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Abstract 

Structural characteristics of limbs bones provide insight into how an animal dynamically loads 

its limbs during life.  Cause-and-effect relationships between loading and the osteogenic 

response it elicits are complex.  In spite of such complexities, cross-sectional geometric 

properties can be useful indicators of locomotor repertoires.  Typical comparisons use primates 

that are distinguished by broad habitual locomotor differences, usually with samples garnered 

from several museum collections.  Intraspecific variability is difficult to investigate in such 

samples because behavior or life histories, which are tools for interpreting intraspecific 

variability, are limited.  Clearly intraspecific variation both in morphology and behavior/life 

history exists.  Here we expand an ongoing effort towards understanding intraspecific variation 

in limb structural properties by comparing free-ranging chimpanzees that have associated 

behavioral and life history data.  Humeral and femoral data from eleven adult chimpanzees (Pan 

troglodytes) of Kibale National Park (Uganda) are compared to 29 adult habituated chimpanzees 

from Gombe (Tanzania), Mahale Mountains (Tanzania), and Taï Forest (Côte d’Ivoire) National 

Park communities.  Overall, limb structural morphology of Kibale chimpanzees most resembles 

limb structural morphology of Mahale chimpanzees.  Shape ratios and percentage cortical areas 

of Kibale chimpanzees are most similar to non-Gombe chimpanzees, while Kibale structural 

properties (e.g., maximum rigidity) are most similar to non-Taï structural properties.  Even after 

adding Kibale females, Taï females continue to stand out from females in other communities.  

This research was supported in part by the L.S.B. Leakey Foundation and the National Science 

Foundation (DDIG, BCS-0002686). 

 

Keywords:  cross-sectional geometry, functional morphology, Pan troglodytes, locomotor 
behavior
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Functional morphologists rely on comparative approaches as well as experimental 

techniques in the laboratory (i.e., kinetics, kinematics, electromyography, strain analysis) in 

order to understand form-function relationships in the postcranium of animals.  Shared or unique 

components of activity patterns provide a framework against which morphological 

commonalities or differences are evaluated.  Often times, comparative studies construct samples 

from specimens of museum collections (Green et al., 2007; Haeusler and McHenry, 2007; 

Marchi, 2007; Ruff, 2002, 2008).  While museum specimens may be numerous and accessible – 

two criteria necessary for amassing large samples that rigorous statistical analyses favor – they 

also necessitate a seldom-appreciated tradeoff, namely, that while behavior and life history may 

vary among group individuals, this variation must be ignored in order to compare groups.  

Clearly, however, individuals within populations can vary substantially in behavioral or life 

history variables (Goodall, 1986; Hunt, 1992), which may in turn contribute to intragroup 

variability in morphological characteristics and reproductive fitness. 

Chimpanzees (Pan troglodytes) offer a unique opportunity among animals to address 

functional morphology questions.  Observational studies of free-ranging chimpanzee 

communities provide a detailed portrait of individual life histories (Boesch and Boesch-

Achermann, 2000; Goodall, 1986; Morbeck, 1999; Nishida, 1990; Morbeck et al., 2002).  

Studies encompassing the last 45 years at several locations [i.e., Gombe Stream National Reserve 

(Tanzania), Kibale National Park (Uganda), Mahale Mountains National Park (Tanzania), and 

Taï Forest National Park (Côte d'Ivoire)] document activity profiles of female and male 

chimpanzees of all ages in all sorts of situations or settings.  Skeletal collections have slowly 

accumulated in the same communities, and thus frequently, individual specimens can be 

associated with contextual information, e.g., life history, activity, and habitat data.  Such a 
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sample is ideal for investigating form-function relationships in the primate postcranium, and in 

fact, is uniquely situated to investigate intraspecific variability in the primate postcranium. 

