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Abstract
Background: One of the challenges of the analysis of pooling-based genome wide association
studies is to identify authentic associations among potentially thousands of false positive
associations.

Results: We present a hierarchical and modular approach to the analysis of genome wide
genotype data that incorporates quality control, linkage disequilibrium, physical distance and gene
ontology to identify authentic associations among those found by statistical association tests. The
method is developed for the allelic association analysis of pooled DNA samples, but it can be easily
generalized to the analysis of individually genotyped samples. We evaluate the approach using data
sets from diverse genome wide association studies including fetal hemoglobin levels in sickle cell
anemia and a sample of centenarians and show that the approach is highly reproducible and allows
for discovery at different levels of synthesis.

Conclusion: Results from the integration of Bayesian tests and other machine learning techniques
with linkage disequilibrium data suggest that we do not need to use too stringent thresholds to
reduce the number of false positive associations. This method yields increased power even with
relatively small samples. In fact, our evaluation shows that the method can reach almost 70%
sensitivity with samples of only 100 subjects.
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Background
The availability of genotyping assays for hundreds of
thousands of single nucleotide polymorphisms (SNP)s is
making genome wide association (GWA) studies more
accessible to a broad range of genotype-phenotype inves-
tigations. The promise of this technology is that it will
accelerate gene discovery for polygenic diseases and com-
plex phenotypes of Mendelian disorders because data for
all genes can be obtained simultaneously [1,2]. At the
same time, the large number of significance tests per-
formed is expected to result in a large number of false pos-
itive association signals. In fact, the number of signals
observed by chance may well be greater than those that
are authentic [3]. Thus, the development of analytic meth-
ods and strategies to distinguish authentic signals from
those due to chance will contribute significantly to dis-
ease-gene association studies.

Here we describe a modular procedure to analyze data
from pooling-based GWA studies that use the Illumina
SNP microarray technology [4]. Rather than genotyping
individual samples, the pooling-based technology types a
carefully constructed pool of DNA samples that can be
used to infer allele frequencies and is an affordable alter-
native to GWA studies that are still a financial burden for
many investigators. Several studies have shown the useful-
ness of pooling-based GWA studies to discover SNPs asso-
ciated with disease [5-9] using well calibrated methods
[7,10-12], and a variety of methods to estimate allele fre-
quencies from pooled-based studies that use the Affyme-
trix microarray technology have been proposed [13,14].
Our objective is twofolds: (i) we wish to assess reproduci-
bility and accuracy of the algorithm proposed by Illumina
to detect chromosomal aberrations when used to estimate
allele frequencies from pooled DNA samples [15]; and (ii)
we propose a modular approach to the analysis of pool-
ing-based GWA studies that limits the loss of power due
to both the use of pools of DNA samples and the issue of
multiple comparisons.

Several studies apply stringent thresholds on the signifi-
cance level that is required to determine significant SNP-

phenotype associations [16-18]. Contrary to this
approach, our method integrates Bayesian tests for general
associations [19] with decision rules based on the struc-
ture of linkage disequilibrium (LD) discovered through
the International HapMap project [20], and other
machine learning techniques to reduce the number of
false positive associations. We also describe a hierarchical
procedure to summarize the findings in terms of genes
that can be further synthesized into gene sets using Gene
Ontology annotations [21], pathways [22,23], or chromo-
somal bands. We evaluate this method using data from
the sixty unrelated CEPH parents used for the Interna-
tional HapMap project [20] and two independent data-
sets. The first is a study of fetal hemoglobin (HbF) levels
in African American subjects with sickle cell anemia and
the objective is to discover genetic modulators of HbF.
The second dataset is a study of exceptional longevity in a
cohort of centenarians. In both datasets, using our novel
analytic approach, we identified association signals in
genes previously known to affect these phenotypes. The
method is implemented in the R package and can be inte-
grated with other R packages for genetic analysis, or GWA
studies [24,25]. We develop the method for the analysis of
pooled DNA samples [26,27], but the approach can be
easily extended to the analysis of samples that are individ-
ually genotyped.

Results
We ran three sets of experiments to assess the reproduci-
bility and accuracy of the estimates of the allele frequen-
cies derived from pooled DNA samples, as well as the
sensitivity and specificity of our modular procedure.

Experiment 1: accuracy and reproducibility
We obtained DNA samples from the 60 unrelated parents
used in the HapMap CEU panel and created 2 duplicated
pools of 30, 45 and 60 samples each (Table 1 provides a
summary). The pooled DNA samples were analyzed in
duplicates with the Illumina Sentrix HumanHap300 Gen-
otyping BeadChip (v.1) and b-allele frequencies were esti-
mated using the Illumina LOH and Copy Number
analysis tool. The reproducibility was assessed by the

Table 1: Summary of the results of Experiment 1.

