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Abstract

Background: The Mannose-binding lectin (MBL) pathway of complement plays a pivotal role in the pathogenesis of
ischemia/reperfusion (I/R) injury after experimental ischemic stroke. As comparable data in human ischemic stroke are
limited, we investigated in more detail the association of MBL deficiency with infarction volume and functional outcome in a
large cohort of patients receiving intravenous thrombolysis or conservative treatment.

Methodology/Principal Findings: In a post hoc analysis of a prospective cohort study, admission MBL concentrations were
determined in 353 consecutive patients with an acute ischemic stroke of whom 287 and 66 patients received conservative
and thrombolytic treatment, respectively. Stroke severity, infarction volume, and functional outcome were studied in
relation to MBL concentrations at presentation to the emergency department. MBL levels on admission were not influenced
by the time from symptom onset to presentation (p = 0.53). In the conservative treatment group patients with mild strokes
at presentation, small infarction volumes or favorable outcomes after three months demonstrated 1.5 to 2.6-fold lower
median MBL levels (p = 0.025, p = 0.0027 and p = 0.046, respectively) compared to patients with more severe strokes.
Moreover, MBL deficient patients (,100 ng/ml) were subject to a considerably decreased risk of an unfavorable outcome
three months after ischemic stroke (adjusted odds ratio 0.38, p,0.05) and showed smaller lesion volumes (mean size 0.6 vs.
18.4 ml, p = 0.0025). In contrast, no association of MBL concentration with infarction volume or functional outcome was
found in the thrombolysis group. However, the small sample size limits the significance of this observation.

Conclusions: MBL deficiency is associated with smaller cerebral infarcts and favorable outcome in patients receiving
conservative treatment. Our data suggest an important role of the lectin pathway in the pathophysiology of cerebral I/R
injury and might pave the way for new therapeutic interventions.
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Introduction

Complement mannose-binding lectin (MBL), a member of the

collectin subfamily of C-type lectins, is a key component of innate

immunity [1]. Besides its important contribution to host defense

against pathogens, MBL is also involved in the binding and removal

of apoptotic cells leading to complement activation in an antibody-

and complement C1q independent manner [2,3]. In humans

polymorphisms within the coding and promoter regions of the

MBL2 gene lead to functional MBL deficiency in up to one third of

the Caucasian population characterized by reduced levels of

circulating functional MBL multimers [4]. During lifetime individ-

ual MBL serum levels remain remarkably stable highlighting the

dominating influence of genetics as compared to environmental

factors. Even during acute inflammation, low MBL serum

concentrations are predictive for moderate to severe deficiency

[5]. However, there is considerable interindividual MBL level

variability (up to ten-fold) in people with the same genotype.

Numerous studies have acknowledged the deleterious effects of

complement activation in the pathogenesis of ischemia/reperfu-
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sion (I/R) injury (reviewed in [6]) via free-radical production,

activation of the coagulation cascade and direct tissue damage. In

particular, several lines of evidence from murine models, one

human experimental model, and one clinical trial emphasize a

central and active role for complement MBL in aggravating tissue

damage after I/R injury of the heart [7,8,9,10], kidney [11], gut

[12,13], and skeletal muscle [14]. With respect to cerebral I/R

injury results from two recent experimental studies demonstrate

that MBL deficiency or inhibition leads to diminished complement

C3 deposition and neutrophil influx into the affected brain region

and is associated with smaller infarct volumes and better functional

outcomes in mice [15,16]. In humans comparable data are scarce.

Activation of the complement system has been confirmed in three

clinical studies after acute ischemic stroke [17,18,19]. Regarding

the effect of MBL, Cervera et al. could demonstrate a significant

association of genetically defined MBL deficiency with favorable

outcome after three months, though in a small cohort that

included a considerable number (19%) of hemorrhagic stroke

patients [15]. Moreover, the impact of MBL deficiency on the

outcome after thrombolytic treatment was not analyzed. Throm-

bolytic agents cause a striking systemic activation of the

complement system [20], but data on the role of MBL in cerebral

I/R injury after thrombolysis is lacking. Hence, the aim of this

study was to investigate the impact of functional MBL deficiency

in human acute ischemic stroke in a prospective cohort of

consecutive patients receiving intravenous thrombolysis or con-

servative treatment according to the European Guidelines [21].

