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Abstract 

The 1000 Genomes Project aims to provide a deep characterisation of human 

genome sequence variation as a foundation for investigating the relationship 

between genotype and phenotype.  We present results of the pilot phase of the 

project, designed to develop and compare different strategies for genome wide 

sequencing with high throughput sequencing platforms.  We undertook three 

projects: low coverage whole genome sequencing of 179 individuals from four 

populations, high coverage sequencing of two mother-father-child trios, and exon 

targeted sequencing of 697 individuals from seven populations.  We describe the 

location, allele frequency and local haplotype structure of approximately 15 million 

SNPs, 1 million short insertions and deletions and 20,000 structural variants, the 

majority of which were previously undescribed.  We show that over 95% of the 

currently accessible variants found in any individual are present in this dataset; on 

average, each person carries approximately 250 to 300 loss of function variants in 

annotated genes and 50 to 100 variants previously implicated in inherited disorders.  

We demonstrate how these results can be used to inform association and functional 

studies.  From the two trios we directly estimate the rate of de novo germline base 

substitution mutations to be approximately 10-8 per base pair per generation.  We 

find many putative functional variants with large allele frequency differences between 

populations.  We explore the data with regard to signatures of natural selection, and 

identify a marked reduction of genetic variation in the neighbourhood of genes, due 

to selection at linked sites.  These methods and public data will support the next 

phase of human genetic research.  
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Introduction 

Understanding the relationship between genotype and phenotype is one of the 

central goals in biology and medicine.  The reference human genome sequence1 

provides a foundation for the study of human genetics, but systematic investigation 

of  human variation requires full knowledge of DNA sequence variation across the 

entire spectrum of allele frequencies and types of DNA differences.  Substantial 

progress has already been made.  By 2008 the public catalogue of variant sites 

(dbSNP 129) contained approximately 11 million single nucleotide polymorphisms 

(SNPs) and 3 million short insertions and deletions (indels)2-4.  Databases of 

structural variants (SVs) (e.g., dbVAR) indexed the locations of large genomic 

variants.  The International HapMap Project catalogued both allele frequencies and 

the correlation patterns between nearby variants, a phenomenon known as linkage 

disequilibrium (LD), across several populations for 3.5 million SNPs3, 4.  

These resources have driven disease gene discovery in the first generation of 

genome wide association studies (GWAS), wherein genotypes at several hundred 

thousand variant sites, combined with the knowledge of LD structure, allow the vast 

majority of common variants (here, those with > 5% minor allele frequency, or MAF) 

to be tested for association4 with disease.  Over the last five years association 

studies have identified more than a thousand genomic regions associated with 

disease susceptibility and other common traits5.   Genome wide collections of both 

common and rare SVs have similarly been tested for association with disease6.   

Despite these successes, much work is still needed to achieve a deep understanding 

of the genetic contribution to human phenotypes7.  Once a region has been identified 

as harbouring a risk locus, detailed study of all genetic variants in the locus is 

required to discover the causal variant(s), to quantify their contribution to disease 

susceptibility, and to elucidate their roles in functional pathways. Low frequency and 

rare variants (here defined as 0.5% to 5% MAF, and below 0.5% MAF respectively) 

vastly outnumber common variants and also contribute significantly to the genetic 

architecture of disease but it has not yet been possible to study them systematically7-

9.  Meanwhile, advances in DNA sequencing technology have enabled the 
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sequencing of individual genomes10-13, illuminating the gaps in the first generation of 

databases that contain mostly common variant sites.  A much more complete 

catalogue of human DNA variation is a prerequisite to fully understanding the role of 

common and low frequency variants in human phenotypic variation. 

The aim of the 1000 Genomes Project is to discover, genotype and provide accurate 

haplotype information on all forms of human DNA polymorphism in multiple human 

populations.  Specifically, the goal is to characterise over 95% of variants that are in 

genomic regions accessible to current high throughput sequencing technologies and 

that have allele frequency of 1% or higher (the classical definition of polymorphism) 

in each of five major population groups (populations in or with ancestry from Europe, 

East Asia, South Asia, West Africa and the Americas).  Because functional alleles 

are often found in coding regions and have reduced allele frequencies, lower 

frequency alleles (down to 0.1%) will also be catalogued in such regions. 

Here we report the results of the pilot phase of the project, the aim of which was to 

develop and compare different strategies for genome wide sequencing with high 

throughput platforms. To this end we undertook three projects:  low coverage 

sequencing of 179 individuals, deep sequencing of six individuals in two trios, and 

exon sequencing of 906 genes in 697 individuals (Box 1).  The results give us a 

much deeper, more uniform picture of human genetic variation than was previously 

available, enabling new insights into the landscapes of functional variation, genetic 

association and natural selection in humans.
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Box 1.  The 1000 Genomes pilot projects 

To develop and assess multiple strategies to detect and genotype variants of various 

types and frequencies using high throughput sequencing we carried out three 

projects, using samples from the extended HapMap collection14 

• Trio project:  whole genome shotgun sequencing at high coverage (average 

42x) of two families (one Yoruba from Ibadan, Nigeria: YRI, one of European 

ancestry in Utah: CEU), each including two parents and one daughter. Each 

of the offspring was sequenced using three platforms and by multiple centres.  

• Low coverage project:  whole genome shotgun sequencing at low coverage 

(2-6x) of 59 unrelated individuals from YRI, 60 unrelated individuals from 

CEU, 30 unrelated Han Chinese individuals in Beijing (CHB) and 30 unrelated 

Japanese individuals in Tokyo (JPT).   

• Exon project:  targeted capture of 8,140 exons from 906 randomly selected 

genes (total of 1.4 Mb) followed by sequencing at high coverage (average > 

50x) in 697 individuals from 7 populations of African (YRI, Luhya in Webuye, 

Kenya: LWK), European (CEU, Toscani in Italia: TSI) and East Asian (CHB, 

JPT, Chinese in Denver, Colorado: CHD) ancestry.  

The three experimental designs differ substantially both in their ability to obtain data 

for variants of different types and frequencies and in the analytical methods we used 

to infer individual genotypes.  The Figure shows a schematic representation of the 

projects and the type of information obtained from each.  Colours in the left region 

indicate different haplotypes in individual genomes, and line width indicates depth of 

coverage (not to scale).  The shaded region to the right gives an example of 

genotype data that could be generated for the same sample under the three 

strategies (dots indicate missing data, dashes indicate phase information, i.e., 

whether heterozygous variants can be assigned to the correct haplotype).  Within a 

short region of the genome, each individual carries two haplotypes, typically shared 

by others in the population.  In the trio design, high sequence coverage and the use 

of multiple platforms enable accurate discovery of multiple variant types across most 

of the genome, with Mendelian transmission aiding genotype estimation, inference of 
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haplotypes and quality control.  The low coverage project, in contrast, efficiently 

identifies shared variants on common haplotypes15, 16 (red or blue), but has lower 

power to detect rare haplotypes (light green) and associated variants (indicated by 

the missing alleles), and will give some inaccurate genotypes (indicated by the red 

allele incorrectly assigned G).  The exon design enables accurate discovery of 

common, rare and low frequency variation in the targeted portion of the genome, but 

lacks the ability to observe variants outside the targeted regions or assign haplotype 

phase. 
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Results 

 

Overview of data generation, alignment and variant discovery 

A total of 4.9 Tb of DNA sequence was generated in nine sequencing centres using 

three sequencing technologies, from DNA obtained from immortalised 

lymphoblastoid cell lines (Table 1 and Supplementary Table 1).  All sequenced 

individuals provided informed consent and explicitly agreed to public dissemination 

of the variation data, as part of the HapMap Project (see Supplementary Information 

for details of informed consent and data release). The heterogeneity of the sequence 

data (read lengths from 25 to several hundred base pairs; single and paired end) 

reflects the diversity and rapid evolution of the underlying technologies during the 

project.  All primary sequence data were confirmed to have come from the correct 

individual by comparison to HapMap SNP genotype data. 