Number of 
pools

Sample size Average 
difference

Standard 
deviation

Correlation Average error Standard 
deviation

Correlation

2 30 0.0043 0.0303 0.9940 0.0304 0.0565 0.9860
2 45 0.0011 0.0295 0.9956 0.0331 0.0573 0.9890
2 60 0.0164 0.0498 0.9873 0.0451 0.0668 0.9890

Column 1: pool description; Column 2: number of samples per pool; Column 3: average difference between estimates of allele frequencies in 
repeated pools; Column 4: standard deviation of differences; Column 5: correlation between repeated allele frequency estimation. Column 6: 
average difference between estimates of allele frequencies from pooled DNA samples and individually genotyped samples. Column 7: standard 
deviation of the differences; Column 8: Correlation between estimates of allele frequencies from pooled DNA samples and individually genotyped 
samples.
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agreement between allele frequency estimates in the two
replicate samples for each pool (Table 1). Shown in Figure
1 is the scatter plot of two independent replicates of allele
frequency estimates for the 22842 SNPs tagging chromo-
some 1 (top), and the 5452 SNPs tagging chromosome 22
(bottom) obtained with pools of 60 samples. The plots
show a high degree of agreement that is confirmed for dif-
ferent sample sizes as shown by the results summarized in
Table 1. Plots for other chromosomes are in the supple-
mentary material [28].

We assessed the accuracy of the allele frequency estimates
from pooled DNA samples by comparing the average esti-
mates over the replicated pools with the allele frequencies
computed using individually genotyped DNA samples
that are available from the web site of the HapMap project
[29]. A scatter plot of part of the results is displayed in Fig-
ure 1 for pools of 60 samples. The error analysis summa-
rized in Table 1 suggests that, on average, the allele
frequency based on the analysis of replicated pooled DNA
samples differ from those based on individually geno-
typed data by approximately ± 0.04 but the error can be as

The reproducibility of the allele frequency estimates is shown by the scatter plot of repeated estimates of allele frequency inferred from pooled DNA samples (left)Figure 1
The reproducibility of the allele frequency estimates is shown by the scatter plot of repeated estimates of allele frequency 
inferred from pooled DNA samples (left). The labels "run 1" and "run 2" in the x- and y-axis specify each replication. The accu-
racy of the allele frequency estimates is shown by the scatter plot of the estimates of allele frequency inferred from pooled 
DNA samples (y-axis in the right plots) and those computed from individually genotyped samples (x-axis). The analysis of the 
other chromosomes shows similar results.
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large as ~0.12 = 0.04+2×0.06/√2 thus making differences
in allele frequencies smaller than 0.24 difficult to detect
because of technical errors. However, our analysis shows
that less than 5% of the estimates based on pools of DNA
samples differ from those based on individually geno-
typed samples by more than 0.12, and less than 10% dif-
fer by more than 0.08. This suggests reducing the
minimum detectable allele frequency difference to 0.15
with a 10% chance of error. Furthermore, we have
observed that amplifying DNA does not appear to affect
either the reproducibility or the accuracy of the analysis.

To infer the effective sample size to be used in the analysis,
we also looked at the distribution of the ratio between the
two types of allele frequency estimates: say p(Si) = ni/n
and q(Si) where ni is the frequency of the minor allele of
the SNP Si computed from the samples that were typed
individually, n is the overall sample size, and q(Si) is the
frequency of the same minor allele computed from the
analysis of the pooled DNA samples, in the different sets.
The analysis demonstrated that log(q(Si)/p(Si)) has
approximately a normal distribution with 0 mean and
standard deviation 0.35. From this data, we deduced that
about 95% of allele frequency estimates derived from the
pooled DNA samples can be assumed to be within the
interval p(Si) exp(± 1.95 × 0.35) from which we derive the
empirical relation between p(Si) and q(Si): 0.51 p(Si) <
q(Si) < 1.98 p(Si) with a range of uncertainty of 1.47 ni/
n. The inequality suggests that when we infer allele fre-
quency from pooled DNA samples, we have a loss of pre-
cision approximately equivalent to using 2/3 (= 1/1.47) of
the original DNA sample size. We call this the "effective
sample size" used in the calculation of the Bayesian test of
association.

Experiment 2: specificity
To estimate the false positive rate (FPR) we used real data
from pools of DNA samples to create artificial sets of
pools. The original pools are described in Table 2 and
were generated in duplicates to discover genetic variants
associated with exceptional longevity [30], and fetal
hemoglobin expression in subjects with sickle cell anemia
[31]. The Illumina Sentrix HumanHap300 Genotyping
BeadChip was used for all the experiments. We created the
artificial sets of pools by mixing replicates of different
pool sets. For example, we generated a set of two pools by
taking one replicate of the pooled DNA samples from the
female centenarians and one replicate of the pooled DNA
samples from the younger female controls, and we con-
structed a second set of two pools by taking the remaining
replicates from the two sets (See Figure 2 for an example).
Because the two artificial sets of pools are homogeneous
relative to the phenotype, the differences in allele frequen-
cies between the two sets can be attributed to chance, and
the SNPs with significant differences in allele distribution

are false positives. We repeated this analysis by mixing dif-
ferent types of pools of DNA samples and using a BF>3,
together with the LD and regional filters, we observed a
false positive rate ranging between 0.001 and 4×10-4 with
a mean of 0.001, and an average of 300 SNPs selected by
chance. Note that this number is substantially smaller
than the number of false positive associations that we
would expect by chance using a BF>3. This threshold is
equivalent to accepting an association when the posterior
probability of the association is greater than 0.75, so that
we expect 1 in 4 associations to be false. Also the specifi-
city of the selected and significant genes was very high:
The number of genes that by chance were selected in two
unrelated analyses was 9 and this number was further
reduced to 7 when we limited attention to significant
genes. These numbers should provide a reference when
we examine the reproducibility of findings in different
studies, because we expect that, by chance alone, we
would have an agreement in about 0.1% of findings. We
note that long genes that are tagged by a larger number of
SNPs are more likely to be selected by chance in different
studies. Figure 3 displays the log10 BF in the 1,114 false
positive associations generated in approximately the 106
association tests. The plot shows an exponential decay of
the BF so that the chance to observe a very large BF has an
exponential decay, and the probability of observing a BF
greater than 10 by chance is 6 × 10-4, whereas the proba-
bility of observing a BF greater than 100 is 3 × 10-4, and
greater than 1000 is 2 × 10-4. This analysis however shows
that trying to reduce the false positive rate by imposing a
stringent threshold on the BF would likely reduce the
power of relatively small association studies and require
unrealistically large sample sizes.

