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We theoretically investigate the controlled dynamic polarization of lattice nuclear spins in GaAs
double quantum dots containing two electrons. Three regimes of long-term dynamics are identified,
including the build up of a large difference in the Overhauser fields across the dots, the saturation
of the nuclear polarization process associated with formation of so-called “dark states,” and the
elimination of the difference field. We show that in the case of unequal dots, build up of difference
fields generally accompanies the nuclear polarization process, whereas for nearly identical dots, build
up of difference fields competes with polarization saturation in dark states. The elimination of the
difference field does not, in general, correspond to a stable steady state of the polarization process.

PACS numbers: 73.21.La, 76.60.-k, 76.70.Fz, 03.65.Yz

Understanding the non-equilibrium quantum dynam-
ics of localized electronic spins interacting with a large
number of nuclear spins is an important goal in meso-
scopic physics [1–7]. These interactions play a central
role in spin-based implementations of quantum informa-
tion science, in that they determine the coherence prop-
erties of electronic spin quantum bits [8]. One of the
promising systems for realization of spin-based qubits in-
volves electrically-gated pairs of quantum dots in GaAs,
with one electron in each quantum dot (Fig. 1b) [9].
Hyperfine interactions with lattice nuclear spins are the
leading mechanism for decoherence of the electron spins,
and efforts are currently being directed towards under-
standing these interactions [10–15], with the ultimate
goal of turning the nuclear spins into a resource by con-
trolling these interactions [16–19]. Recent experiments
have successfully demonstrated a wide variety of electron-
controlled nuclear spin polarization dynamics [19–22],
but to date there is no unifying theoretical framework
in which to understand the experimental results.

In this Letter we investigate theoretically the process of
dynamic nuclear polarization (DNP) in two-electron dou-
ble quantum dots. This process involves the preparation
of the electronic spins in a singlet state and subsequent
level crossing between the electronic singlet and triplet
states with different projection of electronic angular mo-
mentum (Fig. 1a) [20]. It is accompanied by nuclear spin
flips, which polarize the spins of the nuclei inside the
two dots, producing an effective magnetic (Overhauser)
field for the electronic spins. Experiments demonstrate
that DNP strongly modifies the difference between the
Overhauser fields on the two dots, which is of central im-
portance for control over singlet-triplet qubits [19, 21].
Detailed understanding of DNP in these systems is both
of fundamental interest and great practical importance
for GaAs based electron spin qubits [23–26].

In what follows we develop a theoretical framework to
study the non-equilibrium polarization dynamics of the
nuclear spin environment. Our approach takes advantage
of the large effective temperature of the nuclear spins
and the short time-scale for electron spin evolution to
coarse grain the electronic system’s dynamics, yielding
a master equation for the nuclear spin degrees of free-
dom, which we solve in a semiclassical limit. Our key
results may be understood by first considering three pos-
sible regimes that result from the DNP process. These
include i) build-up of an effective difference field, ii) sat-
uration in so-called “dark states,” and iii) preparation of
nuclear spins in each quantum dot in states that produce
identical Overhauser fields.

For example, i) in the case of two dots with unequal
sizes the growth of an Overhauser difference field Dz can
be understood in the following heuristic picture, which
is borne out by our analytic and numerical calculations.
Consider a system with a homogeneous wavefunction in
the presence of both strong DNP pumping and nuclear
dephasing. The size difference results in different effec-
tive hyperfine interactions gℓ(r) on the left(right) dot. We
find that the nuclear spins have nearly equal spin flip
rates on the two dots, so that the build up of the total
Overhauser field Sz is proportional to gℓ + gr, while the
build up of Dz is proportional to gℓ−gr. Thus, Dz tends
to grow with Sz such that Dz/Sz → (gℓ − gr)/(gℓ + gr).
On the other hand, ii) when the dots are identical, or
nearly so, we find a second regime at strong pumping,
where Dz does not grow and the polarization process
shuts down the growth of Sz by driving the difference
field towards a dark state [27], with Dx = Dy = 0. Such
states are of interest for use as long-lived quantum mem-
ory. Finally, iii) electronic and nuclear degrees of freedom
can be completely decoupled if two electrons are initially
prepared in the singlet state, while the nuclear spins are

