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Abstract

For genome-wide association studies in family-based designs, we propose a powerful two-stage testing strategy that can be
applied in situations in which parent-offspring trio data are available and all offspring are affected with the trait or disease
under study. In the first step of the testing strategy, we construct estimators of genetic effect size in the completely
ascertained sample of affected offspring and their parents that are statistically independent of the family-based association/
transmission disequilibrium tests (FBATs/TDTs) that are calculated in the second step of the testing strategy. For each
marker, the genetic effect is estimated (without requiring an estimate of the SNP allele frequency) and the conditional
power of the corresponding FBAT/TDT is computed. Based on the power estimates, a weighted Bonferroni procedure
assigns an individually adjusted significance level to each SNP. In the second stage, the SNPs are tested with the FBAT/TDT
statistic at the individually adjusted significance levels. Using simulation studies for scenarios with up to 1,000,000 SNPs,
varying allele frequencies and genetic effect sizes, the power of the strategy is compared with standard methodology (e.g.,
FBATs/TDTs with Bonferroni correction). In all considered situations, the proposed testing strategy demonstrates substantial
power increases over the standard approach, even when the true genetic model is unknown and must be selected based on
the conditional power estimates. The practical relevance of our methodology is illustrated by an application to a genome-
wide association study for childhood asthma, in which we detect two markers meeting genome-wide significance that
would not have been detected using standard methodology.
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Introduction

Recent advances in mapping array technology and the

increasing content from SNP databases [1,2] have expanded the

capacity for large-scale genotyping. With mapping arrays for more

than one million SNPs now available [3,4,5,6], genome-wide

association studies carry the promise of identifying replicable

associations between important genetic risk factors and complex

diseases. One of the major hurdles that needs to be addressed in

order to make genome-wide association studies successful is the

multiple comparison problem. Hundreds of thousands of SNPs are

genotyped and examined for potential associations with multiple

phenotypes, resulting in possibly millions of statistical tests. The

small number of SNPs that contain ‘‘true’’ signals must be

identified among the thousands of false-positive results. The

success of genome-wide association studies will depend upon

whether it will be possible to overcome this obstacle and translate

the increase in genotype information into the identification of

novel disease loci, or whether the increased genetic information

will be diluted by the multiple testing problem.

A brute-force way to address the multiple comparison problem is

to design studies with sample sizes large enough to test all genotyped

SNPs with standard association tests and adjust for multiple

comparison using the Bonferroni correction [7]. However, while

sample sizes of several thousand subjects will certainly be feasible for

common phenotypes (e.g., BMI, height), such a strategy carries the

risk that the increase in sample size is accompanied by an increase in

study heterogeneity, mitigating the positive effects of a larger sample

size. Further, for many diseases, recruiting the theoretically required

sample size may not be feasible, prohibited either by the costs for

recruitment or phenotype assessment, or by the prevalence of the

disease. An alternative approach is to develop novel statistical

methodology to address the multiple comparison problem with

realistic sample sizes.

For the analysis of quantitative traits in family-based designs,

Van Steen et al. [8] proposed a new class of two-stage testing

strategies that uses the same data set twice, first for genomic

screening and then for genetic association testing. The approach

proved to be a very powerful way to address the multiple testing

problem in genetic association studies [8,9,10,11]. Van Steen type

testing strategies take advantage of a unique property of family-

based data in that it can be partitioned into two statistically

independent components. By exploiting the information about the

genetic association that is not used in the second stage when the
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association tests are computed, the first stage prioritizes ‘‘prom-

ising’’ SNPs for the second stage.

Van Steen type testing strategies have three key advantages: 1.)

The method achieves statistical power levels which can be

substantially higher than those of standard approaches [8,9], and

is thereby able to establish genome-wide significance within one

study [8,9,10,11]. 2.) The Van Steen algorithm maintains the

separation between the multiple testing problem and the

replication process. Replication attempts in different studies are

reserved for the generalization of the established associations and

assessment of heterogeneity between study populations. 3.) Since

genome-wide significance is established in the first data set, the

number of SNPs that are pushed forward for replication testing in

other populations is generally very small and does not require a

large budget, which makes simultaneous replication attempts in

multiple samples feasible.

Although the approach has recently been significantly improved

and now allows family studies to achieve power levels that are

comparable to population-based studies with the same number of

probands [9], its applicability is limited. While extensions of the

testing strategy are available for arbitrary family structures and for

case/control designs [10,11], the approach cannot be applied in

situations in which there is no phenotypic variation in the

phenotypes of the probands, i.e., all probands are affected with the

disease or trait of interest. This prevents the utilization of the

approach in trio designs (i.e., affected probands and their parents).

Since this original trio/TDT design is frequently used, this

limitation of the testing strategy poses a major disadvantage for

family-based designs.

In this manuscript, we propose an extension of Van Steen type

testing strategies to family-based designs in which all probands are

affected. The strategy also uses the same data set for both stages,

which we will refer to as the rank-weighting step and the testing

step. In the first stage of the testing strategy, the genetic relative

risk effect sizes are estimated for each SNP. We show that it is

possible to derive four estimating equations that depend only on

the observed parental mating types, but not on any unknown

parameters. The estimating equations can be solved analytically,

allowing for the construction of effect size estimators that do not

depend on the marker allele frequency or offspring genotypes.

This is in contrast to effect size estimators/association test statistics

for study designs with only affected subjects in population-based

studies [12,13,14], where the allele frequency must be specified.

Based on the genetic effect size estimates obtained from the

estimating equations, we compute the conditional power of the

FBAT/TDT for all SNPs. The relative rank of the SNPs by

conditional power is then used in a weighted Bonferroni approach

[9] to assign each SNP an individually adjusted significance level.

