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Candida albicans Modulates Host Defense by
Biosynthesizing the Pro-Resolving Mediator Resolvin E1
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Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital,
Harvard School of Dental Medicine and Harvard Medical School, Boston, Massachusetts, United States of America, 3 Department of Oral Medicine,
Infection and Immunity, Harvard School of Dental Medicine and Harvard Medical School, Boston, Massachusetts, United States of America,
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Candida albicans is an opportunistic fungal pathogen of humans that resides commensally on epithelial surfaces, but can
cause inflammation when pathogenic. Resolvins are a class of anti-inflammatory lipids derived from omega-3 polyunsaturated
fatty acids (PUFA) that attenuate neutrophil migration during the resolution phase of inflammation. In this report we
demonstrate that C. albicans biosynthesizes resolvins that are chemically identical to those produced by human cells. In
contrast to the trans-cellular biosynthesis of human Resolvin E1 (RvE1), RvE1 biosynthesis in C. albicans occurs in the absence
of other cellular partners. C. albicans biosynthesis of RvE1 is sensitive to lipoxygenase and cytochrome P450 monoxygenase
inhibitors. We show that 10nM RvE1 reduces neutrophil chemotaxis in response to IL-8; 1nM RvE1 enhanced phagocytosis of
Candida by human neutrophils, as well as intracellular ROS generation and killing, while having no direct affect on neutrophil
motility. In a mouse model of systemic candidiasis, RvE1 stimulated clearance of the fungus from circulating blood. These
results reveal an inter-species chemical signaling system that modulates host immune functions and may play a role in
balancing host carriage of commensal and pathogenic C. albicans.
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INTRODUCTION
Oxygenated derivatives of poly unsaturated fatty acids (PUFAs)

play important roles in the regulation of development, wound

healing and defensive responses among diverse taxa, including

plants and humans. In humans, resolvins, lipoxins and prosta-

glandins promote or resolve inflammation [1,2,3] while in plants,

oxylipins mediate a wider range of physiological activities [4,5,6].

The resolution of inflammation is an essential process that

activates specific cellular pathways to prevent chronic inflamma-

tion and inappropriate tissue damage. In humans, oxygenated

mediators derived from omega-3 PUFAs are among the first potent

counter-regulatory signaling molecules identified to promote the

resolution of inflammation [7,8]. The observation that the genome of

the opportunistic fungal pathogen, Candida albicans, encodes a wider

range of fatty acid-utilizing enzymes as compared with the non-

pathogenic Brewer’s yeast, Saccharomyces cerevisiae [9], prompted us to

evaluate the range of oxygenated lipids produced by C. albicans

cultured in the presence of the omega-3 PUFAs eicosapentaneioc

acid [EPA] and docosahexaenoic acid [DHA]. In this report we

show that C. albicans is capable of de novo biosynthesis of Resolvin E1

(RvE1), a potent anti-inflammatory mediator [10], from EPA.

Previously, RvE1 was described only in inflammatory exudates of

mouse and human. In humans, RvE1 selectively interacts with both

the leukotriene B4 receptor (BLT1) and the G-protein coupled

receptor ChemR23 expressed on the surface of neutrophils [11] to

promote the resolution of dermal inflammation, peritonitis and

colitis in murine models of these diseases [10,12,13]. Biosynthesis of

RvE1 in humans is a trans-cellular process involving endothelial cell

cytochrome P450 monooxygenase enzymes (CYP450) that catalyze

conversion of EPA to 18-HEPE, which is further oxygenated by

neutrophil 5-lipoxygenase and other enzymes to generate RvE1

[14]. RvE1 is also formed during multi-species interactions, such as

during inflammation resulting from microbial infections. In that

instance, microbial CYP450s capable of converting EPA into 18-

HEPE [15] would provide the substrate used by neutrophils for

RvE1 synthesis.

Candida albicans is a dimorphic fungus and is the leading cause of

invasive fungal infections among hospitalized patients in the

United States [16]. However, in the majority of healthy

individuals, C. albicans is a commensal organism, persisting as a

benign saprophyte on mucosal epithelial surfaces [17]. In

immunocompromised or therapeutically immunosuppressed pa-

tients (ex. HIV infection or cancer treatment), this opportunistic

pathogen can become invasive, penetrating the upper layers of the

mucosa and causing localized inflammation [18]. If provided

access to the blood stream, as with the use of catheters or other

prosthetic devices, the fungus can disseminate to a wide range of

organs, resulting in often-fatal hematogenous disease [19]. In both

healthy and immunocompromised individuals, the innate immune

system, and neutrophils in particular, provide the first line of host

defense against Candida infections, which is consistent with the high
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incidence of candidiasis in neutropenic patients [20,21]. Unlike

other cells in the host innate armamentarium, neutrophils ingest

and kill both yeast and hyphal phenotypes of Candida [22]. The

primary effector functions of neutrophils important for limiting

invasion by C. albicans and resolving inflammation include

phagocytosis, the generation of reactive oxygen species (ROS)

and fungal killing [23]. Epithelial and endothelial cells participate

in innate defense as well by secreting cytokines, including

interleukin-8 (IL-8), which serve as a chemotactic signal, attracting

neutrophils to sites of inflammation [24,25,26,27].