http://arxiv.org/abs/1003.4508v2
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FIG. 1: a) Two-electron energy levels as a function of detun-
ing ǫ between (1, 1) and (0, 2) singlet states. The DNP cycle
is illustrated by arrows. b) A double quantum dot with two
electrons interacting with a large number of lattice nuclear
spins. c) Electronic energy level diagram with transitions
from s to triplet states T+, T0, T− driven by Overhauser fields
D−, Dz, D+ respectively (gray arrows) and energies from ex-
ternal field Bext and exchange splitting J between s and T0

(black arrows). When D⊥ = 0 electron-nuclear flip-flops are
prevented, and when D = 0, electrons and nuclei decouple.

prepared in a state with D = 0 (Fig. 1c). In such a
case, polarization stops and the dephasing time of the
singlet-triplet qubit can be greatly extended. However,
we have not found physical parameter regimes in which
such states can be stably prepared.
Model – The hyperfine coupling between a localized

electron in dot d = ℓ, r (for the left, right dot) and a nu-

clear spin Ikd at rkd, is given by gkd = ahf v0 |ψ(rkd)|2,
where ψ is the electron wavefunction, v0 is the volume
per nucleus, and ahf is a coupling constant. The homo-
geneous limit is defined by gkd = gd for all k. S and D

are defined through the collective nuclear spin operators
denoting the Overhauser fields in the left (L) and right
(R) dots L =

∑

k gkℓIkℓ and R =
∑

k gkrIkr such that
S = (L+R)/2, D = (L−R)/2.
For a double quantum dot with two electrons, we can

write the Hamiltonian for the lowest energy (1, 1) and
(0, 2) electron states, where (n,m) indicates n (m) elec-
trons in the left (right) dot. In this subspace the effective
Hamiltonian for the electron and nuclear spins takes the
form H = Hel +Hhf +Hn, where

Hel = γeBext · (sℓ + sr) + J(ǫ)sℓ · sr
Hhf = S · (sℓ + sr) + cos θ(ǫ)D · (sℓ − sr) (1)

Hn = −
∑

k,d

γn(Bext + hkd) · Ikd

here sℓ(r) is the electron spin in the left(right) dot,
γe (γn) is the electron (nuclear) gyromagnetic ratio,
where we consider spin 3/2 nuclei of a single species,
Bext = Bextẑ is the external magnetic field, cos θ(ǫ) is
the overlap of the adiabatic singlet state |s〉 with the
(1, 1) singlet state as a function of the detuning ǫ be-
tween the (1, 1) and (0, 2) singlet states, and J(ǫ) is
the splitting between |s〉 and |T0〉 [28]. The rms val-
ues of the components of L,R in the infinite temper-
ature ensemble are Ωd = (

∑

k g
2
kdI(I + 1)/3)1/2. We

define Ω =
√

(Ω2
ℓ +Ω2

r)/2 ≈ (10 ns)−1 for typical few-
electron double dot experiments, and work in units where
Ω = −γe = ~ = 1. In addition to the nuclear Zeeman
energy we include a “noise” term hkd, representing the
fluctuating, local magnetic field felt by a nuclear spin at
site rkd, which could arise from e.g. nuclear dipole-dipole
and electric quadrupole interactions. We estimate the
scale of the fluctuations to be such that a typical nuclear
spin dephases at a rate of 1-50 kHz [28].
We find the nuclear spin evolution semiclassically by

treating the nuclei and electrons as mean fields when solv-
ing for the electron and nuclear dynamics, respectively.
This semiclassical approximation has been well studied
in the context of central spin models and is generally
reliable for extracting average quantities of high temper-
ature, low polarization nuclear ensembles in dots with a
large number of nuclei N (typically ≈ 106 [28]) [10, 11].
Neglecting Hn, the nuclear spins evolve according to

İkd = i[Hhf, Ikd], giving equations of motion

〈İkd〉 =
gkd
2

(

〈sℓ + sr〉 ± cos θ 〈sℓ − sr〉
)