Bone has an ability to readjust its diaphyseal structure over the course of the lifetime of 

an animal (Currey, 2002; Martin et al., 1998).  Cross-sectional geometric properties, as one 

means of quantifying in vivo adjustment, are frequently used in functional comparisons of human 

and non-human primate postcrania (Burr et al., 1982, 1989; Carlson, 2002, 2005; Carlson et al., 

2006, in press; Demes and Jungers, 1989, 1993; Demes et al., 1991; Jungers et al., 1998, Ohman, 

1993; Polk et al., 2000; Ruff, 1987, 1989, 2002; Ruff and Runestad, 1992; Schaffler et al., 1985; 

Stock and Pfeiffer, 2001; Sumner and Andriacchi, 1996; Sumner et al., 1989; Terranova, 1995a, 

b; Yamanaka et al., 2005).  Efforts to quantify bone deformation during quadrupedal locomotion 

indicate the importance of using caution when inferring locomotor performance from cross-

sectional properties alone (Demes et al., 1998, 2001; Lieberman et al., 2004).  For example, the 

common assumption that tissue economy in diaphyseal cross sections should be optimized for 

resisting the observed bending loads does not hold true (Demes et al., 1998, 2001; Pearson and 

Lieberman, 2004; Ruff et al., 2006).  When comparing limb loading during terrestrial 

quadrupedal locomotion and select modes of a primate arboreal locomotor repertoire (i.e., 

vertical climbing, brachiation), the latter are characterized by relatively greater variation in load 

orientations (Demes et al., 2001; Swartz et al., 1989).  When using additional, but indirect 

measures to infer limb loading, e.g., substrate reaction forces, kinematics, and second moments 

of area, during even more locomotor behaviors, variability in loading regimes seems even greater 

than currently appreciated (Carlson and Judex, 2007; Demes et al., 2006; Demes and Carlson, in 

review).  In addition to activity-induced deformations, other non-mechanical factors, e.g., 

genetics, hormones, and age affect bone modeling/remodeling process, which potentially could 
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affect cross-sectional geometric properties independent of activity patterns (Devlin and 

Lieberman, 2007; Martin et al., 1998; Robling et al., 2007; Turner et al., 2000; Wergedal et al., 

2005; Xiong et al., 2006).  Despite the list of limitations, cross-sectional geometric properties 

retain value to paleoanthropologists and physical anthropologists as tools for inferring locomotor 

repertoires when animals can not be observed visually, such as extinct taxa (Griffin, 2008; Holt, 

2003; Madar et al., 2002; Marchi et al., 2006; Ruff, 2008).  

Shape variation in select regions of African ape femoral and humeral diaphyses is 

associated with reported frequencies of arboreal locomotion (Carlson, 2002, 2005).  More evenly 

distributed bone mass in a cross section (i.e., more circular shape) has been correlated with 

increased percentage of arboreal locomotion, while more elliptical cross sections have been 

correlated with increased percentage of terrestrial locomotion (Figure 1).  Frequencies of specific 

locomotor behaviors in a behavioral repertoire, however, have not been linked to diaphyseal 

shapes in a similarly straightforward fashion, whether using a museum collection sample 

(Carlson, 2005) or a small sample of free-ranging chimpanzees (Carlson et al., 2006). 

A comparison of Gombe, Mahale, and Taï chimpanzees tentatively linked differences in 

habitat characteristics between the three communities to structural differences in their diaphyseal 

morphology (Carlson et al., in press).  A terrain effect observed in human lower limb structural 

properties (Ruff, 1999) also was visible in some chimpanzee populations apart from any 

differences in locomotor mode frequencies.  Qualitative variation within a single locomotor 

mode, such as habitat-induced variation in quadrupedalism, ultimately could impact deformation 

patterns experienced by limb elements.  Mobility (c.f., Carlson et al., 2007), which can be 

described as distance travelled plus the frequency of maneuvering around obstacles within a 

habitat, may reflect characters such as vegetation density or ground cover.  Elevation changes 
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and ruggedness of terrain are two additional factors that can distinguish habitats.  Previous work 

has shown that mobility and terrain elevation/ruggedness are relevant to human patterns of lower 

limb loading (Burr et al., 1996; Ruff, 1999).  Such scenarios remain to be verified in non-human 

primate populations, but would seem to be present given the conservative nature of bone 

response to loading among organisms (Martin et al., 1998; Currey, 2002). 

