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Abstract

We introduce a bidding language for expressing negative
value externalities in position auctions for online advertis-
ing. The unit-bidder constraints (UBC) language allows a
bidder to condition a bid on its allocated slot and on the
slots allocated to other bidders. We introduce a natural ex-
tension of the Generalized Second Price (GSP) auction, the
expressive GSP (eGSP) auction, that induces truthful revela-
tion of constraints for a rich subclass of unit-bidder types,
namely downward-monotonic UBC. We establish the exis-
tence of envy-free Nash equilibrium in eGSP under a further
restriction to a subclass of exclusion constraints, for which
the standard GSP has no pure strategy Nash equilibrium. The
equilibrium results are obtained by reduction to equilibrium
analysis for reserve price GSP (Even-Dar et al. 2008). In
considering the winner determination problem, which is NP-
hard, we bound the approximation ratio for social welfare in
eGSP and provide parameterized complexity results.

Introduction
A search engine offers positions (slots) for ads adjacent to
the organic search results, with slots lower on the page tend-
ing to generate fewer clicks. The generalized second-price
auction (GSP) is the industry standard for allocating ad slots.
In GSP, each ad is associated with a per-click bid indicating
the advertiser’s willingness-to-pay for a click. This implies
an expected (bid) value for a slot, which we can think of sim-
plistically as the bid times the the clickthrough rate (CTR,
i.e. the probability of a user click). A greedy algorithm is
used to allocate ads to slots in decreasing order of per-click
bid. Whenever an ad in slot j receives a click, the advertiser
pays a price equivalent to the bid of the bidder in the “next
slot.” This is the smallest per-click bid of the advertiser that
would have resulted in it retaining slot j.

For a given slot, the number of clicks that an ad attracts
also depends on the other ads shown, e.g. via the number of
other ads (Reiley, Li, and Lewis 2010), or their relative posi-
tion (Craswell et al. 2008; Gomes, Immorlica, and Markakis
2009; Jeziorski and Segal 2010). We term this kind of al-
locative externality a quantity externality. We address an
orthogonal kind of allocative externality, referred to here as
a value externality, in which an advertiser’s value, given a
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Figure 1: Each sports shoe company’s bid is conditioned on being
allocated above the other company. The general retailer’s bid is
conditioned on neither shoe company’s ad being in slot one.

click, depends on which other bidders are simultaneously
allocated, and where. Whereas quantity externalities are ob-
servable to a search engine, value externalities are private to
bidders and need to be expressed via a bidding language.

We introduce unit-bidder constraints (UBC), enabling a
flexible class of languages for expressing negative value ex-
ternalities in position auctions. Each bidder can condition
its own bid for a particular slot on another bidder not being
allocated some other slot. Each bidder can submit multi-
ple such constraints. The constraints associated with a bid
are only active if the bidder is allocated. See Figure 1. For
example, shoe company 1 can say “my bid is only valid if
I am allocated above shoe company 2.” In a more general
language we introduce soft-constraints, with a smaller non-
zero bid adopted when a constraint is violated. We refer to
the first case, with bid values zero if constraints are violated,
as a hard constraint model.

We extend the standard GSP auction to allow bids in the
UBC language. This expressive GSP (eGSP) auction greed-
ily allocates bidders to slots. To be eligible for allocation
to the next slot, an ad must not be in conflict with the con-
straints of any bidders already allocated. The bid value for
an unallocated ad depends in turn on the allocations already
made and the ad’s own constraints. A “next price” payment
rule is used, with the payment of an allocated bidder equal to
the minimum bid it could have made and still won the same
slot given its constraints. The choice of a greedy algorithm
is motivated by the need for rapid response time for search
engines; moreover, achieving even a reasonable approxima-
tion to the optimal allocation in the UBC model is NP-hard.

