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Abstract

Background: The complexity of the human plasma proteome represents a substantial challenge for biomarker discovery.
Proteomic analysis of genetically engineered mouse models of cancer and isolated cancer cells and cell lines provide
alternative methods for identification of potential cancer markers that would be detectable in human blood using sensitive
assays. The goal of this work is to evaluate the utility of an integrative strategy using these two approaches for biomarker
discovery.

Methodology/Principal Findings: We investigated a strategy that combined quantitative plasma proteomics of an ovarian
cancer mouse model with analysis of proteins secreted or shed by human ovarian cancer cells. Of 106 plasma proteins
identified with increased levels in tumor bearing mice, 58 were also secreted or shed from ovarian cancer cells. The
remainder consisted primarily of host-response proteins. Of 25 proteins identified in the study that were assayed, 8 mostly
secreted proteins common to mouse plasma and human cancer cells were significantly upregulated in a set of plasmas from
ovarian cancer patients. Five of the eight proteins were confirmed to be upregulated in a second independent set of ovarian
cancer plasmas, including in early stage disease.

Conclusions/Significance: Integrated proteomic analysis of cancer mouse models and human cancer cell populations
provides an effective approach to identify potential circulating protein biomarkers.
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Introduction

Proteins detectable in serum and plasma are commonly relied

upon to monitor ovarian, pancreatic, and colon cancer response to

therapy and disease recurrence through the measurement of

CA125, CA19.9, and CEA respectively. In addition, the screening

and monitoring of prostate cancer currently relies in part on

measurements of PSA levels in blood [1–3]. The development of

effective strategies for identification of circulating protein markers

that complement current markers would be beneficial [4]. A

number of recent ovarian cancer studies have utilized proteomics

to identify proteins in ovarian cancer cells, tissues, and fluids [5–9].

Such studies suggest hundreds of potential candidates on account

of overexpression, but do not give an indication as to whether

increased blood levels of the candidate proteins may occur in

cancer subjects. The identification of novel circulating protein

markers through plasma profiling represents a substantial

challenge. Although plasma is one of the most accessible biological

materials it contains vast assemblies of proteins and complexes and

exhibits considerable heterogeneity between and within subjects

that hinder proteomic analysis of low abundance proteins [10].

Engineered mouse models of cancer characterized by limited

heterogeneity and a favorable tumor to body mass ratio, and

isolated tumor cell populations that may be profiled at substantial

depth present alternative strategies for the identification of

potential cancer markers, notably secreted proteins that may be

subjected to validation in human blood using sensitive assays.

We have developed several mouse models of epithelial ovarian

cancer [11]. These models have been generated using intrabursal

delivery of Adeno-Cre (AdCre) adenovirus via the infundibulum in

genetically engineered mice. This method selectively activates

oncogenes and inactivates tumor suppressors within the ovarian

surface epithelium (OSE), a site of origin for many human ovarian

tumors. We previously relied on the LSL-K-rasG12D/+ and PtenloxP/loxP

PLoS ONE | www.plosone.org 1 November 2009 | Volume 4 | Issue 11 | e7916



conditional murine strains (herein referred to as K-ras/Pten) to

develop a mouse model of ovarian cancer [11–13]. A second

model developed in parallel by us and others is based on the

cooperation between the Wnt and Pten pathways (APCloxP/lox

PtenloxP/lox genetic combination, herein referred to as Pten/Apc)

[14]. Both models exhibit features of endometrioid ovarian

tumors.

We have recently undertaken proteomic profiling of ovarian

cancer cell populations including cell lines and fresh tumor cells

enriched from ascites fluid, which resulted in the identification of

several thousand proteins and elucidated the repertoire of proteins

expressed on the cell surface and proteins released into the extra-

cellular milieu [15]. Proteome analysis has uncovered shedding of

extra-cellular domains and highly dynamic processes of protein

secretion. Here we have applied an in-depth quantitative

proteomic approach [16–18] to the analysis of plasma protein

changes related to tumor development in a K-ras/Pten ovarian

cancer mouse model to determine their involvement in pathways

and networks and their correspondence to proteins expressed or

released from human ovarian cancer cells. Blinded analysis of

human samples was done to determine which assayed proteins

from the integrated cancer cell and mouse plasma data yielded

statistically significant increases in their levels in ovarian cancer

cases relative to controls. A protein subset representing primarily

secreted proteins from the combined mouse plasma and human

cancer cell proteomic data yielded significant differences in levels

between plasmas from ovarian cancer patients and plasmas from

control subjects.

Results

Quantitative Plasma Protein Changes Observed in an
Ovarian Cancer Mouse Model

A pool of plasma samples from AdenoCre-infected K-ras/Pten

mice (n = 5) and a pool from Adeno-empty injected controls (n = 5)

were subjected to quantitative proteomic analysis to determine

differences in plasma protein levels. Separate pools of plasma from

cases and controls were subjected to immunodepletion to remove

abundant plasma proteins, followed by differential isotopic

labeling to distinguish cancer cases from controls. The samples

were mixed and then subjected to intact protein fractionation by

ion exchange followed by reverse phase chromatography. Proteins

in the individual collected fractions were enzymatically digested

and subjected to online LC-MS/MS for protein identification and

quantification (Figure 1). A feature of the IPAS platform is that

extensive fractionation allows de-complexing of the samples into

individual fractions to allow identification and quantification of

proteins present in the plasma over 6–7 orders of magnitude

[16,19]. A previous study using this approach has shown that

quantitative analysis of protein changes can be reliably determined

[18]. In this study, some 1,725,000 mass spectra were collected

and analyzed. 1,031 unique proteins were identified with high

confidence (Table S1). 106 proteins were upregulated 1.5-fold or

greater (p-value,0.05) (Table S2). A majority (57%) of the

upregulated proteins contained a signal peptide for secretion,

whereas 17% encompassed in their corresponding gene sequence

a trans-membrane domain. 28% of the upregulated proteins were

previously identified in proteome profiling of mouse liver tissue, a

major source of plasma proteins [20,21]. 9% had no human

ortholog as determined based on the Mouse Genome Database

[22]. In contrast, 36 proteins were downregulated 1.5-fold or

greater (p-value,0.05) (Table S3) including secreted proteins with

8 representing proteins previously identified in mouse liver

tissue.

Comparative Analysis of Tumor Bearing Mouse Plasma
and Human Ovarian Tumor Cell Proteomes

We compared the mouse plasma data with data from an

extensive proteomic study of three human ovarian cancer cell lines

(OVCAR3, CAOV3, and ES2) and of tumor cells from ascites

fluid obtained from an ovarian cancer patient [15]. The cell lines

consisted of two poorly differentiated serous adenocarcinomas

(OVCAR3, CAOV3) and one clear cell carcinoma (ES2). The

ascites derived tumor cells were collected from a patient with

serous ovarian cancer. Cells were isotopically labeled in culture

using SILAC [23] to allow ascertainment of the cellular origin of

proteins identified in media. By comparing the upregulated mouse

plasma proteins with the list of proteins enriched in the surface or

secreted cellular compartments from human ovarian cancer cells

(Table S2), 55% (58/106) of upregulated proteins in mouse plasma

were found to be released from ovarian cancer cells through

secretion or shedding or enriched in the ovarian cancer cell surface

compartment. Previously described candidate markers for ovarian

cancer identified in both the mouse plasma and ovarian cancer

cells (Table S4), included WFDC2 (HE4), IGFBP2, and LCN2.