Methods

Ethics Statement
The study had been approved by the local ethical committee at

the University Hospital of Basel and all participants or their

representative gave written informed consent for the study.

Participants
We conducted a post hoc analysis of a previously published,

prospective cohort study at the University Hospital Basel, Basel,

Switzerland consisting of 359 patients presenting to the emergency

department with an acute ischemic stroke within 72 hours after

symptom onset between November 2006 and November 2007.

Patients were classified as either receiving conservative treatment

(including monitoring of blood pressure, oxygen saturation, serum

glucose, temperature and neurological symptoms, early mobiliza-

tion, prevention of complications, and treatment of hypoxia,

hyperglycemia, pyrexia and dehydration) or intravenous throm-

bolysis according to the European Guidelines [21]. A complete

description of the study including information about clinical work-

up, recorded clinical variables, blood-sampling and neuroimaging

has been reported previously [22].

Definitions of endpoints
The primary endpoint for this analysis was favorable functional

outcome (score 0 or 1) on the modified Rankin scale (mRS) within

90 days after admission. Secondary endpoints included functional

status as assessed by the Barthel Index (BI) at day 90 (favorable

outcome was defined as BI. = 95%), death from any cause within

a 90-day follow-up, severity of stroke as assessed by the National

Institutes of Health Stroke Scale (NIHSS) score on admission, and

infarction volume assessed by magnetic resonance imaging (MRI)

during initial work-up (categorized according to Katan and

colleagues [22]). MRI scans were available in 157/297 and 42/

66 patients receiving conservative and thrombolytic treatment,

respectively.

MBL level analysis
For the MBL analysis serum samples drawn immediately on

admission to our emergency department (within 0–72 hours after

symptom onset) prior to any diagnostic imaging or thrombolytic

treatment were available from 353 of 359 patients, of whom 287

and 66 individuals received conservative and intravenous (i.v.)

thrombolytic treatment, respectively. For the i.v. treatment group

we analyzed additional samples 24 and 72 hours after admission

which were available from 56 patients. Quantification of

functional MBL was performed by an investigator blinded to

any patient data using a commercially available Sandwich-ELISA

Kit (MBL Oligomer ELISA KIT 029, Lucerna Chem, Luzern,

Switzerland) as described previously [23]. Since the definition of

functional MBL deficiency is likely to be dependent on the clinical

setting, we first analyzed the predefined endpoints in relation to

MBL levels. Only in a secondary analysis functional MBL

deficiency was defined as serum levels #100 ng/ml, as this cut-

off has been shown to discriminate reasonably well between

individuals with or without homozygosity for MBL variant alleles

[24] and to be clinical relevant in human cardiac IR injury [8]. As

our study was not powered to identify significant differences in

mortality with regard to the predefined MBL cut-off, patients were

stratified according to MBL level tertiles in the analysis of Kaplan-

Meier survival curves.

Statistical analysis
Differences in patient characteristics and outcome measures

according to treatment and MBL serostatus were analyzed using

the Fisher’s exact test or the Mann-Whitney-U-Test where

appropriate. Due to the non-Gaussian distribution of human

MBL levels two-group comparisons of MBL concentrations were

performed using a Mann-Whitney-U-test, whereas for multigroup

comparison a Kruskal-Wallis one-way analysis of variance or

Friedman test was applied where appropriate. Dunn’s post test was

used to correct p-values for multiple comparisons. Mortality was

analyzed by the log-rank test. Kaplan-Meier estimates were

plotted over the observation period of 90 days.