Analysis to detect and genotype sequence variants differed among variant types and 

the three projects, but all workflows shared four features: 

• Discovery:  alignment of sequence reads to the reference genome and 

identification of candidate sites or regions at which one or more samples differ 

from the reference sequence. 

• Filtering:  use of quality control measures to remove candidate sites that 

likely were false positives. 

• Genotyping:  estimation of the alleles present in each individual at variant 

sites or regions.   

• Validation:  assaying a subset of newly discovered variants using an 

independent technology, enabling the estimation of the false discovery rate.  

Independent data sources were used to estimate the accuracy of inferred 

genotypes.   
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All primary sequence reads, mapped reads, variant calls, inferred genotypes, 

estimated haplotypes and new independent validation data are publically available 

through the project website (www.1000genomes.org); filtered sets of variants, allele 

frequencies and genotypes were also deposited in dbSNP 

(www.ncbi.nlm.nih.gov/snp). 

 

Alignment and the “accessible genome” 

Sequencing reads were aligned to the NCBI36 reference genome (details in 

Supplementary Information) and made available in the BAM file format17, an early 

innovation of the project for storing and sharing high throughput sequencing data.  

Accurate identification of genetic variation depends on alignment of the sequence 

data to the correct genomic location.  We restricted most variant calling to the 

“accessible genome”, defined as that portion of the reference sequence that remains 

after excluding regions with many ambiguously placed reads or unexpectedly high or 

low numbers of aligned reads (Supplementary Information).  This approach balances 

the need to reduce incorrect alignments and false positive detection of variants 

against maximizing the proportion of the genome that can be interrogated  

For the low coverage analysis, the accessible genome contains approximately 85% 

of the reference sequence and 93% of the coding sequences.  Over 99% of sites 

genotyped in the second generation haplotype map (HapMap II)4 are included.  Of 

inaccessible sites, over 97% are annotated as high copy repeats or segmental 

duplications.  However, only one quarter of previously discovered repeats and 

segmental duplications were inaccessible (Supplementary Table 2). Much of the 

data for the trio project was collected prior to technical improvements in our ability to 

map sequence reads robustly to some of the repeated regions of the genome 

(primarily longer, paired reads).  For these reasons, stringent alignment was more 

difficult and a smaller portion of the genome was “accessible” in the trio project: 80% 

of the reference, 85% of coding sequence and 97% of HapMap II sites (Table 1).  

 

http://www.1000genomes.org/
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Calibration, local realignment and assembly 

The quality of variant calls is influenced by many factors including the quantification 

of base calling error rates in sequence reads, the accuracy of local read alignment 

and the method by which individual genotypes are defined.  The project introduced 

key innovations in each of these areas (see Supplementary Information).  First, base 

quality scores reported by the image processing software were empirically 

recalibrated by tallying the proportion that mismatched the reference sequence (at 

non-dbSNP sites) as a function of the reported quality score, position in read and 

other characteristics.  Second, at potential variant sites local realignment of all reads 

was performed jointly across all samples, allowing for alternative alleles that 

contained indels.  This realignment step substantially reduced errors, because local 

misalignment, particularly around indels, can be a major source of error in variant 

calling.  Finally, by initially analysing the data with multiple genotype and variant 

calling algorithms and then generating a consensus of these results, the project 

reduced genotyping error rates by 40-50% compared to those currently achievable 

using any one of the methods alone (Supplementary Figure 1). 

We also used local realignment to generate candidate alternative haplotypes in the 

process of calling short (1-50 bp) indels18, as well as local de novo assembly to 

resolve breakpoints for deletions greater than 50 bp.  The latter resulted in a 

doubling of the number of large (> 1 kb) SVs delineated with base pair resolution19.  

Full genome de novo assembly was also performed (Supplementary Information), 

resulting in the identification of 3.7 Mb of novel sequence not matching the reference 

at a high threshold for assembly quality and novelty. All novel sequence matched 

other human and great ape sequences in the public databases.    

 

Rates of variant discovery 
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In the trio project, with an average mapped sequence coverage of 42x per individual 

across six individuals and 2.3 Gb of accessible genome, we identified 5.9 million 

SNPs, 650,000 short indels (of 1-50 bp in length), and over 14,000 larger SVs. In the 

low coverage project, with average mapped coverage of 3.6x per individual across 

179 individuals (Supplementary Fig. 2) and 2.4 Gb of accessible genome, we 

identified 14.4 million SNPs, 1.3 million short indels, and over 20,000 larger SVs.  In 

the exon project, with an average mapped sequence coverage of 56x per individual 

across 697 individuals and a 1.4 Mb target, we identified 12,758 SNPs and 96 indels.   

Experimental validation was used to estimate and control the false discovery rates 

(FDR) for novel variants (Supplementary Table 3). The FDR for each complete call 

set was controlled to be less than 5% for SNPs and short indels, and less than 10% 

for structural variants.  Because in an initial test almost all the sites we called that 

were already in dbSNP validated (285/286), in most subsequent validation 

experiments we only tested novel variants and extrapolated to obtain the overall 

FDR.  The FDR for novel variants was 2.6% for trio SNPs, 10.9% for low coverage 

SNPs, and 1.7% for low coverage indels (Supplementary Material and 

Supplementary Tables 3, 4a and 4b).  This process will underestimate the true FDR 

if more SNPs listed in dbSNP are false positives for some call sets  

Variation detected by the project is not evenly distributed across the genome:  

certain regions, such as the HLA and subtelomeric regions, show high rates of 

variation, while others, for example a 5 Mb gene dense and highly conserved region 

around 3p21, show very low levels of variation (Supplementary Fig. 3a).  At the 

chromosomal scale we see strong correlation between different forms of variation, 

particularly between SNPs and indels (Supplementary Fig. 3b).  However, we also 

find heterogeneity particular to types of SV, for example SVs resulting from nonallelic 

homologous recombination are apparently enriched in the HLA and in subtelomeric 

regions (Supplementary Fig. 3b, top). 

 

Variant Novelty 
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As expected, the vast majority of sites variant in any given individual were already 

present in dbSNP; the proportion newly discovered differed substantially among 

populations, variant types and allele frequencies (Fig. 1).  Novel SNPs had a strong 

tendency to be found only in one analysis panel (Fig. 1a).  For SNPs also present in 

dbSNP version 129 (the last release prior to 1000 Genomes Project data), only 25% 

were specific to a single low coverage analysis panel and 56% were found in all 

panels.  On the other hand, 84% of newly discovered SNPs were specific to a single 

analysis panel whereas only 4% were found in all analysis panels. In the exon 

project, where increased depth of coverage and sample size resulted in a higher 

fraction of low frequency variants among discovered sites, 96% of novel variants 

were restricted to samples from a single analysis panel.  In contrast, many novel SVs 

were identified in all analysis panels, reflecting the lower degree of previous 

characterisation (Supplementary Figure 4). 