The weights are constructed so that the overall type-1 error is

maintained. In the second step of the testing strategy, the FBAT/

TDT statistic is computed for each SNP and genome-wide

significance is established based on its individually adjusted

significance level.

Using extensive simulation studies, the statistical power of the

testing strategy is assessed for over a range of genetic effect sizes,

different numbers of trios, when the mode of inheritance is known

and unknown, and in the absence and presence of linkage

disequilibrium (LD). The practical relevance of the approach is

illustrated by an application to a genome-wide association study of

childhood asthma.

Methods

An Overview of Partitioning Family-Based Data into
Independent Components

Van Steen testing strategies for genome-wide association studies

partition the data set into two statistically independent, but

overlapping parts [8,9,10,11,15,16]. In family-based designs, the

first component contains information about the SNP-trait

association at a population level, which is assessed based on the

proband’s phenotype, Y, and the parental genotypes, P1, P2

[15,17]. In our application, we use the offspring phenotype and

parental genotypes to construct effect size estimates of the genetic

relative risk. The second component of the data characterizes the

SNP-trait association at the family level, i.e., the allele transmis-

sions from the parents to their offspring [18,19,20]. Family-based

association tests such as the TDT or FBAT are therefore

conditional tests that treat the offspring genotype, X, as random,

conditioning upon the offspring phenotype, Y, and the parental

genotypes P1, P2. The evidence for SNP-trait association is

evaluated by comparing the observed offspring genotype with the

expected offspring genotype, which are computed by conditioning

upon the parental genotypes, assuming Mendelian transmissions.

Since the offspring genotype is the only random component of the

FBAT/TDT statistic, the implication is that other information in

the FBAT/TDT statistic (i.e., the offspring phenotype and

parental genotypes) may be used to assess the evidence for

association without biasing the significance level of the FBAT/

TDT statistic.

Based on the two information sources about association in

family-based designs, the density of the joint distribution for X, Y,

and P1, P2 can then be partitioned into two statistically

independent components [21],

p X ,Y ,P1,P2ð Þ~p X Y ,P1,P2jð Þ|p Y ,P1,P2ð Þ: ð1Þ

Since the density for the first step of the testing strategy, the rank-

weighting step, is given by p(Y, P1, P2), and the density of the

second step, the FBAT/TDT testing step, is p(X|P1, P2, Y),

likelihood decomposition (Equation 1) implies that the two steps of

Author Summary

The current state of genotyping technology has enabled
researchers to conduct genome-wide association studies
of up to 1,000,000 SNPs, allowing for systematic scanning
of the genome for variants that might influence the
development and progression of complex diseases. One of
the largest obstacles to the successful detection of such
variants is the multiple comparisons/testing problem in
the genetic association analysis. For family-based designs
in which all offspring are affected with the disease/trait
under study, we developed a methodology that addresses
this problem by partitioning the family-based data into
two statistically independent components. The first
component is used to screen the data and determine
the most promising SNPs. The second component is used
to test the SNPs for association, where information from
the screening is used to weight the SNPs during testing.
This methodology is more powerful than standard
procedures for multiple comparisons adjustment (i.e.,
Bonferroni correction). Additionally, as only one data set
is required for screening and testing, our testing strategy is
less susceptible to study heterogeneity. Finally, as many
family-based studies collect data only from affected
offspring, this method addresses a major limitation of
previous methodologies for multiple comparisons in
family-based designs, which require variation in the
disease/trait among offspring.

Testing Strategies for Trios
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the testing strategy are independent. The ‘‘evidence of association’’

(i.e., the genetic effect size estimate) for each marker from the

rank-weighting step can be utilized in the second stage without

having to adjust the overall significance level for the estimation of

the genetic effect size in the first stage. There are various ways in

which the information from the rank-weighting step can inform

the application of the FBAT/TDT statistic in the second step. The

effect size estimate from the screening step can be used to select a

small subset of ‘‘very promising’’ markers for FBAT/TDT testing

[8] or to assign each marker with an individual significance level

that reflects the rank of the marker’s effect size estimate relative to

the other markers [9]. Another possibility is to have the

information from the screening step define the ‘‘tuning parame-

ters’’ of the FBAT statistic [22,23].

The Rank-Weighting Step: Estimating the Power of the
FBAT Statistic under HA When Trio Data Are Given and All
Probands Are Affected

We assume that trios are given (i.e., affected probands and

parents), and that SNP data are analyzed. If the parental data are

missing/unavailable, the parental genotypes can be replaced in all

equations below by the sufficient statistic by Rabinowitz & Laird

[18,19]. The sufficient statistic for each nuclear family is defined

by all family configurations that lead to consistent inference about

the missing parents, given the observed genotypes. When parental

data are given, the parental genotypes represent the sufficient

statistic. Like the parental genotypes, the sufficient statistic allows

for the computation of the offspring genotype distribution within

each family, independent of the unknown allele frequency. For a

more detailed discussion, we refer to the original paper [18].

For each marker locus of interest, let xi be the coded genotype of

the ith proband, counting the number of minor alleles for the SNP

of interest. The variables pi1 and pi2 denote the parental genotypes

for both parents at the locus. The phenotype of the ith proband is

defined by yi. For trio samples in which all probands are affected,

the phenotype is coded as ‘‘y = 1’’. The FBAT statistic, x2
FBAT ,

[19,20] is then given by:

x2
FBAT~

Xn

i~1

xi{E xi pi1,pi2jð Þ½ �
( )2,Xn

i~1

Var xi pi1,pi2jð Þ* x2
1 ð2Þ

and has a chi-square distribution with one degree of freedom.

Assuming an additive coding function for the genotype, this FBAT

statistic and the original TDT statistic [20] are equivalent.

