sets remained invariant, but their overall ordering
changed with each combination of motifs. Thus, it is
important to note that combinations involving different
numbers of motifs can be compared on equal footing, since
a smaller number of relevant motifs can cause the foreground
sequences to rank more highly than a larger set involving

Figure 3. Changes in Expression of FC Genes in a Pnt gof Mutant

Background

(A) Detection rate of the 159 known FC genes in a Pnt gof expression
profile. All genes are ranked according to the t-statistic (see Estrada et al.
[21]) indicating their up- or down-regulation in a Pnt gof mutant
background (the most up-regulated genes are positioned at the left). As
in Figure 2, detection rates of the 159 known FC genes (solid line) and all
other genes (dashed line) are shown.
(B) Difference between the detection rate curves of (A); leading and
trailing edges indicate the points of maximal difference.
(C) t-statistics for all genes in the Pnt gof expression profile.
DOI: 10.1371/journal.pcbi.0020053.g003
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irrelevant motifs. From this analysis, we conclude that: 1) the
TFBSmotif Pnt is likely to directly target a substantial fraction
of genes in the PLE, and 2) that although the other four factors
may each be working with Pnt to participate in the regulation
of some genes in this set, it is unlikely that there is a single
combination responsible for targeting all of these genes.

Finally, one of the genes in the PLE is Yan, an Ets-domain
transcriptional repressor [37] (recall that Pnt is also an Ets
domain protein, but is known to act as a transcriptional
activator [38]). We inspected the possibility that Yan might be
responsible for the down-regulation of the Pnt trailing edge
(PTE) gene set, possibly in combination with some of the
other TFs under consideration. Here, when we looked at the
OR combination involving all five TFBS motifs, we saw no
statistically significant enrichment (Figure 4F). Similarly,
when looking at each TFBS motif individually, we did not
see especially strong enrichment for any of the motifs,
including Pnt (i.e., the Ets motif which should be similar to
the Yan motif; Figure 4G); thus, we can provide no evidence
that Yan is acting to directly regulate this gene set. (All
Boolean combinations for the Pnt leading and trailing edges
are given in Table S1.)

An Expression Cluster of FC Genes Enriched for Pnt AND
Twi AND Tin
Having utilized the Pnt gof expression profile to identify a

gene set likely to be directly targeted by Pnt, we wanted to see
if we could utilize the entire collection of expression profiles
from Estrada et al. to identify one or more additional gene
sets enriched for the TFs comprising the hypothesized TRM
(Figure 5). We performed self-organizing map [39] clustering
followed by hierarchical clustering [40] on the 159 FC genes
validated by in situ hybridization, clustering both profiles and
genes (Figure 5A; see Materials and Methods). We note that,
because so many of the 159 FC genes were up-regulated in the
four genotypes in which proximal Ras pathway components
were activated (Ras, armþRas, FGFR, EGFR), we first median-
centered the columns (but not the rows) so that it was
possible to visualize a response gradient in these conditions.
The FC gene set indicated as Cluster 1 (C1) contained eve;

moreover, genes in C1 responded to the genetic perturbations
of Estrada et al. [21] in a manner most similar to what had been
observed in the original analysis of eve expression [19] (Figure
5A). We therefore determined if the aggregate collection of 37
genes found in C1 was enriched for some combination of

Figure 4. Enrichment for the FC TRM in PLE Genes

(A) PLE and background genes were scanned by ModuleFinder using dTCF/Mad/Pnt/Twi/Tin and sorted by score in decreasing order. As in Figure 2,
detection curves for PLE genes and non-PLE genes are shown.
(B) PLE and background genes were scanned by ModuleFinder using only the Pnt motif and sorted in decreasing order.
(C–E) Area between PLE and non-PLE detection curves is shown when scanning with the TFs dTCF/Mad/Pnt/Twi/Tin either individually (C), with all AND
and OR combinations involving four or five TFs (D), or all AND combinations involving three TFs (E).
(F–G) Dotted lines indicate threshold statistical significance values of p , 0.05, as computed by WMW. Also shown are the detection rate curves using
the PTE as a foreground set using the OR combination dTCF/Mad/Pnt/Twi/Tin (F), as well as the Pnt motif alone (G).
DOI: 10.1371/journal.pcbi.0020053.g004
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motifs corresponding to the five TFs known to regulate the FC
expression of eve. When we looked at the OR combination
involving all five TFBS motifs, we again observed that it
showed greater enrichment than did the original collection of
159 FC genes (Figure 5B). Therefore, we repeated our
CodeFinder analysis in order to identify those combinations
of TFBS motifs likely to be involved in the direct regulation of
these genes. When we inspected each of the five TFBS motifs
individually, we observed that Pnt and Twi each showed

enrichment but, unlike the PLE genes, the degree of this
enrichment was not as great as the OR combination involving
all 5 TFs (Figure 5B and 5C). Next, we inspected all OR and
AND combinations involving four or five TFBS motifs. Here,
we also observed that AND combinations reliably showed less
foreground enrichment than their OR counterparts (Figure
5D). Finally, when looking at all AND combinations involving
three TFBS motifs, we observed that the combination Pnt
AND Twi AND Tin showed especially strong enrichment

