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Isotope effects in complex scattering lengths for He collisions with molecular hydrogen

J. L. Nolte, B. H. Yang, and P. C. Stancil
Department of Physics and Astronomy and the Center for Simulational Physics, University of Georgia, Athens, Georgia 30602, USA

Teck-Ghee Lee
Allison Physics Lab, Auburn University, Auburn, Alabama 36849, USA

N. Balakrishnan
Department of Chemistry, University of Nevada-Las Vegas, Las Vegas, Nevada 89154, USA

R. C. Forrey
The Pennsylvania State University, Berks Campus, Reading, Pennsylvania 19610, USA

A. Dalgarno
ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA

(Received 30 March 2009; published 8 January 2010)

We examine the effect of theoretically varying the collision-system reduced mass in collisions of He with
vibrationally excited molecular hydrogen and observe zero-energy resonances for select atomic “hydrogen”
masses less than 1 u or a “helium” mass of 1.95 u. Complex scattering lengths, state-to-state vibrational quenching
cross sections, and a low-energy elastic scattering resonance are all studied as a function of collision-system
reduced mass. Experimental observations of these phenomena in the cold and ultracold regimes for collisions of
3He and 4He with H2, HD, HT, and DT should be feasible in the near future.
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I. INTRODUCTION

Recent advances in creating dense samples of translation-
ally cold molecules have generated much interest in under-
standing atomic and molecular interactions at temperatures
close to absolute zero. Concurrently, collisions of rotationally
and vibrationally excited molecules with cold atoms and
diatomic molecules have received considerable theoretical
and experimental attention [1–4]. Investigation of chemical
reactivity in cold and ultracold atom-molecule collisions and
how the reactivity could be influenced by external electric
and magnetic fields are topics of ongoing research in this
area [2–4].

A key aspect of ultracold collisions is that the collisional
outcomes are generally sensitive to details of the interaction
potential. At temperatures lower than 1.0 K, perturbations
introduced by external electric and magnetic fields are compa-
rable to the incident kinetic energy and external fields may
strongly influence resulting collisional parameters. This is
especially the case if the bound state energy levels of the
molecule are modified by the presence of the external field
inducing new resonances or eliminating existing ones [5].
There is also extensive literature on isotope effects in chemical
reactions [6,7] and recent studies indicated that these effects
are more pronounced in ultracold collisions, especially when
tunneling or threshold resonances are present [3,8,9]. Indeed, it
has been shown that varying the reduced mass of the collision
complex in a scattering calculation is equivalent to adjusting
the interaction potential [10]. Bodo et al. [9] demonstrated
this for the F + H2 reaction by artificially varying the mass
of the hydrogen atom from 0.5 to 2.0 u. They found that for a
fictitious “hydrogen” mass of 1.12 u, a zero-energy resonance
is formed in this collision system yielding a zero-temperature

rate coefficient that is about three orders of magnitude larger
than the corresponding value for the F + H2 reaction. This
effect is somewhat akin to the Feshbach resonance method in
which the scattering length is varied by sweeping a magnetic
field across a Feshbach resonance that couples a bound state
of the molecule to the energy of two colliding atoms [11–13].

Furthermore, reduced mass tuning of the complex scat-
tering length near zero-energy resonances may be useful in
constructing complex optical potentials for each rovibrational
level. The resulting one-dimensional potentials would be
easier to use in subsequent applications (e.g., molecules in
an external field) than the corresponding coupled-channel
potentials. In this approach, the zero-energy resonances would
play a similar role to that of magnetic Feshbach resonances
when an asymptotic bound state model [14–16] is used to
construct model potentials.

Here, we show the effect of artificially varying the mass
of the hydrogen atom or the He atom in He collisions with
H2, with an aim of understanding the sensitivity of the cross
sections to small changes in the interaction potential as well
as energies of quasibound triatomic complexes formed during
the collision.