In order to develop a Van Steen type testing strategy [15,16] for

the classical TDT design, the conditional power [22,24] of the

FBAT/TDT statistic, x2
FBAT , has to be computed in the first step

of the testing strategy. This requires the specification of the

conditional marker density under the alternative hypothesis:

PHA
xi pi1,pi2,yi~1jð Þ

~
fxi

Pr xi pi1,pi2jð ÞP2
exx~0

fexx Pr exx pi1,pi2jð Þ
~

Yxi
Pr xi pi1,pi2jð ÞP2

exx~0

Yexx Pr exx pi1,pi2jð Þ
, ð3Þ

where affected probands are coded as ‘‘yi = 1’’. The parameter fx
denotes the penetrance probability (i.e., fx = Pr(yi = 1|x)), and Yx,

the genotype relative risk (i.e., Yx = fx/f0). The probability Pr(x|pi1,

pi2) is defined by Mendelian transmission and can be computed

straightforwardly, conditional on parental genotypes, without any

additional knowledge/assumptions. The penetrance probabilities

fxi
~Pr yi~1 xijð Þ are unknown and have to be estimated based on

the information that is available in the rank-weighting step, i.e.,

the offspring phenotype and the parental genotypes.

In the original Van Steen approach [8], the parental genotypes

are used to compute the expected/predicted marker scores of the

offspring. By regressing the offspring phenotype on its expected

marker score, an estimate for the genetic effect size is obtained that

allows us to specify the penetrance probability, Pr(yi = 1|xi) [15,16].

However, when there is no phenotypic variation in the data (i.e.,

all probands are affected), this approach is not applicable and an

alternative approach has to be developed. In order to simplify the

notation, our derivation will be based on the parameterization of

the marker distribution (Equation 3) in terms of the genotype

relative risks, Yx.

Due to the lack of variation in the phenotype, the only variation

that can be utilized for the estimation of the relative risk

probabilities are the parental genotypes. In the trio design, there

are six distinct parental mating types: (p1 = 2, p2 = 2), (p1 = 2,

p2 = 1), (p1 = 2, p2 = 0), (p1 = 1, p2 = 1), (p1 = 1, p2 = 0) and (p1 = 0,

p2 = 0), where 0, 1, and 2 denote the number of copies of the minor

allele for the marker of interest. The frequencies of the parental

mating types in the ascertained sample (yi = 1) can be computed

using Bayes’ rule,

pkl : ~Pr p1~k,p2~l y~1jð Þ

~

P2
exx~0

Yexx|Pr exx p1~k,p2~lð Þjð Þ|Pr p1~k,p2~lð Þ

1{pð Þ2z2p 1{pð ÞY1zp2Y2

; ð4Þ

where the parameter, p, denotes the minor allele frequency for the

marker in the general population, and again, as above, the

probabilities Pr exx p1~k, p2~lð Þjð Þ are defined by Mendelian

transmissions. The probabilities Pr(p1 = k, p1 = l) are the paternal

mating type frequencies in the general population, and k and l are

given by one of the six distinct mating types defined above. Under

the assumption of random mating and Hardy-Weinberg equilib-

rium at the marker locus in the general population, the

probabilities Pr(p1 = k, p1 = l) will be defined by the actual mating

type and the minor allele frequency, p.

Based on these assumptions, the likelihood of the parental

mating types in the ascertained sample is given by

l Y1,Y2,pð Þ~pn22
22 pn21

21 pn20
20 pn11

11 pn10
10 pn00

00 , where the probability of a

mating type is denoted as pp1p2
and the observed number of

mating types is np1p2
. In order to obtain maximum likelihood

estimates for the genotype relative risks Y1 and Y2, one has to

maximize the likelihood function l(Y1, Y2, p) over all unknown

parameters, i.e., the genotype relative risks, Y1 and Y2, and the

minor allele frequency of the marker, p. However, due to the

structure of the likelihood function, the Fisher information matrix

is ill conditioned [25] and a numerical solution of the likelihood

maximization is non-trivial. This is particularly challenging in the

context of genome-wide association studies in which the numerical

implementation must be fast and reliable. In addition to the

technical issues related to the likelihood maximization, the

estimation of the allele frequency at the marker locus is also

problematic in the presence of population admixture.

To avoid issues related to the estimation of the allele frequency,

we will construct estimators for the genotype relative risks, Y1 and

Y2, that are independent of the minor allele frequency, p, and

have a closed analytical form, facilitating a numerically fast and

robust implementation in genome-wide association studies. We

consider the following four possible ratios of parental mating types:

Testing Strategies for Trios
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R1 : ~
p22 � p00

p2
20

R2 : ~
p10 � p11

p00 � p21

R3 : ~
p00 � p21

p20 � p10
R4 : ~

p21 � p10

p20 � p11:

ð5Þ

Under the assumption of Hardy-Weinberg equilibrium in the

general population, using (Equation 4), the minor allele frequency,

p, drops out of the mating type ratios, and one can show that the

ratios R1, R2, R3, and R4 are given by:

R1~
Y2

4Y2
1

R2~
1zY1ð Þ 1z2Y1zY2ð Þ

Y1zY2

R3~
Y1zY2

2Y1 1zY1ð Þ R4~
2 Y1zY2ð Þ 1zY1ð Þ
Y1 1z2Y1zY2ð Þ :

8<: ð6Þ

It is important to note that the four ratios R1, R2, R3, and R4 do

not depend on the unknown minor allele frequency, p, and can be

estimated based on the parental genotypes, e.g., R̂R1~n221n00

�
n2

20.

It is also important to note that, if a likelihood approach for the

parental mating types had been implemented, the minor allele

frequency, p, would have to be estimated.

If a genetic model is specified (e.g., under an additive mode of

inheritance, Y1 = (1+Y2)/2), each equation in (Equation 6) will

depend only on one unknown genotype relative risk parameter.

