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Abstract

In this paper, we develop a new human computation
algorithm for speech-to-text transcription that can po-
tentially achieve the high accuracy of professional tran-
scription using only microtasks deployed via an online
task market or a game. The algorithm partitions au-
dio clips into short 10-second segments for independent
processing and joins adjacent outputs to produce the full
transcription. Each segment is sent through an iterative
dual pathway structure that allows participants in either
path to iteratively refine the transcriptions of others in
their path while being rewarded based on transcriptions
in the other path, eliminating the need to check tran-
scripts in a separate process. Initial experiments with
local subjects show that produced transcripts are on av-
erage 96.6% accurate.

Introduction
There is a widespread need for transcription services con-
verting audio files into written text for various purposes:
meeting minutes, court reports, medical records, interviews,
videos, speeches, and so on. Written text is easier to an-
alyze and store than audio files, and apart from this, there
are many circumstances one could imagine for needing to
transcribe human speech: those who are deaf still need to
listen to certain audio files; people with limited ability to
type, such as those who are paralyzed or suffer from Carpal
Tunnel Syndrome, still need to draft documents; and so on.

Transcription is currently achieved mainly through two
methods: professional human transcription and computer
transcription. Professional transcription firms typically mar-
ket their services online, guaranteeing accuracies as high as
99%, for fees as “low” as $1 per minute of transcribed text.1
Computer software, a cheaper alternative, advertises a range
of accuracies, but most are significantly lower than those
of professional transcription. Speech recognition software
generally takes on two forms: one that analyzes whatever
sounds are fed into it, and one that allows users to train com-
puters to recognize their speech patterns for increased accu-
racy. The former software type, which includes programs
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1Eg., Secure Transcription Services, http://www.
securetranscription.com

such as Google Voice’s voicemail-to-text transcription, has
accuracies in the range of 78%-86% (Meisel 2010); the lat-
ter software type, which includes programs such as Dragon
Dictate, advertises up to 99% accuracy for trained voices.
Still, as would be expected, the accuracy rate for both types
of computer software is significantly lower for unfamiliar
voices or pre-recorded sound clips.

As humans are more adept than computers at decipher-
ing speech and even non-professionals can potentially pro-
duce accurate transcripts, crowdsourcing transcription tasks
to online task markets such as Amazon Mechanical Turk
(MTurk) is being explored as a means by which to obtain
low-cost and high-accuracy transcripts. CastingWords is one
such service, which has been described by the Wall Street
Journal as “[the] most accurate and detailed of all our ser-
vices [among the five reviewed]” (Passey 2008). Casting-
Words splits long audio recordings into overlapping seg-
ments, posts tasks on MTurk for such clips, has MTurk
workers (Turkers) transcribe clips or modify existing tran-
scripts, and has other Turkers grade these transcriptions be-
fore reposting them for others to correct. CastingWords
charges between $0.75-$2.50 per minute of audio tran-
scribed depending on the required turnaround time, and pays
workers based on the quality of the transcription and the
task’s difficulty.

One of the major challenges for crowdsourcing transcrip-
tion tasks is quality control — how to ensure transcription
accuracy without knowing the correct transcript. Casting-
Words has a fairly advanced quality control system that
heavily relies on Turkers to grade previous transcripts. This
explicit grading process introduces some potential incentive
issues. Because a Turker who is asked to improve an existing
transcript is also sometimes asked to grade the existing tran-
script, he may not necessarily be motivated to provide what
he believes to be a fair grade. The Turker’s reward is based
on the number of grades by which he improves the original
transcript, so he has some incentive to assign a low grade
to the transcript he is improving. To deal with this, Cast-
ingWords does a lot of grade monitoring, such as grading
the graders and using multiple graders to check a given clip.
Combining all this together, CastingWords’ quality control
system works similar to a reputation system.

While it is extremely impressive for CastingWords to
streamline the complicated crowdsourcing quality control



system, all of the human effort spent on quality control does
not directly help to improve the transcription accuracy. Un-
derstanding that people who listen to the same audio clip and
exert their good faith effort are likely to come up with “simi-
lar” transcripts, we ask the question of whether it is possible
to remove the explicit checking process, evaluate the tran-
scripts for the same clip against each other, and still achieve
high transcription accuracy.