  With a unique sample of primates we overcome ordinary challenges that limit functional 

morphologists, and in a sense we bring the field into the laboratory.  In order to reconfirm earlier 

proposed form-function relationships in the chimpanzee postcranium, we add individuals from a 

fourth well-studied chimpanzee community to a previous comparison of individuals from three 

chimpanzee communities (Carlson et al., in press).  Do femoral and humeral diaphyseal shapes 

of Kibale chimpanzees differ from shapes at analogous diaphyseal locations of Gombe, Mahale, 

or Taï chimpanzees?  Do ‘strength’ properties that estimate maximum bending rigidity 

distinguish Kibale chimpanzees from chimpanzees in the other communities?  Do percent 

cortical areas (%CA) distinguish Kibale chimpanzees from chimpanzees in the other 

communities?  Do the observed morphological differences between Kibale chimpanzees and 

chimpanzees from other communities reinforce previous interpretations of morphological 

differences between Mahale, Gombe, and Taï chimpanzees that were attributed to habitat 

characteristics?  Ultimately, if habitat characteristics can be used to differentiate loading patterns 

in human populations, they may similarly distinguish habituated chimpanzee communities, 

which would have important implications for reconstructing locomotor repertoires of early 

hominins. 

 

Materials and Methods 
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In order to acquire cross-sectional geometric properties, we used serial computed 

tomography (CT) scans of humeri and femora representing 40 adult chimpanzees (Pan 

troglodytes) from Gombe (Tanzania), Kibale (Uganda), Mahale Mountains (Tanzania), and Taï 

Forest (Côte d'Ivoire) National Parks.  The sample from Gombe, Mahale Mountains, and Taï 

Forest National Parks has been described previously (Carlson et al., 2006, in press).  Wherever 

possible we collected bilateral data from forelimbs and hind limbs of an individual.  For each 

bone, we analyzed three regions of interest (ROIs): 35 (mid-distal), 50 (midshaft), and 65 (mid-

proximal) percent diaphyseal lengths (Table 1).  We excluded individuals that exhibited serious 

injuries or disabling diseases that we thought could have permanently altered locomotor 

repertoires.  We retained several Taï individuals in the sample that died as a result of an Ebola 

epidemic (Boesch and Boesch-Achermann, 2000), but because of the rapid onset of death 

associated with Ebola, we believe that individuals that died from an Ebola infection had 

insufficient time for any reduction in activity level to alter bone diaphyseal morphology 

significantly. 

We followed an existing protocol for obtaining CT data from Kibale specimens (Carlson 

et al., 2006, in press).  Briefly, we saved CT images in DICOM format.  We imported DICOM 

stacks corresponding to entire long bones into commercial software, Amira® 4.0 (Visage 

Imaging, Inc, Carlsbad, CA, USA), segmented DICOM stacks to create isosurfaces, and then 

rendered volumes of interest (VOIs) using thresholds that gave an accurate digital representation 

of bone surfaces.  Selection of the appropriate threshold considered two criteria: eliminate 

artificial holes in surfaces and separate lower density objects, such as soft tissues, from bone 

surfaces.  Variation in the appropriate thresholds for different bones was minor following these 

criteria.  Once a VOI was rendered, it was aligned in virtual space using the same criteria as 
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previous studies that aligned physical specimens in CT scanners (Carlson, 2005; Carlson et al., 

2006, in press; Ruff, 2002).  Subsequent to identifying ROIs, we used cutting planes in the 

commercial software to virtually section the rendered VOIs.  We used screen capture software 

programs, or options within the visualization software program, to record digital images of 

virtually ‘sectioned’ surfaces.  We calculated cross-sectional geometric properties of virtual 

‘sections’ using custom-written macros for Scion Image (release Beta 4.0.2; ported from NIH 

Image for Macintosh by Scion Corporation and freely available at http://www.scioncorp.com) 

and a modified version of the SLICE program (Nagurka and Hayes, 1980). 