We also run experiments to assess the effect of LD and
regional filters on the specificity. Using the same simu-
lated sets, we run the analysis by using only a BF>3 to
select the significant SNPs, and also examined the effect of
adding either the LD filter or the regional filter or both on

Table 2: Summary of the pools of DNA samples that were used 
for the validation of the analytical method. Each pool was done in 
duplicates.

Phenotype Sample size

Exceptional 
longevity

130 male centenarians

130 male controls
130 female centenarians

100 female controls
Fetal 

hemoglobin 
expression

55 sickle cell anemia subjects with fetal hemoglobin 
below 3% of the total hemoglobin

54 sickle cell anemia subjects with fetal hemoglobin 
above 6.5% of the total hemoglobin
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the false positive rate. Our results suggest that the LD filter
reduces the false positive rate by 43%, while the regional
filter alone increases the false positive rate by approxi-
mately 25%, and both filters decrease the false positive
rate by 20%. These results are consistent with the intuition
that the regional filter increases the power by finding clus-
ters of SNPs that individually have small effects and
would be disregarded by a one-SNP-at-a-time analysis.
However, the effect is to slightly increase the false positive
rate. This conjecture is confirmed in the next experiments
that we conducted to assess the sensitivity.

Experiment 3: sensitivity
In related work we are analyzing pools of DNA samples as
a screening tool to discover genetic variants associated
with exceptional longevity [30], and fetal hemoglobin
(HbF) expression in subjects with sickle cell anemia [31].
As an indication of the sensitivity of technology and ana-
lytic method, we searched for SNPs in the Illumina Sentrix
HumanHap300 Genotyping BeadChip that have been
reported associated with either trait in independent stud-
ies, and verified whether an association was found based
on the pooled DNA samples.

HbF experiment
We created two pools using DNA samples from 55
patients in the top and 54 patients in the bottom quartile

Example of the artificial pool sets that we created to assess the specificity of the procedureFigure 2
Example of the artificial pool sets that we created to assess the specificity of the procedure. As an example, the top four pools 
were generated to compare the genome of centenarians (pools 1 and 2) with that of younger controls (pools 3 and 4). The 
two artificial pool sets are obtained by mixing pools of centenarians DNA with those of controls.

Distribution of the log10 Bayes factor in 1,114 false positive associations generated in approximately 106 association tests with an estimated false positive rate 5 10-6Figure 3
Distribution of the log10 Bayes factor in 1,114 false positive 
associations generated in approximately 106 association tests 
with an estimated false positive rate 5 10-6. The analysis 
shows that the chance to observe a very large Bayes factor 
has an exponential decay, and the probability of observing a 
Bayes factor greater than 10 by chance is 6 10-4, the probabil-
ity of observing a Bayes factor greater than 100 is 3 10-4, 
greater than 1000 is 2 10-4.
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of HbF concentrations. These patients were part of a clin-
ical trial described in [32]. The pools were run in dupli-
cates, and the data analyzed using the method proposed
here. We searched the literature and found 36 SNPs with
rs numbers that were reported associated with different
levels of HbF [31,33-35]. Thirteen of these SNPs are in the
Illumina array, and only 3 of these were found associated
in our analysis with a BF greater than 1, and 2 with a BF
greater than 3. The moderate effect of the other 10 SNPs
(odds ratios between 0.55 and 1.76) is consistent with the
weak associations reported by other investigators and
would not be detectable with our sample size of about 60
subjects per group. In fact, a sample size of 60 subjects
would give at most 30% power to detect an odds ratio of

1.75 when the MAF in one group is 0.5. We also found 23
SNPs in the Illumina array that are within 150 kb of the
other 23 reported SNPs, and are associated with HbF lev-
els with a BF greater than 1, and 13 of these had a BF
greater than 3. Fifteen of these SNPs were typed as part of
the HapMap project and ten of these are in strong LD
(Bayes D' > 0.8)[36]. Thus the analysis based on pooled
DNA samples discovered association of 26 SNPs, and for
13 of them the association was strong. This analysis sug-
gests a sensitivity of 72% and if we limit attention to asso-
ciations supported by a BF of at least 3 the sensitivity is
36%. The details of the associations are in Table 3.

Table 3: List of SNPs that are known to be associated with different levels of HbF and results of the analysis based on pooled DNA 
samples.