Our approach falls into the framework of Crowd-
Forge (Kittur, Smus, and Kraut 2011), which promotes a
paradigm of distributed human computation that is anal-
ogous to the MapReduce distributed programming frame-
work (Dean and Ghemawat 2004). CrowdForge suggests
that complex problems can first be partitioned into small
sub-problems. Next, the map phase distributes the sub-
problems to workers and obtains solutions for them. Finally,
the reduce phase combines the solutions to the subproblems.
In this work, we design a transcription process that breaks
audio files into smaller ten-second pieces, obtains transcripts
for these segments from non-expert transcribers, and allows
for the accurate rejoining of these transcripts at a later time.

The key innovation of our transcription process is that
both the map phase (obtaining transcripts for the ten-second
clips) and the reduce phase (rejoining transcripts) do not
require explicit quality control. Instead, we design an it-
erative dual pathway structure that integrates the checking
and transcription processes and provides incentives for peo-
ple to enter correct transcripts. With this structure, both the
map and reduce tasks simply ask people to improve existing
transcripts. We implemented our transcription process as an
online game and ran initial experiments with Harvard un-
dergraduate students. Our experiments produced transcripts
that were 96.6% accurate on average, which is close to the
accuracy of professional transcription.

Related Work
In addition to CastingWords and CrowdForge mentioned
above, our work builds on the general idea of Games With
A Purpose (GWAPs) (von Ahn 2006). GWAPs redirect peo-
ple’s free brain cycles towards solving problems that are
easy for humans but difficult for computers. The first such
game is the ESP game (von Ahn and Dabbish 2004), where a
picture is displayed to two players whose goal is to reach an
agreement on a label for the picture. The ESP game uses an
output-agreement mechanism (von Ahn and Dabbish 2008)
in which players are given the same input and must agree on
an appropriate output. Because output agreement among in-
dependent transcribers has been shown to be positively cor-
related with audio transcription accuracy (Roy, Vosoughi,
and Roy 2010), we extend the output agreement idea. Our
dual path structure rewards transcribers based on the simi-
larities between their transcripts and two independent peer
transcripts.

Novotney and Callison-Burch (2010) partition audio files
into 5-second segments and obtained three independent tran-
scripts for each segment via MTurk. Randomly selected
transcripts were found to be as much as 23% lower in Word
Accuracy than professional transcripts, while the best tran-
scripts were 13% lower in Word Accuracy. The authors

show that one can identify good work by scoring each tran-
scription based on its similarity to other transcripts in the
same segment. While this suggests a nice way of selecting
more accurate transcripts, our method improves upon this
approach by implementing an iterative process that allows
contributors to build on others’ work for greater efficiency.

Results from experiments by Little et al. (2010) suggest
that iterative processes are more accurate and efficient than
parallel processes (in which workers come up with indepen-
dent solutions) for deciphering blurry text, though the dif-
ference was not statistically significant. In their workflow,
voting is used between rounds of iteration to ensure quality.
The dual pathway structure provides an alternative workflow
that removes the need for explicit quality control, while still
providing incentives for accurate transcriptions.

Although the iterative dual pathway structure imple-
mented here uses 10-second clips, our paper’s goal is not
to establish that this division is optimal. As suggested by
Roy and Roy (2009), more sophisticated algorithms may be
useful for dividing audio files into lengths more optimal for
efficient transcription. In this paper, we simply use the 10-
second division as a convenient starting point on which we
develop the iterative dual pathway structure.

An Iterative Dual Pathway Process
In this section we describe our transcription process, discuss
its properties, and explain our experiment implementation.

Design of the Transcription Process
To begin the transcription process, we first break up audio
files into smaller segments for transcription. Each file is
strictly divided into 10-second segments (i.e. time t = 0
seconds to t = 10 seconds, t = 10 to t = 20, ...), with
the last clip possibly being shorter if the clip length was not
a multiple of 10 seconds. These “short clips” are entered
into a pool for transcription, and contributors are randomly
assigned to a clip.

For each clip, a contributor is assigned to one of two tran-
scription pathways, alternating assignments by order of ar-
rival. Contributors listen to the clip and can modify tran-
scripts submitted by the two previous participants assigned
to the same pathway. Their submissions are then compared
to the last two transcripts submitted by participants on the
other pathway, which they are never allowed to see. Be-
cause the participants on one pathway are unable to view the
submissions by others assigned to the other pathway, the two
paths should theoretically be independent. Thus, we conjec-
ture that the more similar the two pathways are, the more
accurate they are, as participants are expected to base their
transcriptions on the contents of the audio file.