II. METHODOLOGY

Our analysis is primarily based on the behavior of cross sec-
tions in the Wigner threshold regime [17] where the scattering
length approximation can be conveniently used to characterize
elastic and inelastic scattering [18,19]. For multichannel binary
collisions with more than one open channel, the scattering
length is a complex quantity a = α − iβ, the imaginary part
of which is a measure of the rate of decay of an excited
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state; this quantity β may be derived from the inelastic cross
sections [18]. A number of previous studies have obtained
the complex components of the scattering length including
calculations of H-H2 [18] and He-H2 [19–21] scattering. In
this Brief Report we extend this analysis to scattering between
He and a range of real and artificial isotopes of H2. Specifically,
we consider the three cases in which we set one atom in the
diatom to be H, D, or T and vary the mass of the other atom
giving collisions of the form 3He-HX and 4He-HX, 3He-DX

and 4He-DX, and 3He-TX and 4He-TX, where X is varied
over a large range of masses, excluding homonuclear cases.
Thus the limit for the HX reduced mass as X approaches
infinity is µ = mH = 1.00794 u, that for DX is µ = mD =
2.0135532127 u, and for TX it is µ = mT = 3.0160492 u.
The entrance channel in each case is selected to be v = 1,
j = 0, and we consider only collisions in the ultracold limit
(we adopt a collision energy of 10−6 cm−1, except in the case of
the elastic p-wave scattering resonance). Artificially varying
the helium mass is also considered for collisions with HD.

For an initial state with vibrational and rotational quantum
numbers v and j , the imaginary part of the scattering length
βvj in the limit of zero initial kinetic energy is given by

βvj = kσ in
vj

/
4π, (1)

where k is the initial wave vector and σ in
vj the sum of the

inelastic cross sections of all open channels [18]. In the limit
k → 0, the relation between the elastic cross section σ el

vj and
the scattering length avj is given by [18]

σ el
vj = 4π

(
α2

vj + β2
vj

) = 4π |avj |2, (2)

from which the magnitude of the real part of the scattering
length is given by

|αvj | =
√

σ el
vj

/
4π − β2

vj , (3)

while the sign of αvj is determined from the sign of the phase
shift.

III. COMPUTATIONAL METHOD

Elastic and inelastic cross sections were obtained by
performing close-coupling calculations using the nonreactive
scattering program MOLSCAT [22]. The potential energy sur-
face (PES) adopted here was that of Muchnick and Russek
(MR) [23]; this surface, along with that of Boothroyd et al.
(BMP) [24], was discussed previously by Lee et al. [25] who
performed state-to-state rovibrational scattering calculations
for He-H2 and found that the MR surface gave the best agree-
ment with available experimental data at thermal energies.

In the current work, the isotope dependencies are included
by adjusting the collision-system reduced mass, the mass of
the diatom in determining the rovibrational energies, and the
location of the diatom center of mass for specifying the Jacobi
coordinates. We do not consider mass-dependent adiabatic
or nonadiabatic corrections to the PES [26]. The scattering
calculations are performed using the close-coupling method
with appropriate convergence tests performed for the basis set
size, asymptotic matching distance, and number of quadrature
points for evaluating the matrix elements of the interaction
potential. Three partial waves were found to be adequate

for convergence for the ultracold calculations while a larger
number of partial waves was used for the elastic resonance
studies.

IV. RESULTS

It was previously predicted by Balakrishnan et al. [19] in
their study of collisions of H2 with 3He and 4He that for each
vibrational level of H2 one should find an associated bound
state of He-H2 lying below the dissociation limit of the He-H2

complex. In what amounts to an adjustment of the well depth
of the interaction potential between the atom and molecule, we
here varied the reduced mass of H2. In Fig. 1 we show the real
(elastic) part of the scattering length as a function of µ/µH2 ,
where µH2 is the reduced mass of H2. Zero-energy resonances
are identified for the case of HX with 3He and 4He at mass
ratios of 0.94 and 0.78. The former value is smaller than, but
very close to, the physical reduced mass limit of H2 (i.e., of
two H atoms). Possible resonances corresponding to bound
states for the other isotopomer-He combinations may occur at
much lower mass ratios than considered here. The effect of
varying the helium mass for the He-HD case is shown in the
inset of Fig. 1. It is seen that a zero-energy resonance occurs
for a “helium mass” of ∼1.95 u.

The imaginary part of the scattering length β10 is displayed
in Fig. 2 for 3He and 4He where it is seen to generally
increase with decreasing mass ratio below a value of ∼2.
Some oscillatory behavior is also evident below µ/µH2 = 1 for
DX. For instance, a large resonance occurs near a mass ratio
0.58 for both 3He-DX and 4He-DX, and then another peak at
∼0.75 followed by a much smaller one at 0.98. However, as
discussed by Flasher and Forrey [27], the ratio β10/α

2
10 is found

to vary smoothly as the reduced mass is decreased through the
zero-energy resonance for both cases. The inset shows the
variation of β10 with the mass of the helium atom for He-HD
collisions. For a “helium mass” of ∼1.95 u, which corresponds
to the zero-energy resonance in Fig. 1, β10 increases by about
three orders of magnitude compared to the 3He case and four
orders of magnitude compared to the 4He case.
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FIG. 1. Real part α10 of the scattering length for 3He and 4He
collisions with HX, DX, and TX as a function of the ratio of the
reduced masses of the hydrogen isotopomer and H2. (Inset) α10 for a
variation of the He mass for He-HD collisions.
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FIG. 2. Same as Fig. 1, but for the imaginary
part β10 of the scattering length.