Populations with African ancestry contributed the largest number of variants and 

contained the highest fraction of novel variants, reflecting the greater diversity in 

African populations.  For example, 63% of novel SNPs in the low coverage project 

and 76% in the exon project were discovered in the African populations, compared to 

20% and 33% in the European ancestry populations for the exon and low coverage 

projects respectively.  

The larger sample sizes in the exon and low coverage projects allowed us to detect 

a large number of low frequency variants (MAF < 5%, Fig. 1b).  Compared to the 

distribution expected from population genetic theory (the neutral coalescent with 

constant population size) we saw an excess of lower frequency variants in the exon 

project, reflecting purifying selection against weakly deleterious mutations and recent 

population growth.  There are signs of a similar excess in the low coverage project 

SNPs, truncated below 5% variant allele frequency by reduction in power of our call 

set to discover variants in this range, as discussed further below.  

As expected, nearly all of the high frequency SNPs discovered here were already 

present in dbSNP; this was particularly true in coding regions (Fig. 1c).  The public 

databases were much less complete for SNPs at low frequencies, for short indels 
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and for structural variants (Fig. 1d).  For example, in contrast to coding SNPs (91% 

of common coding SNPs described here were already present in dbSNP), 

approximately 50% of common short indels observed in this project were novel. 

These results are expected given the sample sizes used in the sequencing efforts 

that discovered most of the SNPs previously in dbSNP, and the more limited, and 

lower resolution, efforts to characterize indels and larger structural variation across 

the genome.   

The number of structural variants we observed declined rapidly with increasing 

variant length (Fig. 1d), with notable peaks corresponding to Alus and LINEs.  The 

proportion of larger structural variants that was novel depended markedly on allele 

size, with variants 10 bp to 5 kb in size most likely to be novel (Fig. 1d). This is 

expected, as large (> 5 kb) deletions and duplications were previously discovered 

using array based approaches14, 20, whereas smaller structural variants (apart from 

polymorphic Alu insertions) had been less well ascertained prior to this study. 

 

Mitochondrial and Y chromosome sequences 

Deep coverage of the mitochondrial genome allowed us to manually curate 

sequences for 163 samples (Supplementary Information).  While variants that were 

fixed within an individual were consistent with the known phylogeny of the 

mitochondrial genome (Supplementary Fig. 5), we found a considerable amount of 

variation within individuals (heteroplasmy).  For example, length heteroplasmy was 

detected in 79% of individuals compared with 52% using capillary sequencing21, 

largely in the control region (Supplementary Fig. 6a). Base substitution heteroplasmy 

was observed in 45% of samples, seven times higher than reported in the control 

region alone21, and was spread throughout the molecule (Supplementary Fig. 6b).  

The extent to which this heteroplasmy arose in cell culture remains unknown, but 

appears low (Supplementary Information).   

The Y chromosome was sequenced at an average depth of 1.8x in the 77 males in 

the low coverage project, and 15.2x depth in the two trio fathers. Using customized 
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analysis methods (Supplementary Information), we identified 2,870 variable sites, 

74% novel, with 55/56 passing independent validation.  The Y chromosome 

phylogeny derived from the new variants identified novel, well supported clades 

within some of the 12 major haplogroups represented among the samples (e.g., O2b 

in China and Japan; Supplementary Fig. 7).  A striking pattern indicative of a recent 

rapid expansion specific to haplogroup R1b was observed, consistent with the 

postulated Neolithic origin of this haplogroup in Europe22. 

 

Power to detect variants 

The ability of sequencing to detect a site that is segregating in the population is 

dominated by two factors: whether the nonreference allele is present among the 

individuals chosen for sequencing, and the number of high quality and well mapped 

reads that overlap the variant site in individuals who carry it.  Simple models show 

that for a given total amount of sequencing, the number of variants discovered is 

maximised by sequencing many samples at low coverage23, 24.  This is because high 

coverage of a few genomes, while providing the highest sensitivity and accuracy in 

genotyping a single individual, involves considerable redundancy and misses 

variation not represented by those samples.  The low coverage project provides us 

with an empirical view of the power of low coverage sequencing to detect variants of 

different types and frequencies.   

Fig. 2a shows the rate of discovery of variants in the CEU samples of the low 

coverage project as assessed by comparison to external data sources: HapMap and 

the exon project for SNPs and array CGH data20 for large deletions.  We estimate 

that while the low coverage project had only ~25% power to detect singleton SNPs, 

power to detect SNPs present five times in the 120 sampled chromosomes was 

~90% (depending on the comparator), and power was essentially complete for those 

present 10 or more times.  Similar results were seen in the YRI and CHB+JPT 

analysis panels at high allele counts, but slightly worse performance for variants 

present five times (~85% and 75% respectively at HapMap II sites; Supplementary 
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Fig. 8). These results suggest that SNP discovery is less affected by the extent of LD 

(which is lowest in the YRI) than sequencing coverage (which was lowest in the CHB 

and JPT).   

For deletions larger than 500 bp, power was approximately 40% for singletons and 

reached 90% for variants present ten times or more in the sample set.  Our use of 

different algorithms for SV discovery ensured that all major mechanistic subclasses 

of deletions were found in our analyses (Supplementary Fig. 9). The lack of 

appropriate comparator datasets for short indels and larger structural variants other 

than deletions prevented a detailed assessment of the power to detect these types of 

variants.  However, power to detect short indels was approximately 70% for variants 

present at least 5 times in the sample, based on the rediscovery of indels in samples 

overlapping with the SeattleSNPs project25.  Extrapolating from comparisons to Alu 

insertions discovered in the Venter genome26 suggested an average sensitivity for 

common mobile element insertions of about 75%.  Analysis of a set of duplications20 

suggested only 30-40% of common duplications were discovered here, mostly as 

deletions with respect to the reference.  Methods capable of discovering inversions 

and novel sequence insertions in low coverage data with comparable specificity 

remain to be developed.   

In summary, low coverage shotgun sequencing provided modest power for 

singletons in each sample (~25-40%), and very good power for variants seen 5 or 

more times in the samples sequenced.  We estimate that there was approximately 

95% power to find SNPs with 5% allele frequency in the sequenced samples, and 

nearly 90% power to find SNPs with 5% allele frequency in populations related by 

1% divergence (Fig. 2b).  Thus we believe the projects found almost all accessible 

common variation in the sequenced populations and the vast majority of common 

variants in closely related populations.   
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Genotype accuracy 

Genotypes, and, where possible, haplotypes, were inferred for most variants in each 

project (see Supplementary Information, and Table 1).  For the low coverage data, 

statistically phased SNP genotypes were derived by using LD structure in addition to 

sequence information at each site, in part guided by the HapMap 3 phased 

haplotypes.  SNP genotype accuracy varied considerably by pilot, coverage and 

allele frequency. In the low coverage project, the overall genotype error rate (based 

on a consensus of multiple methods) was 1-3% (Fig. 2c, Supplementary Fig. 10).  

The use of HapMap 3 greatly assisted phasing the CEU and YRI samples, for which 

the HapMap 3 genotypes were phased by transmission, but had a more modest 

effect on genotype accuracy away from HapMap 3 sites (for further details see 

Supplementary Material). 

The accuracy at heterozygous sites, a more sensitive measure than overall 

accuracy, was approximately 90% for the lowest frequency variants, increased to 

over 95% for intermediate frequencies and dropped to 70-80% for the highest 

frequency variants (i.e., those where the reference allele is the rare allele).  We note 

that these numbers are derived from sites that can be genotyped using array 

technology, and performance may be lower in harder to access regions of the 

genome.  We find only minor differences in genotype accuracy between populations, 

reflecting differences in coverage as well as haplotype diversity and extent of LD.   