The custom-written macro calculates standard cross-sectional geometric properties from 

a cross section, e.g., maximum rigidity (Imax).  We treated cortical bone in cross sections as 

having homogeneous material properties, which is customary in analyses of cross-sectional 

properties (but see Bhatavadekar et al., 2006). We calculated shape ratios from principal 

moments of area (Imax/Imin) rather than second moments of area about anatomical planes (Ix/Iy) 

since the former ratio provides a more accurate reflection of overall shape (Carlson, 2005).  We 

calculated percentage cortical area (%CA) of cross sections as cortical area (CA) divided by total 

area (TA).  Following Sumner et al. (1989), this measure provides a useful estimate of bone 

mass at a diaphyseal location. 

When modeling bending deformation of a beam, bending is proportional to the product of 

the applied force and the length of the beam.  When comparing a bone to a beam undergoing 

bending, body weight is a suitable substitute for applied force and bone length is a suitable 

substitute for the length of the beam.  Chimpanzee body mass is known to vary according to 

several factors, including banana provisioning, community range size and density, seasonality, 

social rank in females, female reproductive cycles, and age (Pusey et al., 2005).  Unfortunately, 
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body mass was unknown for a vast majority of chimpanzees in the sample so we were forced to 

estimate it using osteological predictors.  In order to estimate body mass for scaling femoral 

properties (see Eq. 1), we regressed body mass, bm, on supero-inferior diameter of the femoral 

head, fmsid (Ruff, 2002; Carlson et al., 2006).  Carlson (2002) estimated body masses for 25 

African apes of known body mass using Eq. 1 and found that 80% had predicted values within 

20% of their recorded body mass.  We estimated body mass for each right and left femur 

separately.  We use femoral mechanical length in scaling measures since this is a suitable 

estimate for the length of the bone as it undergoes bending forces (Ruff, 2002; Carlson et al., 

2006). We measure femoral mechanical length from each right and left femur separately in order 

to derive side-specific scaling factors.  In order to compare individuals, we normalize Imax to the 

product of estimated body mass and bone length (Eq. 2), where sImax = normalized Imax, bm = 

body mass, and L = bone length.   

 

 log10(bm) = 3.030(log10fmsid) + (-2.946)  (Eq. 1) 

 

 sImax = Imax ((bm)x(L))-1   (Eq. 2) 

 

In order to estimate body mass for scaling humeral properties (see Eq. 3), we regressed 

body mass on maximum diameter of the humeral head, hhmd (Carlson, 2002).  Using Eq. 3, 

Carlson (2002) found that 87% of the 25 African apes had predicted body mass values within 

20% of their recorded body mass.  We estimated body mass for each right and left humerus 

separately.  For humeral diaphyses, we use maximum length of the humerus with the long axis of 

the diaphysis parallel to the longitudinal axis (Carlson, 2002).  We measured bone length from 
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each right and left humerus separately in order to derive side-specific scaling factors for 

normalizing humeral Imax (Eq.2). 

 

log10(bm) = 2.824(log10hhmd) + (-2.896)  (Eq. 3) 

 

We report habitat characteristics of Kibale National Park (Chapman et al., 1997; Hunt 

and McGrew, 2002) that are analogous to those reported in an earlier comparative study of 

chimpanzees from Gombe, Mahale Mountains, and Taï Forest National Parks (Carlson et al., in 

press), and when possible, we update values for previously reported characteristics.  We 

concentrate on specific habitat characteristics that we believe introduce qualitative differences 

into terrestrial quadrupedalism, such as estimates of obstacle frequency during quadrupedalism 

and the extent of locomotion over uneven terrain (Table 2). 

We used Kolmogorov-Smirnov (KS) tests for normality to assess variable distributions 

against to theoretical (normal) distributions.  Since no variables departed significantly from 

normal distributions, parametric statistical analyses were justified.  Accordingly, we used a series 

of one-way analyses of variance (ANOVA) to assess differences between Kibale, Gombe, 

Mahale, and Taï communities.  In the event that groups differed significantly, we used a Levene 

test for homogeneity of variances to verify the assumption of equal group variances, which is a 

necessary assumption of the one-way ANOVA.  The Levene test also dictated which post hoc 

analysis was used to determine which groups differed from one another.  When we observed a 

non-significant Levene statistic, i.e., group variances did not significantly differ, we performed 