Stepwise logistic regression models were used to estimate the

association of MBL levels on predefined endpoints in multivariate

analyses after adjustment for covariables being present prior to the

ischemic event with univariate p values less than 0.1. Covariables

tested in univariate analyses included patient age, sex, vital

parameters and Charlson comorbidity index on admission, history

of vascular risk factors, time from symptom onset to admission,

and body mass index. All testing was two-tailed, and p values less

than 0.05 were considered to be statistically significant.

Results

Patients’ characteristics
Admission serum samples were available from 353 of 359

consecutive patients with an acute ischemic stroke and a complete

follow-up, of whom 287 and 66 patients underwent conservative

treatment and intravenous thrombolysis, respectively. The base-

line and outcome characteristics of the whole study cohort and

classified according to the therapeutic intervention are summa-

rized in Table 1. In summary, patients in the conservative

treatment group were older (median age of 76 (interquartile range

(IQR) 66–83) vs. 71 (IQR 57–70), p,0.001), suffered from more

comorbidities (median Charlson Index of 1 (IQR 0–2) vs. 0 (IQR

0–1), p = 0.002), and presented with a less severe stroke (median

NIHSS score of 4 (IQR 2–8) vs. 12 (IQR 7–19), p,0.001),

whereas unadjusted outcomes after 90 days were similar (data not

shown).

Mannose-Binding Lectin and Ischemic Stroke
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Mannose-binding lectin serum levels
On admission the median MBL serum level of all patients

included in this study was 1482 ng/ml (IQR 411–2675 ng/ml),

and 37 of 353 (10%) individuals showed levels below 100 ng/ml,

thereby closely resembling frequency distributions observed in the

general population [4,24]. Furthermore, initial MBL levels were

similar in patients presenting to our emergency department within

0–3 (median 1502 ng/ml), 3–12 (median 1388 ng/ml), 12–24

(median 1768 ng/ml) and 24–72 hours (median 1607 ng/ml) after

symptom onset (p = 0.53), as was the case in the two treatment

groups. Sequential analysis of MBL serum levels in the

thrombolysis group revealed stable MBL levels during the first

24 hours after administration of thrombolytic agents (admission:

median 1500 (IQR 490–2250) ng/ml; after 24 hours: median

1610 (IQR 459–2259) ng/ml). However, a significant increase in

MBL levels occurred after five days (median 2167 (IQR 548–3281)

ng/ml, p,0.001 for the comparison of admission vs. day 5),

reflecting a mild acute phase reaction. As expected from previous

studies, this increase was only observed in MBL sufficient patients,

whereas MBL levels remained constant in MBL deficient patients

[5].

Conservative treatment group
Association with functional outcome and death after

ischemic stroke. Uni- and multivariate analysis of the

primary endpoint showed that MBL levels were significantly

associated with functional outcome after three months in this

treatment group: Patients with a complete recovery (i.e., a mRS of

0 or 1) had lower MBL levels than individuals with an unfavorable

outcome (median MBL level 1116 (IQR 370–2524) vs. 1713 (IQR

420–3018) ng/ml, p = 0.046, Figure 1). After adjusting for

potential confounders being present prior to the ischemic event

MBL levels remained independently associated with an

unfavorable outcome three months after ischemic stroke (OR

1.23, 95% CI 1.02–1.48, for every 1000 ng/ml increase,

p = 0.036) in addition to age (Table 2).

To confirm the influence of MBL levels on functional recovery

after ischemic stroke a second outcome measure (Barthel Index)

Table 1. Baseline characteristics of the study population.