Although eGSP is not strategyproof, our first result es-
tablishes that reporting truthful constraints is a dominant
strategy in eGSP for downward monotonic UBC, whatever



Downward-

monotonic

Unit-

bidder

Identity-

specific

Exclusion

Categories

Slot-

specific

Figure 2: Classes of negative value-externality constraints.

the bid value and whatever the bids of others. While fruit-
ful bid manipulations already exist in standard GSP, our re-
sult shows that augmenting the preferences of bidders with
downward-monotonic UBC does not introduce new types of
fruitful manipulations. Downward-monotonicity insists that
a bidder dissatisfied with a particular slot given an alloca-
tion to other bidders is also dissatisfied with any lower slot.
The downward-monotonic UBC languages include natural
languages in which a bidder precludes being below other
bidders (identity-specific), or cares about the range of slots
it or other bidders are in (slot-specific). See Fig. 2.

We also consider the special case of exclusion external-
ities, in which a bidder insists that it is never allocated si-
multaneously with another bidder. An exclusion external-
ity is both an identity-specific and a slot-specific external-
ity. Our second result establishes the existence of envy-free
Nash equilibrium in eGSP when each bidder is involved in
at most one exclusion constraint. The result is obtained by a
delicate reduction to the equilibrium in a GSP with bidder-
specific reserve prices (Even-Dar et al. 2008). In contrast,
there exists no pure-strategy Nash equilibrium in the stan-
dard GSP in the same setting. We also establish existence of
envy-free equilibria for general degree exclusion constraints.

Turning to algorithmic results, we provide a tight bound
on the approximation ratio of the greedy algorithm. For
two parametrized classes of constraints, category and local-
exclusion, we identify polynomial time optimal algorithms,
assuming fixed parameters. We defer most proofs to the
longer version of this paper in the interest of space.

Related Work Position auctions (e.g. GSP) are an ac-
tive research area (Edelman, Ostrovsky, and Schwarz 2007;
Varian 2007), and some of this work focuses on quantity
externalities as discussed above. Our class of downward-
monotonic UBC languages for expressing value externalities
encompasses existing models. Slot-specific constraints gen-
eralize the “bid-to-the-top” model of Aggarwal et al. (2006),
where an advertiser can restrict its bid to appear above some
position. The authors describe an easy to implement mecha-
nism and show existence of equilibrium in their special case.
UBC can also encode the model of Muthukrishnan (2009),
where bidders have bids that depend on the maximum num-
ber of ads shown. The latter work proposes a social-welfare
maximizing algorithm and critical value pricing scheme,
but does not address incentives. Ghosh and Sayedi (2010)
consider a model in which an advertiser submits two bids:
one for solo placement and another for placement alongside
other ads. Revenue and efficiency tradeoffs are examined,

in what is a special case of exclusion UBC with soft con-
straints. In an incomparable model to ours, Ghosh and Mah-
dian (2008) earlier considered a setting where an advertiser’s
value depends on its quality relative to other ads shown, but
irrespective of their location. Other algorithmic work related
to externalities includes Krysta et al. (2010) for combinato-
rial auctions and Kash et al. (2011) for secondary markets
for wireless spectrum.

Preliminaries
Let N = {1, . . . , n} denote the bidders in a position auction
with m slots. As is standard, we assume m = n (since
there is essentially an unlimited number of slots, on multiple
pages of search results.) Each bidder i is associated with a
per-click value vi ≥ 0. We assume that the click-through
rate (CTR) falls off from one slot to the next according to
discount factor δ ∈ (0, 1) and we normalize the first slot’s
CTR to 1. Slots 1, 2, . . . ,m have CTRs 1, δ, . . . , δm−1.

In our basic model of value externalities, we associate
bidder i with constraints Ci, so that his expected value for
slot j ∈ {1, . . . ,m} is viδj−1 as long as constraints Ci on
the allocation are satisfied, and zero otherwise. Later, we
also allow “soft constraints” wherein a bidder’s value is vi
or 0 ≤ v−i ≤ vi if the constraints are violated.