In this study, we show that C. albicans biosynthesizes RvE1 de

novo from EPA, the RvE1 being indistinguishable from RvE1

produced by its human host. In the context of infection, RvE1

attenuates IL8-mediated neutrophil migration while stimulating

neutrophil phagocytosis, intracellular ROS generation, and killing

of Candida both in vitro and circulating in the blood. These findings

suggest that RvE1 stimulates clearance and resolution of

pathogenic Candida infections as well as evoking local anti-

inflammatory responses. In this manner, a chemical signaling

mechanism, based on a bioactive lipid mediator shared by both

host and pathogen, provides a novel interspecies communication

system that, in the case of Candida, may modulate its commensal to

virulent transition in a vulnerable host.

RESULTS

C. albicans biosyntheses of oxygenated derivatives

of EPA and DHA
The genome of C. albicans encodes a large number of oxidative and

lipid-utililzing enzymes as compared with that of the non-

pathogenic yeast Saccharomyces cerevisiae, [9] which suggested to us

that lipids and lipid oxidation may play an important role in C.

albicans pathogenesis and cell biology. As might be predicted from

these genomic characteristics, we were able to propagate C. albicans

in media supplemented with fatty acids comprised of eighteen to

twenty-two carbon chains as sole carbon source (not shown).

When provided with complex oils such as olive, fish and flaxseed

oil as their sole carbon, C. albicans exhibited robust growth, rivaling

that obtained in standard glucose-containing media (Figure S1).

To understand how these lipids were being utilized by Candida, we

assayed the range of oxygenated lipid metabolites produced by C.

albicans. After culture in the presence of the essential omega-3

PUFA EPA or DHA, we detected a large and varied repertoire of

oxygenated lipids as assayed by liquid chromatography-tandem

mass spectrometry (LC-MS/MS) (Table S1). Notable among the

metabolites produced by C. albicans was the potent anti-

inflammatory lipid mediator RvE1 and its biosynthetic precursors,

18-hydroxyeicosapentaenoic acid (HEPE), 15-HEPE and 5-HEPE

(Figure 1AB and Table S1). For biogenic RvE1 produced by C.

albicans, the base peak [M-H] ion m/z 349, and fragment ions m/z

195, 291, and 305, were identical to those derived from synthetic

RvE1 and biogenic RvE1 isolated from human plasma [10].

These results demonstrate that the RvE1 produced by C. albicans is

chemically identical to that produced by humans. Additionally, the

base peak [M-H] ion m/z 317, with fragment ion m/z 259, was

identical to that of synthetic 18-HEPE (Figure 1B), suggesting that

C. albicans lipid metabolites may also provide precursors for

mammalian cell synthesis of RvE1 and other lipid mediators.

To explore the potential enzymatic pathways associated with

RvE1 biosynthesis, C. albicans was cultured in the presence of EPA

with and without a panel of well-appreciated inhibitors of

mammalian lipoxygenase (LO) [esculetin (12/15-LO inhibitor)

and zileuton (5-LO inhibitor)] as well as a cytochrome P450

monooxygenase (CYP450) inhibitor [17-octadecynoic acid (17-

ODA)]. The effect of these inhibitors upon the biosynthesis of

RvE1 and its biosynthetically-related products was analyzed using

LC/MS-MS. C. albicans cultured in the presence of EPA with

vehicle (,0.1% ethanol) served as control. Culture in the presence

of EPA and either esculetin or zileuton (100 mM) resulted in a 91%

or 53% reduction in the level of RvE1 synthesized in C. albicans,

respectively. In the presence of 100 mM 17-ODA, we observed a

46% reduction in RvE1 biosynthesized and minimal reductions in

the biosynthesis of RvE1 precursors (1–8% inhibition). No

significant amount of any oxygenated lipids was detected in the

supernatant or cell pellet of C. albicans cultured with dextrose as the

sole carbon source (data not shown). These specific inhibitors of

mammalian LO and CYP450 had no observed effect on fungal

growth or morphology (Figure S2).

Using an in silico approach to identify the fungal genes encoding

this putative LO activity, we performed detailed TBLASTN

analysis (September 2007) using known 3-LO, 4-LO, 5-LO, 8-LO,

12-LO, 15-LO, and ALOX protein sequences from a wide range

of organisms including human, mouse, rice, soybean, potato, and

bacteria. These comparisons failed to identify any open reading

frames in the currently available C. albicans genome databases with

significant homology to LO sequences.