Each equation can then be solved for the unknown parameter and

four estimates for the genotype relative risk are obtained.

Alternatively, an overall effect size estimate can be constructed

by averaging over all four estimates for the genetic effect size. The

selected estimate for the genotype relative risk can then be used to

calculate the marker distribution under the alternative hypothesis

(Equation 3), which is the final component needed in calculating

the conditional power of the FBAT/TDT statistic. Using

simulation studies, we will assess which of the four ratios (or the

average) for the proposed testing strategy generally achieves the

highest and most stable power estimates.

Since the proposed estimators for the genotype relative risk only

depend on the parental genotypes, they fulfill the decomposition

condition (Equation 1) and can be used in the rank-weighting step

of the testing strategy without biasing the significance level of the

FBAT/TDT statistic in the second stage. The independence of the

mating type ratios from the allele frequency makes the approach

particularly attractive in the presence of population admixture.

While we have outlined the concept of genotype relative risk

estimation in the context of ascertained family samples for the trio

designs, the genetic effect size estimators can be constructed in the

same way for more complex nuclear family structures. Using the

algorithm by Rabinowitz & Laird [18], all possible parental

mating types can be derived for nuclear families with missing

parental information and/or multiple offspring. The mating type

probabilities can then be computed based on Bayes’ rule, as for the

trio design (Equation 4). By examining all possible mating type

ratios, the ratios that depend only on the genotype relative risk, but

not on the allele frequency, can be identified and used to construct

direct estimators of the genetic effect size. While we are not able to

provide a general rule of thumb on how to construct mating type

ratios that do not depend on the allele frequency other than to

evaluate all possible ratios, such ratios appear to exist for most

nuclear family-types. Since the identification process of the

suitable mating type ratios can be automated by using software

packages such as Maple and Mathematica, the proposed concept

of genotype relative risk estimation is not specific to the trio design

and should be applicable to general nuclear family-types.

It is important to note that the proposed genetic effect size

estimators are derived under the assumption of Hardy-Weinberg

equilibrium at the marker locus in the general population, but not

in the ascertained sample. Since it is common practice to filter out

SNPs that are strongly out of Hardy-Weinberg equilibrium when

the genotype data are cleaned prior to analysis, only SNPs with

mild to moderate violations of the Hardy-Weinberg assumption

will reach the association analysis step. The effects of SNPs with

Hardy-Weinberg violations on the proposed testing strategy are

thereby limited. However, the genetic effect size estimation in the

first step will be biased for such SNPs. In the presence of SNPs that

are out of Hardy-Weinberg equilibrium and that are not

associated with affection status, the proposed testing strategy is

likely to have reduced power. If the Hardy-Weinberg assumption

does not hold at the disease susceptibility locus (DSL), the power of

the proposed testing strategy can be either increased or decreased,

depending on whether the signal that is caused by the true genetic

effect at the DSL locus is amplified by the Hardy-Weinberg

violation or not. Further, it is important to note that, while

violations of the Hardy-Weinberg assumption will have an effect

on the rank-weighting step, the validity of the FBAT/TDT-testing

step and, consequently, the validity of the entire approach will not

be affected by departures from Hardy-Weinberg.

The Testing Step: Testing for Family-Based Association
with Weighted Bonferroni Significance Levels

In the first phase of the testing strategy, the genetic effect size

estimates for each marker are used to compute the conditional

power at each locus, and all markers are ranked by power. A

weighted Bonferroni approach [9] is implemented that assigns

individual significance levels, denoted as ai, to each marker locus

based on its conditional power ranking. Essentially, ai is the type 1

error apportioned to the ith test on the basis of its power ranking

relative to all of the other tests. The individual significance levels

are selected so that the overall significance level is maintained, e.g.,P
ai~0:05. Using the FBAT/TDT statistic, each marker is then

tested in the second stage at the individual significance level ai, and

its association with affection status is declared as genome-wide

significant if its FBAT/TDT statistic p-value is less than the

individual significance level ai.

In order to determine the individual significance levels ai, we

must select a weighting scheme to apply to the weighted

Bonferroni method [9]. Essentially, the weighted Bonferroni

method partitions the SNPs into bins and assigns each bin a

weight, where the bin and weight sizes vary depending on the

relative power ranking of the SNPs in the bin. Each SNP within a

bin is assigned an equal weight, which represents a fraction (or

individual significance level, ai) of the overall significance level, a.

Many different weighting schemes to select bin/weight sizes may

be applied, as long as a is maintained. We selected an exponential

weighting scheme, which uses weights that decrease exponentially

and bin sizes that increase exponentially as the power rankings

decrease [9]. To define the exponential weighting scheme, let kj be

the size of the jth partition, and let k and r be user-defined

partitioning parameters with an integer value. Then the sizes of

the subsequent partitions can be defined by k1 = k and kj = k*r(j21).

The exponential weight, wj, for the jth bin is given by

wj~
r{1

r
| 1

r j{1ð Þ, with
P

j wj~1. Finally, the individual signifi-

cance level for the jth partition/bin is
wj

ki
|a. With these parameter

specifications, it is straightforward to see that
P

ai~a, thus the

overall alpha level is maintained. Further discussion of the

weighted Bonferroni method and weighting schemes is given in

Ionita-Laza et al. [9]. The optimal choices for the initial partition

Testing Strategies for Trios
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size k and the partitioning parameter r will be determined by

simulation studies.

Simulation Studies
Using simulation studies, we compare the proposed testing

strategy to the standard approach, FBAT/TDT testing with

Bonferroni corrected p-values. Both approaches are contrasted

under various scenarios with differing trio sample sizes and minor

allele frequencies. We simulate trio data under the assumption that

all offspring are affected and the genotypes of both parents are

known. The minor allele frequencies are drawn from b
distributions that resemble the 550 K Illumina HumanHap array.