× 〈Ikd〉 (2)

where the top sign applies for d = ℓ. We now replace
〈Ikd〉 with Ikd since we are treating the nuclear spins
semiclassically. Consider a pulse cycle ǫ(t) of duration
T ≪ 1/gkd ≈

√
N/Ωd. In a single cycle we can average

over the fast evolution of the electrons to arrive at the
coarse-grained equations [12]

İkd(t) ≈
Ikd(t+ T )− Ikd(t)

T
= gkd Pd(t)× Ikd(t), (3)

Pd(t) =

∫ T+t

t

dt′

2T
[〈sℓ + sr〉 ± cos θ 〈sℓ − sr〉], (4)

where Pd is a slowly-varying, effective Knight magnetic
field felt by the nuclear spins.
We now consider the class of pulse sequences employed

in Refs. [19, 21], in which the electronic system is initial-
ized in |s〉 at large ǫ and ǫ is swept slowly through the
|s〉-|T+〉 resonance followed by a fast return to (0, 2) and
reset of the electronic state via coupling to the leads.
(Fig. 1a). This results in a build up of negative polar-
ization. For simplicity, we work in the limit where the
electron spin flip probability per cycle is small and cal-
culate Pd to lowest order in Ω/J , Ω/Bext, ΩT , and Ω/β,
where β2 = 1

2 |dJ/dt| |t=tr is the sweep rate at the reso-
nance time tr, i.e., J [ǫ(tr)] = Bext.
To calculate 〈sd〉 we work in the Heisenberg picture.

Defining σm
+ = |Tm〉 〈s|, we can write (s±ℓ −s±r )/2 = (σ1

±−
σ−1
∓ )/

√
2 and (szℓ − szr)/2 = −(σ0

+ + σ0
−)/2. Since Bext,

J , β ≫ Ω, we can set 〈|Tn〉 〈Tm|〉 = 0 in 〈dσm′

+ /dt〉 to
obtain the first order corrections to the electronic state:

〈

σ̇0
+

〉

= −i
√
2v(t)Dz + iJ(t)

〈

σ0
+

〉

, (5)
〈

σ̇−1
+

〉

= −iv(t)D− + i(J(t) +Bext)
〈

σ−1
+

〉

, (6)
〈

σ̇1
+

〉

= iv(t)D+ + i(J(t)−Bext)
〈

σ1
+

〉

, (7)
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where v(t) = cos θ(t)/
√
2. Since J , Bext ≫ vΩ, Eqs. 5

and 6 can be adiabatically eliminated. To find
〈

σ1
+

〉

, we
formally integrate Eq. 7 and perform a saddle point ex-
pansion about the resonance time, assuming v(t) is con-
stant in this region, to reduce it to a Landau-Zener prob-
lem [29]. From this solution we calculate the average ini-
tial spin flip probability per cycle, pf0 = 2πv2(tr)Ω

2/β2.
Putting these results into Eq. 4 gives

Pd = ±
(

Γ0 ẑ ×D⊥ −∆0Dz ẑ −∆−D⊥

)

, (8)

where Γ0 = pf0/Ω
2 T arises from the polarization process

via T+, ∆0 =
〈

2v2/J
〉

c
and ∆− =

〈

v2/(J +Bext)
〉

c
arise

from electron-nuclear exchange processes via the T0 and
T− states, respectively, 〈·〉c indicates an average taken
over one cycle, and D⊥ = Dxx̂+Dyŷ.
Qualitatively, the effect of the Γ0 term is to polarize

the nuclear spins, but it also saturates the polarization
by driving the nuclear spins into a dark state, D⊥ = 0.
The ∆0 term drives the nuclear spins out of dark states,
unless Dz = 0 as well. Without noise, states with D = 0
are stationary during this DNP process; we refer to these
as “zero states.”
Solving Eqs. 3 with Pd given by Eq. 8 for an arbi-