Both value and constraints are private to each bidder i,
that submits a bid bi and constraints Ĉi to the seller, perhaps
untruthfully. Given reported bids and constraints, the seller
would like to solve WDP, i.e. compute an optimal allocation.
Definition 1. Given bids b = (b1, . . . , bn) and constraints
Ĉ = (Ĉ1, . . . , Ĉn), the winner determination problem
WDP is to find a set of winners W ⊆ N and an alloca-
tion A (with any i ∈W winning slot Ai) solving:

max(W,A)∈F
∑
i∈W biδ

Ai−1 (1)

where F is the set of feasible solutions (W,A): Ai 6= Aj for
all i 6= j (both in W ), and A satisfies Ĉi for every i ∈W .

Apart from constraints, we assume a standard quasi-linear
utility-maximizing bidder model. Bidder i’s expected utility
equals (vi1Ci−pi)δAi−1, where pi is the per-click payment,
given that i is allocated slot Ai and 1Ci equals 1 is all con-
straints in Ci are satisfied and 0 otherwise.

We introduce unit bidder constraints (UBC), a natural and
expressive constraint model, as argued below. In UBC, any
bidder i has a setCi ofLi≥0 constraints (encoded as triples)

Ci = {(posi, B`, pos`)}`=1,...,Li
, (2)

where triple (posi, B`, pos`) imposes the requirement that if
bidder i is allocated to slot posi then bidder B` ( 6= i) cannot
be allocated to position pos`.

Different languages would impose restrictions on the
specific kinds of UBC constraints enabled. For example,
UBC can encode identity-specific constraints, where a bid-
der specifies a set of bidders above which it must be allo-
cated. One can conceptualize this as a directed graph on
bidders, with an edge from i to j indicating such an “en-
emy” of i. With 3 slots, this would be encoded in UBC as

Ci = {(2, j, 1), (3, j, 2), (3, j, 1)}



UBC can also encode slot-specific constraints, where a
bidder imposes a requirement that its bid is only valid if it is
no lower than some slot and one or more other bidders are
no higher than bidder-specific slots. For example, if i wants
to be in slots 1 or 2 and j should not be in slots 1 or 2, and
there are 4 slots, then this can be encoded in UBC as

Ci = {(3, ∗, ∗), (4, ∗, ∗), (∗, j, 1), (∗, j, 2)},
where ‘∗’ indicates that the entry is instantiated for all valid
values. An exclusion constraint between i and j is encoded
as Ci = {(∗, j, ∗)}.

We introduce a natural generalization of GSP to UBC.

Expressive GSP Expressive GSP (eGSP) with hard con-
straints takes reported UBC constraints Ĉ and bid values b as
input, and implements a greedy allocation, collecting next-
slot payments. The pseudocode for eGSP is given below.
An unallocated bidder i is eligible for slot j if this allocation
is not precluded by the constraint of some already allocated
bidder in slots 1, . . . , j − 1, or by a constraint between i
and some already allocated bidder. The allocation rule for
eGSP repeatedly allocates the next slot to the unallocated,
eligible bidder (if any) with the highest bid price, breaking
ties at random. Let Ai(b, Ĉ) ∈ {1, . . . ,m} denote the slot
allocated to a winner, with Ai(b, Ĉ) = 0 otherwise.

Let ik ∈ N denote the bidder (if any) allocated slot k.
Expressive GSP (eGSP)

Input: bids b1, . . . , bn, constraints Ĉ1, . . . , Ĉn
For slot k = 1 to m
Eligible←{i : allocating k toi satisfies Ĉi1 , .., Ĉik−1

, Ĉi}
ik ← max bi in Eligible (if any)

End
The per-click price for bidder i allocated to slot k is

pi(b, Ĉ) = min b′i s.t. Ai(b
′
i, b−i, Ĉ) = k, (3)

i.e. the smallest bid b′i (given Ĉ) for which a bidder is allo-
cated the same slot, with b−i = (b1, . . . , bi−1, bi+1, . . . , bn).

Equilibrium concepts As is standard in sponsored search
auctions, we study complete information Nash equilibrium:

Definition 2. Bid profile (b, Ĉ) is a Nash equilibrium (NE)
in eGSP if ∀i and fixing the bids b−i and reported con-
straints Ĉ−i of others, there is no report (b′i, C

′
i) with higher

utility for the bidder than (bi, Ĉi) (given its true vi and Ci).
The motivation for studying complete information NE in

sponsored search is that advertisers can learn each others’
types over time via bidding dynamics. Also of interest in
sponsored search auctions are envy-free equilibrium. In the
following, let pi denote the per-click price for bidder i given
the bid profile and Ai denote the slot allocated to bidder i.