Contributors’ submissions are scored based on their sim-
ilarity to transcripts produced in the other pathway. If their
contributions are vastly different, we remove these results to
avoid misleading future contributors or causing future tran-
scripts to be mis-scored. Comparing users’ submissions to
previous results necessitates having something to compare
them to at the beginning; thus, at the start of the process,
we generate a computerized transcript of the audio file. This



Figure 1: Contributors are alternately assigned to one of two
different pathways, A or B. They modify previous tran-
scripts from their own pathway, and their transcripts are
scored based on how well they match the two most recent
entries in the hidden opposite pathway.

transcript is treated as though it were produced by a previous
player on the opposite pathway — it is used for comparison,
but not for display and modification purposes.

Figure 1 depicts the iterative dual pathway structure, with
the two pathways A and B. We use TC to denote the com-
puterized seed transcript. Let T k

i (i ∈ {A,B}; k = 1, 2, ...)
denote the k-th transcript produced in pathway i. In this fig-
ure, the transcripts are listed from left to right in the order
that they are generated. Again, we assume independence be-
tween the two pathways, as subjects from one pathway can
presumably interact with those from the other pathway only
through means not accessible via the transcription platform.
Thus, if the two pathways evolve along similar but incorrect
lines, this is likely a matter of chance.

As contributors improve iteratively on previous results,
the transcripts should eventually “converge” to an accurate
recording of the contents of the audio file. Thus, when four
transcripts in a row (i.e. two from each pathway) match each
other, we deem the clip to have been transcribed correctly,
and remove it from the pool of transcripts eligible for pro-
cessing. (If, for some reason, a transcript must be selected
before the clip converges, we can randomly select the last
transcript from either path. Any number of rules can be used
to make this selection, including choosing the latest one, the
one with the fewest recent edits, or the one that best matches
the contents of the clip.)

If a short ten-second clip has converged, we check to see
whether its neighbors on either side have converged as well.
If so, we combine the two adjacent clips into a longer 20-
second clip, addressing the possibility that a word may have
been cut in half when the clip was initially divided. This
long clip is then added to the pool of eligible transcripts, and
users are shown the final transcripts for each of the two short
clips that constitute this longer clip. The long clip is run
through our iterative dual pathway process, with participants
allowed only to edit the middle of the clip. (We restrict this
editable region to eliminate the possibility of having mul-
tiple conflicting edits for a given segment. Restriction of
the editable region is done deterministically to ensure that
all portions of the audio file except for the beginning and
the end can be edited to account for words that have been
spliced into two.) Once this longer clip has converged, it is
removed from the transcription pool and ultimately joined
into a final transcript for the original audio file.

To join these longer clips, we assemble the edited portions
of the longer clips into a full transcript, which begins with

the first part of the transcription for the first clip and ends
with the last part of the transcription for the last clip. This
allows us to incorporate all of the changes made through
this process, leaving no ambiguity as to which edits to in-
corporate as long as clips have converged. Thus, using the
iterative dual pathway process, we generate a final transcript
to present to the original transcription requester.

Properties of the Transcription Process
The iterative dual pathway structure has a number of nice
properties: it breaks tasks into smaller pieces, allows us to
estimate the accuracy of a given transcript by comparing it
to others and thus eliminating the need to check transcrip-
tions in a separate process, and provides participants with
the proper incentives to enter accurate results.

Breaking the audio file into shorter clips allows for greater
variety, confidentiality, and ease of transcription, as people
only need to listen to 10 seconds of a clip. Distributing the
processing of the audio file may also be more efficient, as
suggested by MapReduce (Dean and Ghemawat 2004) and
CrowdForge (Kittur, Smus, and Kraut 2011). Aside from
this, shorter clips lend themselves better to being used in
games or online task markets, where people may have lim-
ited time to spend on these tasks. As previously mentioned,
the 10-second division of clips is not assumed to be optimal;
it merely serves as a convenient starting point.

Having two pathways allows us to eliminate the separate
transcription checking process because we can easily esti-
mate the accuracy of a given entry by comparing it to the
two latest transcripts from the other path. (We select two for
comparison, in case the latest result was less accurate than
the one before it, but we weigh the later one more.) By in-
troducing the computerized transcript at the beginning of the
process, and by rejecting clips that differ by more than 50%
in edit distance from the transcripts that they are compared
with, we are fairly confident that the transcripts entered on
either path should resemble the contents of the clip. Be-
cause the two paths evolve independently, chances are that
the closer they are, the more likely it is that they are correct,
as contributors can base their transcripts only on the clips
given to them. This is in contrast to a single pathway struc-
ture where a verification process becomes necessary and in-
centive issues may arise.