Baseline characteristics
All
(n = 353)

Conservative treatment
(n = 287)

Thrombolysis
(n = 66)

Age (median, IQR) 75 (63–82) 76 (66–83) 71 (57–79)

Female sex, n (%) 145 (41) 123 (43) 22 (33)

MBL in ng/ml (median, IQR) 1482 (411–2675) 1461 (408–2857) 1498 (475–2250)

NIHSS on admission (median, IQR) 5 (2–10) 4 (2–8) 12 (7–19)

Charlson index (median, IQR) 1 (0–2) 1 (0–2) 0 (0–1)

Vascular risk factors

Hypertension, n (%) 269 (76) 220 (77) 49 (74)

D.m., n (%) 69 (20) 61 (21) 8 (12)

Coronary heart disease, n (%) 88 (25) 74 (26) 14 (21)

Hypercholesterolemia, n (%) 91 (26) 76 (26) 15 (23)

Atrial fibrillation, n (%) 74 (21) 63 (22) 11 (17)

Prior stroke, n (%) 86 (24) 74 (26) 12 (18)

Family history of stroke and/or myocardial
infarction, n (%)

105 (30) 86 (30) 19 (29)

Stroke etiology*

Small-vessel occlusion, n (%) 55 (15) 51 (18) 4 (6)

Large-artery atherosclerosis, n (%) 64 (18) 53 (18) 11 (17)

Cardioembolism, n (%) 130 (37) 100 (35) 30 (45)

Other - determined, n (%) 17 (5) 11 (4) 6 (9)

Undetermined, n (%) 87 (25) 72 (25) 15 (23)

Stroke syndrome

TACS, n (%) 40 (11) 20 (7) 20 (30)

PACS , n (%) 160 (45) 125 (44) 35 (53)

LACS , n (%) 72 (20) 67 (23) 5 (8)

POCS , n (%) 81 (23) 75 (26) 6 (9)

Outcome measures

mRS day 90 (median, IQR) 2 (1–4) 2 (1–4) 2 (1–5)

mRS 0–1 day 90, n (%) 161 (46) 135 (47) 26 (40)

Death, n (%) 42 (12) 32 (11) 10 (15)

Abbreviations: mRS = modified Rankin Scale; IQR = interquartile range; NIHSS = National Institutes of Health Stroke Scale; TACS = total anterior circulation syndrome;
PACS = partial anterior circulation syndrome; LACS = lacunar syndrome; POCS = posterior circulation syndrome; D.m. = Diabetes mellitus;
*Stroke etiology according to the TOAST classification [39].
doi:10.1371/journal.pone.0021338.t001
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was analyzed. A strong trend towards higher MBL levels in

patients with an unfavorable recovery within 90 days after

admission (defined as a BI score of . = 95%) could be observed

as compared to individuals with a favorable outcome (median

MBL levels 1754 vs. 1270 ng/ml, p = 0?06), which was significant

in the multivariate analysis (OR 1.26, 95% CI 1.04–1.54, for every

1000 ng/ml increase, p = 0.02).

The conservative treatment group consisted of 28/287 (9.8%)

patients with MBL levels below 100 ng/ml, a cut-off generally

accepted for the definition of functional MBL deficiency. Baseline

characteristics were similar in MBL deficient patients as compared

to patients with MBL levels $100 ng/ml with the exception of a

history of hypertension (15/28 vs. 205/259, p = 0.004). In this

MBL deficient group there were 19 patients (68%) with a

favorable recovery (i.e., a mRS score of 0 or 1) three months

after admission, five (18%) with an unfavorable outcome (mRS

score of 2–5) and four (14%) individuals who died (mRS score of

6), as compared to 116 (45%), 115 (44%) and 28 (11%)

corresponding patients with MBL levels above 100 ng/ml

(p = 0.025, Figure 2A). In a multivariate analysis (including history

of hypertension as a cofactor) MBL deficient patients were subject

to an almost 3-fold decreased risk to suffer from significant

disabilities or to die within three months after ischemic stroke (OR

0.38, 95% CI 0.14–0.98, p = 0.046). Besides absence of MBL

deficiency, only older age (OR 1.05, 95% CI 1.02–1.07, for every

year increase, p,0.0001) and more comorbidities (OR 1.22, 95%

CI 1.02–1.46, for every unit increase in the Charlson Comorbidity

index, p = 0.03) were independent predictors of an unfavorable

outcome after three months. Analysis of the secondary outcome

measure, the Barthel Index further underscored the beneficial

effect of MBL deficiency in ischemic stroke (p = 0.028, Figure 2B).