Number SNP Band Gene Validated Distance D' BF P_H P_L OR

1 rs1143637 2q13 IL1B rs12469600 16976 NA 1.39 0.13 0.04 3.08
2 rs31481 5q23.3 IL3 rs40401 724 1.00 2.32 0.48 0.65 0.48
3 rs271158 6q23.2 rs271156 641 1.00 22.86 0.53 0.77 0.35
4 rs454877 6q23.2 EYA4 rs211433 475 NA 2.43 0.49 0.32 2.09
5 rs212770 6q23.2 EYA4 rs11154727 4274 NA 1.25 0.12 0.04 3.03
6 rs2295199 6q23.2 rs2295199 0 0.51 0.83 0.89 0.58
7 rs210948 6q23.2 MYB rs210798 17242 NA 2.17 0.78 0.90 0.38
8 rs509342 6q23.2 PDE7B rs560713 23645 0.95 1.47 1.00 0.95 17.80
9 rs2076192 6q23.3 MAP7 rs2076193 44438 0.97 1.30 0.52 0.37 1.88

10 rs997139 6q23.3 MAP7 rs3799419 2100 1.00 1.35 0.06 0.14 0.36
11 rs3778314 6q23.3 MAP7 rs2181096 25746 0.89 57.04 0.61 0.85 0.28
12 rs2237262 6q23.3 MAP3K5 rs3799472 18405 0.98 1.03 0.62 0.76 0.53
13 rs2012700 6q23.3 PEX7 rs2012700 0 0 1.50 0.34 0.50 0.52
14 rs717088 6q23.3 PEX7 rs717088 0 0.47 0.37 0.47 0.65
15 rs3799476 6q23.3 PEX7 rs3799479 44021 NA 1.98 0.12 0.25 0.42
16 rs1342645 6q23.3 PEX7 rs1342645 0 0.67 0.77 0.86 0.55
17 rs1342641 6q23.3 rs1342642 22583 0.06 6.12 0.96 0.84 4.98
18 rs1322393 6q23.3 IL20RA rs1322394 661 1.00 3.00 0.23 0.40 0.44
19 rs44450 6q23.3 rs276568 3229 1.00 47.32 0.37 0.64 0.34
20 rs1349115 8q12.1 TOX rs1349115 0 0.69 0.29 0.41 0.59
21 rs10504269 8q12.1 TOX rs10504269 0 0.61 0.72 0.82 0.58
22 rs6997859 8q12.1 TOX rs6997859 0 0.37 0.23 0.17 1.45
23 rs12155519 8q12.1 TOX rs12155519 0 0.94 0.58 0.44 1.77
24 rs1947178 8q12.1 TOX rs1947178 0 21.86 0.10 0.29 0.28
25 rs746867 8q12.1 TOX rs746867 0 0.29 0.29 0.35 0.76
26 rs389349 8q12.1 TOX rs389349 0 0.42 0.95 0.93 1.43
27 rs851800 8q12.1 TOX rs396720 23622 0.15 9.20 0.28 0.11 3.24
28 rs380620 8q12.1 TOX rs2561145 300069 0.58 10.67 0.08 0.24 0.26
29 rs2043190 9q34.11 ASS rs540140 609 NA 19.56 0.99 0.88 24.90
30 rs7482144 11p15.4 HBG2 rs3813727 20257 NA 2.52 0.17 0.32 0.43
31 rs723623 15q13.3 C15orf16 rs6493688 8825 0.51 1.31 0.93 0.84 2.66
32 rs1867380 15q22.31 AQP9 rs1867380 0 0.28 0.82 0.84 0.85
33 rs4489951 15q22.31 MAP2K1 rs4489951 0 17.66 0.36 0.60 0.38
34 rs1440372 15q22.31 SMAD6 rs2469141 65753 0.03 2181.00 0.68 0.33 4.24
35 rs8038623 15q22.31 SMAD3 rs6494633 16831 NA 87.23 0.88 0.65 4.09
36 rs2227319 17q21.1 CSF3 rs2071369 1460 1.00 3.42 0.90 0.77 2.88

Column 1: row number; Column 2: SNP ID; Column 3: Cytogenic band; Column 4: Genes tagged by the SNP; Column 5: SNP in the Illumina array that 
was used to compare the association. If the SNP to be validated was not in the array, we searched for the closest SNP within 100 kb from that to be 
validated with a positive Bayes Factor; Column 6: distance between the two SNPs; Column 7: Bayes D' between the two SNPs, an NA means that the 
SNPs originally reported as associated with HbF is not in the HapMap data. Column 8: Bayes Factor; Column 9–10: estimates of allele frequencies in the 
pools of DNA from patients with high HbF and low HbF; Column 11: Odds ratio. The SNPs 6, 13, 14, 16, 20–26, 32 and 33 are in the array and SNPs 
13, 24 and 33 were found associated with different levels of HbF. Highlighted in bold are the associations confirmed by our analysis.
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Longevity experiment
We created pools of DNA samples from unrelated cente-
narians and younger controls. Because there is evidence of
gender effect [37] --- 85% of centenarians are female--- we
created distinct pools for males and females as summa-
rized in Table 2. We searched the literature and found 36
SNPs with rs numbers reported as associated with longev-
ity [38-40]. Seven of these 36 SNPs are in the Illumina
array, and five of these seven were found associated in our
analysis. For 21 of the remaining 29, we found SNPs
within 100 kb that were associated with longevity in
either the males and female comparisons, or both. These
SNPs are reported in Table 4. The analysis suggests
approximately 67% sensitivity, and this is consistent with
the sensitivity estimated with the HbF experiment. We
also noted that the regional filter helped identify some of
the associations that would be lost with a tight threshold
on the BF. As an example, the SNP rs2227956 on HSPA1A
was found associated with longevity in males only when
the regional filter is used, and the two SNPs in WRN -a
well known longevity gene in mice [41] – were selected by
the regional filter. A similar form of sensitivity analysis is
to see whether the GSEA analysis can lead to discover sets
of functionally similar genes that are known to be associ-
ated with longevity. GSEA analysis of the centenarian
cohort revealed several enriched GO biological categories
(Table 4 and manuscript in preparation). Among the sig-
nificantly enriched categories were genes associated with
immune response (e.g., CSF3) and DNA repair (e.g.,
XRCC4), see Table 4. Intriguingly, CSF3 (also known as
GCSF) is reported to influence migration of stem cells
between the bone marrow and blood [42,43] and appears
to promote regeneration of myocardial tissue [44-46],
which has clear relevance to longevity. The gene XRCC4
has a well established role in DNA repair [47], and unre-
paired DNA has been reported to accelerate ageing, possi-
bly through dysregulating the IGF/growth axis [48].
Therefore, a comprehensive analysis of these and other
genes present with the enriched gene sets that we detected
will be essential to fully appreciate pathways engaged that
contribute to the longevity phenotype.