The accuracy of genotypes for large deletions was assessed against previous array 

based analyses20 (Supplementary Fig. 11).  The genotype error rate across all allele 

frequencies and genotypes was < 1%, with the accuracy of heterozygous genotypes 

at low (MAF < 3%), intermediate (MAF ~50%) and high frequency (MAF > 97%) 

variants estimated at 86%, 97% and 83% respectively.  The greater apparent 

genotype accuracy of structural variants compared to SNPs in the low coverage 

project reflects the increased number of informative reads per individual for variants 

of large size and a bias in the known large deletion genotype set for larger, easier to 

genotype variants. 
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For calling genotypes in the low coverage samples, the utility of using LD information 

in addition to sequence data at each site was demonstrated by comparison to 

genotypes of the exon project, which were derived independently for each site using 

high coverage data.  Fig. 2d shows the SNP genotype error rate as a function of 

depth at the genotyped sites in CEU.  A similar number of variants was called, and at 

comparable accuracy, using minimum 4x depth in the low coverage project as was 

obtained with minimum 15x depth in the exon project.  To genotype a high fraction of 

sites both projects needed to make calls at sites with low coverage, and the LD-

based calling strategy for the low coverage project used imputation to make calls at 

nearly 15% more sites with only a modest increase in error rate.  

The accuracy and completeness of the individual genome sequences in the low 

coverage project could be estimated from the trio mothers, each of whom was 

sequenced to high coverage, and for whom data subsampled to 4x were included in 

the low coverage analysis.  Comparison of the SNP genotypes in the two projects 

showed that where the CEU mother had at least one variant allele according to the 

trio analysis, in 96.9% of cases the variant was also identified in the low coverage 

project and in 93.8% of cases the genotype was accurately inferred.  For the YRI trio 

mother the equivalent figures are 95.0% and 88.4% respectively (note that false 

positives in the trio calls will lead to underestimates of the accuracy). 

 

Putative functional variants 

An individual’s genome contains many variants of functional consequence, ranging 

from the beneficial to the highly deleterious.   We estimated that an individual 

typically differs from the reference at 10,000-11,000 nonsynonymous sites 

(sequence differences that lead to differences in the protein sequence) in addition to 

10,000-12,000 synonymous sites (differences in coding exons that do not lead to 

differences in the protein sequence; Table 2).  We found a much smaller number of 

variants likely to have greater functional impact:  in frame indels (190-210), 

premature stop codons (80-100), splice site disrupting variants (40-50), and 
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deletions that shift reading frame (220-250), in each individual.  We estimated that 

each genome is heterozygous for 50-100 variants classified by the Human Gene 

Mutation Database (HGMD) as causing inherited disorders (HGMD-DM). Estimates 

from the different pilot projects were consistent with each other, taking into 

consideration differences in power to detect low frequency variants, fraction of the 

accessible genome and population differences (Table 2), as well as with previous 

observations based on personal genome sequences10, 11. Collectively, we refer to the 

340-400 premature stops, splice site disruptions and frame shifts, affecting 250-300 

genes per individual, as putative loss of function (LOF) variants.   

In total, we found over 68,300 nonsynonymous SNPs, 34,161 of which were novel 

(Table 2).  In an early analysis, 21,657 nonsynonymous SNPs were validated as 

polymorphic in 620 samples using a custom genotyping array (Table 2; 

Supplementary Information).  The mean minor allele frequency in the array data was 

2.2% for 4,573 novel variants, and 26.2% for previously discovered variants.   

Overall we rediscovered 671 (1.3%) of the 50,361 coding single nucleotide variants 

in HGMD-DM (Supplementary Table 5).  The types of disease for which variants 

were identified were biased towards certain categories (Supplementary Fig. 12), with 

diseases associated with the eye and reproduction significantly over represented 

and diseases of the nervous system significantly under represented.  These biases 

reflect multiple factors including differences in the fitness effects of the variants, the 

extent of medical genetics research and differences in the false reporting rate among 

‘disease causing’ variants.  

As expected, and consistent with purifying selection, putative functional variants had 

an allele frequency spectrum depleted at higher allele frequencies, with putative LOF 

variants showing this effect more strongly (Supplementary Fig. 13).  Of the low 

coverage nonsynonymous, stop-introducing, splice-disrupting and HGMD-DM 

variants, 67.3%, 77.3%, 82.2% and 84.7%, were private to single populations, 

compared to 61.1% for synonymous variants.  Across these same functional classes, 

15.8%, 25.9%, 21.6% and 19.9% of variants were found in only a single individual, 

compared to 11.8% of synonymous variants.  
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The tendency for deleterious functional variants to have lower allele frequencies has 

consequences for the discovery and analysis of this type of variation.  In the deeply 

sequenced CEU trio father, who was not included in the low coverage project, 97.8% 

of all single base variants had been found in the low coverage project, but only 95% 

of nonsynonymous, 88% of stop inducing and 85% of HGMD-DM variants.  The 

missed variants correspond to 389 nonsynonymous, 11 stop inducing and 13 

HGMD-DM variants.  As sample size increases, the number of novel variants per 

sequenced individual will decrease, but only slowly.  Analyses based on the exon 

project data (Fig. 3) showed that on average 99% of the synonymous variants in an 

individual would be found in 100 deeply sequenced samples, whereas 250 samples 

would be required to find 99% of nonsynonymous variants and 320 samples would 

still find only 97.4% of the LOF variants present in an individual.  Using detection 

power data from Fig. 2a, we estimated that 250 samples sequenced at low coverage 

would be needed to find 99% of the synonymous variants in an individual, and with 

320 sequenced samples 98.5% of nonsynonymous and 96.3% of LOF variants 

would be found. 

 

 

Application to association studies  

Whole genome sequencing enables all genetic variants present in a sample set to be 

tested directly for association with a given disease or trait.  To quantify the benefit of 

having more complete ascertainment of genetic variation beyond that achievable 

with genotyping arrays, we carried out expression quantitative trait loci (eQTL) 

association tests on the 142 low coverage samples for which expression data are 

available in the cell lines27.  When association analysis (Spearman rank correlation, 

FDR < 5%, eQTLs within 50 kb of probe) was performed using all sites discovered in 

the low coverage project, a larger number of significant eQTLs (increase of ~20% to 

50%) was observed as compared to association analysis restricted to sites present 

on the Illumina 1M chip (Supplementary Table 6).  The increase was lower in the 
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CHB+JPT and CEU samples, where greater LD exists between previously examined 

and newly discovered variants, and higher in the YRI samples, where there are more 

novel variants and less LD.  These results indicate that, while modern genotyping 

arrays capture most of the common variation, there remain substantial additional 

contributions to phenotypic variation from the variants not well captured by the 

arrays. 

Population sequencing of large phenotyped cohorts will allow direct association tests 

for low frequency variants, with a resolution determined by the LD structure.  An 

alternative that is less expensive, albeit less accurate, is to impute variants from a 

sequenced reference panel into previously genotyped samples28, 29.  We evaluated 

the accuracy of imputation that used the current low coverage project haplotypes as 

the reference panel.  Specifically, we compared genotypes derived by deep 

sequencing of one individual in each trio (the fathers) with genotypes derived using 

the HapMap 3 genotype data (which combined data from the Affymetrix 6.0 and 

Illumina 1M arrays) in those same two individuals and imputation based on the low 

coverage project haplotypes to fill in their missing genotypes.  At variant sites (i.e., 

where the father was not homozygous for the reference), imputation accuracy was 

highest for SNPs at which the minor allele was observed at least 6 times in our low 

coverage samples, with an error rate of ~4% in CEU and ~10% in YRI, and became 

progressively worse for rarer SNPs, with error rates of 35% for sites where the minor 

allele was observed only twice in the low coverage samples (Fig. 4a).   