For the association with mortality alone Kaplan-Meier survival

curves were calculated stratified by MBL tertiles. The risk for

death within three months after admission was lowest in patients in

the first tertile (MBL,542 ng/ml; survival rate 9262.8%),

intermediate in the second (MBL 542–2288 ng/ml; survival rate

8963.1%) and highest in the third tertile (MBL.2288 ng/ml,

survival rate 8663.5%). However, these differences did not reach

statistical significance (p = 0.26 for the comparison of the first vs.

third tertile; data not shown).

Association with severity and size of stroke. Patients with

a mild stroke at presentation (defined as a NIHSS score of #7

[25,26]) showed significantly lower MBL levels than individuals

with intermediate or high (8–14 and .14, respectively) NIHSS

scores (median MBL level 1176 (IQR 386–2640) vs. 1893 (IQR

555–3536) ng/ml, p = 0.025, Figure 3). Analysis of a subgroup of

patients (n = 157 in whom MRI as part of the initial work-up was

available revealed a striking association between lesion size and

MBL serum levels. Median MBL levels were lowest in patients

with a small (,10 ml) lesion (685 (IQR 255–2577) ng/ml) as

compared to patients with medium (10–100 ml) and large

(.100 ml) infarction volumes (1653 (IQR 497–2877) ng/ml and

3826 (IQR 1356–4433) ng/ml, respectively. p = 0.0027, Figure 4).

Furthermore, MBL deficient patients (,100 ng/ml) showed

significantly smaller infarctions as compared to MBL sufficient

patients (mean size 0.6 (SD 0.8) vs. 18.4 (SD 43.6) ml, p = 0.0025).

Notably, none of the MBL deficient patients experienced a

medium or large cerebral lesion (volume of .10 ml) as compared

to 39 of 140 (28%) patients with MBL levels above 100 ng/ml

(p = 0.0073).

After adjustment for covariables being present prior to the

ischemic event only MBL levels remained independently associ-

ated with lesion size on MRI: The average infarction volume

increased by 7.3 ml for every 1000 ng/ml increase in MBL serum

levels (standard error 2.32, 95% CI 2.9–12.2, p = 0.002).

Thrombolysis treatment group
In contrast to the conservatively treated group MBL levels did

not influence any of the above mentioned outcome measures in

patients receiving thrombolytic agents after admission. Notably,

median MBL levels were similar in patients with a less severe

(NIHSS score ,7) vs. a severe stroke (NIHSS score .7) at

presentation (1508 vs. 1488 ng/ml, p = 0.96), in patients with

small vs. medium/large stroke lesions on MRI (1315 vs. 1482 ng/

ml, p = 0.66), in patients with a complete recovery vs. an

unfavorable outcome (1325 vs. 1680, p = 0.24) and in patients

surviving vs. dying during a 90-day follow-up (1620 vs. 1341 ng/

ml, p = 0.5). This holds also true for the cut-off of ,100 ng/ml,

representing MBL deficient patients.

Pooled analysis
If all study participants (thrombolysis and conservative treat-

ment group) were analyzed together, MBL levels were still

independently associated with an unfavorable outcome three

Figure 1. Association of functional outcome with serum MBL
levels. Conservative treatment group: differences in MBL serum
concentrations according to the functional outcome as assessed by
the modified Rankin Scale 90 days after presentation. Horizontal lines
represent medians.
doi:10.1371/journal.pone.0021338.g001

Table 2. Multivariate Analysis: predictors of an unfavorable
outcome (defined as a score of 2–6 on the modified Rankin
Scale) three months after ischemic stroke.