Discussion and Conclusion
We have developed a hierarchical and modular approach
to the analysis of genome wide genotype data based on
pooled DNA samples. The method incorporates quality
control data, information about linkage disequilibrium,
Bayesian association tests, physical distance and gene
ontology to identify associations warranting further inves-
tigation. Our evaluation using real data has shown the
accuracy, reproducibility, sensitivity and specificity of the
method.

Compared to other approaches, the integration of Baye-
sian tests with information about linkage disequilibrium

and other machine learning techniques implies that we do
not need to use too stringent thresholds to reduce the
number of false positive associations. The implication of
this fact is an increased power even with relatively small
samples. In fact, our estimate of the sensitivity shows that
the method can reach almost 70% sensitivity with sam-
ples of only 100 subjects.

Although we developed the approach to analyze pooled
DNA samples, the method can also be used for the analy-
sis of individually genotyped samples.

Methods
Genotyping
For the HbF study, DNA was obtained from the 60 sub-
jects with HbF levels below the first quartile of the distri-
bution, and the 60 subjects with HbF levels above the
third quartile who were enrolled in the Multicenter Study
of Hydroxyurea (MSH) study in Sickle Cell Anemia [49].
DNA samples from 260 centenarians and a control group
of 230 subjects were obtained from the New England Cen-
tenarian Study: a cross-sectional study of individuals aged
97 and older conducted at the Boston Medical Center.
CEPH DNA samples of the sixty unrelated parents used for
the International HapMap project [20] were obtained
from the Coriell Institute, Camden, NY and used to com-
pare the accuracy and reproducibility of the estimates of
allele frequency in pooled DNA samples compared to
individually genotyped samples. For DNA pool construc-
tion and to ensure that each individual contributed
equally to the pool, we first measured DNA stock solu-
tions using a fluorimetric method (RNAseP) against a
standard curve constructed from known concentrations of
human genomic DNA. We then diluted the stock solu-
tions to 10 ng/ul and measured the concentrations of
these working solutions by means of PicoGreen. In the
case of samples for which the CV of the three measure-
ments was greater than 10%, quantification was repeated
in triplicate until the CV was smaller than 10. Measure-
ments were highly reproducible, with a correlation coeffi-
cient of 0.97 between the third measurement and the
average of the first two. Based on these concentrations, 50
ng of DNA were added to the pool for each individual.
The pools of DNA were analyzed on the Sentrix
HumanHap300 bead chip (Illumina) according to the
manufacture's protocol. The data used in the HbF and
longevity studies will be released with companion publi-
cations. We make available the data derived from pools of
CEPH DNA samples from the supplementary web site
[28]. The HbF and longevity studies were approved by the
Institutional Review Boards of Boston University.

Association test

The overall analytic strategy is shown in Figure 4. The first
module is a statistical procedure to test the allelic associa-
Page 7 of 14
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Table 4: List of SNPs that were found associated with exceptional longevity in different studies, and results based on the analysis of pooled DNA samples.

Males Females

Index SNP Band Gene Validated Distance D' BF P_L P_C OR Validated Distance D' BF P_L P_C OR