Although the ability to impute rare variants accurately from the 1000 Genomes 

resource is currently limited, the completeness of the resource nevertheless 

increases power to detect association signals.  To demonstrate the utility of 

imputation in disease samples, we imputed into an eQTL study of ~400 children of 

European ancestry30 using the low coverage pilot data and HapMap II as reference 

panels.  By comparison to directly genotyped sites we estimated that the effective 

sample size at variants imputed from the pilot CEU low coverage data set is 91% of 

the true sample size for variants with allele frequencies above 10%, 76% in the allele 

frequency range 4-6%, and 54% in the range 1-2%.  Imputing over 6 million variants 

from the low coverage project data increased the number of detected cis-eQTLs by 
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~16%, compared to a 9% increase with imputing from HapMap II (FDR 5%, signal 

within 50 kb of transcript; for an example see Fig. 4b).  

In addition to this modest increase in the number of discoveries, testing almost all 

common variants allows identification of many additional candidate variants that 

might underlie each association.  For example, we find that rs11078928, a variant in 

a splice site for GSDMB, is in strong LD with SNPs near ORDML3 previously 

associated with asthma, Crohn’s Disease, Type 1 Diabetes and rheumatoid arthritis, 

thus suggesting the hypothesis that GSDMB could be the causative gene in these 

associations.  Although rs11078928 is not newly discovered, it was not included in 

HapMap or on commercial SNP arrays, and thus could not have been identified as 

associated with these diseases prior to this project.  Similarly, a recent study31 used 

project data to show that coding variants in APOL1 likely underlie a major risk for 

kidney disease in African Americans previously attributed (at a lower effect size) to 

MYH9.  These examples demonstrate the value of having much more complete 

information on LD, the almost complete set of variants in the regions, and putative 

functional variants in known association intervals. 

Testing almost all common variants also allows us to examine general properties of 

genetic association signals. The NHGRI GWAS catalogue 

(www.genome.gov/gwastudies, accessed July 15, 2010) described 1,227 unique 

SNPs associated with one or more traits (p < 5x10-8). Of these, 1,185 (96.5%) are 

present in the low coverage CEU dataset.  Under 30% of these are either annotated 

as nonsynonymous variants (77, 6.5%) or in substantial LD (r2 > 0.5) with a 

nonsynonymous variant (272, 23%). In the latter group, only 93 (8.4%) are in strong 

LD (r2 > 0.9) with a nonsynonymous variant.  Since we tested ~95% of common 

variation, these results suggest that no more than a third of complex trait association 

signals are likely to be caused by common coding variation.  Although it remains to 

be seen whether reported associations are better explained through weak LD to 

coding variants with strong effects, these results are consistent with the view that 

most contributions of common variation to complex traits are regulatory in nature. 
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Mutation, recombination and natural selection 

Project sequence data allowed us to investigate fundamental processes that shape 

human genetic variation including mutation, recombination and natural selection. 

 

Detecting de novo mutations in trio samples 

Deep sequencing of individuals within a pedigree offers the potential to detect de 

novo germline mutation events. Our approach was to allow a relatively high false 

discovery rate in an initial screen to capture a large fraction of true events and then 

use a second technology to rule out false positive mutations. 

In the CEU and YRI trios respectively, 3,236 and 2,750 candidate de novo germline 

single base mutations were selected for further study, based on their presence in the 

child but not the parents.  Of these, 1,001 (CEU) and 669 (YRI) were validated by 

resequencing the cell line DNA.  When these were tested for segregation to offspring 

(CEU) or in non-clonal DNA from whole blood (YRI), only 49 CEU and 35 YRI 

candidates were confirmed as true germline mutations. Correcting for the fraction of 

the genome accessible to this analysis provided an estimate of the per generation 

base pair mutation rate of 1.2x10-8 and 1.0x10-8 in the CEU and YRI trios 

respectively.  These values are similar to estimates obtained from indirect 

evolutionary comparisons32, direct studies based on pathogenic mutations33, and a 

recent analysis of a single family34.   

We infer that the remaining vast majority (952 CEU and 634 YRI) of the validated 

variants were somatic or cell line mutations.  The greater number of  these validated 

non-germline mutations in the CEU cell line perhaps reflects the greater age of the 

CEU cell culture. Across the two trio offspring, we observed a single, synonymous, 

coding germline mutation, and 17 coding non-germline mutations of which 16 were 

nonsynonymous, perhaps suggesting selection during cell culture. 
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Although the number of non-germline variants found per individual is a very small 

fraction of the total number of variants per individual (~0.03% for the CEU child and 

~0.02% for the YRI child), these variants will not be shared between samples. 

Assuming that the number of non-germline mutations in these two trios is 

representative of all cell line DNA we analysed, we estimate that non-germline 

mutations might constitute 0.36% and 2.4% of all variants, and 0.61% and 3.1% of 

functional variants, in the low coverage and exon pilots respectively.   In larger 

samples of thousands the overall false positive rates from cell line mutations would 

become significant, and confound interpretation, suggesting that large scale studies 

should use DNA from primary tissue such as blood where possible.  

 

Constraint around genes and the effects of selection on local variation 

Natural selection can affect levels of DNA variation across genes in multiple ways: 

strongly deleterious mutations will be rapidly eliminated by natural selection, weakly 

deleterious mutations can segregate in populations but rarely become fixed, and 

selection at nearby sites (both purifying and adaptive) can reduce genetic variation 

through background selection35 and the hitchhiking effect36.  The effect of these 

different forces on genetic variation can be disentangled by examining patterns of 

diversity and divergence within and around known functional elements.  The low 

coverage data enables, for the first time, genome wide analysis of such patterns in 

multiple populations.  Fig. 5a (top) shows the pattern of diversity relative to genic 

regions measured by aggregating estimates of heterozygosity around protein coding 

genes.  Within genes, exons harbor the least diversity (about 50% of that of introns) 

and 5’ and 3’ UTRs harbor slightly less diversity than immediate flanking regions and 

introns.  However, this variation in diversity is fully explained by the level of 

divergence (Fig. 5a lower) consistent with the common part of the allele frequency 

spectrum being dominated by effectively neutral variants, and weakly deleterious 

variants contributing only to the rare end of the frequency spectrum. 
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In contrast, diversity in the immediate vicinity of genes (scaled by divergence) is 

reduced by approximately 10% relative to sites distant from any gene (Fig 5b). 

Although a similar reduction has been seen previously in gene dense regions37, 

project data enable the scale of the effect to be determined.  We find that the 

reduction extends up to 0.1cM away from genes, typically 85 kb, suggesting that 

selection at linked sites restricts variation relative to neutral levels across the majority 

of the human genome. 

 

Positive selection and the distribution of genetic variation among 

populations 

Previous inferences about demographic history and the role of local adaptation in 

shaping human genetic variation made from genome wide genotype data4, 38, 39 have 

been limited by the partial and complex ascertainment of SNPs on genotype arrays.  