RvE1 blocks IL-8-stimulated neutrophil chemotaxis
To study the effect of RvE1 on neutrophil chemotaxis, we first

assayed the chemotactic response of neutrophils in response to IL-

8. The chemokine was placed in the lower chamber of a Boyden

apparatus (Transwell), and neutrophils were placed in the upper

chamber. As expected, IL-8 functioned as an attractant, resulting

in the migration of neutrophils into the lower chamber (Figure 2;

chemotactic index = 6.7 +/2 0.26). However, incubation of

neutrophils with increasing concentrations of RvE1 (1.0–

100 nM) resulted in a concentration-dependent inhibition of IL-

8-stimulated neutrophil migration into the lower chamber of the

Transwells. Both 10 nM and 100 nM RvE1 produced significant

reductions in IL-8-directed migration when compared to controls

(ANOVA: For 10 nM and 100 nM, p,0.001; Figure 2). Results

from two additional experiments using different blood donors

produced similar results (Figure S3). RvE1 alone (1–100 nM) did

not stimulate neutrophil motility—neither chemotaxis, fugetaxis,

nor chemokinesis (Figure S4).

RvE1 enhances effector functions of neutrophils
The primary effector functions of neutrophils important for

limiting invasion by C. albicans and resolving inflammation include

phagocytosis, ROS generation and fungal killing [23]. In light of

the inhibition of IL-8-dependent neutrophil chemotaxis by RvE1,

the effect of RvE1 on each of these other properties of neutrophils

were measured. RvE1 enhanced each of these functions in

neutrophils exposed to C. albicans (Figure 3). Phagocytosis of C.

albicans was assayed using FITC-stained heat-killed opsonized

(HKO) yeast cells. As shown in Figure 3AB, significantly more

Candida were phagocytosed by adherent human neutrophils

treated with RvE1 relative to vehicle-treated cells [Figure 3B;

ANOVA: For 1 and 10nM RvE1, p,0.001]. As predicted,

phagocytosis of yeast was inhibited for neutrophils treated with the

non-hydrolyzable cAMP analog 8-bromo-cAMP [1 mM ; AN-

OVA: p,0.001]. This method discriminates between FITC-

stained HKO C. albicans engulfed by the neutrophils and those that

are simply adherent to the outer neutrophil membrane. Repre-

sentative images using light and epi-fluorescence microscopy of

neutrophils engulfing the yeast are shown in Figure 3A. As a

consequence of phagocytosing Candida, apoptosis is rapidly

Bioactive Lipids in Candida
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Figure 1. C. albicans produces a tri-hydroxy derivative of EPA that is structurally identical to the human anti-inflammatory lipid mediator RvE1.
The MS/MS spectra of biogenic RvE1 (1A) and 18-HEPE (1B) produced by C. albicans cultured in liquid media supplemented with EPA. (1C) C. albicans,
cultured in the presence of EPA the LO inhibitors esculetin or zileuton (100 mM) as well as the CYP450 inhibitor, 17-ODA, reduced RvE1 biosynthesis
(squares). LO inhibitors, but not the CYP450 inhibitor, reduced biosynthesis of 5-HEPE (circles), 12-HEPE (diamonds), and 18-HEPE (triangles).
doi:10.1371/journal.pone.0001316.g001
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induced in the infiltrating neutrophils, [28,29] thereby providing a

potential mechanism through which the rate of neutrophil

elimination from the site of infection may increase.

We also tested whether the RvE1-dependent increase in

neutrophil phagocytosis of Candida is correlated with increased

fungicidal activity. Neutrophils exposed to RvE1 exhibited a

positive dose-dependent increase in their ability to kill opsonized

C. albicans (Figure 3C). Twice as many opsonized C. albicans were

killed by neutrophils treated with 1nM RvE1 and over three times

as many yeast were killed by neutrophils treated with 10nM RvE1

relative to vehicle treated cells [ANOVA: For 10nM RvE1,

p,0.001]. Neutrophils generate intra- and extra-cellular ROS

such as hydroxy-radicals and super-oxide to kill invading

pathogens [30]. Neutrophils exposed to 100nM RvE1 and HKO

C. albicans produced more hydroxy-radical relative to neutrophils

exposed to 10 or 1nM RvE1 (Figure 3D: orange or yellow circle,

respectively) or vehicle-treated cells (Figure 3D: blue diamond).

But RvE1 had no effect on neutrophil super-oxide production

relative to the vehicle-treated neutrophils exposed to HKO C.

albicans (Figure 3E). In the absence of HKO C. albicans, 100 nM

RvE1 did not increase the amount of hydroxy-radical or super-

oxide produced by neutrophils, compared to vehicle-treated cells

(Figure 3DE: black circle). Neither vehicle, nor lower concentra-

tions of RvE1 increased neutrophil ROS production in two of

three neutrophil isolates (Figure 3DE and Figure S5ABC).