The balance of proteins not identified in ovarian cancer cell

analyses consisted primarily of inflammatory and immune

response related proteins. Interestingly, although the K-ras/Pten

model has features of endometrioid ovarian cancer, the data

suggested that upregulated secreted proteins identified in mouse

plasma with tumor development were more broadly representative

of other ovarian cancer histological subtypes, since the human cell

lines and ascites derived tumor cells resulted from papillary

adenocarcinoma, clear cell and serous subtypes respectively

[24,25].

In addition to the quantitative cancer-to-control ratios for

proteins presented, several proteins had labeled peptides only

detected with the heavy form of acrylamide, representing ‘‘cancer-

only’’ peptides. Of the 106 proteins up-regulated in mouse plasma

IPAS, 33 proteins had additional cancer-only peptides identified

(Table S2), further corroborating their up-regulated status.

Additionally, seven proteins: Cacna1c, Vcl, Fcgbp, Mmp19, Lyz2,

Eef1a1, and Gapdhs had cancer-only peptides (Table S2). Vcl acts

as a linking protein in focal adhesion and has been studied within

the context of cancer [26]. Mmp19, part of the metalloproteinase

family implicated in cancer, has been reported to induce epithelial

cell migration, playing an important role in the early stage of cancer

[27]. Members of the Eef1a family have been reported as putative

oncogenes overexpressed in ovarian cancer [28,29].

Biological Functions and Networks among Upregulated
Proteins in Mouse Plasma

Pathway analysis was performed to determine the biological

processes that contribute changes to the plasma proteome with

ovarian tumor development, and explore pathways for the

proteins of interest to understand the processes that they

participate in. We relied on two pathway tools to this effect,

Ingenuity and GeneGo’s MetaCore. Initial pathway analysis of the

list of 106 upregulated proteins using the computational gene

network prediction tool, Ingenuity Pathways Analysis, categorized

the proteins into biological functions. Thirty proteins were

associated with inflammation (p = 1.3061026). Cancer was

identified as a significant disease process (p = 3.7161025) in

relation to all proteins identified, being represented by 52 relevant

proteins from this list. Interestingly, genes for 11 proteins were

associated as a group with ovarian cancer (p = 1.4161023) (CFH,

CLU, IFI30, IGFBP2, IGFBP4, LCN2, MMP2, POSTN, TFF3,

TNFRSF9, HE4 (WFDC2). HE4, a known candidate marker for

Ovarian Cancer Proteomics
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ovarian cancer [30,31] was upregulated (8.8-fold p,0.001) in the

murine plasma data set. Some proteins from this list have also

been identified in tumor studies as clinical outcome predictors

(NOV, CLU TNC, POSTN, IGFBP2, LCN2) or mediators of

resistance to chemotherapy (CLU, FBLN1, THBS, STIP1,

PTGES3, IGFBP4, ATOX1) [32–45].

58 of the 106 upregulated proteins in the mouse plasma analysis

were found to be also enriched in the surface or secreted sub-

Figure 1. Study Design. A schematic of the workflow used in this study. Pools of control and cancer plasma from the K-ras/Pten mouse model
were first immunodepleted to remove abundant proteins and then labeled with D0- and D3- acrylamide isotopes to distinguish cancer from control.
The pools were mixed and subjected to extensive intact protein fractionation by anion exchange, followed by reverse phase chromatography. After
tryptic digestion, samples were subjected to high resolution mass spectrometry and shotgun LC-MS/MS analysis for protein identification and
quantitation. Following statistical analysis and data mining, upregulated proteins in murine plasma were compared to human ascites derived tumor
cells/cancer cell line data. In addition, pathway analysis was used to determine significant biological pathways and processes. The expression of
relevant upregulated proteins was further validated in mouse and human tumors and plasma.
doi:10.1371/journal.pone.0007916.g001
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cellular compartments of ovarian cancer cells. Pathway analysis of

these 58 proteins identified four significant networks using

Ingenuity (Figure 2 and Figure S1) and five networks with

MetaCore’s workflow (Figure S2). The most prevalent processes

highlighted in the Ingenuity networks included tumor growth, cell

proliferation and apoptosis, regulation of tumor microenviron-

ment, angiogenesis, cellular migration, invasion, and metastasis

(Table S5). An additional assessment using MetaCore’s enrich-

ment tools across GeneGo ontologies and Gene Ontology (Figure

S2, Figure S3, Table S6) confirmed cell adhesion, proliferation,

development and extracellular matrix remodeling as significant

represented processes. The top two networks generated by

Ingenuity underscore the importance of TGFb-mediated regula-

tion of cell proliferation, metabolism and cytoskeletal remodeling

(Figure 2, Table S5), complementing the MetaCore enrichment

results (Figure S3). In addition to TGFb, other central nodes (with

both Ingenuity and MetaCore) include MMP2, p38MAPK, NFkB,

and RAS, all known to be important in ovarian cancer [46,47].

Pathway analysis of the 48 proteins that were found to be

upregulated in mouse plasma with tumor development, but not

identified as secreted or surface membrane proteins in ovarian

cancer cells yielded three significant networks with Ingenuity

(Figure S4, Table S5). The list included putative inflammatory

proteins such as haptoglobin (HP), S100A8, and CCL8. The

categorization of upregulated proteins in the plasma based on

enrichment in ovarian cancer cells sub-fractions provided a means

for assessing which upregulated proteins in plasma were more

likely derived from cancer cells, and which proteins were more

likely related to host-response.

Immunoblot Analysis of Mouse and Human Specimens
A set of proteins identified in ovarian cancer cells and found to

be upregulated in plasma from tumor bearing mice, TIMP1,

LCN2, IGFBP2, PFN1, SPARC, EEF1B2, CLU, and FBLN2,

were selected for immunoblot analysis using tumor tissue collected

from mouse models, conditioned media from human ovarian

cancer cell lines, and primary ovarian tumors from human

subjects. Increased protein levels for Timp1, Lcn2, Igfbp2, Pfn1,

and Sparc were observed in ovarian tumor tissues isolated from K-

ras/Pten (Figure 3A) and Pten/Apc (Figure 3B) ovarian cancer

mouse models compared to control tissue lysates. Similarly,

enrichment in TIMP1, LCN2, IGFBP2, PFN1, SPARC, EEF1B2,

CLU, and FBLN2 was observed in conditioned media (CM)

collected from ovarian cancer cell lines derived from serous

adenocarcinomas (OVCAR-3, SKOV3, CaOV3, OVCAR-5,

OVCAR-8), endometrioid carcinoma (TOV112D), clear cell

carcinoma (ES-2, IGROV1) compared to conditioned media

derived from human ovarian surface epithelium (HOSE,

Figure 3C). In addition, expression levels of TIMP1, LCN2,

PFN1, IGFBP2, SPARC, EEF1B2, CLU, and FBLN2 were

elevated in ovarian tumor lysates compared to control tissue

freshly collected from patients undergoing surgery (Figure 3D).