trary electron wave function is a challenging many-body
problem. To help treat this problem, we have developed
a new numerical method, which is formally equivalent
to approximating the wave function by a unique set of
M ≪ N coupling constants gkd, that well approximates
the time evolution of L and R for a time that scales as
M . A full description of this method, which was used
in Fig. 2, along with a discussion of several higher order
effects from finite magnetic field and adiabaticity, will be
given elsewhere [29].
Unequal dots – Our results that zero states are un-

stable to the growth of large difference fields, in the
presence of asymmetry in the size of the dots and nu-
clear noise (Hn), can be shown analytically in the case
of a simplified model. We assume homogeneous cou-
pling and work in the high field, large J , limit where
we can set ∆0 = ∆− = 0 in Pd. To treat the noise we
first go into a frame rotating with the nuclear Larmor
frequency, and assume hx,ykd can be rotated away. We
further assume that the nuclear noise can be approxi-
mated by a Gaussian, uncorrelated white noise spectrum,
γ2n〈hzkd(t)hzk′d′(t′)〉n = 2η δ(t− t′)δkk′δdd′, where 〈·〉n are
averages over the noise [30]. These local noise processes
give rise to a mean decay of the collective nuclear spin
variables L+ (R+) and associated fluctuations Fℓ(r), de-
fined by 〈Fd(t)F∗

d′(t′)〉n = 2Ω2
d δdd′δ(t− t′). As a result,

Eqs. 3 and 8, including Hn, give

L̇+ = gℓΓ0 Lz(L+ −R+)/2− η L+ +
√

2ηFℓ, (9)

L̇z = −gℓ
2
Γ0

(

L2
⊥ −R⊥ · L⊥

)

, (10)

and similarly for R. From Eq. 9, if we start in a zero
state, Fd will produce a fluctuation in D⊥, and the con-
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FIG. 2: a) Long time limit of Dz/Sz as the relative hyperfine
coupling in the two dots, R = gr/gℓ, is varied. The solid line is
Eq. 12 and the dashed line is (1−R)/(1 +R), obtained from
a heuristic model (see text). Circles are numerical results
with statistical error bars after averaging over an ensemble
of 1000 initial conditions, run out to t = 105/gℓΓ0 ≈ 1 s,
using an approximation to a 2D Gaussian electron wavefunc-
tion in terms of 100 coupling constants gkd with noise strength
η/gℓΓ0 = 10−3. b) Phase diagram for identical dots for ei-
ther saturation in dark states or the self-consistent growth of
difference fields as the DNP pumping rate (vertical axis) and
the Knight shift from |T−〉 (horizontal axis) are varied relative
to the Knight shift from |T0〉. The dark grey shaded region
is a numerical “crossover” regime where both effects occur
depending on initial conditions and the dotted line is an an-
alytic result from the simplified model of Eq. 13. For typical
polarization cycles ∆−/∆0 ≈ 1/4, but Γ0/∆0 ≈ pf0Bext/Ω

2T
can be tuned over a broad range.

tribution to L̇z of the form −gℓΓ0L
2
⊥ results, in the long

time limit, in Lz ≪ −1 and similarly for Rz. Thus,
|L̇z/Lz| ≪ 1 and we can treat Lz, Rz as static to find
〈

L2
⊥

〉

n
,
〈

R2
⊥

〉

n
and 〈L⊥ ·R⊥〉n, which allow us to find

the slow evolution of Lz, Rz. To lowest order in 1/Sz

and 1−R, where R ≡ gr/gℓ,

〈Ḋz〉n = −η [〈Dz〉n − (1−R) 〈Sz〉n] / 〈Sz〉2n , (11)

and 〈Sz〉n = −√
η t. This growth of Sz as t1/2 is

a result of our assumption of delta correlated nuclear
noise. If we assume a finite correlation time τc such
that 〈Fd(t)F∗

d (t
′)〉n = Ω2

d exp(− |t− t′| /τc)/τc, then for

gΓ0 |Sz | ≪ 1/τc, |Sz| ∼ t1/2, but eventually |Sz | ∼ t1/3.
Integrating Eq. 11 gives Dz/Sz → (1−R)/2. For general
R we find, in the long time limit,