However, for a single neutrophil isolate (Figure S5D), super-oxide

production was elevated in neutrophils exposed to Candida and 1

or 10 nM RvE1, suggesting that there may be donor-dependent

variations in neutrophil responses to RvE1.

RvE1 reduces C. albicans levels in vivo
To evaluate the actions of RvE1 on hematogenous infections of C.

albicans, 8–10 week old female BALB/c mice were injected via the

tail vein with RvE1 (8 ng g21 mouse) or vehicle and C. albicans

(56104 yeast cells g21 mouse). Animals were sacrificed after 24 h,

and blood and organs were collected. Candida colony forming units

were enumerated as described in the Methods. At the Candida

dosage used, the 24 h time point corresponds with the beginning

of exponential growth of the fungus in the brain and kidneys of

BALB/c mice while remaining detectable in other organs and

blood [31]. We observed a 10-fold reduction in C. albicans

circulating in the blood of mice treated with RvE1 compared to

those treated with vehicle (Figure 4; circles vs triangles; Mann-

Whitney Test, p = 0.0079). In contrast, RvE1-treated and vehicle-

treated mice showed similar levels of organ colonization (Mann-

Whitney Test, p.0.1220 for all paired tests).

DISCUSSION
In this study, we have characterized the effects of RvE1 on

neutrophils in association with one of their primary pathogen

targets, C. albicans. RvE1 is one of several potentially immuno-

regulatory lipids produced de novo by C. albicans cultured in the

presence of the omega-3 fatty acids, EPA and DHA. From these

fatty acid substrates, C. albicans biosynthesizes resolvins and

protectins, which in humans inhibit neutrophil migration and

protect tissues from leukocyte-mediated inflammation [2,8,32].

Enzymatically-modified lipids have deep evolutionary origins as

signaling molecules and are possible progenitors of innate immune

responses. In humans, biosynthesis of RvE1 occurs in a trans-

cellular process [33]. Hypoxic human endothelial cells donate

18R-hydroxyeicosapentaenoic acid (18R-HEPE), which is oxy-

genated by neutrophil 5-lipoxygenase (LO) and in subsequent

enzymatic steps, converted to RvE1 [14]. In contrast, C. albicans is

able to biosynthesize nanogram quantities of this anti-inflamma-

tory lipid de novo from EPA and without the collaboration of other

cellular partners. Although candidate enzymes which perform this

synthesis are not obvious from in silico analysis of C. albicans, its

genome encodes at least fifteen CYP450s, suggesting that one or

more biosynthetic steps in fungal RvE1 could occur via these

enzymes. It is reported that 18R-HEPE of microbial origin in

gastrointestinal tissues may serve as a substrate for the production

of RvE1, thereby dampening the host immune response which

would otherwise be damaging to both microbe and host [15].

Oxygenated precursors to resolvins and protectins were detected

when C. albicans was incubated with EPA or DHA, indicating that

Candida can also contribute to resolvin and protectin synthesis by

providing oxygenated substrates to host cells.

Both Candida and RvE1 modulate innate immune system

functions. Human epithelial and endothelial cells infected by C.

albicans release IL-8, which serves to attract neutrophils to sites of

inflammation [24,26,27]. Release of membrane lipids follows

immune cell activation [34], and may provide substrates used by

Figure 2. RvE1 blocks IL-8-stimulated neutrophil chemotaxis. IL-8-directed chemotaxis of neutrophils was significantly inhibited by 10 and 100 nM
RvE1 (Asterisks indicate significant differences from vehicle-treated controls; ANOVA: p,0.001).
doi:10.1371/journal.pone.0001316.g002