ELISA Assays Using Mouse and Human Plasmas
We further tested a subset of proteins found by mass

spectrometry to be upregulated in plasma from tumor bearing

mice, for their levels in human and murine plasma. We also

compared performance of proteins found to be secreted by ovarian

cancer cells but were either not identified in mouse plasma or not

found to be elevated in plasma from tumor bearing mice. 25

proteins were chosen based on availability of ELISA assays. For

mouse assays, we assessed levels of Timp1 and Lcn2 in biological

fluids and plasmas from tumor bearing mice (Stage I/II, n = 6;

Stage III/IV, n = 5; controls, n = 18). Timp1 levels in Stage I/II

and Stage III/IV samples were increased 5.9-fold (p,0.0001) and

9.5-fold (p,0.0001) compared to controls, respectively (Figure 4A).

Similar findings were observed for Lcn2 (Figure 4B). We further

examined whether Timp1 and Lcn2 were enriched in fluid

extracted from late stage ovarian tumors and in peritoneal ascites

given the proximity of these fluids to ovarian cancer cells and the

Figure 2. Networks. Top two networks (A, B) assigned by Ingenuity
Pathway Analysis for upregulated proteins in the mouse plasma that
were also enriched in the cancer cell line data. Central nodes include
TGFb, PI3K, MMP-2, Ras, and MAPK. Proteins colored in red represent
upregulated proteins and non-colored proteins are those assigned by
Ingenuity databases as possible intermediate interactions as based on
the Ingenuity database. Solid lines indicate direct relationships (two
molecules make physical contact) and dotted lines indicate indirect
relationships (does not require physical contact). The scores for A) and
B) are 51 and 24 respectively.
doi:10.1371/journal.pone.0007916.g002
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secreted nature of the proteins. Timp1 levels were elevated more

than 400-fold and 250-fold in ovarian tumor fluid and peritoneal

ascites compared to murine plasma, respectively (Figure 4C).

Likewise, Lcn2 had a similar pattern with a 79- and 19-fold

increased levels in ovarian tumor fluid and peritoneal ascites,

respectively (Figure 4D), consistent with their active secretion into

surrounding fluids by tumor cells.

The 25 proteins chosen for assays in human plasmas were

either: 1) up-regulated in mouse plasma, 2) expressed by ovarian

cancer cells, or 3) both up-regulated in mouse plasma and

expressed by ovarian cancer cells. The initial set of human

plasmas, henceforth referred to as Set 1, consisted of plasma

samples from 13 women with epithelial ovarian cancer (n = 3 early

stage, n = 10 late stage) and 56 healthy women. All samples in Set

1 were collected in the clinic, under non-surgical conditions (Table

S7). Assay results from Set 1 are summarized in Table S2, together

with the mouse plasma and cell line data used to choose the

proteins for testing. The levels of 8 of the 25 proteins, GRN,

IGFBP2, THBS1, RARRES2, TIMP1, PPBP, CD14, and

NRCAM, were found to be statistically significantly (p,0.05)

elevated in newly diagnosed subjects with ovarian cancer

compared to controls (Table 1, Figure 5).

Interestingly, 5 of the 8 proteins found up-regulated in Set 1

(GRN, IGFBP2, THBS1, RARRES2, and TIMP1) were secreted

proteins from the intersection of mouse plasma and cancer cell

data. PPBP was a secreted protein found up-regulated in the

mouse plasma, but not discovered in the ovarian cancer cell lines,

while CD14 and NRCAM were cell surface proteins from the

ovarian cancer cell lines, and were not quantified in mouse

plasma.

The 8 proteins that showed statistically significant increased

levels in Set 1 assays were further tested in an additional set of

human plasma samples, henceforth referred to as Set 2. Set 2

consisted of plasma samples from 55 women with epithelial

ovarian cancer (n = 31 early stage, n = 23 late stage, and n = 1

stage unknown) and 39 controls undergoing surgery. All samples in

Set 2 were collected in the operating room under surgical

conditions (Table S7). Of the 8 proteins found significant in Set 1,

5 proteins (GRN, IGFBP2, RARRES2, TIMP1, and CD14) were

confirmed to be up-regulated in Set 2 (Table 1, Figure 5). Notably

all 5 of the proteins were statistically significantly elevated in the

early stage samples.

Of the 25 proteins that were assayed, ten had concordant

findings in mouse plasma and cell line data. Interestingly, five

proteins that were present at the intersection of candidates from

mouse plasma and cell population data (GRN, IGFBP2, THBS1,

RARRES2, and TIMP1), were found to be significantly

upregulated in Set 1 and four of the five proteins were confirmed

in Set 2, with THBS1 as the exception.

Specimen collection conditions can affect the levels of

circulating proteins. For instance, patients who have blood drawn

at the time of surgery may have increased levels of certain proteins

as a result of stress [48]. Using a previously described method [48],

we evaluated whether protein levels differed between case and

control groups after adjusting for conditions of blood collection. In

the samples used for assays, seven ovarian cancer patients had

blood draws at two time points: prior to surgery, and at the time of

surgery. The protein levels at both time points for each patient are

shown in Figure S5. Regression analyses were performed using

Generalized Estimating Equations (GEE) methods [48] to account

for the correlation in the protein levels of the 7 women with two

blood collections, and give p-values that are unbiased by the

multiple blood draws from the same women (Table S8). After

adjusting for conditions of blood draw, the five proteins previously

found significant in Set 1 and Set 2 logistic regression analysis,

were also found significant in the GEE model for the case versus

healthy control comparison. For a secondary GEE model, the

coefficient for blood draw conditions were fixed from the first GEE

analysis to avoid bias from refitting. The second analysis was

restricted to specimens collected at surgery and all 5 proteins

found significant in the first analysis were significant in the case vs.

non-case, early case vs. non-case, and late case vs. non-case

comparison. These results support the findings from the logistic

regression and show that IGFBP2, TIMP1, RARRES2, CD14,

and GRN are elevated in all cases compared to control and

importantly in early cases compared to controls.

GRN has been described as a putative novel growth factor for

ovarian cancer, and was found to be highly secreted by ovarian

cancer cells [49]. Increased levels of GRN and RARRES2 in

Figure 3. Validation of key tumor markers by western blotting.
Protein levels of TIMP1, LCN2, PFN1, IGFBP2, SPARC, EEF1B2 and CLU
were determined from the following: (A) normal ovarian tissue (N) and
ovarian tumors (T) isolated from the K-ras/Pten, or (B) Pten/Apc mouse
model of ovarian cancer, (C) conditioned media (CM) from normal
human surface epithelium cells lines (HOSE) and ovarian cancer cell
lines and (D) human primary tissues (HPT): normal ovarian tissue (N) and
ovarian tumors (T). For mouse preparations, tissue lysates were
prepared from normal ovaries and tumors taken from the same animal
(a–d) along with four-five tumors from separate animals (e–i). For
human primary tumor (HPT) samples, tissue lysates were prepared from
4 tumor samples paired with their respective normal tissue from the
same patient and 3 lone tumor samples, in which no normal samples
were available. Patient samples are as follows: patient #14 had
independent bilateral serous borderline tumors in the left (TL) and right
ovary (TR), tumors #3, #7, and #15 are papillary serous carcinomas,
tumor #12 is an epithelial borderline tumor of the Müllerian-type, with
endocervical mucinous and serous differentiation, tumor #13 is clear
cell carcinoma, and tumor #16 is endometrioid adenocarcinoma.
doi:10.1371/journal.pone.0007916.g003

Ovarian Cancer Proteomics
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plasma from ovarian cancer patients in both the early and the late

stage cases are a novel findings in this study. CD14, and IGFBP2

have been previously assayed in serum from ovarian cancer

patients [37,50,51]. They were significantly elevated in this study

in mouse plasma and enriched in the secreted protein fraction of

ovarian cancer cell lines. A finding of interest in our study is the

occurrence of increased levels of IGFBP2 and CD14 in early stage

disease. TIMP1 performed also showed increased levels in both

early and late stage cases. Cell line data indicated that TIMP1 was

released from ovarian cancer cells at nanograms per million

cancer cells per hour [18] which would account for increased

levels in human ovarian cancer patient samples.