The data were simulated under two separate scenarios. In the

first scenario, independence among all markers (i.e., no linkage

disequilibrium (LD)) is assumed. In the second scenario, we

simulated local LD between the SNPs. In order to obtain realistic

local LD patterns, we utilized a 550 K scan in the CAMP study

(see Data Analysis section) that consists of 400 trios. Based on the

observed local LD patterns in CAMP, we simulated the correlated

SNPs for the second scenario. Specifically, we applied a ‘moving

window’ algorithm, where the observed correlation (r2) between

the SNP to be simulated and the SNP immediately preceding the

SNP that is simulated (in terms of physical location) was used to

recapitulate local LD patterns on a genome-wide scale.

In each simulation, one locus/SNP is assumed to be the DSL,

while the other SNPs that are not in LD with the DSL are

considered null loci. For the null loci, under the independence

scenario, the parental genotypes are generated by drawing from a

Binomial distribution with the selected marker’s minor allele

frequency. When SNPs are correlated, the moving window

approach described above is used to generate parental genotypes.

Based on the parental genotypes, the offspring genotype is

obtained by simulated Mendelian transmissions from the parents.

At the DSL, the configuration of genotypes in the proband and

parents is simulated based on their theoretical distribution under

the specified alternative hypothesis, as outlined in Knapp [26] and

Lange & Laird [22,24].

For the considered scenarios, we assessed the performance of

the proposed approach when the genetic effect size is estimated

either based on one of four mating type ratios (R1–R4, Equation

6) or by the average of the four estimates. In simulation studies

comparing the performance of the estimators (data not shown), we

observed that the genotype relative risk estimator based on

equation R4 consistently generated the highest power estimates

(for minor allele frequencies (MAFs) .0.1), and was stable, even

with modest effect sizes (e.g., OR = 1.25) and lower allele

frequencies (e.g., MAF#0.2). Thus, all estimated power levels

for the proposed method that are shown here are based on the

genotype relative risk estimator for mating type ratio R4.

In the first set of simulations, we assume an additive mode of

inheritance at the DSL. The genetic effect size is defined in terms

of an odds ratio and ranges between 1.25 and 2.5, depending on

the number of trios. A disease prevalence (K) of 10% is selected

throughout the simulations. The trio sample size varies between

500–2000 trios. To accurately depict the degree of LD between

markers, 500,000 markers are simulated. Under the independence

scenario, the power was assessed as the proportion of replicates

where the FBAT test statistic p-value was less than the required

weighted Bonferroni alpha level, based on its power ranking from

the rank-weighting step. Under the LD scenario, the power was

computed in two ways. First, we defined a positive result

identically to the procedure used for the independence scenario

(i.e., a significant result for the DSL only). Secondly, we more

broadly defined a positive result to include a significant finding in

the DSL or in any markers in strong LD (r2.0.8) and within the

same physical region, (i.e., within five SNPs) with the DSL. For the

standard Bonferroni correction, power was defined as the

proportion of replicates with an FBAT statistic p-value,1027

(i.e., 0.05/500,000).

Estimated Power Levels for n = 500–2000 Trios, under an
Additive Genetic Model

The results of the first set of simulations are displayed in Table 1.

The number of trios is presented in column 1 and the odds ratio

(OR) for the DSL is specified in column 2. The minor allele

frequency (MAF) of the DSL is displayed in Column 3. Columns

4, 6, and 8, denoted as ‘‘Weighted,’’ present the power estimates

using the weighted Bonferroni method by Ionita-Laza et al. [9],

with an exponential weighting scheme and partitioning parame-

ters of K = 7 and r = 2. The choice of K = 7 and r = 2 tended to

have the highest power among a range of partitioning (K = 3–10,

r = 2–5) parameters, although decreases in power were minimal

within these ranges (data not shown). Columns 5, 7, and 9,

denoted as ‘‘Standard,’’ display the results for the standard

approach in which all SNPs are equally weighted when applying

the Bonferroni correction, and a significance level of 1027, (i.e.,

0.05/500,000) is required for genome-wide significance. Columns

4–5 (Independence scenario’’) reflect the scenario in which all

markers are independent (i.e., adjacent r2 = 0). Columns 6–9 (‘‘LD

scenario’’) display the power estimates when LD is present among

markers, where the power represents either detecting the DSL

only (Column 6–7), or the DSL/markers in strong LD with the

DSL (Columns 8–9). The power estimates are based on at least

1,000 replicates for each (DSL) minor allele frequency and odds

ratio.

For genome screens of 500 K SNPs, regardless of the sample

size or degree of correlation among markers, the use of power-

driven weights from the rank-weighting step shows a considerable

improvement in power over the standard methodology. For the

lowest power estimates (,40% power for the standard Bonfer-

roni), the power estimates for the weighted method are typically at

least twofold greater than the standard approach. For low to

moderate power estimates, (40–70% power for Bonferroni), the

weighted method outperforms the standard correction by to 15–

40%. For SNPs with greater than 70% power with the standard

approach, the improvement ranges between 7 and 11%, unless the

power estimates are near one. However, even in these scenarios,

the power estimates for the weighted Bonferroni method are

always higher, though the differences between the two methods

are more modest.

With respect to trio sample size, we note that even with smaller

sample sizes (e.g., n = 500), there is still power to detect a DSL (or

SNP in LD with the DSL), and the power gains over standard

Bonferroni correction are maintained, although a more pro-

nounced effect size is required (OR = 2.25–2.5) to achieve

adequate power. Based on the results of our simulation studies,

we would not recommend genome-wide association studies of

fewer than 300 trios unless extremely large effect sizes (OR.3)

were anticipated.