Finally, by separating what contributors see from what
they are being compared against for reward purposes, the
dual pathway structure aligns incentives so that people are
motivated to produce accurate transcripts. If we consider a
single pathway structure without a separate verification pro-
cess, one implementation would be to score a contributor
based on how similar his response is to previous transcripts.
In this case, contributors can simply maximize their rewards
by copying previous responses rather than improving upon
them, and there is a strong disincentive to improve an exist-
ing transcript. The dual pathway structure solves this prob-
lem, as there is no clear strategy that gives a participant more
points than he would receive by entering an accurate tran-
script. Participants cannot garner more points by copying
previous responses, as it is not certain that these responses
will match those of the opposite pathway, and it is difficult



Figure 2: A Screen Shot of the User Interface

to guess exactly what transcripts lie on the opposite path-
way. The easiest strategy, therefore, is simply to input one’s
best guess of the most accurate transcript, as the two path-
ways will be identical when the transcripts are both accu-
rate. As such, splitting the task into two pathways allows
us to implement an iterative process without explicit quality
control while still motivating participants to enter accurate
transcripts.

Experiment Implementation
Our implementation of the transcription process took the
form of an online game in which players transcribed each
clip and were awarded points according to how closely their
transcripts matched the transcripts of players on the oppo-
site path. The similarity between transcripts was measured
using the Levenshtein edit distance metric, which measures
the number of insertions, deletions, and substitutions on a
character basis between two strings.2 For the purposes of
our experiment, we ignored punctuation and capitalization,
and calculated points on a scale from 0 to 10, with 0 points
awarded for blank transcripts. Transcripts that are not blank
were scored as follows. Let L(Ti, Tj) be the Levenshtein
distance between two transcripts Ti and Tj . Let Tk be the
transcript submitted by the k-th player, and let T−1 and
T−2 be the most recent and next most recent eligible tran-
scripts submitted by players on the opposite path. The score
awarded to player k (Scorek) is calculated based on the av-
erage weighted Levenshtein distance to the two clips on the
opposite pathway:

LDk = (α)L(T−2, Tk) + (1− α)L(T−1, Tk)
Lengthk = (α)(length(T−2)) + (1− α)(length(T−1))

Scorek = min

{
10, round

(
10 ∗

(
1− LDk

Lengthk

))}
where α is set to 0.4.

For our experiments, we used clips obtained from
http://www.americanrhetoric.com/, most of which
came from movies and speeches. Clips ranged in length,

2http://en.wikipedia.org/wiki/Levenshtein_
distance

clarity, content matter, and the degree to which they used un-
common words, proper nouns, and slang. They were passed
through Adobe Soundbooth CS4 (transcribed on High Qual-
ity, using American English) to produce the computer tran-
scripts that seeded the dual pathway structure.

Experimental Results
We recruited 147 Harvard University undergraduates to par-
ticipate in our online transcription game. Figure 2 provides
a screen shot of the interface for the iterative dual pathway
version of the game. The game ran over the course of a
week, from 3/7/2011 to 3/14/2011. It used 20 audio files,
for a total of 44 shorter ten-second clips and 25 longer 20-
second clips that spanned these shorter clips. Players pro-
duced 549 transcripts over the course of gameplay.

In addition to the iterative dual pathway game, we also
implemented a parallel process for comparison. The paral-
lel implementation did not allow players to see what oth-
ers entered. Players were asked to transcribe the clip from
scratch, and players’ entries were scored randomly. This
implementation consisted of ten audio files divided into 20
ten-second segments. Longer clips were not created for this
experiment, so the accuracy reported here only reflects that
of the ten-second segments. The parallel implementation of
the game also ran over the course of a week (from 2/26/2011
to 3/6/2011) and players produced 308 transcripts.

To compare our results to industry figures concerning
transcription accuracy, we used Word Accuracy (WAcc),
which is measured as a percentage and calculated on a word
basis as follows:

WAcc = 1− Insertions+Deletions+ Substitutions

#ofWordsInAccurateTranscript

For other evaluations, we used a variation of Word Accuracy
which we call Character Accuracy to ease the automatic cal-
culation. This metric computes accuracy using the Leven-
shtein distance (LD) on a character basis as follows:

LD = Insertions+Deletions+ Substitutions

CharAcc = 1− LD

#ofCharsInAccurateTranscript

We find that in all cases tested, Word Accuracy and Charac-
ter Accuracy were comparable.