Figure 5. An Expression Cluster of Genes Enriched for Pnt AND Twi AND Tin

(A) Clustering of the 159 FC genes and the 12 expression profiles of Estrada et al. [21], using self-organizing map clustering followed by hierarchical
clustering. Note that all columns are median-centered. The red box indicates a gene cluster (C1) that contains eve and whose genes show similar
expression profiles. Here, abbreviations are EGFR¼ EGF receptor gof; FGFR¼ FGF receptor gof; ArmþRas¼ armadillo and Ras gof; Ras¼ Ras gof; Pnt¼
pointed gof; Arm¼ armadillo gof; Dl¼ Delta lof; Lmd¼ Lameduck lof; Wg ¼ wingless lof; Spi ¼ spitz lof; Tkv¼ thickveins gof; N ¼ Notch gof.
(B) Detection rate curves for the OR combination of dTCF/Mad/Pnt/Twi/Tin using C1 as a foreground gene set.
(C–E) Area between C1 and non-C1 detection curves is shown when scanning with the TFs dTCF/Mad/Pnt/Twi/Tin either individually (C), with all AND
and OR combinations involving four or five TFs (D), or all AND combinations involving three TFs (E). Dotted lines indicate threshold statistical
significance values of p , 0.01 and p , 0.001, as computed by WMW.
(F) Detection rate curves for Pnt AND Twi AND Tin combinations using C1 as a foreground gene set.
DOI: 10.1371/journal.pcbi.0020053.g005
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(Figure 5E and 5F), suggesting that these three TFs might
jointly target many of the genes in C1 (values for all
combinations are given in Table S1).

A Second Application of CodeFinder to Genes Expressed
in Subsets of Cells in the Developing Fly Wing

In order to test the generality of our approach, we used our
CodeFinder framework to examine a second developmental
system of comparable complexity and for which similar data
were available (Figure 6). Reeves and Posakony recently
characterized groups of genes that are expressed during
development of the D. melanogaster peripheral nervous system
[17]. This group performed expression profiling on purified
proneural cluster cells (PNCs) of the larval wing, after which

those genes determined to be up-regulated by the expression
arrays were verified by in situ hybridization. This group
hypothesized that the Achaete/Scute (Ac/Sc) motif, acting in
conjunction with the Notch-dependent TF, Suppressor of
Hairless, (Su(H); see below), formed part of a cis regulatory
code driving the expression of many PNC genes.
From the supplementary data of Reeves and Posakony, we

obtained a list of 44 genes validated by in situ hybridization to
be expressed in PNCs [17]. As a computational negative
control, we checked that this gene set was not enriched for
targets of dTCF OR Mad OR Pnt OR Twi OR Tin (Figure 6A);
similarly, we checked that the C1 gene list was not enriched
for targets of Ac/Sc OR Su(H) (Figure 6B). In each case, there

Figure 6. Analysis of PNC Genes and Their Associated TRM

(A) Detection rates of PNC genes (after removing seven genes that are also FC genes) as compared to background regions using the OR combination of
dTCF, Mad, Pnt, Twi, Tin (negative control).
(B) Detection rates of C1 genes (after removing genes that are also PNC genes) as compared to background regions using the combination Ac/Sc OR
Su(H) (negative control).
(C) Detection rate of PNC genes as compared to non-PNC genes using Ac/Sc OR Su(H).
(D) Area between PNC and background region detection rate curves for all AND and OR combinations of Ac/Sc and Su(H).
(E) Detection rate of non-SOP genes as compared to background regions using Ac/Sc OR Su(H).
(F) Area between non-SOP and background region detection rate curves for all AND and OR combinations of Ac/Sc and Su(H).
(G) Detection rate of SOP genes as compared to background genes using Ac/Sc OR Su(H).
(H) Area between SOP and background region detection rate curves for all AND and OR combinations of Ac/Sc and Su(H).
DOI: 10.1371/journal.pcbi.0020053.g006
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was no statistically significant enrichment (p . 0.05). For this
analysis, there were seven genes in common between the FC
and PNC gene lists, so these were removed from each set.
Note that we also looked for enrichment of Ac/Sc OR Su(H)
TFBS motifs in all 159 FC genes (see Figure S1) but observed
faint enrichment (p , 0.03 by WMW; area ¼ 0.049), which
could reflect a slight biological role for these two TFs in
regulating some FC genes. For example, one member of the
Ac/Sc complex, lethal of scute, is expressed in the mesoderm and
known to be involved in the regulation of FC fate [41].
Similarly Su(H), acting in the Notch pathway, is known to
regulate the asymmetric cell division that establishes individ-
ual FC identities [42].