1 rs1870377 4q12 KDR rs2305945 1128 1.00 1.5 0.84 0.75 1.71 rs2305945 1128 1.00 1.1 0.77 0.68 1.62
2 rs2866164 4q23 MTP rs7693203 9187 NA 3.4 0.82 0.72 1.83 rs1057613 14042 NA 8.6 0.64 0.49 1.90
3 rs750032 4q24 PPP3CA rs2850971 3819 NA 41.4 0.87 0.74 2.39 rs2850971 3819 NA 10.8 0.82 0.69 2.12
4 rs951085 4q24 rs9999238 29363 0.98 0.2 0.81 0.83 0.85 rs9999238 29363 0.98 10.9 0.81 0.67 2.09
5 rs28360135 5q14.2 XRCC4 rs1382367 40462 NA 295053.4 0.32 0.59 0.33 rs1382367 40462 NA 2.6 0.50 0.63 0.58
6 rs1799945 6p22.2 HFE rs1572982 3188 0.99 28228.6 0.67 0.42 2.78 rs1572982 3188 0.99 11.2 0.44 0.61 0.51
7 rs9380254 6p21.33 MICA rs1131896 780 1.00 5744.1 0.67 0.87 0.32 rs1131896 780 1.00 0.8 0.83 0.84 0.96
8 rs2227956 6p21.33 HSPA1L rs2227956 0 12.6 0.10 0.20 0.42 rs2227956 0 0.3 0.18 0.14 1.31
9 rs1800797 7p15.3 IL6 rs2056576 5019 0.64 0.2 0.70 0.72 0.91 rs2056576 5019 0.99 1.7 0.75 0.64 1.70
10 rs662 7q21.3 PON1 rs662 0 0.2 0.33 0.29 1.21 rs662 0 2.8 0.32 0.21 1.77
11 rs1799983 7q36.1 NOS3 rs2373929 18701 0.16 6.1 0.50 0.64 0.57 rs2373929 18701 0.07 0.6 0.63 0.54 1.45
12 rs2251621 8p12 PURG rs13269094 8189 0.66 1936.2 0.07 0.22 0.26 rs1362911 23018 0.47 >10^6 0.69 0.96 0.10
13 rs2725362 8p12 WRN rs3024239 158 NA 4942.7 0.34 0.57 0.39 rs2725362 0 27.2 0.48 0.66 0.48
14 rs1346044 8p12 WRN rs1346044 0 257.9 0.36 0.19 2.44 rs1346044 0 0.4 0.28 0.21 1.46
15 rs5744256 11q23.1 IL18 rs243908 16909 0.61 >10^6 0.63 0.29 4.02 rs243908 16909 0.96 0.2 0.28 0.28 1.01
16 rs675 11q23.2 APOA4 rs581015 5559 0.28 1.3 0.61 0.51 1.55 rs10502189 371 1.00 4.8 0.05 0.00 56.22
17 rs1467558 11p33 CD44 rs1467558 0 2.0 0.91 0.83 1.97 rs1467558 0 0.2 0.84 0.86 0.87
18 rs9536314 13 KL rs9536314 0 5.1 0.24 0..36 0.55 rs9536314 0 99.0 0.36 0.18 2.56
19 rs861539 14 XRCC3 rs861539 0 0.15 0.75 0.74 1.05 rs861539 0 68.7 0.74 0.55 2.27
20 rs8052394 16q12.2 MT1A rs7189840 9798 NA 0.14 0.59 0.57 1.09 rs7189840 9798 NA 54.1 0.56 0.37 2.18
21 rs1800776 16q13 CETP rs3764261 1910 NA 1.1 0.59 0.69 0.65 rs3764261 1910 NA 0.15 0.66 0.67 0.97
22 rs5882 16q13 CETP rs5882 0 0.19 0.39 0.35 1.19 rs5882 0 0.17 0.37 0.40 0.88
23 rs704 17q11.2 VTN rs2027993 12085 0.99 17.3 0.45 0.61 0.53 rs2027993 12085 0.99 1.1 0.58 0.47 1.57
24 rs4344 17q23.3 ACE rs4343 693 1.00 1.4 0.69 0.78 0.61 rs4343 693 1.00 6.4 0.66 0.51 1.87
25 rs2252673 19p13.2 INSR rs2059807 15691 0.23 1.5 0.63 0.73 0.63 rs2059807 15691 0.31 0.2 0.75 0.72 1.16
26 rs1799782 19 XRCC1 rs9394611128 11001 NA 1.4 0.05 0.10 0.47 rs939461 11001 NA 12.6 0.09 0.02 5.88

Column 1: row number; Column 2: SNP ID; Column 3: Cytogenic band; Column 4: Genes tagged by the SNP; Column 5: SNP in the Illumina array that was used to compare the association as described in 
the caption of Table 3; Column 6: distance between the two SNPs; Column 7: Bayes D' between the two SNPs; Column 8: Bayes Factor; Column 9–10: estimates of allele frequencies in the pools of DNA 
from male centenarians and younger controls; Column 11: Odds ratio. Columns 12–18: as columns 5–11 but for the pools comparing female centenarians to younger controls. The SNPs 8, 10, 14, 16–19, 22 
are in the array and SNPs 8, 14, 17–19 were found associated with longevity in females and/or males. Highlighted in bold are the associations confirmed by our analysis.
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tion between each individual SNP and the phenotype. The
input data are the allele relative frequencies estimated
with the "b-allele frequency" value provided by the Illu-
mina Beadstudio genotype module. This value represents
the relative proportion of each allele in the DNA sample
and is used by the Illumina loss of heterozygosity (LOH)
and Copy Number analysis tool [15] to detect chromo-
somal aberrations and copy numbers by comparing the
normalized intensity of the test sample (the pooled DNA
samples) to a reference sample. We use the estimate of the

allele frequencies θij in test and control pools to recon-

struct the expected allele frequencies as  where

 is the effective sample size in pool i, the index i = 1 for

cases and i = 2 for controls, and the index j = A,B denotes
the A or B allele. We then use a Bayesian test of association
to compare the distributions of allele frequency in the two
different pools. The test is described in [19,50] and
assumes that prior probabilities are available for the
model of allelic association and the model of no associa-
tion – say p(Ma), p(Mi) – and then uses the data to update