Dz

Sz
→ 1−R2

2R+
√

4R2 + (1−R)4
. (12)

Fig. 2a shows good agreement between these results and
numerics for an inhomogeneous Gaussian wavefunction.
Identical dots – For identical dots the previous argu-

ments are no longer valid. Fig. 2b, however, shows the
results of numerical simulations [29] that demonstrate the
existence of a parameter regime for which there is self-
consistent growth of Dz even for identical dots. Simula-
tions were performed at each set of parameters by taking
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20 different initially polarized nuclear spin configurations
with Sz = −10, Dz = −2, η/gl∆0 between 10−2 − 10−4,
and a 2D Gaussian electron wavefunction approximated
with 400 values of gkd. We determined which parame-
ter values had 〈Dz〉e growing after t = 103/gl∆0. For
Γ0/∆0 > 1/2, no self-consistent growth of Dz appears,
and the system approaches a dark state. For smaller
Γ0/∆0 and for moderate ∆−/∆0, continued growth of
Dz is observed. We find a similar boundary for unequal
dots provided |1−R| . 0.05.
This phase diagram for identical dots can be verified

analytically in a simplified model, where the hyperfine
coupling in each dot takes two values (g1 ≫ g2) on
two groups of spins of similar size. We assume initially
−g2Sz ≫ g1 |Dz| ≫ 1 ≫ D⊥ with the polarization
mostly in the strongly coupled spins. To lowest order
in g2/g1, η/g2Dz, g1Dz/g2Sz, and D⊥/Dz, we find [29]

〈Ḋz〉n ∝ (Γ2
0 +∆2

− −∆0∆−)(g1 〈Dz〉n /g2 〈Sz〉n)3. (13)

Growth of Dz requires nonzero D⊥, but, as we show
below, for large polarization and weak noise D⊥ ∼
Dz/Sz, which implies that the growth Dz must occur
self-consistently to prevent saturation. This is illustrated
by Eq. 13, where the continued growth of Dz is entirely
determined by the sign of Γ2

0 + ∆2
− − ∆0∆−. For large

Γ0 or strong DNP pumping, the sign is positive, satu-
ration effects dominate, large difference fields are unsta-
ble and the system eventually reaches a dark state. For
smaller Γ0, the sign is negative and coherent evolution
arising from interactions with |T0,−〉 allows Dz to con-
tinue growing and D⊥ remains finite. Fig. 2b shows rea-
sonable agreement between this predicted boundary and
our numerical results.
We now address the stability of the zero states in the

absence of nuclear noise. For identical dots, in the ho-
mogeneous limit, Eqs. 3 and 8 give

Ḋ+ = g i(∆− − iΓ0)SzD+ − g i∆0DzS+, (14)

Ḋz = g [(∆− − iΓ0)D+S− − c.c.] /2i. (15)

Near a zero state S is constant since Ṡ ∼ O(D2). The po-
larization, gΓ0Sz , acts as a damping term for D+; conse-
quently, for Sz ≪ −1, D+ → [∆0S+/(∆− − iΓ0)]Dz/Sz.
Together with Eq. 15 this implies Ḋz = 0. Thus the
stability matrix, ∂Ḋµ/∂Dν|D=0, has two negative eigen-
values and one zero eigenvalue. Due to this zero eigen-
value, we expect the stability of a zero state to be highly
sensitive to external perturbations. We find that inhomo-
geneous hyperfine coupling, multiple nuclear species, the
hybridization of |s〉 and |T0〉 as discussed in Refs. [25, 26],
and additional higher order corrections to Pd in 1/Bext

do not, however, break this zero eigenvalue. In the ab-
sence of noise, we find numerically that for some param-
eters a large fraction of initial conditions result in the
system spending a long time near a zero state; however,

when we include nuclear noise or higher order corrections
in the inverse sweep rate, for example, zero states become
repulsive on a long time scale [29]. Throughout this work
we have mostly neglected nuclear spin diffusion [30] and
spin-orbit coupling [18], both of which could potentially
affect DNP and, in particular, the stability of zero states.
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