Discussion

There is currently a limited understanding of the changes in

plasma proteins that occur with the development of ovarian

tumors and for most tumor types in general [52,53]. The discovery

of novel plasma markers has represented a substantial challenge,

particularly for markers that are applicable to early stage disease.

Analysis of high-dimensional genomic, transcriptomic or proteo-

mic data allows for affected pathways, networks and signaling

nodes to be explored [53,54]. The present study provides evidence

for the utility of integrating data from in-depth quantitative

proteome analysis of mouse models of cancer with data from

human cancer cells for biomarker identification. Here we used a

mouse model of epithelial ovarian cancer in combination with the

IPAS proteomic platform to allow us to reliably assess and quantify

changes encompassing low abundance proteins in mouse plasma

with tumor development [53]. Integration with data from human

ovarian cancer cell lines provided a means for assessing which

upregulated proteins were expressed in cancer cells. Additionally

signaling nodes that contributed upregulated proteins in plasma

were determined. As a result, proteins that likely resulted from

inflammatory and immune response changes were distinguished

from proteins that more likely resulted from secretion by tumor

cells or from tumorigenic processes. Changes in tumor microen-

vironment and ECM are associated with autocrine regulation.

ECM proteins have been previously identified as ovarian cancer

metastasis signature genes [55,56]. Changes in the cytoskeleton

were observed including cytoskeletal-mediated migration, adhe-

sion, and invasion. Lastly, cellular proliferation changes were

observed and incorporated cell apoptosis. Several central signaling

nodes were identified in this study including TGFb, MMP2 and

NFkB signaling. TGFb, signaling in particular is central to a

multitude of processes, including cell proliferation and apoptosis,

ECM remodeling, cell migration, adhesion, invasion and metas-

tasis, angiogenesis, and inflammation and immune surveillance

[57,58]. The TGFb family is an active target for cancer prevention

and therapy [57,58]. Interestingly, TGFb is known to have both

tumor suppressor and pro-oncongenic effects in various cancers

including ovarian [59]. TGFb also plays a role in epithelial stem

cell niche homeostasis [60], and deletion of TGFb receptor

induces a highly proliferative and invasive environment [61].

Tumbar et al. also determined that the loss of TGFb receptors in

combination with oncogenic Ras enhanced tumorigenicity. This

hypothesis is also supported by the generated networks in our

pathway analysis (Figure 2B), in which NFkB (presumably under

the control of TGFb) is assigned to elicit Ras, PI3K, and MAPK

signaling towards actin-mediated responses driving cellular

Figure 4. Plasma levels of mouse TIMP1 and LCN2 in cancer cases versus controls. TIMP1 and LCN2 levels in murine plasma at various
stages of tumor progression were determined by ELISA as described in the Materials and Methods (A, B). Also shown are TIMP1 (C) and LCN2 (D)
levels in murine ovarian tumor fluid and peritoneal ascites as compared to plasma. Statistical significance was determined using a two-tailed
Student’s t-test *p,0.05, **p,0.01, and *** p,0.0001 compared to controls.
doi:10.1371/journal.pone.0007916.g004

Ovarian Cancer Proteomics

PLoS ONE | www.plosone.org 6 November 2009 | Volume 4 | Issue 11 | e7916



T
a

b
le

1
.

P
ro

te
in

s
in

cr
e

as
e

d
in

h
u

m
an

o
va

ri
an

ca
n

ce
r

p
at

ie
n

t
sa

m
p

le
s

co
m

p
ar

e
d

to
co

n
tr

o
l

sa
m

p
le

s
in

Se
t

1
*

(p
,

0
.0

5
).

E
L

IS
A

S
E

T
1

*
L

o
g

is
ti

c
R

e
g

re
ss

io
n

E
L

IS
A

S
E

T
2

**
L

o
g

is
ti

c
R

e
g

re
ss

io
n

S
e

cr
e

te
d

/T
o

ta
l

E
x

tr
a

ct
S

u
rf

a
ce

/T
o

ta
l

E
x

tr
a

ct
A

ll
C

a
se

s
A

ll
C

a
se

s
E

a
rl

y
S

ta
g

e
C

a
se

s
L

a
te

S
ta

g
e

C
a

se
s

G
e

n
e

N
a

m
e

S
u

b
ce

ll
u

a
r

L
o

ca
ti

o
n

M
o

u
se

P
la

sm
a

C
a

n
ce

r/
C

o
n

tr
o

l
R

a
ti

o
A

sc
it

e
s

O
V

C
A

R
3

C
A

O
V

3
E

S
2

A
sc

it
e

s
O

V
C

A
R

3
C

A
O

V
3

E
S

2
C

o
e

ff
ic

ie
n

t
p

-v
a

lu
e

C
o

e
ff

ic
ie

n
t

p
-v

a
lu

e
C

o
e

ff
ic

ie
n

t
p

-v
a

lu
e

C
o

e
ff

ic
ie

n
t

p
-v

a
lu

e

R
e

fe
re

n
ce

s
to

P
ri

o
r

S
tu

d
ie

s

M
o

u
se

+
C

e
ll

L
in

e

G
rn

Ex
tr

ac
e

llu
la

r
1

.8
8

&
q

q
q

-
-

-
Q

0
.5

9
5

0
.0

4
7

0
.4

6
5

0
.0

0
2

0
.4

4
9

0
.0

0
9

0
.4

8
7

0
.0

0
9

-

Ig
fb

p
2

Ex
tr

ac
e

llu
la

r
1

.8
8

q
q

q
q

-
-

-
-

2
.1

1
8

0
.0

0
0

3
.2

8
4

0
.0

0
0

3
.0

6
5

0
.0

0
1

3
.5

6
8

0
.0

0
0

[3
9

,5
0

]

T
h

b
s1

Ex
tr

ac
e

llu
la

r
2

.1
2

q
q

q
q

q
q

-
q

3
.4

7
9

0
.0

0
1

2
0

.1
2

6
0

.9
1

5
-

-
-

-
[7

7
]