When we looked for enrichment of Ac/Sc and Su(H) motifs
in the sequences surrounding PNC genes, we observed strong
enrichment for these motifs, especially Ac/Sc (Figure 6C and
6D). Also, Reeves and Posakony subdivided the expression
domains of these 44 PNC genes into two classes: one class
composed of 26 genes expressed only in sensory organ
precursors (SOPs; a subset of cells derived from the PNC that
eventually become sensory neurons), and another class of 18
genes expressed in non-SOP cells (in some cases overlapping
with SOPs). They further hypothesized that these two classes
are under distinct regulatory programs, where activation of
the Notch pathway promotes the non-SOP cell fate at the

expense of the SOP cell fate; thus, non-SOP genes—such as
those of the enhancer of split complex—should be enriched for
targets of the Notch-activated TF Su(H), as well as for the
proneural TFs, Ac/Sc [17,43], whereas SOP genes should be
enriched for only Ac/Sc sites. In order to evaluate this
hypothesis, we measured the degree of enrichment for the Ac/
Sc and Su(H) motifs in each of these two classes individually.
We observed greater enrichment for these motifs in the non-
SOP class than the collection of all PNC genes (Figure 6C–6F).
For the SOP class, we were unable to observe strong
enrichment for either the Ac/Sc or the Su(H) motifs (Figure
6G and 6H). Here, it should be noted that there are individual
genes in the SOP class such as neuralized that are very enriched
for the Ac/Sc motifs. Nonetheless, our analysis suggests that
perhaps not all SOP genes are direct targets of the Ac/Sc TFs,
or at least that it is difficult to see this enrichment without
also performing the computational searches with motifs for
additional, co-regulating TFs.

Validation of Novel FC CRMs Enriched for the Pnt, Twi, and
Tin Motifs
The preceding analyses suggested a TRM comprising Pnt

AND Twi AND Tin targets many of the 37 FC genes found in
C1. To test this hypothesis, we evaluated the in vivo functions
of 12 candidate CRMs selected from the class of all Module-

Figure 7. Schematic Representation of Tested Regions Associated with FC Genes

The ModuleFinder prediction, TFBS composition, ModuleFinder score, genomic location and actual genomic region tested from regions associated with
FC genes from C1 (A) or not included in C1 (B).
DOI: 10.1371/journal.pcbi.0020053.g007
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Finder hits containing matches to the Pnt, Twi, and Tin TFBS
motifs and located in the flanking or intronic sequences of
the 159 FC genes (these 12 candidate CRMs are graphically
depicted in Figure 7). Four of the candidate CRMs were

associated with genes in C1 (Nidogen [Ndg], mindbomb2 [mib2],
phyllopod [phyl], CG31151), and eight were associated with one
of the 122 FC genes not found in C1. Note that Table S2 gives
the genomic coordinates and number of dTCF/Mad/Pnt/Twi/
Tin TFBS motif matches for the highest scoring Module-
Finder hit for every gene in C1 or the PLE, as well as detailed
information on these 12 tested regions. As shown in Figure 8,
four of these 12 candidate CRMs were found to direct lacZ
expression in somatic muscle FCs that co-express with the
endogenous gene (Ndg, phyl, mib2, ladybird late [lbl]), a result
confirmed by double fluorescent in situ hybridization with
lacZ and gene-specific probes; of note, three of the four genes
associated with these enhancers were in C1 (Ndg, phyl, mib2).
(See Materials and Methods for experimental details)
The enhancer for Ndg (Figure 8A–8E) is found in the first

intron of the gene and drives expression in Ndg-expressing
FCs. This example is particularly interesting since Ndg
encodes a basement membrane protein, whereas the two
previously confirmed FC TRM target genes were a tran-
scription factor (eve) and a component of the Ras signaling
cascade (hbr), implying that the TFs under consideration are
acting as direct transcriptional regulators at both proximal
and distal nodes in the myogenic regulatory network. The
enhancer for mib2 (Figure 8F–8L), located in the third intron
of the gene, drove expression in both somatic FCs and the
visceral mesoderm (VM). The gene mib2 is expressed in both
domains, suggesting that either similar mechanisms regulate
VM and FC gene expression or that two separable meso-
dermal enhancers are located in the tested region (the former
possibility is consistent with the known roles of Twi, Tin, and
Ras signaling in VM development [44,45]). The tested window
for phyl is located downstream of the coding region and was
found to drive expression in phyl positive FCs (Figure 8K–8O).
The last of the tested ModuleFinder windows is located near a
non-C1 FC gene, lbl (Figure 8P–8T), which encodes an NK
homedomain transcription factor TF known to be expressed
in numerous embryonic tissues, including one somatic muscle
FC. The enhancer for lbl is located in the large first intron of
the gene and directs expression in this single FC. In summary,
three of four tested C1 enhancers, but only one of eight non-
C1 enhancers, faithfully recapitulated expression of the
associated FC gene.
Of the eight remaining tested FC CRM candidates, three