To verify that the proposed testing strategy maintains the

overall alpha level, the simulations were repeated under the null

hypothesis of no linkage/no association, with a sample size of 500

trios. Based on over 10,000 replicates, the observed overall type 1

error rate was maintained at 4.66%.

Finally, in examining the impact that LD has on power, when

considering a positive finding to be the detection of the DSL

only, the power of the approach was slightly reduced in

comparison to the scenario in which the SNPs were indepen-
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dent. However, the proposed testing strategy still outperforms

the standard approach by differences that are of practical

relevance. When the definition of a positive finding is extended

to those SNPs that are in LD with the DSL, the power estimates

are higher than the independence scenario. This is a significant

finding, given that some array platforms for genome-wide

genotyping do not employ LD-tagging methods, and as chip

density increases (i.e., one million SNP arrays), linkage

disequilibrium will have a greater impact on the analysis of

genome-wide association studies.

Table 1. Power for 500–2000 trios and 500K markers, using mating type ratio equation R4, under an additive genetic model.

Number Odds MAF Independence scenario LD scenario (DSL only) LD scenario (DSL+)

of Trios Ratio Weighted Standard Weighted Standard Weighted Standard

2000

1.25 0.1 0.066 0.003 0.042 0.001 0.127 0.017

0.2 0.241 0.039 0.168 0.012 0.391 0.147

0.3 0.295 0.089 0.203 0.031 0.513 0.300

0.4 0.270 0.129 0.165 0.048 0.504 0.366

1.375 0.1 0.226 0.078 0.154 0.033 0.371 0.195

0.2 0.591 0.388 0.454 0.212 0.800 0.665

0.3 0.744 0.591 0.590 0.397 0.921 0.857

0.4 0.764 0.666 0.591 0.465 0.930 0.893

1.5 0.1 0.517 0.357 0.390 0.225 0.722 0.604

0.2 0.908 0.846 0.827 0.703 0.985 0.964

0.3 0.976 0.952 0.931 0.874 0.995 0.992

0.4 0.979 0.969 0.940 0.902 0.997 0.995

1000

1.5 0.1 0.100 0.032 0.072 0.018 0.170 0.084

0.2 0.354 0.189 0.271 0.113 0.520 0.352

0.3 0.470 0.336 0.360 0.220 0.667 0.555

0.4 0.456 0.371 0.333 0.248 0.660 0.571

1.75 0.1 0.438 0.324 0.345 0.236 0.581 0.488

0.2 0.859 0.777 0.770 0.658 0.940 0.901

0.3 0.932 0.896 0.881 0.819 0.976 0.960

0.4 0.936 0.904 0.881 0.839 0.976 0.964

2 0.1 0.825 0.759 0.750 0.669 0.918 0.876

0.2 0.992 0.985 0.984 0.970 0.999 0.997

0.3 0.998 0.996 0.994 0.990 1.000 1.000

0.4 0.997 0.995 0.994 0.989 0.998 0.997

500

2 0.1 0.184 0.128 0.132 0.085 0.276 0.205

0.2 0.573 0.480 0.490 0.382 0.693 0.606

0.3 0.711 0.628 0.635 0.538 0.805 0.740

0.4 0.665 0.590 0.591 0.505 0.771 0.707

2.25 0.1 0.447 0.350 0.367 0.278 0.551 0.473

0.2 0.849 0.787 0.797 0.720 0.916 0.878

0.3 0.905 0.868 0.869 0.811 0.954 0.928

0.4 0.894 0.856 0.849 0.805 0.934 0.900

2.5 0.1 0.694 0.612 0.624 0.542 0.793 0.729

0.2 0.957 0.934 0.935 0.895 0.981 0.967

0.3 0.978 0.964 0.966 0.943 0.991 0.982

0.4 0.965 0.949 0.945 0.919 0.983 0.975

Estimated power levels to detect the DSL using 500–2000 trios, assuming a 10% disease prevalence and additive mode of inheritance. The significance level is set to 5%.
For the weighted Bonferroni method (Weighted), the partitioning parameters are K = 7 and r = 2. MAF denotes minor allele frequency. The power reflects the proportion
of times the p-value of the DSL (Independence scenario and LD scenario (DSL only)) or a SNP in LD with the DSL (LD scenario (DSL+)) met the weighted Bonferroni
(Weighted) or standard Bonferroni corrected (Standard) significance level. The standard Bonferroni correction adjusts for 500 K comparisons.
doi:10.1371/journal.pgen.1000197.t001
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Estimated Power Levels for n = 2000 Trios, When the
Genetic Model Is Unknown

Since in practice the underlying mode of inheritance is unknown,

we ran a second set of simulations to reflect this reality and assess the

impact on the power of the proposed method and the standard

approach. In the data analysis step of the following simulation, the

true genetic model was considered to be ‘‘unknown.’’ We simulated

three scenarios, where the true (but unknown) generating model was

either additive, dominant, or recessive, and conducted separate

FBAT analyses under all three genetic models. To evaluate the

power for the weighted Bonferroni method [9], we estimated the

conditional power for each SNP under all three genetic models. For

each SNP, the result for the genetic model with highest power was

selected and the lower powered results (without evaluating the

FBAT statistic p-value) were discarded. This resulted in 500,000

SNPs/power estimates across the three genetic models, that were

ranked overall by power and evaluated for association using

weighted Bonferroni significance levels. The weighted Bonferroni

significance levels were computed in the same way as previously

described. We then compared the power obtained from the

weighted method to standard Bonferroni correction, which

computed the FBAT statistic under all three genetic models at

each SNP, thus requiring a correction for 1.5 million comparisons

(500,000 markers * 3 genetic models) and an FBAT p-value

,3.361028 for significance (i.e., 0.05/1,500,000). For simplicity,

we ran these simulations for 2000 trios.