While data from the 1000 Genome Project pilots are neither fully comprehensive nor 

fully free of ascertainment bias (issues include low power for rare variants, noise in 

allele frequency estimates, some false positives, non-random data collection across 

samples, platforms and populations, and the use of imputed genotypes), they can be 

used to address key questions about the extent of differentiation among populations, 

the presence of highly differentiated variants and the ability to fine map signals of 

local adaptation. 

Although the average level of population differentiation is low (at sites genotyped in 

all populations the mean value of Wright’s Fst is 0.071 between CEU and YRI, 0.083 

between YRI and CHB+JPT and 0.052 between CHB+JPT and CEU), we find 

several hundred thousand SNPs with large allele frequency differences in each 

population comparison (Fig. 5c).  As seen in previous studies4, 39, the most highly 

differentiated sites were enriched for nonsynonymous variants, suggestive of the 

action of local adaptation.  The completeness of common variants in the low 

coverage resource enables new perspectives in the search for local adaptation.  

First, it provides a more comprehensive catalogue of fixed differences between 
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populations, of which there are very few:  two between CEU and CHB+JPT 

(including the A111T missense variant in SLC24A540 contributing to light skin 

colour), four between CEU and YRI (including the -46 GATA box null mutation 

upstream of DARC41, the Duffy O allele leading to vivax malaria resistance) and 72 

between CHB+JPT and YRI (including 24 around the exocyst complex component 

gene EXOC6B); see Supplementary Table 7 for a complete list.  Second, it provides 

new candidates for selected variants, genes and pathways.  For example, we 

identified 139 nonsynonymous (NS) variants showing large allele frequency 

differences (at least 0.8) between populations (Supplementary Table 8), including at 

least two genes involved in meiotic recombination, FANCA (9th most extreme NS 

SNP in CEU vs CHB+JPT) and TEX15 (13th most extreme NS SNP in CEU vs YRI, 

and 26th most extreme NS SNP in CHB+JPT vs YRI). Because we are finding 

almost all common variants in each population, these lists should contain the vast 

majority of the near fixed differences among these populations.  Finally, it improves 

the fine mapping of selective sweeps (Supplementary Fig. 14) and analysis of the 

dynamics of location adaptation.  For example, we find that the signal of population 

differentiation around high Fst genic SNPs drops by half within, on average, less 

than 0.05 cM (typically 30-50 kb; Fig 5d).  Furthermore, 51% of such variants are 

polymorphic in both populations.  These observations suggest that much local 

adaptation has occurred by selection acting on existing variation rather than new 

mutation. 

 

The effect of recombination on local sequence evolution 

We estimated a fine-scale genetic map from the phased low coverage genotypes.  

Recombination hotspots were narrower than previously estimated4 (mean hotspot 

width of 2.3 kb compared to 5.5 kb in HapMap II; Fig. 6a), although, unexpectedly, 

the estimated average peak recombination rate in hotspots is lower in YRI (13 

cM/Mb) than in CEU and CHB+JPT (20cM/Mb).  In addition, crossover activity is less 

concentrated in the genome in YRI, with 70% of recombination occurring in 10% of 

the sequence rather than 80% of the recombination for CEU and CHB+JPT (Fig. 6b).  
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A possible biological basis for these differences is that PRDM9, which binds a DNA 

motif strongly enriched in hotspots and influences the activity of LD-defined 

hotspots43-46 , shows length variation in its DNA binding zinc fingers within 

populations, and substantial differentiation between African and non-African 

populations, with a greater allelic diversity in Africa46.  This could mean greater 

diversity of hotspot locations within Africa and therefore a less concentrated picture 

in this data set of recombination and lower usage of LD-defined hotspots (which 

require evidence in at least two populations and therefore will not reflect hotspots 

present only in Africa). 

The low coverage data also allowed us to address a longstanding debate about 

whether recombination has any local mutagenic effect.  Direct examination of 

diversity around hotspots defined from LD data is potentially biased (because the 

detection of hotspots requires variation to be present), but we can without bias 

examine rates of SNP variation and recombination around the PRDM9 binding motif 

associated with hotspots.  Fig. 6c shows the local recombination rate and pattern of 

SNP variation around the motif compared to the same plots around a motif that is a 

single base difference away.  While the motif is associated with a sharp peak in 

recombination rate, there is no systematic effect on local rates of SNP variation.  We 

infer that, although recombination may influence the fate of new mutations, for 

example through biased gene conversion, there is no evidence that it influences the 

rate at which new variants appear. 

 

Discussion 

The 1000 Genomes Project launched in 2008 with the goal of creating a public 

reference database for DNA polymorphism that is 95% complete at allele frequency 

1%, and more complete for common variants and exonic variants, in each of multiple 

human population groups.  The three pilot projects described here were designed to 

develop and evaluate methods to use high throughput sequencing to achieve these 

goals.  The results indicate (a) that robust protocols now exist for generating both 
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whole genome shotgun and targeted sequence data, (b) that algorithms to detect 

variants from each of these designs have been validated and (c) that low coverage 

sequencing offers an efficient approach to detect variation genome wide, whereas 

targeted sequencing offers an efficient approach to detect and accurately genotype 

rare variants in regions of functional interest (such as exons).  

Data from the pilot projects are already informing medical genetic studies.  As shown 

in our analysis of prior eQTL datasets, a more complete catalogue of genetic 

variation can identify signals previously missed and dramatically increase the 

number of identified candidate functional alleles at each locus.  Project data have 

been used to impute over 6 million genetic variants into GWAS, for traits as diverse 

as smoking47 and multiple sclerosis48, as an exclusionary filter in Mendelian disease 

studies49 and tumor sequencing studies, and to design the next generation of 

genotyping arrays.  

The results from this study also provide a template for future genome-wide 

sequencing studies on larger sample sets.  Our plans for achieving the 1000 

Genomes Project goals are described in Box 2.  Other studies using phenotyped 

samples are already using components of the design and analysis framework 

described above. 

Measurement of human DNA variation is an essential prerequisite for carrying out 

human genetics research. The 1000 Genomes Project represents a step towards a 

complete description of human DNA polymorphism.  The larger dataset provided by 

the full 1000 Genomes Project will allow more accurate imputation of variants in 

GWAS and thus better localization of disease associated variants.  The project will 

provide a template for studies using genome wide sequence data.  Applications of 

these data, and the methods developed to generate them, will contribute to a much 

more comprehensive understanding of the role of inherited DNA variation in human 

history, evolution and disease.  
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Box 2.  Design of the Full 1000 Genomes Project  

The production phase of the full 1000 Genomes Project will combine low coverage 

whole genome sequencing, array based genotyping, and deep targeted sequencing 

of all coding regions in 2,500 individuals from five large regions of the world (five 

population samples of 100 in or with ancestry from each of Europe, East Asia, South 

Asia and West Africa, and seven populations totalling 500 from the Americas; 

Supplementary Table 9).  We will increase the low coverage average depth to over 

4x per individual, and use blood derived DNA where possible to minimise somatic 

and cell line false positives.  