Definition 3. Bid profile (b, Ĉ) is an envy-free (EF) equi-
librium in eGSP if

(1) for every allocated i, δAj−1(vi−pj) ≤ δAi−1(vi−pi)
for all bidders j 6= i for which the allocation would satisfy
the constraints Ci if i and j switch positions, and

(2) for every unallocated bidder i, δAj−1(vi − pj) ≤ 0,
for all bidders j for which the allocation would satisfy Ci if
i was allocated j’s slot (with j going unallocated).

The standard (Edelman, Ostrovsky, and Schwarz 2007)
definition of envy-free is not specific about the effect of i re-
ceiving a different slot on the rest of the allocation. But this
is crucial here because of externalities. The envy-free equi-
librium property captures a dynamic stability requirement.1

Incentives in eGSP
We will establish that eGSP is “semi-truthful”, namely that
bidders cannot benefit from misreporting constraints.

Greedy is incompatible with truthfulness. Before con-
tinuing, we briefly explain by example why this prop-
erty would not hold if one was to use a naive application
of the standard payment rule used to achieve incentive-
compatibility in auctions. For this, say that an allocation
algorithm is monotonic if, for all Ĉ, all b−i, all i and all bi,
then Ai(b′i, b−i, Ĉ) ≤ Ai(bi, b−i, Ĉ), for all b′i ≥ bi. This
insists that a higher bid value can only lead to a higher slot
(and thus a lower slot index.) Clearly, the greedy algorithm
is monotonic in this sense. Fix reported constraints Ĉ and let
fi(b, Ĉ) = δAi(b,Ĉ)−1 while i wins, and 0 otherwise. Fol-
lowing Myerson (1981), the standard approach to achieve a
truthful auction would charge a winner i an (expected) pay-
ment for its allocation to slot Ai(b, Ĉ) of,

bi · fi(b, Ĉ)−
∫ bi
w=0

fi(w, b−i, Ĉ)dw (4)

But we see from the next example that this would not pro-
vide truthfulness with respect to constraints.

Example 1. Consider 2 slots and bidders 1 and 2, with
values 30, 20, where bidder 1’s true constraint precludes
bidder 2 from appearing in the top slot when 1 is allo-
cated (but is happy for 2 to appear below 1.) Discount
δ = 0.9. Bidder 1’s (expected) payment given this constraint
is 30 − [(30 − 20)] = 20. If bidder 1 did not report this
constraint, then it would still win slot 1 but with expected
payment of 30− [(30− 20) + (20− 0)(0.9)] = 2.

The difficulty in achieving truthfulness with this payment
rule is that the expected payment (for the same slot) is not
independent of the bidder’s report (namely reported con-
straints), a well-known condition for truthfulness. A bidder
can pay less by omitting from its bid any constraints that
leave the allocation unchanged but would constrain its al-
location for lower bid values. Given the uniqueness of the
Myerson payment rule in providing truthfulness in regard
to the bid value for fixed constraints, we see that it is im-
possible to achieve full truthfulness with a greedy allocation
method. The classical Vickrey-Clarke-Groves mechanism
for achieving truthfulness is undesirable since in our case it
requires solving NP-hard optimization problems. We show

1Consider an allocated bidder i. If (1) is violated then i would
like to compete with bidder j for its allocated slot, to drive up j’s
price, and without fear of j retaliating by making i take j’s slot at
j’s price. Bidder j can always do this by bidding just below i’s
bid price, making i win j’s slot at i’s bid price (which was in turn
setting j’s price.) Similarly, consider an unallocated bidder i. If (2)
is violated then this bidder would like to compete for j’s slot and
do so without fear of j bidding just below i to make i win the slot.



now however that eGSP achieves truthfulness for constraint
reports for a large class within UBC.