The results of the second set of simulations are displayed in

Table 2. The data are presented in an identical format to the

simulations under the additive model (including partitioning

parameters of K = 7 and r = 2), except that column 1 reflects the

‘‘true’’ underlying genetic model rather than the number of trios.

For the additive model, in comparison to the simulations where

the genetic model is known, the power estimates tend be slightly

lower. In the independence scenario, for an odds ratio of 1.5 and

MAF of 0.2, when the genetic model is known, the weighted

Bonferroni method has 91% power versus 85% for the standard,

whereas, when the genetic model is unknown, the power estimates

are 80% and 57%, respectively. However, our new method seems

much more robust to analysis under multiple models in

comparison to the standard correction. For an effect size of 1.5,

the power loss in the unknown model ranges from 7 to 15%,

depending on MAF, while power loss under the standard method

ranges from 15 to 63%. Similar observations are made for the

power comparisons between the weighted and standard methods

for the LD scenarios. The overall power is reduced relative to the

situation where the generating genetic model is known, but the

difference in power between the weighted and standard methods is

more striking. In comparing the independence scenario to the LD

scenarios, the patterns observed when the genetic model is known

hold here as well: when LD is present and the DSL or SNPs in LD

with the DSL are considered, the power is highest, followed by the

independence scenario. The lowest overall power is noted when

LD is present and only the DSL is examined for significant

association. In summary, while the overall power drops, the

benefits of our methodology versus the standard are more

pronounced when the genetic model is unknown and multiple

analyses are conducted.

In comparing our method with weighted Bonferroni signifi-

cance levels to the standard under dominant and recessive models,

our procedure consistently demonstrates greater power, regardless

of the degree of LD, effect size, or MAF. However, under a

recessive model, a MAF of 0.3 or greater is required to achieve

adequate power for the range of effect sizes that we examined

(OR = 2–2.5).

Overall, our new methodology has the greatest impact for the

low to moderately powered markers. For SNPs with standard

Bonferroni power estimates ranging between 40% and 70%, the

new method generally boosts power by an absolute difference of

10–15%, potentially providing marginally powered SNPs with a

better chance of detection.

Summary
Our simulation studies illustrate that the application of the

proposed testing strategy is not limited by the number of trios

analyzed, the degree of correlation among SNPs, the genetic model,

or the size of the genetic effect. When standard approaches fail to

provide sufficient power, the proposed testing strategy maintains

acceptable power levels for small to moderate effect sizes (n = 2000)

for the additive generating models, and moderate effect sizes under

the dominant or recessive models or designs with fewer trios (n = 500–

1000). As a general rule of thumb, our simulation experiments suggest

that the testing strategy achieves optimal power levels for partitioning

parameters of K = 7 and r = 2 for 500,000 markers, though power

estimates were similar for K = 5–10 and r = 2–3. A comparison of the

achieved power levels for differing number of trios and various

genetic models illustrates that the impact of the multiple testing

problem on a genome-wide association study can be minimized by

the use of the proposed testing strategy.

Data Analysis: A Genome-Wide Screen of Children
Asthmatics

Asthma is a complex respiratory disorder, likely due to both

genetic and environmental influences that affect the developing

respiratory system. Asthma has been shown to have substantial

heritability [27,28,29] and a comprehensive review of the

literature in 2003 reported more than 200 studies with an

association between asthma and its related phenotypes [30].

Thus, we applied our methodology to a family-based genome-

wide association study of asthma. The families were originally

recruited through the Childhood Asthma Management Program

(CAMP) [31] Genetics Ancillary Study. All of the families were

ascertained through asthmatic probands between 5 and 12 years

old with mild to moderate asthma. All of the probands are

affected, making it impossible to apply methodologies that require

phenotype variation.

SNP genotyping was performed using Illumina HumanHap

550v3 arrays. Of 547,645 SNPs, 2.5% were removed during data

cleaning due to genotype completion rates ,95%, parent-offspring

Mendelian errors, or because the assay sequence could not be

aligned to one genomic locus, which resulted in 534,290 autosomal

markers for analysis. Genotyping was conducted on 1215 subjects in

422 families. After removing 43 subjects with inadequate data, 1172

subjects comprising 403 families were analyzed. We applied the new

power rank-weighting methodology, under an additive genetic

model, to all 534,290 SNP, using equation R4 (Equation 6) to

estimate genetic effect sizes, which had consistently had the highest

power in the simulation studies. The power rankings were used to

individually weight the family-based association test (also assuming

an additive model) for each marker, using the method of Ionita-

Laza et al. [9]. Table 3 displays the results for the CAMP data

analysis. Based on the results of the simulation studies, the

partitioning parameters of K = 7 and r = 2 were used.

From the analysis, two SNPs were identified as genome-wide

significant with a global alpha level of 0.05. These SNP were also

the top two by power. Thus, the Top K Method by Van Steen et

al. [8], with a modest choice of ‘Top’ markers selected for analysis,

would have also detected these SNPs. However, the weighted

Bonferroni method by Ionita-Laza et al. [9] allows for the
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evaluation of all SNP. Most strikingly, neither of these SNPs would

have been detected after standard Bonferroni [7] or FDR-type

[32] correction. These significant markers reside on chromosomes

1 (rs10863712) and 14 (rs1294497). In both markers, the minor

allele is over-transmitted to the affected proband. These markers

are currently under further study. These results provide proof of

concept for our new method in that the top-ranked markers by

power also showed evidence of association, strongly suggesting

Table 2. Power for 2000 trios and 500K markers, using mating type ratio equation R4, under an ‘‘unknown’’ genetic model.

True Gen. Odds MAF Independence scenario LD scenario (DSL only) LD scenario (DSL+)

Model Ratio Weighted Standard Weighted Standard Weighted Standard

Add.