Overall, the Word Accuracy for the parallel process was
93.6%, compared to 96.6% for the iterative dual pathway
process (96.7% for ten-second clips).3 The latter accuracy is
comparable to the accuracy advertised by professional tran-
scription, and furthermore, would likely have been greater if
clips had been given more time to converge. The accuracy of
the clips that converged for the iterative process was 97.4%,
compared to an average of 95.5% for those that had not.
Given more time and additional iterations, it is likely that
the 96.6% accuracy we found would have been higher; in

3The accuracy for the parallel process was surprisingly high. It
was significantly higher than the accuracy of the first round tran-
scripts in the iterative process, which were new transcripts. One
possibility is that the audio clips used in the parallel process were
easier by chance.



Figure 3: The average Maximum/Average/Minimum accu-
racies after k iterations between two clip pathways. Tran-
scripts are removed from this graph after they converge to
avoid an upward bias. (As a result, we see that from the
10th to the 11th iterations, the accuracies diverge, as there is
only one clip that reached the 11th iteration.)

many instances, errors came not in the middle of transcripts,
but across breaking points between clips where fewer itera-
tions completed.

Figure 3 shows the average across all clips of the mini-
mum, average, and maximum character accuracies after k
iterations (i.e. after k contributors in each path have tran-
scribed a clip) between two clip pathways. We find that the
minimum and average accuracies increased over time, and
the difference in the maximum and minimum accuracies be-
tween the two clips decreased. This indicates that as the
number of iterations increased, clips became more similar
and more accurate.

Table 1 shows the number, percentage, cumulative per-
centage, and accuracy of clips that converged in the k-th it-
eration. Also shown is the accuracy level across all clips that
converged in the k-th iteration. We see that many clips con-
verged early on and that accuracies do not appear to depend
on when a clip converged.

Comparing the enjoyability and efficiency of the itera-
tive dual pathway structure against that of the parallel struc-
ture, we find by surveying participants that players enjoyed
the iterative dual pathway structure more than the parallel
one; they liked correcting clips more than transcribing them
anew, and they played the former game longer than the lat-
ter. Additionally, as would be expected, players spent less
time processing clips in the iterative process than in the par-
allel one, with mean transcription times of 33.1 seconds and
39.5 seconds respectively. The mean transcription time for
the iterative dual pathway task even includes transcription of
the 20-second clips. This difference was statistically signifi-
cant (p-value= 0.0150, df=38; one-sided, paired, equal vari-
ance). This suggests that the iterative dual pathway structure
is more enjoyable and more efficient than the parallel one.

Analyzing specific transcriptions and the ways in which
they evolved provide evidence that the iterative process was
fairly successful in allowing players to correct others’ mis-
spellings or decipher additional portions of the clip. Here is
one such example:

Iter. # Conv. % Conv. Cumul. % WAcc (%)
2 11 21.2 21.2 96.0

2.5 5 12.5 31.4 100.0
3 3 8.6 37.3 100.0
4 1 3.3 40.8 100.0

4.5 1 3.4 42.9 90.0
5.5 1 3.7 45.8 95.7
6.5 1 4.2 50.0 100.0
7.5 3 15.8 61.9 95.6
8 1 8.3 71.1 95.7

Table 1: Number, percentage (of clips that reached k itera-
tions), cumulative percentage (of clips converging before or
reaching k iterations) and word accuracy of clips converg-
ing in the k-th iteration. Iterations where no clips converged
are not displayed. Half-number iterations refer to an uneven
number of transcripts on each path (i.e. 2.5 iterations means
that the two paths had two and three iterations respectively).

Iteration 1 red, red, red! what should i do?

Iteration 2 red, red, red! Dear God, where
should I go, what should i do?

Iteration 3 Fred, Fred, Fred! Dear God, where
shall I go, what should i do?

Iteration 4 Rhett, Rhett, Rhett! Dear God,
where shall I go, what shall I do? (Correct)

In addition to this, participants were adept at rejoining clips:
Beginning Transcript You have...electrified
your fa arms, accelerated your rate of
growth (Break in the middle of “fa arms”)

Iteration 1 You have...electrified your farms
Accelerated your rate of growth

Iteration 2 You have...electrified your farms,
accelerated your rate of growth (Correct)

As a result, it appears that our breaking-and-joining-clips
procedure is viable and that the iterative dual pathway pro-
cess is fairly successful.