A clustered sampling approach was chosen to improve low frequency variant 

detection in comparison to a design in which a smaller number of populations were 

sampled to a greater depth. In a region containing a cluster of related populations, 

genetic drift can lead variants that are at low frequency overall to be more common 

(hence easily detectable) in one population but less common (hence likely to be 

undetectable) in another.  We  modelled this process using project data (see 

Supplementary Information) assuming that five sampled populations are equally 

closely related to each other (Fst = 1%).  We found that the low coverage 

sequencing in this design would discover 95% of variants in the accessible genome 

at 1% frequency across each broad geographic region, between 90% and 95% of 

variants at 1% frequency in any one of the sampled populations and about 85% of 

variants at 1% frequency in any equally related but unsampled population.  The chart 

shows predicted discovery curves for variants at different frequencies with details as 

for Fig. 2b.  The model is conservative, in that it ignores migration and the 

contribution to discovery from more distantly related populations, each of which will 

increase sensitivity for variants in any given population.  In exons, the full project 

should have 95% power to detect variants at a frequency of 0.3% and approximately 

60% power for variants at a frequency of 0.1%. 
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In addition to improved detection power, we expect the full project to have increased 

genotype accuracy due to (a) advances in sequencing technology that are reducing 

per base error rates and alignment artefacts, (b) increased sample size, which 

improves imputation based methods, (c) ongoing algorithmic improvements, and (d) 

the designing by the project of genotyping assays that will directly genotype up to 10 

million common and low frequency variants (SNPs, indels and SVs) observed in the 

low coverage data.  In addition, we expect the fraction of the genome that is 

accessible to increase.  Longer read lengths, improved protocols for generating 

paired reads, and the use of more powerful assembly and alignment methods are 

expected to increase accessibility from 80-85% to above 90% of the reference 

genome (Supplementary Fig. 15).  
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Figure Legends 

 

Figure 1:  Properties of the variants found.  a, Venn diagrams showing the 

numbers of SNPs identified in each pilot project in each population or analysis panel, 

subdivided according to whether the SNP was present in dbSNP release 129 

(“Known”) or not (“Novel”).  Exon analysis panel AFR is YRI+LWK, ASN is 

CHB+CHD+JPT, and EUR is CEU+TSI.  Note that the scale for the exon project 

column is much larger than for the other pilots.  b, The number of variants per Mb at 

different allele frequencies divided by the expectation under the neutral coalescent 

(1/i, where i is the variant allele count), thus giving an estimate of theta per 

megabase.   Blue: low coverage SNPs, red: low coverage indels, black: low 

coverage genotyped large deletions, green: exon SNPs. The spikes at the right ends 

of the lines correspond to excess variants for which all samples differed from the 

reference (approximately 1 per 30 kb), consistent with errors in the reference 

sequence. c, Fraction of variants in each allele frequency class that were novel. 

Novelty was determined by comparison to dbSNP release 129 for SNPs and small 

indels, dbVar (June 2010) for deletions, and two published genomes10, 11 for larger 

indels.  d, Size distribution and novelty of variants discovered in the low coverage 

project.  SNPs are shown in blue, deletions with respect to the reference sequence 

in red, and insertions or duplications with respect to the reference in green. The 

fraction of variants in each size bin that were novel is shown by the purple line, and 

is defined relative to dbSNP (SNPs and indels), dbVar (deletions, duplications, 

mobile element insertions), dbRIP and other studies50 (mobile element insertions), 

Venter and Watson genomes10, 11 (short indels and large deletions), and short indels 

from split capillary reads51. To account for ambiguous placement of many indels, 

discovered indels were deemed to match known indels if they were within 25 bp of a 

known indel of the same size. To account for imprecise knowledge of the location of 

most deletions and duplications, discovered variants were deemed to match known 

variants if they had > 50% reciprocal overlap. 
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Figure 2:  Variant discovery rates and genotype accuracy in the low coverage 
project.  a, Rates of low coverage variant detection by allele frequency in CEU. 

Lines show the fraction of variants seen in overlapping samples in independent 

studies, that were also found to be polymorphic in the low coverage project (in the 

same overlapping samples), as a function of allele count in the 60 low coverage 

samples. Note that we plot power against expected allele count in 60 samples, e.g. a 

variant present in, say, 2 copies in an overlap of 30 samples is expected to be 

present 4 times in 60 samples. The crosses on the right represent the average 

discovery fraction for all variants having more than 10 copies in the sample. Colours 

correspond to: (red) HapMap II sites, excluding sites also in HapMap 3 (43 

overlapping samples); (blue) exon project sites (57 overlapping samples); (green) 

deletions from Conrad et al.20 (60 overlapping samples; deletions were classified as 

“found” if there was any overlap).  Error bars show 95% confidence interval.  b, 
Estimated rates of discovery of variants at different frequencies in the CEU (blue), a 

population related to the CEU with Fst = 1% (green) and across Europe as a whole 

(light blue).  The insert shows a cartoon of the statistical model for population history 

and thus allele frequencies in related populations where an ancestral population 

gave rise to many equally related populations, one of which (blue circle) has samples 

sequenced.  c, SNP genotype accuracy by allele frequency in the CEU low coverage 

project, measured by comparison to HapMap II genotypes at sites present in both 

call sets, excluding sites that were also in HapMap 3.  Lines represent the average 

accuracy of homozygote reference (red), heterozygote (green) and homozygote 

alternative calls (blue) as a function of the alternative allele count in the overlapping 

set of 43 samples, and the overall genotype error rate (grey, at bottom of plot). The 

inset shows the number of each genotype class as a function of alternative allele 

count.  d,  Coverage and accuracy for the low coverage and exon projects as a 

function of depth threshold.  For 41 CEU samples sequenced in both the exon and 

low coverage projects, on the x axis is shown the number of non-reference SNP 

genotype calls at HapMap II sites not in HapMap 3 that were called in the exon 

project target region, and on the y axis is shown the number of these calls that were 

not variant (i.e., are reference homozygote and thus incorrectly were called as 

variant) according to HapMap II.  Each point plotted corresponds to a minimum 
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depth threshold for called sites.  Grey lines show constant error rates.  The exon 

project calls (red) were made independently per sample, whereas the low coverage 

calls (blue), which were only slightly less accurate, were made using LD information 

that combined partial information across samples and sites in an imputation-based 

algorithm. The additional data added from point “1” to point “0” (upper right in the 

figure) for the low coverage project were completely imputed. 

 

Figure 3.  The value of additional samples for variant discovery.  The fraction of 

variants present in an individual that would not have been found in a sequenced 

reference panel, as a function of reference panel size and the sequencing strategy.  

The lines represent predictions for Synonymous (Syn), Nonsynonymous (NonSyn), 

and Loss of function (LOF) variant classes, broken down by sequencing category:  

full sequencing as for exons (Full) and low coverage sequencing (LowCov).  The 

values were calculated from observed distributions of variants of each class in 321 

East Asian samples (CHB, CHD and JPT populations) in the exon data, and power 

to detect variants at low allele counts in the reference panel from Figure 2a. 