1.25 0.1 0.033 0.001 0.019 0.000 0.074 0.005

0.2 0.140 0.008 0.085 0.002 0.265 0.055

0.3 0.175 0.022 0.109 0.007 0.320 0.122

0.4 0.137 0.029 0.083 0.007 0.305 0.174

1.375 0.1 0.140 0.026 0.098 0.008 0.256 0.092

0.2 0.414 0.171 0.316 0.085 0.623 0.430

0.3 0.537 0.332 0.373 0.166 0.777 0.644

0.4 0.532 0.404 0.376 0.241 0.793 0.711

1.5 0.1 0.354 0.183 0.281 0.107 0.546 0.385

0.2 0.790 0.646 0.669 0.466 0.928 0.876

0.3 0.910 0.844 0.802 0.694 0.984 0.967

0.4 0.916 0.878 0.817 0.742 0.985 0.973

Dom.

1.5 0.1 0.207 0.099 0.135 0.053 0.360 0.230

0.2 0.376 0.257 0.271 0.154 0.597 0.490

0.3 0.306 0.218 0.200 0.129 0.522 0.443

0.4 0.145 0.104 0.072 0.046 0.263 0.204

1.75 0.1 0.760 0.690 0.642 0.548 0.896 0.856

0.2 0.937 0.910 0.862 0.808 0.988 0.979

0.3 0.906 0.868 0.821 0.758 0.967 0.951

0.4 0.693 0.624 0.577 0.503 0.830 0.784

2 0.1 0.989 0.984 0.970 0.959 1.000 0.999

0.2 1.000 0.999 0.999 0.999 1.000 1.000

0.3 0.997 0.995 0.993 0.992 0.999 0.998

0.4 0.965 0.950 0.935 0.911 0.987 0.982

Rec.

2 0.1 0.002 0.000 0.002 0.000 0.002 0.000

0.2 0.011 0.005 0.008 0.003 0.019 0.007

0.3 0.217 0.165 0.147 0.104 0.335 0.267

0.4 0.767 0.723 0.657 0.598 0.887 0.867

2.25 0.1 0.003 0.000 0.002 0.000 0.006 0.000

0.2 0.039 0.014 0.029 0.010 0.057 0.029

0.3 0.562 0.463 0.450 0.373 0.704 0.620

0.4 0.971 0.959 0.949 0.927 0.991 0.985

2.5 0.1 0.005 0.000 0.004 0.000 0.007 0.000

0.2 0.103 0.053 0.068 0.036 0.155 0.087

0.3 0.850 0.784 0.783 0.709 0.926 0.884

0.4 0.997 0.995 0.995 0.991 1.000 1.000

Estimated power levels to detect the DSL using 2000 trios, assuming a 10% disease prevalence. The significance level is set to 5%. For the weighted Bonferroni method
(Weighted), the partitioning parameters are K = 7 and r = 2. ‘‘Under True Gen. Model’’, Add. refers to the scenario where the true (but ‘‘unknown’’) model is additive (as
the results are analyzed using all three genetic models). Similar scenarios are provided for the dominant (Dom.) and recessive (Rec.) genetic models. MAF denotes minor
allele frequency. The power reflects the proportion of times the p-value of the DSL (Independence scenario and LD scenario (DSL only)) or a SNP in LD with the DSL (LD
scenario (DSL+)) met the weighted Bonferroni (Weighted) or standard Bonferroni corrected (Standard) significance level. The standard Bonferroni correction adjusts for
1.5 M comparisons (500 K markers * 3 genetic models).
doi:10.1371/journal.pgen.1000197.t002
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consistency of association in the independent population level and

family level components of family-based data.

Discussion

With the current genotyping capabilities, genome-wide associ-

ation studies have become a reality. In order to utilize the wealth

of SNP data obtained in such studies to identify genes for complex

diseases, new statistical approaches are needed that can handle the

multiple comparisons problem on an increasingly large scale. For

population-based studies, multi-stage designs have been suggested.

In each stage of the design, the ‘‘most promising’’ SNPs (top 1–

10% of all genotyped SNPs) are pushed forward to the next level

in which they are genotyped in another sample. Overall

significance is established by combining the evidence from all

stages into a single analysis. While this is a cost-effective approach,

it is not as powerful as genotyping all subjects [33].

Testing strategies that use the same data set for genomic screening

(i.e., rank-weighting) and testing [8,9,10,11] establish genome-wide

significance within one data set. They usually identify only a handful

of SNPs (typically fewer than 20) which are then genotyped in other

studies in order to generalize the significant findings [34,35]. In

contrast to multi-stage designs, genotyping the identified SNPs in

other samples does not serve the purpose of establishing genome-

wide significance. The effects of study heterogeneity are thereby

limited. However, thus far, such testing strategies have only been

available for the small subset of family-based studies in which the

primary phenotype is quantitative, but not for the most popular

family design, the classical trio design. The lack of phenotypic

variation has prevented the genetic effect size estimation by the

conditional mean model in the rank-weighting step.

In this manuscript, we have developed an approach that makes

such testing strategies available for the commonly used TDT design.

Our simulation studies show that our method outperforms standard

methodology substantially. The effect size estimators that we suggest

allow for the assessment of the genotype relative risk at a population

level in ascertained family samples. In contrast to association tests

for affected-only designs in population-based studies [12,13,14],

here it is possible to estimate the genetic effect size independent of

the unknown allele frequency. While we have discussed only the

construction of such effect size estimators for the trio design, the

concept of identifying probability ratios of mating types that depend

on the genetic effect size, but not on the unknown allele frequency, is

generally applicable to all family-based designs.

URL
The testing strategy as well as the corresponding power and

sample size calculations has been fully implemented in the

software package PBAT, which is freely available at http://www.

biostat.harvard.edu/,clange/default.htm [36,37].
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