Bioactive Lipids in Candida
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Figure 3. RvE1 enhances the effector functions of neutrophils. (3AB) Neutrophil phagocytosis of FITC-stained heat-killed opsonized (HKO) C. albicans.
(3B) Significantly more FITC-stained HKO C. albicans were phagocytosed by adherent human neutrophils treated with RvE1 (yellow bars) relative to
vehicle-treated cells (open bar; asterisks indicate significant differences from vehicle-treated controls; ANOVA: p,0.001). Neutrophils treated with the non-
hydrolyzable cAMP analog 8-bromo-cAMP were less likely to phagocytose the yeast (black bar). (3A) Representative images of isolated neutrophils
phagocytosing FITC-stained HKO C. albicans in the presence of 10 nM RvE1, 1 nM RvE1 or vehicle and trypan blue. Green fluorescence (right panels)
correspond to FITC-stained HKO C. albicans phagocytosed by neutrophils (3C) Neutrophils exposed to RvE1 exhibited a positive dose-dependent increase
in their ability to kill opsonized C. albicans (yellow bars). Twice as many C. albicans were killed by neutrophils treated with 1nM RvE1 and over three times
as many yeast were killed by neutrophils treated with 10 nM RvE1 relative to vehicle-treated neutrophils. Asterisks indicate significant differences from
vehicle-treated controls (ANOVA: p,0.001). (3D) RvE1 had no effect on hydroxy-radical produced by neutrophils exposed to HKO C. albicans (red, orange,
and yellow circles vs blue diamonds). (3E) 100 nM RvE1 increased neutrophil super-oxide production in neutrophils exposed to HKO C. albicans relative to
neutrophils exposed to vehicle and HKO C. albicans (red circles vs blue diamonds) while lower concentrations of RvE1 (orange and yellow circles) did not
increase neutrophil super-oxide relative to cells exposed to vehicle and HKO C. albicans (blue diamonds). 100nM RvE1 alone did not increase the amount
of ROS produced by neutrophils relative to vehicle controls (3DE: black circles).
doi:10.1371/journal.pone.0001316.g003
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Candida for RvE1 biosynthesis; alternatively dietary sources of EPA

and DHA may also serve as substrates for resolvin biosynthesis.

Our studies suggest that at sites of commensal colonization, low

quantities of RvE1 biosynthesized by Candida would inhibit IL-8-

mediated neutrophil chemotaxis (Figure 2). RvE1 also reduces the

migration of antigen-presenting dendritic cells (DC) and inhibits

stimulated DC interleukin-12 synthesis which may down-regulate

T-lymphocyte responses to the antigen-stimulated DC, thereby

dampening the adaptive immune response against Candida [10].

Together these activities would serve to protect the resident yeast

cells from clearance by the innate and adaptive immune system.

Thus the synthesis of RvE1 by Candida, resident on the host

mucosa in small numbers as a commensal organism, may

functionally sequester the fungus from host innate surveillance.

Local production of RvE1 by Candida potentially deters the

migration of neutrophils to sites of inflammation while enhancing

the killing functions associated with neutrophils, including

phagocytosis, ROS synthesis and fungicidal activity (Figure 2

and Figure 3, Figure S5 and Figure S6). In a murine model of

systemic candidiasis, a high dosage of RvE1 reduced numbers of

fungi circulating in the blood 24 h after infection. Interestingly,

higher levels of RvE1 are not as effective at inhibiting neutrophil

chemotaxis as are lower levels, suggesting that fungi in more

heavily colonized tissue, such as that associated with the onset of

invasive disease, would not benefit from dampening the host

innate response, but rather would be increasingly susceptible to

neutrophil killing. Thus the overall effect of RvE1 may be

governed by the number of fungi present, their physical location in

tissues and the timing of RvE1 biosynthesis (Figure S6). In this

regard, recent data indicates that vaginal candidiasis is correlated

with both the presence of large numbers of Candida and the

activation of an overzealous granulocyte response [35] that is

otherwise dampened during commensal carriage. Similarly,

reduction of microbial flora by antibiotic therapy is a risk factor

for Candida-mediated esophageal and gastrointestinal inflammation

[36], suggesting that host tolerance is modulated by fungal load. In

this scenario, as yeast cells increase in number and invasiveness,

the protective effect of RvE1 would wane and the neutrophils

recruited to the site of active infection would be more effective

in controlling virulent growth. Neutrophils would be very effective

in this regard, as these are the only cells in the innate immune

system that are able to engulf and kill the more invasive hyphal

forms of the fungus [22]. Thus, RvE1 produced by Candida would,

on the one hand, protect the yeast forms of the fungus, while

higher concentrations would be ineffective in protecting the

hyphal forms.

C. albicans biosynthesizes not only RvE1, but also a number of

other oxygenated products with known biological activity in

humans (Table S1). Coupled with the phylogenetic conservation of

biologically active oxygenated lipids in plants and animals, and the

detection of eicosanoids such as prostaglandin E2 in pathogenic

fungi [37,38], our findings show that oxygenated lipids such as the

resolvins and protectins are produced by a fungal pathogen. These

lipid mediators function as components of a complex and

untapped chemical signaling system that underlies a fundamen-

tally new paradigm of interaction between host and pathogen.

Figure 4. RvE1 reduces C. albicans concentrations in the blood. To evaluate the actions of RvE1 on the virulence of C albicans, 8–10 week old
female BALB/c mice were injected via the tail vein with RvE1 (8 ng g21 mouse) or vehicle and C. albicans (56104 yeast cells g21 mouse). After 24 h,
and blood and organs were collected, homogenized, serially diluted and plated. There was a 10-fold reduction in C. albicans circulating in the blood
of mice injected with RvE1 compared to those injected with vehicle (circles vs triangles). In contrast, RvE1 and vehicle-treated mice showed similar
levels of organ colonization.
doi:10.1371/journal.pone.0001316.g004
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MATERIALS AND METHODS

Strains and media
For all studies, C. albicans strain SC5314, maintained at 280uC,

was plated on agar plates containing YPD (10 g l21 yeast extract,

20 g l21 Bacto-peptone, 20 g l21 dextrose) and subsequently

grown at 30uC in liquid YPD media before each experiment.