(the regions labeled as CG31151 in Figure 7A and sna, lbl/lbe in
Figure 7B) failed to drive any detectable embryonic lacZ
expression, and three (the regions labeled as stumps, Traf1 and
eya in Figure 7B) drove lacZ expression in a pattern that failed
to co-express with the endogenous gene (unpublished data).
Interestingly, the final two candidate FC CRMs drove lacZ
expression in non-FC mesodermal cells identically to the
endogenous gene. These included a region downstream of
vestigial (labeled as vg in Figure 7B) that was active in the vg-
expressing wing disc adepithelial cells (and also some
epithelial cells; unpublished data), and another intronic
region of lbl that was functional in lbl-expressing heart cells
(Michaud et al., unpublished data).

Discussion

We have described an easily implemented, controlled
approach (termed ‘‘CodeFinder’’) for evaluating the degree
to which a hypothesized transcriptional regulatory code acts

Figure 8. Empirical Validation of Predicted FC Transcriptional Enhancers

Expression of Ndg (A), mib2 (F), phyl (K), and lbl (P) mRNA in stage 11 wild
type embryos detected by in situ hybridization. Arrowheads in (P)
highlight lbl-expressing FCs. b-galactosidase expression from Ndg-lacZ
(B), mib2-lacZ (G), phyl-lacZ (L), and lbl-lacZ (Q) constructs in stage-11
embryos detected by immunohistochemistry. Fluorescent in situ hybrid-
ization analysis of stage-11 embryos for Ndg (C), lacZ (D) mRNA, and
merge (E) from Ndg-lacZ embryos; mib2 (H), lacZ (I) mRNA, and merge (J)
from mib2-lacZ embryos; phyl (M), lacZ (N) mRNA, and merge (O) from
phyl-lacZ embryos; and lbl (R), lacZ (S) mRNA and merge (T) from lbl-lacZ
embryos.
DOI: 10.1371/journal.pcbi.0020053.g008
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to drive the expression of an independently derived gene set.
CodeFinder integrates TFBS and expression profiling in-
formation by examining the statistical overrepresentation of
particular TFBSs (or combinations thereof) in the non-coding
sequences of co-expressed genes. This approach provides the
beginnings of a general framework that can be applied to
higher metazoan genomes, as it considers not only the
proximal promoter regions of genes, but also their extended
upstream, downstream and intronic regions, while control-
ling for the difficulty that genes may not have homogeneous
amounts of flanking sequence [34]. In addition, our approach
does not require that the collection of TFs under consid-
eration be genetically necessary or sufficient, because we
allow for the possibilities that some of the hypothesized TFs
are not directly contributory to the cis-regulatory code, or
that there are unknown, additional TFs that are contributory.
This is accomplished by developing a quantitative metric for
the degree of enrichment for TFBS motifs among a fore-
ground gene set. Importantly, this metric allows both differ-
ent combinations of TFs and different gene sets to be
compared on equal footing, so that an initially hypothesized
TRM or foreground gene set can be refined.

We have applied CodeFinder to evaluate the roles of five
TFs, dTCF/Mad/Pnt/Twi/Tin, as regulators of gene expression
in muscle FCs. When inspecting an aggregate collection of
159 FC genes, we observed significant yet faint enrichment
for these TFs. However, restricting to a subset of FC genes
defined by up-regulation in a Pnt gof background amplified
this enrichment; moreover, we observed that the bulk of this
enrichment was due to the single TF Pnt (as might be
expected in this genetic perturbation). Similarly, by restrict-
ing to a subset of genes defined by having common
expression profiles across the genetic perturbations of
Estrada et al. [21], we again observed that this foreground
enrichment could be amplified. Here, however, we observed
that most of the signal was due to the TFBS motif
combination Pnt AND Twi AND Tin.