Bonferroni post hoc analyses.  In comparisons where there were three groups or fewer, we used 

Fisher’s least significant difference (LSD) post hoc analyses rather than Bonferroni post hoc 
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analyses because the conservative Bonferroni correction for multiple comparisons was deemed 

too restrictive.  When we observed a significant Levene statistic (i.e., group variances 

significantly differed), we conducted Tamhane’s T2 post hoc analyses.  A Tamhane’s T2 post 

hoc analysis is based on a t-test, and is preferable to other alternatives because it is conservative.  

In comparisons of sex-specific community trends, where sample sizes were often small, e.g., n < 

4, we frequently chose a more conservative approach than one-way ANOVA by using the 

Kruskal-Wallis H test, a non-parametric test.  The Kruskal-Wallis H test is a one-way ANOVA 

that compares groups by ranking data and does not assume normality. 

We selected p < 0.05 as the level of statistical significance in all statistical testing.  We 

used SPSS 15.0 software package (SPSS Inc., Chicago, IL, USA) for statistical procedures. 

 

Results 

Kibale chimpanzees versus other community chimpanzees

Average shape ratios at diaphyseal ROIs for the four chimpanzee communities are 

reported in Table 3.  Kibale chimpanzees exhibit significantly lower shape ratios than Taï 

chimpanzees at several locations: right F35 and F50 ROIs, as well as the right H50 ROI (Table 

4).  Kibale chimpanzees have significantly higher shape ratios than either Taï or Mahale 

chimpanzees at the right H35 ROI, and significantly higher shape ratios than Taï chimpanzees at 

the left H35 ROI (Table 4).  While right humeri and femora from Gombe individuals were 

unavailable for comparisons, at the left H50 ROI, Kibale chimpanzees exhibited significantly 

higher shape ratios than Gombe chimpanzees. 

Average maximum rigidities at diaphyseal ROIs are reported in Table 3.  Normalizing 

measures are available for only a subset of the communities, which means that not all four 
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communities could be compared.  Taï chimpanzees exhibit significantly greater normalized 

maximum rigidity than Kibale and Mahale chimpanzees at right F50 and F65 ROIs, and greater 

normalized maximum rigidity than Mahale chimpanzees at the right F35 ROI (Table 4).  No 

significant community-level differences are observed at ROIs of the left femur or either humerus. 

Average %CAs at diaphyseal ROIs for the four chimpanzee communities are reported in 

Table 3.  Kibale chimpanzees do not differ significantly from Mahale or Taï chimpanzees at any 

femoral or humeral ROI.  Kibale chimpanzees, similar to Mahale and Taï chimpanzees, have 

significantly higher %CA than Gombe chimpanzees at each left humeral ROI.  Amongst femoral 

ROIs, Kibale chimpanzees exhibit significantly higher %CAs than Gombe chimpanzees at the 

left F65 ROI, while Mahale and Taï chimpanzees exhibit significantly higher %CAs than Gombe 

chimpanzees at left F50 and F65 ROIs.  No significant community-wide differences in %CA 

were observed in right elements, for which Gombe individuals were not included.  This is 

consistent with left ROIs, where the only significant differences in %CA rest between 

individuals in the Gombe community and individuals in the other three communities. 

 

Sex-specific comparisons of Kibale chimpanzees with chimpanzees in other communities 

In order to examine community-level comparisons more in-depth, average shape ratios 

and %CAs for females and males in the communities are reported in Table 5.  Female 

chimpanzees from Kibale exhibit significantly greater shape ratios than Taï chimpanzees at left 

and right H35 ROIs (Table 6).  Female Kibale chimpanzees also exhibit significantly lower 

shape ratios than Taï chimpanzees at the right H50 ROI (Table 6).  Female chimpanzees from 

Kibale, Mahale, and Taï communities exhibit significantly greater %CA at each humeral ROI 

compared to female chimpanzees from Gombe (Table 7).  Unlike Mahale and Taï female 
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chimpanzees, female chimpanzees from Kibale do not differ from female chimpanzees from 

Gombe in %CA at femoral ROIs (Table 7).  Compared to female chimpanzees from all 

communities, female chimpanzees from Kibale differ least in average shape ratios or %CAs from 

Mahale females.  Males from each of the four communities do not differ significantly in shape 

ratio or %CA at any femoral or humeral ROI. 