Isolation and LC-MS/MS analysis of oxygenated

lipids from C. albicans
For LC-MS/MS analysis of oxygenated lipids, 107 C. albicans yeast

were inoculated into 25 ml of liquid YNB+CSM media (Bio101,

Inc.; Carlsbad, CA) adjusted to pH 6.8 and supplemented with

2% dextrose or 0.2% (v/v) EPA (Fluka) plus 0.02% dextrose and

grown at 30uC in a rotary shaker (225 RPM) for 72 h. After

harvest, cell pellets were washed 36 with phosphate buffered

saline (PBS; 0.1 g l21 CaCl2, 0.1 g l21 MgCl2 6H2O, 0.2 g l21

KCl, 0.2 g l21 KH2PO4, 8.0 g l21 NaCl, 2.16 g l21 Na2HPO4

7H2O). 36108 cells per sample were suspended in 3 ml of sterile-

filtered liquid YNB media adjusted to pH 6.8 supplemented with

2% dextrose or 15 mg/ml EPA. After incubating for 30 m (37uC,

80 RPM) the cultures were centrifuged for 10 m (25006g),

supernatants and cell pellets separated, snap-frozen in liquid

nitrogen and stored at 280uC. Oxygenated lipids were extracted

and analyzed with LC-MS/MS as previously described [39].

Neutrophil isolation
Peripheral venous blood was obtained by venipuncture from

healthy volunteers who reported to have abstained from taking

any medication for at least two weeks prior to venipuncture (in

accordance with the University of California, San Francisco

Committee on Human Research (Approval Number H2430-

24592-02), patients were informed of the risks of the procedure

and provided oral consent before venipuncture); blood was

collected into heparinized tubes and centrifuged for 10 m

(1506g) at room temperature. The lower layer of cells was

subjected to dextran sedimentation (Dextran T500; Fisher

Scientific) for 20 m to separate the red blood cells (RBC). The

upper leukocyte-containing fraction was further enriched for

neutrophils by centrifugation in a Histopaque 1077/1119 (Sigma-

Aldrich) step gradient. After lysis of residual RBC (ACK lysis

buffer; Invitrogen) and washing with PBS lacking calcium or

magnesium, neutrophils were suspended in RPMI-1640 medium

(Cell Culture Facility; UCSF) or PBS and used for experiments

within 1 h. Prepared in this way, .95% of the cells in the final

fraction were neutrophils. All statistical analyses were made using

the statistical program, GraphPad InStat 3.0b.

Neutrophil migration
The chemotactic activity of synthetic RvE1 and the ability of

RvE1 to inhibit IL-8-mediated chemotaxis was evaluated by

measuring neutrophil migration through 3.0 micron pores of

polycarbonate membranes in 24-well Transwells (Corning Costar;

Corning, NY). Neutrophils (106) suspended in RPMI-1640 were

added to the top chamber and various concentrations of RvE1,

vehicle (,0.1% ethanol) and/or IL-8 were added to the bottom

well. To assess fugetactic or chemokinetic activity, RvE1 was

placed in the top or top and bottom chambers of the Transwell

plate, respectively. When assessing the inhibitory activity of RvE1

on IL-8-mediated chemotaxis, RvE1 or vehicle was added to the

neutrophils suspension 5 m prior to their addition to the upper

chamber of the Transwell. After 45 m of incubation at 37uC with

5% CO2, EDTA (7mM final concentration; Sigma-Aldrich) was

added to the lower chamber to release neutrophils adhering to the

membrane and bottom of the well. Microscopy was used to

confirm that neutrophils were not adherent and the cells in four

aliquots from each sample was counted using a hemocytometer.

Results were reported as chemotactic index (the number of cells

migrating to the lower chamber in response to a test-substance

divided by the number of cells migrating spontaneously to the

lower chamber in response to the vehicle).