these prior probabilities p(Ma), p(Mi) into the posterior

probabilities by using Bayes' theorem. The decision rule is
then to select the model of association if its posterior
probability is at least 3 times larger than the posterior
probability of the model of no association (as suggested
in reference [51]). Formally, the ratio of the posterior
probabilities is

and the ratio of the marginal likelihood functions p(nij |
Ma)/p(nij | Mi) is known as the Bayes factor (BF). When the
prior probabilities of the two models are equal, the BF is
equivalent to the posterior odds. Assuming the conjugate
Beta distribution for the allele frequencies, the BF can be
calculated in closed form and the formula for this calcula-
tion is reported in the appendix. To take into account the
issue of multiple testing, we can use prior information
about the number of SNPs that we expected to be associ-
ated to make the selection stronger. For example, if we
expect 1,500 SNPs associated with the phenotype, then
the prior odds for the alternative hypothesis of association
are 0.005/0.995 when we test 300,000 SNPs, and the deci-
sion rule becomes to accept that a SNP is associated with
the phenotype if the posterior odds for the association are
at least 3 × 0.995/0.005 = 597. Initial experiments
described in the Evaluation section suggest that a robust
choice for an effective sample size is 2/3 of the original
pool, and this is consistent with a larger sample size

needed with the analysis of pooled DNA samples [52]. We
note here that one advantage of this modular procedure is
that the Bayesian test can be replaced by a standard χ2 test
for allelic association.

Filtering out false positives
Although we can take into account the issue of multiple
comparisons by choosing appropriate prior odds for an
association, the consequence of this approach is to reduce
power and to require large sample sizes to detect associa-
tions with a small effect. This consequence can be prob-
lematic in studies where cases are relatively rare such as
the study of exceptional longevity in which cases are sub-
jects who lives 100 years and older. To fully exploit the
power of small scale studies we developed a series of data
filters that remove unreliable or suspicious associations
(see Figure 4). The first filter is specific for allele associa-
tion analysis using pooled DNA samples and accounts for
the lack of precision of the technology. The other two fil-
ters take into account redundancy as well as reciprocal
information of SNPs based on the LD structure of the
human genome. So, rather than using "SNP pruning" as

n nij i ij= ∗q

ni
∗

Bayes test :
p Ma nij

p Mi nij

p nij Ma
p nij Mi

p Ma
p M

( | )
( | )

( | )
( | )

( )
(= ×

ii)

Schematic summary of the modular approach to the analysis of GWA dataFigure 4
Schematic summary of the modular approach to the analysis 
of GWA data.
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in PLINK to remove SNPs that are in LD [53], we leverage
on dependencies determined by LD to improve the detec-
tion of false positive while reducing the false negative rate.

Quality control (QC) filter
The function of this filter is based on an extensive evalua-
tion of the accuracy and reproducibility of the allele fre-
quency estimates that are computed with the Illumina
software. Allele frequencies obtained from genotyping of
pooled DNA samples were compared with those derived
from genotyping of individual samples (detailed in the
below Evaluation section). The results suggest that alleles
with minor allele frequency MAF <0.15 as well as differ-
ences in allele frequency of less than 0.15 are not reliable.
We therefore filter out all SNPs with these characteristics,
as well as those SNPs for which repeated estimates of
allele frequencies in replications of the same pool differ
by more than 0.15.

Linkage disequilibrium (LD) filter
SNPs in LD with each other would be expected to show
similar patterns of association if the signal is authentic
whereas a single SNP in a LD block showing association is
more likely to represent a spurious association. Therefore,
our procedure automatically checks this condition and
disregards the associations for SNPs that are not sup-
ported by positive associations with other SNPs in the
same LD block. To this end, we used genotype data col-
lected within the HapMap project to compute pairwise
measures of LD for all consecutive pairs of SNPs in the
HumanHap300 platform. The estimation of LD was based
on a novel Bayesian version of D' that we introduced in
[36]. As the traditional D', our Bayesian estimator is
defined in the interval [0;1] regardless of the allele fre-
quency so that it is easier to interpret than other measures
of correlation like r2 but it is much less biased toward dis-
equilibrium. We use a Bayesian D' > 0.7 between pairs of
consecutive SNPs as suggestive of strong LD and we filter
out all the associations of the SNPs whose adjacent SNPs
that are in strong LD are not associated with the pheno-
type. The value 0.7 was chosen based on experiments
reported in [36] showing that the Bayesian D' rarely
exceeds 0.7 under no LD. The Bayesian D' values for each
pair of consecutive SNPs were built for Caucasians using
the DNA samples from unrelated parents of thirty trios of
the CEPH (Utah residents with ancestry from northern
and western Europe, also known as CEU) and similarly
for Africans, using Yoruba in Ibadan Nigeria. These data
are available from the supplementary material web site
[28].

Regional association filter
The rationale of this filter is that a region or gene showing
authentic association would be expected to show a greater
number of SNPs associated than would be expected by

chance. In this filter, we analyze the data using a sliding
window of 20 SNPs, and summarize the global measure
of association within the window as the product of the
posterior probabilities of associations of the 20 SNPs.
Here, we assume that the association tests are independ-
ent, so that the product of the posterior probability of
association of the individual SNPs becomes a measure of
the global association of the region tagged by the 20 SNPs.
Windows with a global measure of association exceeding
0.5 [or product of BFs >1] are then selected for further
inspection. Although LD between SNPs in a window may
introduce dependencies, the global measure of associa-
tion does not seem to be affected by this approximation.
Figure 5 shows some examples.