Interestingly, C1 and the PLE overlap at 18 genes (Figure 9).
We observed that most of the genes in C1 were also at least
somewhat up-regulated in the Pnt gof profile (30 out of the 37
genes showed expression change greater than 0, and only one
gene was down-regulated in the Pnt gof profile with a q-value
of 0.05). Thus, we hypothesize that there is a class of FC genes
likely to be targeted by Pnt, of which the PLE is an especially
high-confidence subset and C1 is another, overlapping subset
(Figure 9A). Although this hypothesized class of genes would
share Pnt as a direct regulator, it need not be commonly and
exclusively regulated by any additional TFs (i.e., they need not
all be targets of a single TRM). Thus, genes in C1 (e.g., Ndg)
could be a subset of the Pnt target genes that are also targeted
by Twi and Tin, whereas the other Pnt target genes might be
regulated by one or more other TFs in addition to Pnt (Figure
9B). Indeed, a tissue- or cell type-specific selector other than
Twi or Tin might be expected to act in conjunction with Pnt
to confer specificity to the generic Ras signal that is mediated
at the transcriptional level by Pnt [19]. Supporting this
hypothesis 34/37 genes in C1 have at least one ModuleFinder
hit scoring below�4.0 and containing Pnt AND Twi AND Tin,
whereas 5 of 7 genes in the PLE, but not in C1 do not have
such a corresponding hit. Additionally, it should be noted
that even for C1, the combination of Pnt AND Twi AND Tin
is unlikely to be genetically sufficient, as there is substantial

overlap between the distributions of ModuleFinder scores
between genes in C1 and background genes. Thus, further
TRM complexity is expected to account for the heterogeneity
of gene expression among individual FCs [21].
The enhancer discovered for an FC gene not in C1 (lbl), as

well as the two enhancers discovered driving expression in
other mesodermal cells (cardiac and adepithelial), highlight
that there are likely to be additional gene sets targeted by
some combination of dTCF/Mad/Pnt/Twi/Tin, most likely in
addition to other, currently unknown, motifs. For the example
of lbl, although it was not observed to be responsive to Pnt gof
as determined by microarray t-statistics and fold-changes, we
argue that the Ets-domain motifs in its FC enhancer may yet
be meaningful as lof of Yan (an Ets domain transcriptional
repressor) increases the number of lbl-positive FCs, suggesting
that Yan normally represses the lbl FC enhancer in the absence
of Ras/MAPK signaling [46]. For FC genes such as lbl that are
not in C1 or the PLE, however, we do not observe enrichment
for these TFs beyond the genomic background rate. This
suggests that the appropriate foreground gene sets and their
corresponding TRMs have yet to be defined.

Figure 9. Summary of New Hypotheses Derived from the Present

Analysis

(A) Venn diagram depicting various FC gene subsets. Cluster 1 (C1) and
the Pnt leading edge (PLE) genes are likely only a subset of all Pnt target
genes (dashed ellipse), and additional FC genes appear to be
unresponsive to Pnt.
(B) Schematic of complexities in FC gene regulation. Analysis of the eve
mesodermal enhancer initially directed our attention to the TFs dTCF,
Pnt, Mad, Twi, and Tin. CodeFinder analysis and subsequent exper-
imental validation implicated a subset of these TFs (Pnt, Twi, Tin) in the
regulation of genes from C1, as exemplified by Ndg. Additional (non-C1)
genes are predicted to respond to Pnt in combination with other factors
yet to be determined (X; grey lines represent hypothetical enhancers).
Still other classes of FC genes will respond to different codes, which may
include input from FC genes known to encode TFs.
DOI: 10.1371/journal.pcbi.0020053.g009
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What modes of regulation are responsible for targeting
these non-C1/PLE FC genes? Certainly, the Ras signal trans-
duction cascade is likely to play a central role, as activation of
the Ras/MAPK signaling cascade stimulates generalized FC
gene expression [21]. However, only a small fraction of FC
genes are up-regulated in a Pnt gof background. We can
envision three possibilities for Ras-dependent, but not Pnt-
dependent, gene regulation. First, Ras may activate an Ets-
domain TF other than Pnt. As the Drosophila genome encodes
eight total Ets domain proteins, it is possible that one of these
Ets TFs is acting downstream of Ras signaling to regulate FC
gene expression. However, we observed negligible enrich-
ment for the Pnt (Ets) motif when examining the class of all
FC genes. Thus, it seems unlikely that another Ets-domain TF
is regulating non-C1 or non-PLE genes. Second, it is possible
that the genes of C1 are directly targeted by Pnt, and that the
remaining FC genes are genetically downstream of C1. This
model places Pnt at the top of the FC gene regulatory
hierarchy. However, Pnt lof mutants are lacking only a subset
of embryonic muscles, a phenotype inconsistent with this key
role of Pnt in all FCs [38,47]. Third, Ras signaling is known to
affect multiple transcriptional pathways and either directly
or indirectly may activate a non-Ets domain TF to regulate FC
gene expression. In fact, there are 20 TFs in the list of 159 FC
genes. One or more of these TFs could be target(s) of Ras/
MAPK signaling and regulate FC gene expression in the non-
Pnt-responsive FCs.