Multivariate Analysis

Predictor OR 95% CI P-value

MBL levels (increase per 1000 ng/ml) 1.23 1.02–1.48 0.036

Age (increase per year) 1.05 1.03–1.07 ,0.0001

History of prior stroke 1.76 0.96–3.21 0.066

Charlson Comorbidity index (increase per unit) 1.19 0.99–1.42 0.066

Abbreviations: OR = odds ratio; CI = confidence interval.
doi:10.1371/journal.pone.0021338.t002

Mannose-Binding Lectin and Ischemic Stroke
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Figure 2. Association of MBL deficiency with functional recovery. Conservative treatment group: association of functional MBL deficiency
(MBL,100 ng/ml) with functional recovery three months after ischemic stroke as assessed by (A) the modified Rankin Scale and (B) the Barthel Index.
doi:10.1371/journal.pone.0021338.g002

Mannose-Binding Lectin and Ischemic Stroke
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months after ischemic stroke (OR 1.23, 95% CI 1.03–1.46, for

every 1000 ng/ml increase, p = 0.019) in addition to only age (OR

1.03, 95% CI 1.02–1.05, for every year increase, p,0.0001).

Furthermore, the association of low MBL levels with smaller

infarction size persisted in the pooled analysis (data not shown).

Discussion

Several lines of evidence have emphasized the pivotal role of the

complement system in general and the MBL pathway in particular

in the pathogenesis of I/R injury, including ischemic stroke

[15,16,17,18,19]. In the present study, we demonstrate that

functional MBL deficiency is associated with smaller cerebral

lesion volumes and favorable outcomes in patients with conser-

vative treatment after acute ischemic stroke but not in patients

receiving i.v. thrombolysis.

These results are in line with data from Cervera et al. who

demonstrated a significant association of genetically defined MBL

deficiency with favorable outcome albeit in a smaller mixed

hemorrhagic and ischemic stroke cohort [15]. By analyzing

infarction size on MRI and comparing outcome measures in a

conservative vs. thrombolytic treatment cohort we highlight in

more detail the potential pathogenetic relevance of the MBL

pathway after human ischemic stroke. In the conservative

treatment group MBL deficiency seems to considerably restrict

propagation of damage after ischemic stroke. Patients with MBL

levels ,100 ng/ml were almost three times more likely to recover

without significant disabilities within three months after admission

when compared to MBL sufficient patients. This protective effect

was even more pronounced when analyzing the association of

MBL levels with infarction volumes on MRI in a subgroup of

patients. Compared to patients with a small cerebral lesion median

MBL serum concentration was more than two-fold and five-fold

higher in patients with medium and large infarction volumes,

respectively. In particular, functionally MBL deficient patients

invariably experienced small cerebral lesions. This is well in line

with experimental data using either MBL-deficient mice or an

inhibitor of the MBL pathway [15,16].

Notably, the magnitude of association was more evident in the

analysis of early infarction volumes than of functional outcome.

Hence, the role of MBL seems to be most prominent in the early

phase of ischemic stroke, whereas functional recovery might not

only be influenced by lesion size and stroke severity (as assessed by

the NIHSS) but several other factors such as age, localization of

infarct, secondary complications, and early initiation of rehabil-

itation services [28]. Alternatively, data from Rahpeyma Y et al.

suggest that complement activation in the brain may not only

exacerbate tissue damage in the acute setting (lesion size) but on

the other hand also promote neurogenesis and regeneration after

ischemia in the long-term (functional outcome) [27].

A significant influence of MBL deficiency on mortality after

ischemic stroke was not evident in our study. Considering that

there were only 32 events in the conservatively treated group

(11%), the study was not powered to analyze smaller differences

between MBL sufficient and deficient patients. Furthermore,

mortality after stroke might be more affected by preexisting

comorbidities and infections than MBL status.

Interestingly, we did not observe a similar protective effect of

MBL deficiency in patients receiving i.v. thrombolysis, which in

theory should more closely mimic experimental I/R injury than

conservative treatment. Several reasons might account for this

important difference. First, our thrombolysis group was rather

small and only powered to detect substantial differences in

outcome, yet results were consistent over all endpoints analyzed.