Hierarchical summary
The list of SNPs that are selected by the association test
and the filters are labeled as "significant SNPs". The list is
annotated by the SNP physical position, the position rel-
ative to known genes, the allele frequencies estimated in
different populations, and the cytogenetic band. This
information is collected through SNPPer [54] that inte-
grates information from the UCSC human genome
browser and dbSNP [55]. As a further level of summary we
use those SNPs that are linked to genes to create a set of
selected genes and a set of significant genes. The first set
consists of genes that are tagged by at least one significant
SNP. The set of significant genes is a subset of the selected
genes and consists of genes in which the global measure
of association given by the product of the posterior prob-
ability of association of the gene tagging SNPs is greater
than 0.5 [Or equivalently, the product of BFs exceeds 1].

Ranking
We rank the significant genes by the global measure of
association. To rank the selected genes we score them by
two further measures that weigh the likelihood of select-
ing a gene by chance. In fact, there are genes that are
tagged by a large number of SNPs: for example CSMD1 in
chromosome 8 is tagged by 614 SNPs in the
HumanHap300 array, and assuming a 5% false positive
rate, we would expect about 30 SNPs to be selected from
this gene by chance in any analysis. To take this issue into
account, each selected gene is assigned 3 scores: the global
measure of association, the ratio of selected SNPs relative
to the number of tagging SNPs, and the probability of
selecting this number by chance using the hyper-geomet-
ric distribution. Each score determines a ranking and then
the sum of the ranks is defined as a final ranking of
selected genes.

Gene set enrichment analysis
To evaluate selected and/or significant genes for enrich-
ment of biological categories associated with a variable
phenotype, we implement a stand-alone version of the
Page 10 of 14
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EASE statistical software [56]. This program computes a
modified Fisher's exact probability score for observing the
frequency of a biological category associated with a phe-
notype (e.g., dementia, sickle phenotype, infection), com-
pared with the likelihood of identifying that category by
chance given the total number of genes in the data set. An
adjusted score is then reported representing the upper
bound of the distribution of Jackknife Fisher exact proba-
bilities for observing an enriched biological category.
Enriched categories are then inspected for biological
trends and overlapping or related categories, based on sig-

nificance scores or categories with a p-value << 0.05. For
more detail, see Hosack et al. [56].
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Relation between the pattern of LD (x-axis) and the global measure of association (y-axis) in the regional filterFigure 5
Relation between the pattern of LD (x-axis) and the global measure of association (y-axis) in the regional filter. The pattern of 
LD is measured by the average of the Bayes D' between consecutive SNPs in the region, and the global measure of association 
is the joint probability of association in the region. The two figures in the top half show the relation using data from the study 
of fetal hemoglobin in the sickle cell anemia subjects. The two figure in the bottom half show the relation using data from the 
longevity study. The different extent of LD reflect the fact that sickle cell anemia subjects are all African American while cente-
narians in the longevity study are all Caucasians The correlations in the four sets are 0.03, 0.18, 0.018, -0.10.
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Appendix
Derivation of the Bayes Factor
This Bayesian association test assumes that the allele fre-
quencies follow a binomial distribution with probabili-
ties θij the index i = 1 for cases and i = 2 for controls, and
the index j = A,B denotes the A or B allele [See Table 5 for
an example]. Under the hypothesis of general association,
the parameters θij describing the allele distributions in
cases and controls follow different probability distribu-
tions, while the parameters θij follow the same probability
distribution under the hypothesis of no association.
Therefore, the likelihood function under the hypothesis
of general association Ma is

While the likelihood function under the hypothesis of no
association Mi is:

We assume independent Beta distributions to model the
prior distributions of the parameters that are defined as

Where the hyper-parameters are chosen as α1A = α2A = αA/
2 = α/4 and

β1B = β2B = βB/2 = α/4. The parameter α is the overall prior
precision and can be set based on prior information. The
likelihood function and the prior distribution of the
parameters are used to compute the marginal likelihood
as the expected likelihood function, where the expectation
is taken over the parameter distribution. Formally

p(M | nij) = ∫p(θij | nij)p(θij)dθij

Compared to the maximum likelihood that returns the
likelihood function evaluated in the estimate of the

parameters, the marginal likelihood incorporates the
uncertainty about the parameters by averaging the likeli-
hood functions for different parameter values. This con-
ceptual difference is fundamental to understand the
different approach to model selection: in the classical
framework, model selection is based on the maximized
likelihood and its sampling distribution to take into
account sampling variability, for fixed parameter values.
In the Bayesian framework, model selection is based on
the marginal likelihood which takes into account the
parameter variability, for fixed sample values. Therefore,
no significance testing is performed when using this
approach to model selection. Our experience with the
Bayesian procedure to model selection is that it is usually
more robust to false associations. The calculation of the
marginal likelihood can be done in closed form and it is
easy to show that

Where G is the gamma function and the ratio produces
the Bayes factor.
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Table 5: parameters and allele frequencies from pooled DNA samples

Allele A Allele B
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