R
ar

re
s2

Ex
tr

ac
e

llu
la

r
3

.0
7

q
q

q
-

-
-

q
-

1
.0

2
7

0
.0

0
2

0
.8

7
7

0
.0

0
0

0
.5

4
6

0
.0

1
6

1
.3

0
4

0
.0

0
0

-

T
im

p
1

Ex
tr

ac
e

llu
la

r
5

.2
0

q
q

q
q

-
-

q
q

1
.3

2
7

0
.0

0
0

1
.2

1
4

0
.0

0
1

0
.7

4
5

0
.0

4
0

1
.8

1
9

0
.0

0
0

-

M
o

u
se

O
n

ly

P
p

b
p

Ex
tr

ac
e

llu
la

r
1

.6
7

-
-

-
-

-
-

-
-

1
.1

8
1

0
.0

0
7

0
.3

0
3

0
.5

6
8

-
-

-
-

-

C
e

ll
L

in
e

O
n

ly

C
D

1
4

M
e

m
b

ra
n

e
ID

q
-

q
-

q
-

&
q

0
.8

3
2

0
.0

1
0

0
.8

3
3

0
.0

0
1

0
.7

1
5

0
.0

0
7

0
.9

8
5

0
.0

0
3

[5
1

]

N
R

C
A

M
M

e
m

b
ra

n
e

-
q

-
q

-
-

q
q

-
0

.8
6

0
0

.0
4

1
0

.5
9

8
0

.1
0

2
-

-
-

-
-

* SE
T

1
:

C
as

e
s

vs
.

H
e

al
th

y
C

o
n

tr
o

ls
,

N
o

n
-S

u
rg

ic
a

l
C

o
lle

ct
io

n
s

fo
r

A
ll

C
a

se
s

a
n

d
C

o
n

tr
o

ls
.

**
SE

T
2

:
C

as
e

s
vs

.
C

o
n

tr
o

ls
n

=
3

9
,

Su
rg

ic
a

l
C

o
lle

ct
io

n
s

fo
r

A
ll

C
a

se
s

a
n

d
C

o
n

tr
o

ls
.

B
o

n
fe

rr
o

n
i

cu
to

ff
fo

r
m

u
lt

ip
le

(2
5

)
co

m
p

ar
is

o
n

s
p

,
0

.0
0

2
.

q
in

d
ic

at
e

s
in

cr
e

as
e

d
.

2
-f

o
ld

,
Q

in
d

ic
at

e
s

d
e

cr
e

as
e

d
.

2
-f

o
ld

,
&

in
d

ic
at

e
s

,
2

-f
o

ld
ch

an
g

e
.

Fo
r

Se
t

2
,

th
e

co
e

ff
ic

ie
n

ts
an

d
p

-v
al

u
e

s
fo

r
th

e
e

ar
ly

an
d

la
te

st
ag

e
s

ar
e

lis
te

d
se

p
ar

at
e

ly
if

th
e

p
-v

al
u

e
w

as
si

g
n

if
ic

an
t

in
th

e
e

n
ti

re
Se

t
2

(a
ll

ca
se

s)
.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

0
0

7
9

1
6

.t
0

0
1

Ovarian Cancer Proteomics

PLoS ONE | www.plosone.org 7 November 2009 | Volume 4 | Issue 11 | e7916



migration, EMT, invasion, and metastasis [59]. This role of TGFb
signaling is reminiscent of its effects on embryonic stem cell

pluripotency and embryonic tissue development, including the

ovary [62–64]. Consistent with this hypothesis, additional

networks illustrated by pathway analysis (Figure S1) for the late

stage proteome highlight Notch and Dkk3, known stem cell

effectors [65,66]. It is therefore not surprising that this effector is

dominant in the plasma and cancer cell line data, supporting the

current role of TGFb as it elicits a variety of responses relevant to

cancer processes (proliferation, apotosis, inflammation, angiogen-

esis, autorcrine-regulation of tumor microenvironment/ECM and

adhesion, invasion, and metastasis).

In a search for potential ovarian cancer biomarkers, we

performed a novel integrative analysis by comparing mouse

plasma proteome data with human cell line and ascites derived

tumor cell data. By using a mouse model to identify proteins of

interest, extraneous sources of heterogeneity unrelated to disease

were minimized. A large number of proteins common to plasma

from tumor bearing cell lines and human ovarian cancer cells were

found to be involved in cellular/tissue remodeling and cell-cell

contact/communication that dictate alterations in ECM processes

and facilitate cell migration, local tumor growth, and tumor

metastasis. In this integrated analysis the subset of proteins that

were most successfully validated in human ovarian cancer sera

represented proteins found to be upregulated in plasma from

tumor bearing mice and found to be secreted in human ovarian

cancer cells. A lower percentage of proteins found to be

upregulated in the mouse model or were found only in ovarian

cancer cell data, yielded validated candidate markers in our set of

human plasmas.

We chose the K-ras+/Pten(-) ovarian cancer model initially

because of its histopathological representation of a subtype of

ovarian cancer. However the finding of elevated levels in mouse

plasma of proteins previously associated more broadly with

ovarian cancer, led us to investigate the merits of integrating

mouse plasma proteomic findings from this model with proteomic

findings from ovarian cancer cells. The candidate proteins chosen

for assays were tested in samples from human patients with a

variety of ovarian cancer histologies. It is likely that these potential

markers are broadly applicable to ovarian cancer and not confined

to a specific histology or genetic subtype.

In this study, five proteins that exhibited significant differences

in plasmas from subjects with ovarian cancer relative to controls

were comprised predominantly of secreted proteins at the

Figure 5. Plasma levels of human GRN, IGFBP2, THBS1, RARRES2, TIMP1, PPBP, CD14, and NRCAM in Set 1 and Set 2 samples. In Set
1, protein levels in cancer patients were compared to levels in the healthy controls, with all samples collected in the clinic under non-surgical
conditions. In Set 2, protein levels in cancer patients were compared to controls with all samples collected in the operating room under surgical
conditions. Logistic regression analysis was used to determine statistical significance of changes in protein levels between case and control groups.
For Set 2, the p-values for the early and late stages were calculated if the p-value was significant in the entire Set 2 (all cases). *p,0.05, **p,0.01, and
***p,0.0001 for cases compared to controls. Marker levels were normalized to give healthy controls a mean of 0 and a standard deviation of 1. The y-
axes represent the standardized marker levels.
doi:10.1371/journal.pone.0007916.g005
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intersection of upregulated proteins in mouse plasma and secreted

proteins in proteomic data from ovarian cancer cell populations.

Further validation studies with these proteins as well as with

additional candidates for which specialized assays are currently not

available would be warranted. Integration of mouse model and cell

line data as implemented in this study provides an innovative

strategy that would be applicable to other cancer types for the

discovery of circulating biomarkers.