Neutrophil phagocytosis of Candida
Neutrophil phagocytosis of C. albicans was assessed as previously

described [40], with modifications. Briefly, yeast were heat killed,

washed twice with PBS, counted and suspended in PBS (36108

cells ml21). Yeast were subsequently opsonized with 25% human

serum for 30 m at 37uC, washed three times with PBS, stained in

PBS containing 1.5 mg/ml fluoroscein isothiocyanate (FITC;

Sigma) for 30 m at 4uC, washed three times with PBS, suspended

in PBS and frozen at 220uC until use. With this method, 98% of

the Candida remained in the yeast form and did not form germ

tubes. Isolated human neutrophils suspended in RPMI-1640

medium were mixed with the test compound or vehicle (,0.1%

ethanol) and incubated for 5 m. Neutrophils were added to

22 mm coverslips (Corning) contained within a 6-well plate (105

neutrophils per well) and immediately mixed with FITC-stained

heat-killed opsonized (HKO) C. albicans (36105) and incubated for

1h (37uC, 5% CO2). After incubation, plates were placed on ice

and to quench the fluorescence of non-phagocytosed yeast, an

equal volume of ice-cold trypan blue (250 mg/ml in 0.1 M citrate

buffer, pH 4.0; Fluka) was added to each well, incubated for 1m

on ice and the cover slips were subsequently inverted and mounted

onto slides for viewing with an inverted microscope (2006).

Neutrophils within 10 randomly-selected fields of view were scored

for the presence or absence of phagocytosed FITC-stained HKO

C. albicans (n = 200–300 neutrophils counted per sample).

ROS generated by neutrophils
Studies of ROS production were performed as previously

described [30], with modifications. Briefly, adherent neutrophils

were treated with RvE1 or vehicle (,0.1% ethanol) for 5 m in the

presence of 100 mM lucinigen or 1 mM luminal (Sigma-Aldrich)

and then synchronously exposed to HKO C. albicans (moi = 5) with

centrifugation (8006g for 5 m). Cells were subsequently incubated

at 37uC, and chemiluminescence was measured every 2 m for

60 m using a luminometer (TR 717 Microplate Luminometer,

Applied Biosystems).

Neutrophil killing of Candida
Fungicidal activity of neutrophils was evaluated as previously

described [41], with modifications. C. albicans was grown in liquid

YPD medium, as described above, washed twice with PBS,

counted and 56109 cells/ml were opsonized with 25% human

serum (30 m, 37uC). Opsonized yeast were washed three times

with PBS, suspended in cold RPMI-1640 and stored on ice until

use. With this method, 98% of the Candida remained in the yeast

form and lacked germ tubes. Isolated human neutrophils were

incubated on ice with the test compound for 5 m and subsequently

mixed with opsonized C. albicans (25 neutrophils : 1 yeast) in a 6-

well plate (Corning Costar). After incubation for 2 h at 37uC,

plates were centrifuged (20 m, 25006g), water (pH 11) added to

lyse the neutrophils and using a cell scraper, adherent yeast were

detached from the surface of the plate. After scraping, plates were

examined with an inverted microscope to ensure that adherent

yeast had been collected. To determine the number of surviving

Bioactive Lipids in Candida

PLoS ONE | www.plosone.org 7 December 2007 | Issue 12 | e1316



yeast, each sample was serially diluted in PBS, spread onto YPD

agar plates, incubated for 36 h at 30uC and resulting colony

forming units (CFU) counted. Each experiment was performed in

triplicate and each dilution was plated in duplicate. Candida killing

by neutrophils is shown as fold-increase of RvE1-treated

neutrophils over vehicle-treated neutrophils.

Virulence studies
The study was approved by the University of California, San

Francisco Institutional Animal Care and Use Committee (UCSF

IACUC) prior to study initiation (IACUC protocol #: A2430-

07582). In addition, UCSF Biosafety Committee (BSC) approved

the use of C. albicans in this animal model to induce systemic

candidiasis (BSC protocol #: 4BU 08 BAC). 6-week-old female

BALB/c mice were purchased from Charles River Laboratories,

(Wilmington, MA) and housed under specific-pathogen-free

conditions at the University of California, San Francisco

Laboratory Animal Care Facility. Liquid cultures of C. albicans

were washed, suspended in ice-cold PBS, and counted. Cell

concentration was adjusted with sterile PBS. Microscopic

examination showed the cell suspension to be predominantly

composed of single cells, with minimal clumping. Immediately

prior to injection, the yeast suspensions were mixed, warmed to

30uC and loaded into 30cc insulin syringes fitted with a 31gauge

needle. Prior to inoculation, mice were weighed (average

mass = 20.6 +/2 1.2 g) and warmed on heating pads. Mice were

first inoculated via the right tail vein with 8ng of RvE1 per gram of

mouse or vehicle (,0.1% ethanol) diluted in sterile PBS.

Subsequently, the yeast suspension was introduced into the left

tail vein, delivering a total of 56104 yeast cells per gram of mouse.

24 h after injection, mice were sacrificed and blood, brain, left

kidney, liver, left lung, and spleen processed to determine fungal

burden in these tissues. To determine the number of viable C.

albicans cells, the collected blood volume was measured and organs

were weighed, homogenized, diluted with PBS, and quantitatively

cultured on YPD agar at 37uC for 2 days.