Semi-Truthfulness We turn now to the incentive proper-
ties of the next-price payment rule in eGSP. We also note
that eGSP has the useful property that the price is invariant
to bid price bi while the allocated slot remains unchanged.
Definition 4. A slot auction with UBC constraints is semi-
truthful if for any reported b−i and Ĉ−i, of other agents, any
vi and bi ≤ vi of agent i, it is a dominant strategy for agent
i to report its constraints Ĉi = Ci truthfully.
Definition 5. UBC Ci are downward-monotonic (DM) if

(posi, j, posj) ∈ Ci ⇒ (posi + 1, j, posj) ∈ Ci (5)

Fixing the allocation to other bidders, if i is dissatisfied
with slot posi, then it is also dissatisfied with any lower slot.
Theorem 1. The eGSP auction is semi-truthful for bidders
whose value externalities can be expressed with downward-
monotonic UBC constraints.

Proof. Fix any bi ≤ vi. Let k denote the slot allocated to i
when reporting trueCi. Conditioned on report Ĉi not chang-
ing the allocated slot k, the payment does not change be-
cause constraints have no effect on other bidders until a bid-
der is allocated and so the eligible set is unchanged. More-
over, if i is allocated a slot k then by reporting Ĉi 6= Ci
it cannot be allocated a higher slot (for the same bid value)
because it is already eligible for slot k and thus all higher
slots by DM. Also, i cannot achieve a lower slot by misre-
port Ĉi 6= Ci, fixing its bid value, because any change to
preclude i from being eligible for slot k will preclude i from
being eligible for all subsequent slots k′ > k by DM. Fi-
nally, an agent that is unallocated but becomes allocated to
slot k′ by reporting Ĉi 6= Ci must have a true constraint that
is violated upon allocation to slot k′, since the allocation for
earlier slots does not change.

The easy result below shows natural DM classes of UBC.
Lemma 1. Identity-specific constraints and slot-specific
constraints satisfy downward monotonicity.

DM is also necessary for eGSP’s semi-truthfulness:
Example 2. Consider 3 slots and 3 bidders with values 60,
40 and 10, and discount δ = 0.9. If bidder 1 is truthful then
he wins slot 1 and pays 40 for payoff 60 − 40 = 20. But
by reporting constraint “I do not want slot 1”, he wins slot
2 and pays 10 for payoff (60 − 10)0.9 = 45 > 20. This
constraint is not DM.

Achieving truthfulness for constraints, as we do here, is
important since standard GSP is not truthful (for bids only).

Equilibria in eGSP for Exclusion Constraints
We focus now on a subset of DM UBC constraints, and
establish a clean separation between the existence of Nash
equilibrium in eGSP and its inexistence in standard GSP. We
denote an exclusion constraint between i, i′ as i↔ i′.
Theorem 2. Standard GSP may have no pure-strategy NE
for bidders with max-degree one exclusion constraints.

Proof. Consider 2 slots and 4 bidders 1, 2, 3, 4 with 1 ↔
2, 3 ↔ 4 and values v1 = v2 + ε, v3 = v4 + ε such that
v1 > v3 and v1 − v2 < δ(v1 − 0). 1 must bid at least v2,
else 2 can win by bidding v2. Similarly 3 must bid at least
v4. Then {1, 3} win slots {1, 2}. Bidder 1 however prefers
bidding below 3, and so this cannot be an NE.

Our main theoretical results in regard to the equilibrium
properties of eGSP are:
Theorem 3. There exists an envy-free, Nash equilibrium of
eGSP under max-degree one exclusion constraints.
Theorem 4. There exists an envy-free equilibrium of eGSP
under (general degree) exclusion constraints.

Note that envy-free equilibria and Nash equilibria are in-
comparable for eGSP. In the standard GSP model however,
any envy-free equilibrium is also a Nash equilibrium.

We establish existence by reduction to GSP with bidder-
specific reserve prices (rGSP) (Even-Dar et al. 2008). A
sketch of the proof is provided below. rGSP operates just
as standard GSP except that the price for slot k to bidder i
is max(ri, bk+1), where bk+1 = 0 if no bidder is allocated
in slot k + 1. Even-Dar et al. (2008) provide a tâtonnement
algorithm to construct an envy-free (and, in their case, Nash)
equilibrium for rGSP. They insist that bi ≥ ri for all bidders
(which is achieved through our reduction.)