Materials and Methods

Reagents and Antibodies
Anti-human and anti-mouse rat polyclonal LCN2 (1:500),

mouse monoclonal anti-human Clu (1:500), and goat polyclonal

anti-mouse Timp1 (1:200) were purchased from R&D Systems

(Minneapolis, MN US). Rabbit polyclonal anti-mouse/human

EEF1B2 was purchased from Protein Tech (Chicago, Il US) rabbit

polyclonal anti-mouse/human PFN (1:2000) was purchased from

Cell Signaling (Danvers, MA) and anti-mouse/human IGFBP2

(1:500) was purchased from Upstate Biotechnology (Lake Placid,

NY). Anti-human FBLN2 (1:200), anti-human/mouse SPARC

(1:250), and anti-mouse/human TIMP1 (1:250) were purchased

from Santa Cruz Biotechnology (Santa Cruz, CA US). Anti-rat-

horseradish peroxidase (HRP) conjugated secondary antibody

(1:2000) was purchased from Pierce Biotechnology Inc (Rockford,

IL) and anti-mouse/rabbit/goat-HRP conjugated secondary

antibodies were purchased from Vector Laboratories Inc (Burlin-

game, CA).

Cell Culture
Human ovarian cancer cell lines OVCAR3, OVCAR5,

OVCAR8, IGROV1, SKOV3 and TOV112D were maintained

as 70% confluent monolayers in RPMI containing 10% FBS and

1% penicillin/streptomycin cocktail. Normal human ovarian

surface epithelial lines (HOSE) and CaOV3 and ES-2 cancer cell

lines were maintained in DMEM containing 10% FBS and 1%

penicillin/streptomycin cocktail.

Collection of Mouse Plasma
All animal studies were done in accordance with institutional

guidelines and approved by the Harvard Medical School Animal

Care and Use Committee. Generation of LSL-K-rasG12D/+ PtenloxP/loxP

mice and adenoviral induction of ovarian tumors was accomplished

as previously described [11]. Control mice were littermates that

underwent the same surgical procedure but were injected with

Adeno-empty virus instead of Adeno-Cre. Plasma was collected at

a 10 week time point following Adeno-Cre (cancer cases n = 5) or

Adeno-empty injection (controls n = 5). Cancer cases (10 weeks

post-injection) had large ovarian tumors that had metastasized to

pelvic or peritoneal locations. To collect plasma, mice were

euthanized and blood was collected by cardiac puncture using a

22-gauge needle and 1 ml syringe. The blood was placed into a

K3EDTA coated 1.5 ml microcentrifuge tube using a needless-

syringe. After cardiac puncture, mice were surgically and

pathologically examined to confirm the presence of ovarian

tumors and metastases. Tumor volumes were calculated using the

following formula (length6width6height)/2 according to pub-

lished literature [67].

The collected murine blood was processed as follows: K3EDTA

tubes containing the blood were centrifuged at room temperature

for 10 minutes at 1500 rpm. The top layer of plasma was extracted

from the separated blood mixture using a pipet, aliquoted, and

frozen at 280uC. Plasma from 5 mice with cancer and 5 control

mice were pooled for further analysis. 200 ml from each individual

mouse was used to generate a pooled sample volume of 1 ml.

Plasma Sample Depletion and Isotopic Labeling
Separate pools of cancer cases and controls were immunode-

pleted of albumin, IgG, and transferrin using a Ms-3 column

(4.66250 mm, Aglient, Wilmington, DE). The column was

equilibrated with buffer A for 13 min at a rate of 0.5 ml/min.

Pooled sera were filtrated through a 0.22 mm syringe filter and

injected 75 ml at a time. Flow through fractions were collected for

10 minutes at a rate of 0.5 ml/min Buffer A. These fractions were

combined and stored at 280uC until use. Material bound to the

column was recovered by elution with buffer B for 8 min at a rate

of 1 ml/min. Centricon YM-3 columns (Millipore) were used to

concentrate the immunodepleted samples. These samples were

then re-diluted in 8 M urea, 0.5 octyl-beta-d-glucopyranoside

(Roche) and 30 mM Tris pH 8.5. Before labeling, each pooled

sample was reduced with dithiothreitol (DTT) in 50 ml 2M Tris-

HCl, pH 8.5 (0.66 mg DDT/mg protein). Next, isotopic labeling

of intact proteins was accomplished by labeling the cysteine

residues with acrylamide [68]. Control samples received the light

acrylamide isotope (D0 acrylamide, Fluka), while cancer samples

were labeled with the heavy 2,3,39-D3-acrylamide isotope (D3

acrylamide, Cambridge Isotope Laboratories). Labeling was

performed for 1 hour at room temperature. Pooled samples were

either labeled with 7.1 mg of light acrylamide or 7.4 mg of heavy

acrylamide per milligram of protein that had been diluted in a

small volume of 2M Tris-HCl, pH 8.5.

Protein Fractionation and Analysis by Mass Spectrometry
Following isotopic labeling, the cancer cases and control pools

were mixed. The sample was fractionated identically in two

dimensions: first by anion exchange (AEX) and second by reverse

phase (RP). Fractionation was carried out as described previously

[19], with a few modifications. Briefly, the mixed, labeled samples

were diluted to 10 ml with 20 mM Tris in 6% isopropanol, 4 M

Urea, pH 8.5, and injected immediately into a Mono-Q 10/100

column (Amersham Biosciences). The buffer system for the first

dimensional fractionation scheme was solvent A: 20 mM Tris in

6% isopropanol, 4 M Urea pH 8.5 and solvent B: 20 mM Tris in

6% isopropanol, 4 M Urea, 1 M NaCl pH 8.5. The separation

gradient was performed at a 4.0 ml/min flow rate as follows: 0 to

35% gradient of solvent B for 44 min, 35 to 50% gradient of

solvent B for 3 min, 50 to 100% solvent B in 5 min, and a hold in

solvent B at 100% for another 5 min. 65 fractions were collected

and further pooled into 9 fractions (fractions 1–13, 14–24, 25–27,

28–30, 31–36, 37–39, 40–42, 43–45, and 46–65). These 9 pooled

fractions were then separated by reverse phase fractionation on a

Poros R2 column (4.6650 mm, Applied Biosystems). Samples

were fractionated in a TFA/acetonitrile buffer system as follows:

Solvent A, composed of 95% H20, 5% acetonitrile, and 0.1% TFA

and Solvent B, composed of 90% acetonitrile, 10% H20, and

0.1% TFA. The flow rate was set at 2.7 ml/min and the following

gradient was used: a desalting step of 5% Solvent B until the

absorbance reached base line, 5 to 50% gradient of solvent B for

18 min, 50 to 80% solvent B for 7 min, and 80 to 95% solvent B

in 2 min. Sixty-three 1.2 ml fractions were collected, thus a total of

567 fractions were generated from the entire two-dimensional

fractionation. RP fractions from each of the 9 AEX fractions were

pooled into 16 fractions (RP fractions).

In solution digestion with trypsin was performed on lyophilized

aliquots of a total 144 pools. The samples were then subjected to

shotgun LC-MS/MS analysis on a LTQ-FT (ThermoFisher

Scientific) mass spectrometer equipped with a nano-LC system

Ovarian Cancer Proteomics
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(Waters). The nano-LC was equipped with a 25 cm column

(Picofrit 75 um ID, New Objective), packed in house with Magic

C18 packing material (Michrom)). A 90-minute linear gradient

was then applied from 5 to 40% acetonitrile in 0.1% formic acid at

300 nL/min. Spectra were acquired in data dependent mode with

a MS1 m/z range of 400 to 1800, followed by selection of the 5

most abundant doubly or triply protonated ions in each MS1

spectrum for MS/MS analysis. The mass spectrometer parameters

were as follows: capillary voltage of 2.1 kV, capillary temperature

200 degrees C, 100,000 resolution, and FT target value of

2,000,000.