Average normalized maximum rigidities are reported for females and males in Table 8.  

Normalizing measures are available for only a subset of the communities, which means that not 

all four communities can be compared.  Female chimpanzees from Taï exhibit significantly 

greater normalized maximum rigidity than female chimpanzees from Kibale at left H50 and H65 

ROIs (Table 9).  In a smaller sample of right humeri, the difference in normalized maximum 

rigidity between females from these two communities approaches statistical significance (p = 

0.064) at each ROI.  Male chimpanzees from Kibale, Mahale, and Taï communities do not differ 

significantly from one another in normalized maximum rigidity at any femoral or humeral ROI. 

 

Ranks of community structural properties vs. habitat differences 

 In order to assess one aspect of mobility, Carlson et al. (in press) used average annual 

rainfall and ground cover to estimate the density of obstacles, e.g., trees, in the habitats of 

Gombe, Mahale, and Taï chimpanzees.  Taï Forest National Park was estimated to have the 

highest prevalence of obstacles, and chimpanzees from Taï often had higher shape ratios than 

chimpanzees from Gombe or Mahale (Carlson et al., in press).  Extending the comparison to 

include Kibale chimpanzees indicates that Kibale has the lowest average annual rainfall of the 

four communities, and presumably exceeds only Gombe in ground cover according to qualitative 

estimates (Table 10).  Kibale chimpanzees, however, appear not to fit the proposed trend 
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(Carlson et al., in press) since they frequently have the highest or second highest shape ratio to 

Taï chimpanzees at each of the ROIs. 

In order to assess a second aspect of mobility, Carlson et al. (in press) used elevation 

range and slope of terrain to estimate terrain elevation/ruggedness in the habitats of Gombe, 

Mahale, and Taï chimpanzees.  Kibale National Park outranks Taï Forest National Park in these 

measures of habitat complexity, but falls below reported estimates from Gombe and Mahale.  

Kibale shape ratios at femoral and humeral ROIs, particularly at the former diaphysis, usually 

exceed those of Gombe and Mahale individuals (Table 10).  In other words, diaphyses of Kibale 

chimpanzees usually are less circular than chimpanzees from Gombe and Mahale, but more 

circular than chimpanzees from Taï.  This supports the trend between terrain 

elevation/ruggedness and diaphyseal shape that was noted by Carlson et al. (in press). 

 

Discussion 

Communities differ significantly in shape at a majority of femoral and humeral 

diaphyseal locations.  Kibale individuals differ specifically from Taï individuals at several 

locations, but except for the right humeral mid-distal diaphysis (H35) and the left humeral 

midshaft (H50), Kibale individuals do not differ significantly from Mahale or Gombe individuals 

at any location.  Thus, addition of a fourth chimpanzee community to an earlier comparison of 

several chimpanzee communities that reported significantly greater shape ratios, i.e., more 

elliptical diaphyses, in Taï chimpanzees compared to other chimpanzees (Carlson et al., in press) 

largely reinforces the same pattern; Taï chimpanzees, particularly females, tend to exhibit 

distinct diaphyseal shapes.  Since diaphyseal circularity (e.g., more evenly distributed bone mass 

in multiple directions) is a stable structural solution in the face of multi-directional deformations 
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(Biewener, 2003), which according to a limited body of data (Swartz et al., 1989; Demes et al., 

2001; Demes and Carlson, in press) probably characterize arboreal locomotor behaviors 

compared to terrestrial locomotor behaviors, it is uncertain why Taï individuals exhibit more 

elliptical femoral diaphyses even after adding individuals from a fourth community (Kibale) to 

comparisons. 

One possible explanation proposed by Carlson et al. (in press) focused on the fact that 

chimpanzees tend to exhibit greater ML rigidity relative to AP rigidity throughout the femoral 

diaphysis, with a less consistent disparity present in the humeral diaphysis (Carlson, 2002, 2005).  