We are now working to expand upon the initial analysis
presented here both computationally and experimentally in
order to refine our determination of cis regulatory codes
specific for FC gene expression. First, the genome sequences of
many additional Drosophila species will be available in the near
future [48], and our computational tool for evaluating binding
site clustering and evolutionary conservation (ModuleFinder)
will need to be extended to incorporate these additional
genomes. This can be done most carefully through the use of
tree-based methods as suggested by Moses et al. [49], and we
are utilizing aspects of their approach in the development of a
newer, improved computational tool for quantifying binding
site clustering and conservation (Warner et al., manuscript in
preparation). ModuleFinder was important for the current
work only as a method of quantifying binding site enrichment,
and an approach that better utilizes evolutionary conservation
can be expected to sharpen the results presented here. Second,
in order to resolve the cis-regulatory codes driving sub-
domains of expression within FCs, two additional data sets are
required—higher resolution expression maps for single FC
genes, and the DNA binding specificities of additional TFs
known to be expressed in FCs. Of the 20 known TFs among the
list of 159 confirmed FC genes, most have unknown DNA
binding specificities which could be determined using protein
bindingmicroarrays [50]. This represents an ideal opportunity
to expand upon the analyses presented here and even perhaps
find cis-regulatory codes for non-C1/PLE FC genes. Also, it may
allow us to determine more subtle effects regarding which TFs
target which subsets of FC genes. For example, the enrichment
observed in C1 for the Tin motif might actually not be for Tin
itself, but rather for one of the other NK homeodomain family
members, slouch, ladybird early, and lbl [51,52], that are known
FC genes.

Thus, the work presented here provides a first step toward
determining the mechanisms underlying the regulation of

gene expression in FCs. Since the formation of the somatic
mesoderm is a complex developmental process requiring
input from many signal transduction cascades and tissue-
specific TFs, it is an ideal model system for developing an
integrated experimental and computational framework that
can be applied more generally to identifying cis-regulatory
codes in animal genomes.

Materials and Methods

Promoter analysis. We obtained 1-kb regions flanking the tran-
scriptional start sites of each of the 159 FC genes from the University
of California Santa Cruz (UCSC) Genome Browser dm2 assembly
(http://genome.ucsc.edu), extending from 800 bp upstream of tran-
scriptional start to 200 bp downstream of transcriptional start (in a
second application, we repeated this analysis with 2-kb regions
extending from 1800 bp upstream of transcriptional start to 200 bp
downstream of transcriptional start). In cases where more than one
transcriptional start site was listed, we used the one closest to
translational start. We also extracted a corresponding set of 1,590
non-overlapping regions from promoters of non-FC genes. Both
foreground and background proximal promoter regions were repeat
masked using the repeat masking provided by UCSC genome browser
(http://genome.ucsc.edu). Enrichment in the promoters was measured
for each motif using the group specificity score of Hughes et al. [27].
For each of the five motifs dTCF, Mad, Pnt, Twi, Tin, we inspected
four different versions of the motif: the collection of matches to
known binding sites (see Protocol S1), as well as all words matching
within 0.5, 1.0, and 1.5 standard deviations of the motif position
weight matrix average [27]. No version of any of these motifs was
statistically significant using a confidence level of p , 0.05, after
applying a Bonferroni correction for multiple hypothesis testing.

Genome pre-processing for all ModuleFinder scans. As in the
promoter analysis, the D. melanogaster genome was obtained from the
UCSC Genome Browser dm2 assembly (http://genome.ucsc.edu). All
repetitive regions were masked using the repeat masking provided by
UCSC; all exons (as determined by the UCSC refGene annotation)
were also masked. For all ModuleFinder scans, we utilized the
alignments to D. pseudoobscura (dp2) and D. virilis (droVir1), as
provided by the UCSC Genome Browser Multiz alignment of 8
genomes (dm2, droYak1, droAna1, dp2, droMoj1, droVir1, apiMel1,
anoGam1).

D. melanogaster translational Start and Stop sites were obtained
from the UCSC refGene flat files. Because these files contain
redundant references to the same gene, all overlapping reading
frames were clustered together; the translational Start and Stop of
each such clustered gene was defined to be the most distal (i.e.,
inclusive) of all translational Starts/Stops in that gene cluster. After
clustering genes, we defined the ‘‘intergenic regions’’ to be those
sequences contained between adjacent gene clusters, and ‘‘intronic
regions’’ to be those sequences contained between the translational
Start and Stop of gene clusters. We utilize the terms ‘‘gene cluster,’’
‘‘intergenic region,’’ and ‘‘intronic region’’ throughout this section.

For all ModuleFinder scans, we utilized windows ranging between
700 and 300 bp (increment size of 50 bp), and the dp2 and droVir1
alignments. We used a ‘‘wiggle room’’ of 5 bp for considering binding
sites as conserved. For the input dTCF and Pnt binding site motifs, we
utilized the set of wordsmatching within one standard deviation of the
average position weight matrix score of the known binding sites [27];
for the Mad, Twi and Tin motifs we utilized only the collection of
known binding sites (this was done because the known binding sites for
Twi and Tin do not have much variability, and so it was not necessary
to extrapolate them. Mad is an extremely degenerate motif, and we
found that using a cutoff similar to that of dTCF and Ets caused too
large a fraction of sequence space to be considered a motif).