Protein Identification and Quantification
Data analysis was performed using the Computational Proteo-

mics Analysis System [69]. Searches were performed using

cysteine alkylation modification with the light form of acrylamide

as a fixed modification and the heavy form of acrylamide

(+3.01884) as a variable modification. Spectra were searched

using X!Tandem [70] configured with the comet score module

plug-in [71] against the mouse IPI database [72] version 3.29. A

search for tryptic peptides was performed with a semitryptic

refinement option where a second round of searching is performed

for semitryptic peptides from proteins identified in the first round

of searching.

Quantitative ratios were obtained for peptides containing

cysteine residues labeled with heavy and light acrylamide isotopes.

Quantitative information was extracted from acrylamide labeled

peptides using an in-house script (Q3); this allowed us to obtain the

relative quantification from MS1 spectra for each pair of peptides

identified by MS/MS that contains cysteine residues [68].

Calculation of ratios between cancer and normal were fraction-

centric (per LC-MS/MS run). All identified peptide measured

acrylamide ratios were processed such that multiple measurements

for a given peptide in one individual fraction were log2 averaged,

resulting in a dataset containing one ratio per peptide per each

individual fraction. A global normalization factor was then

computed as the mode of the peptide ratio histogram. All peptide

ratios for a specific protein present in a particular fraction were

then normalized and log-averaged to obtain the local relative

protein ratio. Statistical significance of protein quantitation was

assigned by two methods as described below.

Proteomic Data Analysis
Data was interrogated using Ingenuity Pathways Analysis

(Ingenuity SystemsH, www.ingenuity.com) and MetaCore from

GeneGo Inc (www.genego.com). A dataset containing IPI

accession numbers and the corresponding cancer-to-control ratios

was uploaded into each application where all 1031 proteins

identified in the IPAS experiment were used as a reference set.

Each accession number was mapped to its corresponding gene

object in the Ingenuity’s knowledge base or MetaCore’s manually

curated data base. A fold change cutoff of 1.5 with a p-

value,0.05, was set to identify genes whose expression was

significantly differentially regulated. For analysis with Ingenuity,

these genes, were designated as focus genes and were overlaid onto

a global molecular network developed from information contained

in the Ingenuity knowledge base. Networks of these focus genes

were then algorithmically generated based on their connectivity. A

score is generated for each network based on the fit between the

focus genes and each network. The score is the –log(p-value)

calculated based on a hypergeometric distribution with the right-

tailed Fisher’s Exact Test. For analysis with MetaCore, the gene

list of proteins found to be up-regulated in the mouse plasma and

secreted/shed in mouse and human cancer cell lines (total of 58

genes) was submitted to an enrichment and network workflow.

Enrichment analysis was conducted across three GeneGo curated

ontologies along with Gene Ontology [73] to provide a

quantitative analysis of the most relevant biological functions

represented by the data. Networks and the statistics for each, were

generated using the analyze network algorithm, one of the nine

network building algorithms in MetaCore.

PeptideProphet [74], an empirical statistical modeling program,

was used to estimate the accuracy of peptide identifications.

Factors determined by the search algorithm were weighted to

assign a single number for each peptide identification that can be

then compared to other peptide identifications. ProteinProphet

[75] a program that applies a statistical model to infer protein

groups from peptide identifications and validates these groups with

a probability assignment, was also utilized. A protein group may

contain one or more protein sequence, with each sequence being

indistinguishable based on the identified peptides. Proteins with a

ProteinProphet score corresponding to 5% error rate (,3.5% false

discovery rate as determined by ProteinProphet) were retained. In

this study, for each protein group, henceforth referred to as

‘‘protein’’, a representative gene symbol was chosen.

Immunoblot Analysis
The expression pattern of key proteins from the IPAS analysis

was analyzed in conditioned media (CM) of human ovarian cancer

cell lines and human primary ovarian tumors (HPT) freshly

collected from patients undergoing surgery. Human sample

collection was approved by the Partners HealthCare Human

Research Committee (Institutional Review Board), Harvard

Medical School. In addition, western blot analysis was performed

on ovarian tumors collected from two mouse models of ovarian

cancer: K-ras/Pten and Pten/Apc.

Tissue homogenates were made with RIPA buffer (50 mM Tris-

HCL, 150 mM NaCl, 1% NP-40, 0.5 C24H39NaO4, 0.1% SDS,

pH 7.4) containing freshly added protease inhibitor cocktail Set I

and II (Calbiochem, US) and Complete Mini Inhibitors (Roche,

Indianapolis, US). Conditioned media (CM) was first concentrated

for 30 min at 3000 rpm using Amicon Ulita-5 centrifugal filter

device (Millipore, Billerica US) as described by the manufacturer.

Samples were then sonicated or passed through a 27-gauge needle

and protein concentrations were determined using a Bio-Rad

system (Hercules CA, US). 10–20 mg of mouse primary tissue,

20 mg of HPT, or 40 mg human CM samples were prepared with

RIPA buffer and 1X Laemmli sample buffer and then heated for

5 min at 100uC. Samples were resolved on 8, 12 or 15% SDS-

PAGE gels and transferred to polyvinylidene difluoride membrane

for 2 h. Membranes were subsequently blocked with 5% Milk in

Tris-buffered saline containing 0.1% Tween-20 (20 mM Trisbase,

137 mM NaCl, pH 7.6) and incubated overnight at 4 deg C with

primary antibodies, as specified in the text (for dilutions see

Reagents and Antibodies). Horseradish peroxidase-conjugated

secondary antibodies (1:2000) were applied for 1 hour at room

temperature and detection by chemiluminescence was performed

using SuperSignal West Pico Chemiluminescent Substrate as

specified by the manufacturer (Pierce Biotechnology Inc, Rock-

ford, IL). Equal protein loading was assessed by probing for total

actin protein.

Enzyme-Linked Immunoabsorbant Assays
For validation studies using ELISA, we collected plasma from

infected mice at various stages of tumor progression and controls. In

addition, we also collected ascites or ovarian tumor fluid extracted

from late stage tumors. Timp1 concentrations in murine plasma

were measured using a Quanitikine-Mouse Timp1 ELISA Kit,
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while mouse Lcn2 levels were detected with a DuoSet ELISA Kit

(R&D Systems, Minneapolis, MN USA). To measure Timp1, we

diluted mouse plasma samples 1:6, while a 1:400 dilution was used

for Lcn2. For data analysis, mice were grouped according to disease

stage: control, Stages I-II (early stage) and Stage III-IV (late stage).