For simplicity, we adopt in what follows the convention
that the bidders are indexed according to the slots allocated.
Definition 6. A bid profile b is an envy-free (EF) equilibrium
in rGSP given reserve prices r if δj−1(vi −max(pj , ri)) ≤
δi−1(vi −max(bi+1, ri)),∀j 6= i.

The utility to every bidder in an envy-free equilibrium of
rGSP is at least what it would receive if it could exchange
positions with any other bidder. An EF equilibrium of rGSP
is also a NE. The reduction identifies a set of candidates and
reserve prices, such that when an equilibrium is determined
for rGSP on the candidates, we can construct a bid profile
that is an equilibrium in eGSP. Non candidates will be unal-
located in the equilibrium of eGSP. The technical challenge
is to establish that the strategic effect of non-candidates on
candidates in eGSP is equivalent to the effect of the re-
serve price on bidders in rGSP. The construction generates
an envy-free equilibrium of eGSP that is also a Nash equi-
librium for the special case of max-degree one exclusion.

Fleshing this out, assume for simplicity distinct values of
bidders. Let Ei denote the enemies of i. Namely, the set of
bidders with which i has an exclusion constraint. We first
determine a pseudo outcome (K,X, r,�) of eGSP:

• Run eGSP with bids b = v and constraints Ĉ = C. The
allocated bidders comprise the set of candidates K.

• Let Xi ⊆ Ei denote bidders that are excluded when i is
allocated, i.e. for whom no other enemy was allocated
before i. Define ri = maxj∈Xi{vj} + ε′, for a small
ε′ > 0 ifXi 6= ∅ and ri = 0 otherwise. ε′ is smaller than
the minimum gap between bidder values.

• Define a priority order �, where i � j if i is allocated
before j and they share an enemy (necessarily a non-
candidate).



If, e.g., 3↔ 2↔ 1, where values equal IDs, then 3 and 1
are candidates, X3 = {2}, r3 = 2+ε′, X1 = ∅, r1 = 0, and
3 � 1. If 4↔ 1, 3↔ 2 then 4 and 3 are candidates, with
X4 = {1}, X3 = {2}, r4 = 1+ε′, r3 = 2+ε′ and no priority
order constraints (the case for any max-degree one exclusion
as each candidate excludes at most one bidder).

The following observation about the pseudo-outcome is
straightforward and stated without proof:

Lemma 2. In a pseudo-outcome, vi > vj and ri > vj for
candidates i, j with i � j, and vi > ri for all candidates i.

Consider now running the rGSP on the candidate bidders
K and with reserve prices r.

Lemma 3. In a EF equilibrium of rGSP on the pseudo-
outcome, all higher priority j � i for any candidate i are
allocated to a higher slot than i.

Denote by br the envy-free equilibrium of rGSP (a bid
profile for the candidatesK). Based on this, we construct an
equilibrium bid profile b∗ for eGSP as follows:

• All constraints Ĉ = C are reported truthfully
• Bid b∗i = bri if i ∈ K and b∗i = vi otherwise.

By the consistent ordering property of Lemma 3, we have

Lemma 4. Given bids b∗ and C = (C1, . . . , Cn) reported
to eGSP, the outcome is identical to that of rGSP on the
pseudo-outcome, under a particular tie-breaking rule.