Analysis of flanking gene length and generation of a length-
matched background sequence set. For each FC gene we matched it to
its corresponding gene cluster. Here, although the original list of FC
genes from Estrada et al. contained 160 genes, our list contains only
159 since two genes (CG6682 and CG13789) mapped to the same gene
cluster. For each gene cluster we then computed the amount of non-
coding, non-repetitive sequence in the two intergenic and intronic
regions associated with it; thus, each intergenic region is assigned to
the two gene clusters that flank it. Detection rates for the 159 FC
genes, as well as all other genes are shown in Figure 2A (see next
section for details of how the ‘‘detection rate’’ curves are generated).

Because we observed that the 159 FC genes in general had more
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non-coding, non-repetitive sequence associated with them than other
D. melanogaster genes, we generated a length-matched set of back-
ground sequences. Here, we wanted to make sure that the
distribution of sequence lengths between the foreground and
background sets were nearly identical. Since in all following analyses
we utilize statistics based on rank-orderings of the foreground and
the background gene sets, we sought to make the foreground gene set
as uniformly distributed as possible with respect to the background
gene set when ranking genes by the length of their associated non-
coding, non-repetitive sequences. For this, we first partitioned the D.
melanogaster genome into intergenic and intronic regions. We then
ordered the regions in each set by length. For the intergenic set of
regions, we defined the ‘‘foreground regions’’ to be those regions
upstream or downstream of one of the 159 FC genes, and we defined
the ‘‘non-foreground regions’’ to be the collection of all other regions
(i.e., intergenic regions not upstream or downstream of an FC gene).
For each foreground region, we took the seven non-foreground
regions occurring directly above and below it in the length-based
ranking as background regions (we found that seven was the largest
number that could be used and still produce a well-matched
background set). In the event that two or more foreground regions
did not have 14 background regions ranked between them, we
continued to extend above and below them so that the center of this
local collection of background regions was the same as the center of
their associated foreground regions. Hence, for each foreground
region, we were able to associate to it exactly 14 length-matched
background regions. We then repeated this matching for the intronic
regions to obtain a collection of 14 length-matched background
intronic regions for each foreground intronic region. Finally, we
concatenated the two intergenic and intronic regions of each
foreground gene, as well as the two background intergenic and
intronic regions associated with it (note that the background regions
that are concatenated need not be adjacent to each other in the D.
melanogaster genome, but for simplicity we shall still refer to them as
‘‘background genes’’). In Figure 2B, the detection rate curves for the
concatenated foreground and background genes are shown, and it
can be seen that the distributions of their lengths are well matched.
Note that for the subsequent analyses involving subsets of the 159 FC
genes, we utilized subsets of this background set. Thus, any subset of
the 159 FC genes is compared to its associated length-matched subset
of background genes, which always contains 14 times as many
sequences as the foreground.

Detection rate curves and relation to WMW. In Figures 2–6,
detection rate curves are shown. In each, foreground and background
genes are first pooled together and ordered by a continuous variable
(either ModuleFinder score, length, or change in gene expression).
Let F (respectively, B) denote the foreground (respectively, back-
ground) set, and let jFj (respectively, jBj) denote the number of genes
in the set. For each i2[1, jFjþjBj], let dF(i) be the indicator function
that takes the value ‘‘1’’ if the i’th-ranked gene is in F and ‘‘0’’
otherwise; similarly, let dB(i) be the corresponding indicator function
for B. The foreground and background detection rate curves are then
defined by

DF ðiÞ ¼
1
jFj
Xi
j¼1

dF ðjÞ

DBðiÞ ¼
1
jBj
Xi
j¼1

dBðjÞ
: ð1Þ

After scaling the X-axis to have a width of 1, the area between the
detection rate curves is given by

Area ¼ 1
jF j þ jBj

XjF jþjBj
i¼1
ðDF ðiÞ � DBðiÞÞ

¼ 1
jFj þ jBj

"
1
jF j

XjFjþjBj
i¼1

dF ðiÞðjF j þ jBj � iþ 1Þ
 !

� 1
jBj

XjFjþjBj
i¼1

dBðiÞðjF j þ jBj � iþ 1Þ
 !#

¼ 1
jFj þ jBj

1
jBj

XjFjþjBj
i¼1

idBðiÞ
 !