SUPPORTING INFORMATION

Figure S1 Growth characteristics of C. albicans cultured in glucose

or complex oils. C. albicans was cultured in liquid YNB+CSM media

supplemented with 2% glucose or 0.2% complex oil plus 0.2%

glucose (30 uC, 225 RPM) and fungal growth estimated by

measuring optical density (OD600). Similar growth characteristics

were observed when estimated by measuring accumulation of dried

fungal mass (not shown).

Found at: doi:10.1371/journal.pone.0001316.s001 (1.50 MB TIF)

Figure S2 Inhibitors of LO and CYP450 do not inhibit Candida

growth. C. albicans grew to similar cell densities when cultured in

the presence of EPA +/2inhibitors (initial culture conditions:

2610̂6 yeast cells were suspended in 100 ml of liquid media

(YNB+CSM adjusted to pH 6.8 and supplemented with 2%

dextrose or 0.2% (v/v) EPA plus 0.02% dextrose and with

inhibitor (10 mM) or ethanol vehicle (.0.1%)) and cultured for

72h at 30 uC and 225 rpm. When cultured in dextrose, the fungus

grew to higher densities in the presence of each inhibitor, although

the differences between inhibitor and vehicle treated cultures were

not statistically significant (ANOVA; p.0.05)

Found at: doi:10.1371/journal.pone.0001316.s002 (1.24 MB TIF)

Figure S3 Inhibition of neutrophil IL-8 chemotaxis by RvE1.

For neutrophils isolated from two additional donors (AB), IL-8-

directed chemotaxis of neutrophils was significantly inhibited by

10 and 100 nM RvE1 (Asterisks indicate significant differences

from vehicle-treated controls; ANOVA: p,0.001).

Found at: doi:10.1371/journal.pone.0001316.s003 (2.31 MB TIF)

Figure S4 RvE1 is not chemotactic, fugetactic, or chemokinetic

to human neutrophils. 100nM leukotriene B4 (LTB4) in the lower

chamber of the transwell was a strong neutrophil attractant

(chemotactic index (CI) = 30.3 +/2 5.3), three different concen-

trations of RvE1 (1 to 100 nM) in the lower chamber failed to

induce directed neutrophil chemotaxis (CI,1.5), suggesting that

RvE1 is not a neutrophil chemoattractant (ANOVA; p.0.05). To

assess fugetactic activity, RvE1 was placed in the upper chamber

with the neutrophils; there was no directed migration of

neutrophils into the lower chamber suggesting that RvE1 does

not repel neutrophils (CI,1.6; ANOVA; p.0.05). When RvE1

was placed in both the upper and lower chambers of the transwell,

there was no directed migration of neutrophils indicating that

RvE1 is not chemokinetic to neutrophils (not shown).

Found at: doi:10.1371/journal.pone.0001316.s004 (0.18 MB TIF)

Figure S5 RvE1 effect on hydroxy-radical and superoxide

produced by neutrophils exposed to C. albicans. (AB) For

neutrophils isolated from two additional donors, RvE1 had no

effect on hydroxy-radical produced by neutrophils exposed to

HKO C. albicans (red, orange, and yellow circles vs blue

diamonds). (CD) As with the first neutrophil donor (Figure 3DE),

100 nM RvE1 increased neutrophil superoxide production in

neutrophils exposed to HKO C. albicans relative to neutrophils

exposed to vehicle and HKO C. albicans (red circles vs blue

diamonds). While for a second neutrophil isolate, lower concen-

trations of RvE1 (orange and yellow circles) did not increase

neutrophil superoxide relative to cells exposed to vehicle and

HKO C. albicans (blue diamonds), the third neutrophil isolate

(Supplementary Figure 5D) displayed increased superoxide

production for cells treated with 1 and 10 nm RVE1. For

neutrophils isolated from all donors, 100nM RvE1 alone did not

increase the amount of ROS produced by neutrophils relative to

vehicle controls (black circles).

Found at: doi:10.1371/journal.pone.0001316.s005 (1.12 MB TIF)

Figure S6 Model of potential local and distal actions of RvE1

generated by C. albicans. C. albicans colonizing human epithelial cell

surfaces can metabolize host cell and dietary EPA using as yet

unidentified fungal oxygenases. Fungal RvE1 may inhibit distal

IL-8 mediated recruitment of neutrophils into the site of

colonization. To control overgrowth of the fungus, local RvE1

enhances neutrophil phagocytosis and fungal killing.

Found at: doi:10.1371/journal.pone.0001316.s006 (2.04 MB TIF)

Table S1 Oxygenated lipids produced by C. albicans cultured in

omega-3 PUFA.

Found at: doi:10.1371/journal.pone.0001316.s007 (0.20 MB

DOC)
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