The oscillatory behavior in β10 can be understood by
considering the state-to-state cross sections for 3He-DX, for
example, given in Fig. 3. For H2, rotational levels up to j ′ = 8
are open in the ultracold limit. As the mass is decreased,
the highest rotational state is not energetically accessible at
the collision energy considered here. For example, the j ′ = 7
state is only accessible for mass ratios greater than about 0.58,
which is the location of a resonance in β10. However, its cross
section decreases sharply to a minimum at a mass ratio of
0.68. Further, the state-to-state cross section for j ′ = 7 has a
maximum at 0.75, which corresponds to a maximum in β10.
The maximum for the mass ratio of 0.98 is then caused by
the appearance of the j ′ = 8 state as it becomes energetically
open.

In their study of He-H2 transitions with initial state (v = 1,
j = 0) using the BMP surface, Lee et al. [25] observed a
similarly acute dependence of particular state-to-state rate
coefficients on reduced mass. In increasing the molecular
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FIG. 3. State-to-state quenching cross sections for 3He-DX(v =
1, j = 0) → 3He-DX(v = 0, j ′) as a function of the DX/H2

reduced-mass ratio.

reduced mass, the j ′ = 8 rate coefficient was seen to decrease
exponentially while other rotational states showed a much less
sensitive dependence, with the j ′ = 10 channel only becoming
exoergic and contributing at a relatively high reduced mass. A
somewhat similar situation can be seen in Fig. 3, though using
the MR PES.

In Fig. 4(a), we present the elastic cross section in the
cold to ultracold regimes for 4He collisions with H2 and
three physical isotopes. At ultracold energies, the elastic cross
section decreases with increasing target mass. Also, a p-wave
resonance occurs near ∼1 cm−1 for H2. Figure 4(a) shows
that this resonance shifts to lower energies with increasing
molecular target mass with the peak becoming broader and
having a maximum at a value of ∼0.07 cm−1 for DT, but
the magnitude of the resonance is largest for HT. Resonances
for larger values of J are also present, but difficult to discern
from the background cross section. However, as illustrated
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FIG. 4. Low-energy elastic cross sections for 4He collisions with
molecular hydrogen isotopomers with v = 1, j = 0. (a) Total cross
sections for H2, HD, HT, and DT. (b) Partial cross sections for the
dominant partial waves for 4He-DT.
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in Fig. 4(b), the J = 2 resonance for DT is prominent near
∼1.5 cm−1. The experimental detection of this low-energy
resonance in the cold regime for the physical isotopomers
would provide critical tests of the spherical component of the
He-H2 interaction potential.

An avenue for the measurement of low-energy He-H2 cross
sections is suggested by recent studies of Barletta et al. [28]
who proposed the possibility of creating ultracold H2 through
collisions with ultracold rare gas atoms. In their method,
cold molecules created by optical Stark deceleration [29]
are subjected to sympathetic cooling by thermal contact with
laser-cooled rare gas atoms. Compared to other rare gas atoms,
the inelastic cross sections for He with para-H2 are largest,
making it a favorable case for such an experimental study [28].

V. CONCLUSIONS

We have explored the sensitivity of elastic and inelastic
scattering in ultracold He-H2 collisions for a range of physical
and artificial isotopes of H2 and He. The purpose of these
calculations was to explore how changes in bound state
energy levels of H2 and those of the triatomic He-H2 van
der Waals complexes influence scattering at low energies. We

have shown that by varying the molecular (or helium) mass,
a zero-energy resonance appears for the 4He-H2 and 3He-H2

collision systems with v = 1, j = 0, but for reduced masses
corresponding to nuclear masses less than that of the proton (or
3He). For reduced mass ratios µ/µH2 < 1, the imaginary part
of the scattering length for collisions with 3He and 4He displays
a number of oscillations and resonances that are attributable
to energetically open rotational levels as the reduced mass
is increased. An elastic resonance in the cold regime due to
p-wave scattering is seen to shift to lower energies as the
target mass is increased. For He-HD, a zero-energy resonance
is found to occur for a “helium mass” of ∼1.95 u.
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