Human plasma samples were collected from women who

consented to participate in a specimen donation protocol

conducted by the Pacific Ovarian Cancer Research Consortium,

which was approved by the Fred Hutchinson Caner Research

Center Institutional Review Board. Each patient provided written

informed consent. 163 samples were obtained in total consisting of:

68 women newly diagnosed with ovarian cancer (55 collected at

the time of surgery, 13 collected in advance of surgery), 56 healthy

controls (collected in the clinic from apparently healthy women

attending regular breast cancer screening exams), and 39 surgical

controls (11 patients undergoing gynecologic surgery for a variety

of conditions but with normal ovarian pathology, and 28 samples

from patients with benign ovarian disease collected at the time of

surgery). The same specimen processing protocol was used for all

samples. Human plasma levels of ADAM17 (1:4), TNFRSF21

(1:20), PI3 (1:10), LGMN (1:25), AXL (1:250), IGFBP2 (1:250),

RARRES2 (1:250), DKK3 (1:300), ALCAM (1:350), HGFR

(1:1000), CD14 (1:2000), XLKD1 (1:2000), VCAM1 (2500),

NrCAM (1:20), CDH1 (50), PPBP (1:1000), IGF1R (1:2) and

NOV (1:20) were evaluated using DuoSets, while plasma

concentrations of TIMP1 (1:100), THBS1 (1:100) and TGFb1

(1:40) were measured using Quantikine kits (all purchased from

R&D Systems, Minneapolis, MN, USA). Plasma levels of vWF

(1:100) (American Diagnostics, Stamford, CT, USA), GRN (1:200)

(Adipogen, Seoul, South Korea), sICAM2 (1:20) (Abcam, Cam-

bridge, MA, USA), and LCN2 (1:500) (BioPorto Diagnostics,

Gentofte, Denmark) were also measured. All assays using human

plasma were done with sample clinical characteristics blinded.

Statistical Analysis
Statistical significance of protein quantification by mass

spectrometry was determined by two methods. Proteins for which

multiple paired MS events of heavy and light acrylamide were

observed, a one-sample t-test was used to calculate a p-value for

the mean ratio of the whole protein across all fractions. Secondly,

the probability for the ratio for each MS event was calculated from

the distribution of ratios in a control-control experiment in which

the same sample was labeled with heavy and light acrylamide. If

the p-value for each individual event was ,0.05, the overall

protein ratio was considered statistically significant.

For ELISA measurements, protein levels were normalized to

eliminate batch-to-batch variation in measurements. Marker levels

were normalized to give healthy controls a mean of 0 and a standard

deviation of 1 [76]. Different groups were compared using logistic

regression analysis. In addition, regressions were performed to

evaluate which proteins differed between case and control groups

after adjusting for blood collection conditions using Generalized

Estimating Equations methods. The Bonferroni adjustment was

used to account for multiple testing using a value of 25 for the

number of comparisons (since 25 proteins were assayed).

Data for the mouse plasma experiments has been deposited in

the Mouse Peptide Atlas (www.peptideatlas.org/repository). Sam-

ple accession number PAe000322 [77].

Supporting Information

Figure S1 Additional networks for upregulated in mouse plasma

and enriched in ovarian cancer cell data. The remaining significant

networks for proteins upregulated in mouse plasma and enriched in

cancer cell data assigned by Ingenuity Pathway Analysis are shown.

Proteins colored in red represent proteins from the IPAS list. Non-

colored proteins are those assigned by the Ingenuity database as

possible intermediate interactions. Solid lines indicate direct

relationships (two molecules make physical contact) and dotted

lines indicate indirect relationships (does not require physical

contact). The scores for A) and B) are 51 and 24 respectively.

Found at: doi:10.1371/journal.pone.0007916.s001 (0.38 MB

PDF)

Figure S2 Significant networks for upregulated in mouse plasma

and enriched in ovarian cancer cell data (by Metacore analysis).

Five significant networks for proteins upregulated in mouse plasma

and enriched in cancer cell data assigned by Metacore analysis are

shown. Proteins with a pink dot represent proteins from the IPAS

list. The p-values for each network are: A) 5.73e-24, B) 5.73e-24,

C) 5.73e-24, D) 5.73e-24, E) 5.02e-15.

Found at: doi:10.1371/journal.pone.0007916.s002 (0.75 MB

PDF)

Figure S3 A) Gene Ontology and B) GeneGO processes for the

58 proteins upregulated in mouse plasma and enriched in ovarian

cancer cell data.

Found at: doi:10.1371/journal.pone.0007916.s003 (0.13 MB

PDF)

Figure S4 Significant networks for proteins upregulated in

mouse plasma and not found enriched in ovarian cancer cell data.

The significant networks for proteins upregulated in mouse

plasma, but not enriched in cancer cell data assigned by Inenuity

Pathway Analysis are shown. Proteins colored in red represent

proteins from the IPAS list. Non-colored proteins are those

assigned by the Ingenuity database as possible intermediate

interactions. Solid lines indicate direct relationships (two molecules

make physical contact) and dotted lines indicate indirect

relationships (does not require physical contact). The scores for

A), B), and C are 29, 24, and 16 respectively.

Found at: doi:10.1371/journal.pone.0007916.s004 (0.48 MB

PDF)

Figure S5 Plasma levels of 25 proteins stratified by population

and surgical status. Dotted lines connect surgical and pre-surgical

protein levels measured within the same women under both

surgical and non-surgical conditions.

Found at: doi:10.1371/journal.pone.0007916.s005 (0.28 MB

PDF)

Table S1 Summary of all proteins identified in mouse plasma.

Found at: doi:10.1371/journal.pone.0007916.s006 (0.46 MB

XLS)

Table S2 Proteins increased at least 1.5-fold in plasma taken

from K-ras/Pten mice compared to controls, appended with

ovarian cancer cell-derived proteins assayed in human plasma. P-

value for all mouse plasma ratios ,0.05. The table summarizes

fold difference for each protein. In addition, the ratios of secreted

protein/total extract and surface protein/total extract in human

ascites derived tumor cells/cancer cell lines [15] are shown for

comparison for each upregulated protein in murine plasma.

*Indicates cancer-only peptide(s) also observed. ELISA p-values

and coefficients from logistic regression for proteins assayed in

human plasma are summarized.

Found at: doi:10.1371/journal.pone.0007916.s007 (0.06 MB

XLS)

Table S3 Proteins decreased at least 1.5-fold in plasma taken

from K-ras/Pten mice compared to controls. P-value for all mouse

plasma ratios ,0.05.
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Found at: doi:10.1371/journal.pone.0007916.s008 (0.02 MB

XLS)

Table S4 Detailed information about the 58 proteins found up-

regulated in the mouse model plasma experiment and enriched in

the human cancer cell data.

Found at: doi:10.1371/journal.pone.0007916.s009 (0.04 MB

XLS)

Table S5 Categorization of upregulated IPAS data into cancer

related biological processes. Each upregulated protein was

assigned to a cancer related process according to its ranked

network appearance determined by Ingenuity Pathway Analysis.

Found at: doi:10.1371/journal.pone.0007916.s010 (0.04 MB

XLS)

Table S6 Detailed GO processes for GeneGo networks shown in

Figure S2.

Found at: doi:10.1371/journal.pone.0007916.s011 (0.03 MB

XLS)

Table S7 Clinical characteristics and protein level measure-

ments for individual human samples.

Found at: doi:10.1371/journal.pone.0007916.s012 (0.11 MB

XLS)

Table S8 Summary statistics for the Generalized Estimating

Equations (GEE) methods to adjust for surgical collection

conditions.

Found at: doi:10.1371/journal.pone.0007916.s013 (0.02 MB

XLS)
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