Finally, by analyzing participant behavior in the iterative
dual pathway implementation, we can suggest areas for fur-
ther improvement. On average, players modified incorrect
transcripts 63% of the time, increasing character accuracy
63% of the time by 16.1%, and decreasing it by 10.7% the
rest of the time. Thus, players’ edits did not always im-
prove character accuracy. Still, character accuracy is based
on Levenshtein distance, and changes in these distances are
not necessarily good indicators of accuracy when transcripts
are very far off.4

4For example, consider a garbled clip that says, “Kangaroos
make great pets.” One person may hear “Kangaroos
migrate west,” while the next hears “Kangaroos,
unlike rats.” Neither is particularly good, but the for-
mer has an edit distance of 9, while the latter has an edit distance
of 10. Thus, if the second listener edited the transcript of the first,
this change would have increased the edit distance and decreased
the character accuracy without really affecting the transcript
quality.



Turning to survey results for insight into players’ strate-
gies, we find that most people claim to have always entered
the most accurate transcript possible. Two of the 17 respon-
dents admitted that when they had trouble understanding the
words, they did not try as hard, but the rest asserted that they
still tried to enter their best guesses. People rated their ef-
forts between 3 and 5 on a scale of 1 (no effort) to 5 (highest
effort), suggesting that most players made a concerted effort
to improve the accuracy of existing transcripts. Some even
went so far as to transcribe beyond the length of the tran-
script, guessing words that were partially truncated or com-
pleting turns of phrase based on what they had heard. These
results support our hypothesis that players will tend to enter
their best guesses to maximize their expected reward.

Despite these efforts, however, players repeated many of
the same errors, writing down what they thought the audio
file should say rather than what it actually said: they fixed
subject/verb agreement errors, substituted a/the for one an-
other, and inserted words such as “that.” Additionally, they
made changes to capture the tone or mood of certain clips,
using slang such as “gonna” rather than “going to” or adding
onomatopoeia such as “heh” into clips that contained laugh-
ter. These types of mistakes decrease the probability that
two independently evolving dual pathways would converge
if players fail to correct these mistakes, and suggest that we
should provide clearer instructions that more precisely spec-
ify how players should transcribe and improve transcripts.

Conclusion and Discussion
We present a new human computation algorithm for speech-
to-text transcription that demonstrates potential for future
development and use. The process breaks clips into shorter
ten-second segments that easily lend themselves to online
task markets or games, and provides a way to easily and ac-
curately rejoin these segments. In addition, we propose an
iterative dual pathway structure that eliminates the need for
a complicated quality control system. This makes the tran-
scription process more efficient by allowing those who listen
to clips to also improve them at the same time, and properly
aligns players’ incentives. We hypothesize that because peo-
ple are rewarded based on how similar their transcripts are to
those on the opposite pathway, and because they do not see
this other pathway, they will tend to enter the most accurate
transcripts they can. The iterative dual pathway structure
leads players to improve upon others’ submissions until an
accurate solution is converged upon, and may find applica-
tion for other human computation tasks beyond transcrip-
tion.

Empirical results suggest that such a structure is promis-
ing as a new method of transcription. The 96.6% accuracy
obtained using this structure is higher than the 93.6% accu-
racy of the parallel process, and it is comparable to that of
professional transcription. Our results show that the more
iterations a clip has undergone, the more likely it is to con-
verge and be accurate. Furthermore, a post-experimental
survey of participants shows that most exerted high effort,
supporting our hypothesis that the current incentive structure
motivates participants to enter accurate transcripts. Finally,

we found that the iterative structure employed is more enjoy-
able and efficient than a parallel structure in which people
transcribe audio clips independently.

Ultimately we find that the dual pathway structure lends
itself nicely to being developed further along three differ-
ent lines: crowdsourced markets, Games With a Purpose
(GWAP), and audio CAPTCHA. In the first instance, in-
creasing the enjoyability of a task would allow one to pay
people less for their efforts; in the second instance, a game
design could allow one to obtain very accurate transcriptions
for free or at a very low costs; in the third instance, breaking
audio files into short clips could allow us to present them
to users for transcription, and using the dual pathway, we
could check the approximate accuracy of these entries with-
out knowing exact transcripts.

Despite these positive results, there are several areas for
improvement. Firstly, while accuracy was high, we may be
able to increase it further by rewarding people for correct-
ing errors in clips as a means towards increasing the level of
improvement from one iteration to the next. Secondly, we
could increase the overall enjoyability of the process by per-
haps imposing a sense of time pressure on the task or mak-
ing our game more social to make it more fun. Future efforts
will be focused on emphasizing improvements between iter-
ations, and on increasing the enjoyability of the task.
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