The proof is by induction on position allocated, from top
to bottom. The essential insight is that while the bid ordering
corresponding to br need not respect the truthful ordering as-
sumed in determining the pseudo-outcome of eGSP, it is suf-
ficient for the bids to respect the priority constraints across
bidders that share mutual enemies for the strategic equiva-
lence between bids of non-candidates and reserve prices to
hold. In completing the proof for Theorem 3, it is necessary
to establish that the Nash constraints hold for all bidders,
both candidates and non-candidates. For a non-candidate,
we can start with the observation that the price of an allo-
cated enemy is at least the reserve price of the enemy, which
is at least the value of the non-candidate by Lemma 2. For
a candidate, in considering the Nash constraint to preclude
the benefit from a deviation to a higher slot, we inherit this
result from the NE of the br equilibrium in rGSP. For a
downwards deviation, one needs to also argue that the (ef-
fective) reserve price (as induced by bids of non-candidates)
remains as assumed in the rGSP equilibrium analysis. This
part of the reduction needs the assumption of max-degree
one. Theorem 4 on EF equilibrium follows directly from the
outcome equivalence between rGSP on br and eGSP on b∗
(Lemma 4).2

2To understand why the max-degree one requirement is im-
portant to obtain NE, consider an instance with 3 bidders, values
8, 4 and 6 and exclusion constraints 8 ↔ 4 ↔ 6. Let bidder
values equal IDs. We get pseudo-outcome K = {8, 6}, X8 =
{4}, X6 = ∅, r8 = 4, r6 = 0, and 8 � 6. The corresponding
instance of rGSP has values 8, 6 and reserve price 4 and 0. An
EF equilibrium is br = (8, 6) for δ < 1/2. In this case, we have
8− 6 > δ(8−max(4, 0)) and δ(6− 0) > (6− 6). The candidate
equilibrium in eGSP is b∗ = (8, 4, 6), and indeed, the outcome

Algorithmic considerations
The winner determination problem, to select the bids
that maximize total value given constraints, is NP-hard.
For exclusion constraints the problem is equivalent to
INDEPENDENTSET. This, together with the need for fast al-
gorithms for slot auctions, motivates the greedy algorithm.
We first bound the approximation ratio (for social welfare)
of the greedy algorithm. The result is stated for any UBC
constraints, not only exclusion ones.
Theorem 5. Consider a directed graph G, with bidders as
vertices, in which there is an edge from i to i′ if Ci contains
at least one constraint (posi, i

′, posi′) with posi > posi′ : if
i is in posi then i′ cannot be in some higher slot posi′ . Let d
denote an upper bound on all vertices’ in-degrees in G. The
greedy algorithm for the WDP problem achieves an 1−δ

1−δd+1

approximation3 when δ < 1. Formally, letting b(W,A) be
the social welfare in the greedy algorithm,

b(W,A) ≥ OPT (b, C) 1−δ
1−δd+1 (6)

where OPT (b, C) is the maximum allocation value given
bids b = (b1, . . . , bn) and constraints C = (C1, . . . , Cn).

Note that the graph in the theorem is well-defined for any
set of UBC constraints. In the special case of exclusion con-
straints, the in-degree bound is given by the number of ex-
clusion constraints in which an agent i can participate. For
identity-specific constraints, it is a bound on the number of
other agents for whom agent i is considered an enemy.

The ratio in the theorem is tight (discussion omitted due
to space constraints). For exclusion constraints this depen-
dence is intrinsic: INDEPENDENTSET is NP-hard to approx-
imate within a 2O(

√
log d)/d factor (Samorodnitsky and Tre-

visan 2000). For max-degree one exclusion, we can con-
clude that the greedy algorithm is optimal.

As positive results for exact winner determination, we
identify two parametrized subclasses of constraints with
tractable algorithms for WDP. The complexity of these al-
gorithms is polynomial for any fixed parameter value:

Category-specific. This is a special case of the identity-
specific model in which every bidder is associated with a
category (for example, “sports shoe company” or “general
retailer”). Constraints are limited to requiring placement
above all bidders in the same category. This cluster struc-
ture allows for an efficient solution to the WDP.
Proposition 1. In the category-specific model, an opti-
mal allocation can be computed in time O((n log n +
gn)(mg)(gg)) where g denotes the number of categories.

is equivalent to that of rGSP under these bids, with 8 and 6 allo-
cated slots 1 and 3, at prices 6 and 0 respectively. However b∗

is an EF but not a Nash equilibrium in eGSP. Bidder 8 can bid 5
instead, in which case 6 is allocated, 4 is eliminated, leaving 8 to
receive slot 2 for price 0. For δ > 1/4 this is better for bidder 8,
with 8 − 6<δ(8 − 0). The effect of non-candidate 4 is no longer
strategically equivalent to a reserve price of 4 to bidder 8 when 8
deviates downwards and plays after bidder 6 in eGSP.