 

Figure 4:  Imputation from the low coverage data.  a, Accuracy of imputing variant 

genotypes using HapMap 3 sites to impute sites from the low coverage (LC) project 

into the trio fathers as a function of allele frequency.  Accuracy of imputing 

genotypes from the HapMap II reference panels4 is also shown.  Imputation 

accuracy for common variants was generally a few percent worse from the low 

coverage project than from HapMap, although error rates increase for less common 

variants.  b, An example of imputation in a cis-eQTL for TIMM22, for which the 

original Ilumina 300K genotype data gave a weak signal30.  Imputation using 

HapMap data made a small improvement, and imputation using low coverage 

haplotypes provided a much stronger signal. 
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Figure 5:  Variation around genes. a, Diversity in genes calculated from the CEU 

low coverage genotype calls (upper) and diversity divided by divergence between 

humans and rhesus macaque (lower).  Within each element averaged diversity is 

shown for the first and last 25 base pairs, with the remaining 150 positions sampled 

at fixed distances across the element (elements shorter than 150 base pairs were 

not considered). Note that estimates of diversity will be reduced compared to the true 

population value due to the reduced power for rare variants, but relative values 

should be little affected.  b, Average autosomal diversity divided by divergence, as a 

function of genetic distance from coding transcripts, calculated at putatively neutral 

sites, i.e., excluding phastcons conserved noncoding sequences and all sites in 

coding exons but four-fold degenerate sites. c, Numbers of SNPs showing 

increasingly high levels of differentiation in allele frequency between the CEU and 

CHB+JPT (red), CEU and YRI (green) and CHB+JPT and YRI (blue).  Lines indicate 

synonymous variants (dashed), nonsynonymous variants (dotted) and other variants 

(solid).  The most highly differentiated genic SNPs were enriched for 

nonsynonymous variants, indicating local adaptation.  d, The decay of population 

differentiation around genic SNPs showing extreme allele frequency differences 

between populations (difference in frequency of at least 0.8 between populations, 

thinned so there is no more than one per gene considered; Supplementary Table 8).  

For all such SNPs the highest allele frequency difference in bins of 0.01 cM away 

from the variant was recorded and averaged.   

 

Figure 6:  Recombination.  a, Improved resolution of hotspot boundaries. The 

average recombination rate estimated from low coverage project data around 

recombination hotspots detected in HapMap II.  Recombination hotspots were 

narrower, and in CEU (orange) and CHB+JPT (purple) more intense than previously 

estimated.  b, The concentration of recombination in a small fraction of the genome, 

one line per chromosome. If recombination were uniformly distributed throughout the 

genome, then the lines on this figure would appear along the diagonal. Instead, most 

recombination occurs in a small fraction of the genome. Recombination rates in YRI 

(green) appeared to be less concentrated in recombination hotspots than CEU 
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(orange) or CHB+JPT (purple).  HapMap II estimates are shown in black.  c, The 

relationship between genetic variation and recombination rates in the YRI population. 

The top plot shows average levels of diversity, measured as mean number of 

segregating sites per base, surrounding occurrences of the previously described 

hotspot motif 43 (CCTCCCTNNCCAC, red line) and a closely related, but not 

recombinogenic DNA sequence (CTTCCCTNNCCAC, green line). The lighter red 

and green shaded areas give 95% confidence intervals on diversity levels. The 

bottom plot shows estimated mean recombination rates surrounding motif 

occurrences, with colours defined as in the top plot. 

 

 



Table 1 - Variants discovered by pilot, type, population and novelty. 

  Low coverage Trios Exon Union 

  CEU YRI CHB+JPT Total CEU YRI Total Total Total 
Samples 60 59 60 179 3 3 6 697 742 

Total raw bases (Gb) 1401.56 874.40 595.93 2871.89 560.38 614.63 1175.01 845.40 4892.30 

Total mapped bases (Gb) 817.46 595.58 468.17 1881.20 368.89 342.47 711.36 55.74 2648.29 

Mean mapped depth (x) 4.62 3.42 2.65 3.56 43.14 40.05 41.60 55.92 N/A 

Fraction of genome called 2.43 Gb 
(86%) 

2.39 Gb 
(85%) 

2.41 Gb 
(85%) 

2.42 Gb 
(86.0%) 

2.26 Gb 
(79%) 

2.21 Gb 
(78%) 

2.24 Gb 
(79%) 

1.4 Mb N/A 

No. of SNPs 
(% novel) 

7,943,827 
(33%) 

10,938,130 
(47%) 

6,273,441 
(28%) 

14,894,361 
(54%) 

3,646,764 
(11%) 

4,502,439 
(23%) 

5,907,699 
(24%) 

12,758 
(70%) 

15,275,256 
(55%) 

Variant SNP sites / individual 2,918,623 3,335,795 2,810,573 3,019,909 2,741,276 3,261,036 3,001,156 763 N/A 

No. of indels 
(% novel) 

728,075 
(39%) 

941,567 
(52%) 

666,639 
(39%) 

1,330,158 
(57%) 

411,611 
(25%) 

502,462 
(37%) 

682,148 
(38%) 

96 (72%) 1,480,877 
(57%) 

Variant indel sites / individual 354,767 383,200 347,400 361,669 322,078 382,869 352,474 1 N/A 

No. of deletions 
(% novel) 

N/D N/D N/D 15,893 
(60%) 

6,593 
(41%) 

8,129 
(50%) 

11,248 
(51%) 

N/D 22,025 
(61%) 

No. of genotyped deletions 
(% novel) 

N/D N/D N/D 10,742 
(57%) 

N/D N/D 6,317 
(48%) 

N/D 13,826 
(58%) 

No. of duplications 
(% novel) 

259 
(90%) 

320 
(90%) 

280 
(91%) 

407 
(89%) 

187 
(93%) 

192 
(91%) 

256 
(92%) 

N/D 501 
(89%) 

No. of mobile element insertions 
(% novel) 

3,202 
(79%) 

3,105 
(84%) 

1,952 
(76%) 

4,775 
(86%) 

1,397 
(68%) 

1,846 
(78%) 

2,531 
(78%) 

N/D 5,371 
(87%) 

No. of novel sequence insertions 
(% novel) 

N/D N/D N/D N/D 111 
(96%) 

66 
(86%) 

174 
(93%) 

N/D 174 
(93%) 

   

  Exon populations   

  CEU TSI LWK YRI CHB CHD JPT   

Samples 90 66 108 112 109 107 105   

Total collected bases (Gb) 151.15 63.96 53.42 146.52 93.08 126.59 210.68   

Mean mapped depth on target (x) 73 71 32 62 47 62 53   

No. of SNPs (% novel) 3,489 (34%) 3,281 (34%) 5,459 (50%) 5,175 (46%) 3,415 (47%) 3,431 (50%) 2,900 (42%)   

Variant SNP sites / individual 715 727 902 794 713 770 694   

No. of indels (No. novel) 24 (9) 24 (10) 24 (15) 38 (18) 31 (14) 26 (11) 27 (11)   

Variant indel sites / individual 3 3 3 3 3 2 3   
 



Table 2 - Estimated numbers of potentially functional variants in genes.  
  Combined Combined Low Coverage High-Coverage Trio Exon Capture 

class total novel Total Interquartilea total individual range total interquartilea GENCODE extrap. 
synonymous SNPs 60157 23498 55217 10572-12126 21410 9193-12500 5708 461-532 11553-13333 

nonsynonymous SNPs 68300 34161 61284 9966-10819 19824 8299-10866 7063 396-441 9924-11052 
small in-frame indels 714 383 666 198-205 289 130-178 59 1-3 ~25-75 

stop losses 77 40 71 9-11 22 4-14 6 0-0 ~0-0 
stop-introducing SNPs 1057 755 951 88-101 192 67-100 82 2-3 ~50-75 

splice-site-disrupting SNPs 517 399 500 41-49 82 28-45 3 1-1 ~50 
small frameshift indels 954 551 890 227-242 433 192-280 37 0-1 ~0-25 

genes disrupted by large deletions 147 71 143 28-36 82 33-49 NA NA NA 
total genes containing LOF variants 2304 NA 1795 272-297 483 240-345 77 3-4 ~75-100 
HGMD "damaging mutation" SNPs 671 NA 578 57-80 161 48-82 99 2-4 ~50-100 

aInterquartile range of number of variants of type per individual 
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