Second, animal as well as human data assessing the effect of MBL

deficiency on ischemic stroke outcome after systemic thrombolysis

are lacking. Therefore, we a priori chose to separately analyze

Figure 3. Association of stroke severity with serum MBL levels.
Conservative treatment group: differences in MBL serum concentrations
according to stroke severity as assessed by the NIHSS at presentation.
Horizontal lines represent medians.
doi:10.1371/journal.pone.0021338.g003

Figure 4. Association of lesion size with serum MBL levels.
Conservative treatment group: differences in MBL serum concentrations
according to infarction volume on MRI scan (subgroup analysis).
Horizontal lines represent medians. Horizontal dashed line corresponds
to the cut-off of ,100 ng/ml representing MBL deficient patients.
Abbreviation: DWI = Diffusion-weighted imaging.
doi:10.1371/journal.pone.0021338.g004
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patients receiving systemic thrombolysis vs. conservative treat-

ment. In theory, massive systemic complement activation

occurring after thrombolysis might have masked or offset any

favorable effect of MBL deficiency that is usually evident after

experimental cerebral I/R injury [20]. On the other hand, the

benefit of a successful thrombolysis might have significantly

outweighed any effect of the MBL pathway, e.g. by attenuating

inflammatory reaction after ischemic stroke which is only partly

mediated by the MBL pathway. Audebert et al. found that

successful thrombolysis was associated with subsequently lower C-

reactive protein (CRP) and white blood count levels [29].

Moreover, CRP levels were not predictive of functional outcome

in a study of patients receiving thrombolysis [30] in contrast to

several studies involving exclusively or mainly conservatively

treated patients [31,32,33,34], thereby further underscoring the

influence of thrombolysis on inflammation after stroke. In

conclusion, additional prospective trials are warranted to further

investigate the effect of the MBL pathway in patients undergoing

thrombolysis.

Recently, recombinant human C1-Inhibitor has been shown to

function as a powerful inhibitor of MBL and its detrimental

cerebral effects in a mouse model of cerebral I/R injury [16]. By

demonstrating smaller lesion volume and improved functional

outcome in MBL deficient patients the present study draws further

attention to MBL as a promising target for reducing cerebral I/R

injury and supports the investigation of functional MBL inhibition

in human ischemic stroke, especially in patients who do not qualify

for thrombolytic treatment.

Despite the precisely characterized cohort the present prospec-

tive observation study has limitations including the post hoc

analysis of MBL serum levels. Furthermore, MRI testing was not

available for all patients in both groups, which may have biased

results. Yet, analysis of functional outcome in patients with MRI

data revealed similar effect of MBL deficiency as compared to the

whole cohort (data not shown). Regarding the thrombolysis group

the small sample size limits the significance of the observed data.

At first sight the fact that MBL2 genotypes were not determined

could appear as a limitation. However, MBL serum levels show

little variation throughout life. In particular, MBL levels have

never been shown to strongly fluctuate during acute diseases, and

MBL levels in our patients were not influenced by the interval

from symptom onset to presentation and blood sampling in our

emergency department. Therefore, measurement of MBL serum

levels by ELISA allows reliable quantification of the functional

activity of the MBL pathway in vivo in this setting [35]. When

evaluating associations with diseases measurement of MBL serum

levels might in fact represent a more sensitive approach than

determination of genotypes as individuals with the same genotype

may vary up to tenfold in MBL serum levels [5,36,37]. Moreover,

MBL2 genotyping cannot account for the significant changes of

MBL serum levels induced by thyroid dysfunction [38].

In conclusion, functional MBL deficiency was associated with

smaller infarction volume and favorable functional outcome in

patients receiving conservative treatment after acute ischemic

stroke. These findings support the concept of a significant

contribution of the MBL pathway to cerebral tissue injury in

human ischemic stroke. Thus, transient and early blockade of

MBL or inhibition of the lectin complement pathway may

represent a therapeutically promising strategy for reducing I/R

associated cerebral damage.
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