3An algorithm is said to achieve a ρ-approximation if the value
of the allocation it outputs is within a multiplicative factor of ρ ≤ 1
of the value of the optimal solution, for all possible instances.



Local-exclusion constraints. Suppose bidders only have
exclusion constraints to bidders within some distance w in
the bid ranking. w is a locality measure that turns out to be
the tree-width of the constraint graph, a standard algorithmic
concept. This allows tractable algorithms for constant w.
Proposition 2. For exclusion constraint locality w, the
WDP can be solved in O(n2w) time and O(2w + n) space.

Soft constraints
A natural extension is a soft constraint model where, in ad-
dition to constraints Ci, a bidder has a pair (vi, v−i ) of per-
click values, defining its value when no constraints, or at
least one constraint in Ci is violated, respectively. The stan-
dard hard constraint model has v−i = 0.

The eGSP auction is generalized as follows: in allocat-
ing the next slot, the eligible bidders are those for whom
the allocation would not violate a first constraint for an al-
ready allocated bidder. The approximation ratio in Theo-
rem 5 continues to hold. For an eligible i, the price adopted
is then either (1) bi or (2) b−i , depending on whether or not
i’s constraints are still satisfied given the current allocation.
If allocated slot k, then the price is the minimal value of bi or
b−i , for case (1) or (2) respectively, such that bidder i would
still retain the same slot.

Semi-truthfulness no longer holds for soft constraints
even with DM constraints:
Example 3. Consider 4 bidders and 3 slots, with bids
(100, 100c), (70, 70c), (50, 50c), and (30, 30c) where c =
0.5. Let the discount factor be 1− ε, for a small ε > 0. If no
one has any constraints then eGSP allocates bidders 1, 2, 3
to slots 1, 2, 3. In particular bidder 2 pays 50 for a utility
of 70 − 50 = 20. Now suppose bidder 2 lies and specifies
a constraint stating it must be placed above bidder 1. Then
eGSP allocates bidders 1, 3, 2 to slots 1, 2, 3. Bidder 2 now
pays 30; its utility is 70−30 = 40. Bidder 2 can achieve the
same result by misreporting its values instead as (40, 40c).

We can recover a weaker form of semi-truthfulness. Inter-
estingly, this result does not require downward monotonic-
ity, and extends easily to the earlier hard constraint model.
Theorem 6. In eGSP with soft-constraints, a bidder i al-
ways has a best-response, for any Ci, any (vi, v

−
i ), and any

reports (b−i, Ĉ−i), of other bidders, in which i reports Ci
truthfully along with some pair (bi, b−i ) of bid values.

The idea of the proof is to establish that for any report with
an untruthful constraint set, there exists a report, with bid
values bi, b−i and truthful constraint set Ci, such that the slot
allocated is unchanged (and thus the price is unchanged),
and the subsequent allocation decisions are no worse under
the second report than the first report.

Conclusions
We have introduced unit-bidder constraints, an expressive
language for negative value externalities in position auc-
tions, and analyzed the strategic properties of an expres-
sive GSP (eGSP) auction. We obtain a “semi-truthfulness”
property of eGSP with respect to misreports of downward-
monotonic constraints. In this sense, the modified eGSP is

as truthful as the standard GSP and there are no new manip-
ulations. We exhibit a class of such constraints for which
Nash equilibria fail to exist in standard GSP, but exist and
can be easily constructed in eGSP. A weaker but still useful
notion of truthfulness in regard to constraints is established
for a generalization of UBC where bidders have a smaller
but non-zero bid value for violated constraints.

For future work, it would be interesting to characterize
equilibria for more general UBC, thereby enabling revenue
and efficiency comparisons to GSP. Turning to complexity
results, the “one-enemy” case remains open, where each bid-
der has a constraint against at most one other bidder. We find
this case appealing because it could be achieved through a
simple restriction to a bidding language.
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