� 1
jFj

XjF jþjBj
i¼1

idF ðiÞ
 !" #

¼ 1
jF j þ jBj

qB

jBj �
qF

jF j

� �

; ð2Þ

where qF and qB indicate the sum of the foreground and background
ranks. Since

qF þ qB ¼
ðjF j þ jBjÞðjF j þ jBj þ 1Þ

2
; ð3Þ

it can be shown that

Area ¼ 1
jBjjFj

jFjðjF j þ 1Þ
2

þ jBjjF j
2
� qF

� �

¼ 1
jBjjF j qB �

jBjðjBj þ 1Þ
2

� jBjjFj
2

� � : ð4Þ

Recall that the WMW test statistic is computed according to the
formula [35]

~U ¼ U � l
r

; ð5Þ

where

U ¼ jF jjBj þ jF jðjFj þ 1Þ
2

� qF ð6Þ

and

l ¼ jBjjFj
2

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jBjjF jðjF j þ jBj þ 1Þ

12

r : ð7Þ

(We note that there is a slightly more complicated formula for r in
the event that there are ties in the rank ordering [35]; we actually
utilize this version of r that corrects for ties in rankings for all
computations presented in this paper.) The variable ~U is approx-
imately an N(0,1) random variable if the foreground and background
sizes are large, and statistical significance is computed by looking at
the number of standard deviations into the tail of this normal
random variable the test statistic falls. Therefore,

Area ¼ U � l
jBjjFj ¼

r
jBjjF j

� �
~U : ð8Þ

Thus, the area between the detection rate curves is simply a
graphical representation of the WMW test statistic, scaled so that only
effect sizes (but not sample sizes) are evaluated. Also, note that this
measurement is closely related to the area under a receiver-operater
curve [53].

Finally, we note that in displaying the detection rate curves, if
there are multiple genes with the same score (this frequently occurs,
for example, in considering AND combinations where many genes get
a score of ‘‘0’’), then these genes are randomly ordered when plotted.
When computing the WMW p-value for this enrichment (or in the
corresponding area calculation), however, the correction factor for
ties is utilized [35].

Clustering of gene expression microarray data. All clustering was
performed using Cluster [40], and visualized with Java Treeview [54].
We first performed self-organizing map clustering using (Xdim ¼ 1,
Ydim¼ 13, iterations¼ 100,000) for genes, and (Xdim¼ 1, Ydim¼ 4,
iterations ¼ 20,000) for arrays. We median-centered the columns of
this output and hierarchically clustered genes and arrays using a
similarity metric of ‘‘correlation (uncentered),’’ and ‘‘average linkage.’’

Proneural cluster analysis. We obtained all genes from the
Supplementary Data of Reeves and Posakony [17]. We note that
their original list of non-SOP contains 22 (rather than 18) genes, eight
of which are pairs of genes occurring adjacent to one another in the
genome. These pairs are (CG3396:CG3096), (CG8328:CG8333),
(CG8361:CG8365) and (CG3796:CG3827). In order to avoid the
problem that a ModuleFinder hit occurring between two of these
genes could be counted twice, we dropped one element of each pair
(CG3096, CG8333, CG8365, CG3827).

For the Ac/Sc motif, we used RCAGSTGN, as stated by Reeves and
Posakony [17] (note that the final degenerate position was added at
the end in order to prevent the motif from being able to overlap
itself). Su(H) binding sites are listed in Protocol S1; for all scans with
it, we utilized the set of words matching within 1 standard deviation
of the motif average [27]. We note that there are additional known
Su(H) binding sites from the enhancer of split complex, but these were
not utilized to avoid circularity, as many genes from this complex are
PNC genes.

Validation of predicted enhancers. CRM regions were PCR-
amplified in duplicate, sequence verified, subcloned into the pETW-
nuclacZ reporter vector and then injected into y w embryos as
previously described [19]. At least four independent insertion lines
were assessed for each reporter construct. Immunohistochemistry, in
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situ hybridization, and fluorescent in situ hybridization followed
standard protocols [55].

Supporting Information

Figure S1. Detection Rate Curves Using as a Foreground Gene Set 152
Genes That Are FC but Not PNC Genes

Foreground and background regions were searched using the motif
combination Su(H) OR Ac/Sc.

Found at DOI: 10.1371/journal.pcbi.0020053.sg001 (1.0 MB DOC).

Protocol S1. Supplementary Methods

Binding sites and sources for dTCF, Mad, Ets, Twist and Tin, SuH

Found at DOI: 10.1371/journal.pcbi.0020053.sd001 (235 KB DOC).

Table S1. Areas for All Boolean Combinations of the Motifs dTCF/
Mad/Pnt/Twi/Tin Using as Foreground Gene Sets C1, PLE, and PTE

Found at DOI: 10.1371/journal.pcbi.0020053.st001 (25 KB XLS).

Table S2. Information on All Tested Candidate CRMs

Found at DOI: 10.1371/journal.pcbi.0020053.st002 (51 KB XLS).
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