In addition to potential community-level differences between the percentage of locomotion in 

arboreal and terrestrial settings, qualitative differences within terrestrial quadrupedalism at the 

communities might be possible to infer if morphological trends are assessed in the context of 

ecological trends.  Based on the effect that changes in direction have on mediolateral external 

forces (Demes et al., 2006) and bony morphology (Carlson and Judex, 2007), Carlson et al. (in 

press) proposed that chimpanzees occupying more densely forested habitats may experience 

greater side-to-side forces during terrestrial quadrupedalism compared to chimpanzees 

occupying less densely forested habitats, which may further enhance the disparity between ML 

rigidity and AP rigidity in diaphyseal cross sections.  The ultimate result in this case could be 

more elliptical diaphyses in chimpanzees inhabiting denser forested habitats.  The inclusion of 

Kibale chimpanzees in the comparison of chimpanzee communities does not support this 

possibility in a straightforward manner.  The forest at Kibale is comparatively more ‘open’ than 

Taï and probably at least as open, if not more, than the forests at Gombe and Mahale according 

to estimates of average annual rainfall and descriptions of ground cover (Table 10).  Yet, Kibale 

chimpanzees tended to possess more elliptical diaphyses than Gombe and Mahale chimpanzees, 
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and occasionally more elliptical diaphyses than Taï chimpanzees.  Additional comparative 

research is necessary to assess whether this ecomorphological relationship can be observed in 

free-ranging chimpanzees. 

The descriptions of forests at each of the four communities as more or less dense likely 

oversimplify complexity in forest structure.  Densities of forest canopy and forest understory 

often are inversely related because the former can directly affect the amount of sunlight that is 

available to the latter (Gentry and Emmons, 1987; Montgomery and Chazdon, 2001; Dial et al., 

2004).  Furthermore, forest understory can be a complex relationship between palm cover and 

small sapling cover (Harms et al., 2004), each of which may present different challenges to 

maneuvering through the understory.  Thus, when considering a forest with more ‘closed’ 

canopy conditions, e.g., Taï, versus a forest with more ‘open’ canopy conditions, e.g., Gombe, 

the understory conditions may be variable as well.  In forests characterized by a dense 

understory, game trails and man-made transects cleared of vegetation, e.g., as can exist at 

habituated sites, may serve as alternate travel routes that would avoid much of the side-to-side 

terrestrial maneuvering that would be necessary in their absence.  The frequency of maneuvering 

around obstacles during terrestrial quadrupedalism may not be easily predicted from simple 

measures of the degree to which the canopy is ‘open’ versus ‘closed’.  Further work towards 

identifying ecological variables that could be better estimators of maneuverability and 

quantifying the extent of maneuverability itself would be useful. 

After adding Kibale chimpanzees to a previous comparisons of free-ranging chimpanzees 

(Carlson et al., in press), Mahale chimpanzees exhibit the lowest or next to lowest average shape 

ratios in femoral and humeral ROIs, except amongst left humeral mid-distal diaphyses (H35) of 

females.  Mahale is characterized by the greatest range of elevations compared to the other three 
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communities, while Kibale exceeds only Taï (Table 10).  Since chimpanzees generally have 

greater ML rigidity than AP rigidity at diaphyseal ROIs, particularly in the femur (Carlson, 2002; 

Carlson et al., 2006), Carlson et al. (in press) suggested that an increase in circularity of Mahale 

femoral diaphyses is consistent with increased AP rigidity relative to ML rigidity.  The addition 

of chimpanzees from a fourth habitat, Kibale, to this comparison reinforces the possibility for a 

terrain effect exhibited in chimpanzees long bone diaphyseal structure.  The broadening of the 

comparison to four chimpanzee communities reinforces the potential for a terrain effect in 

chimpanzees, which would appear to parallel a similar terrain effect reported in humans (Ruff, 

1999). 

In comparing %CA at diaphyseal ROIs from chimpanzees of all four communities, i.e., 

left elements only, Kibale chimpanzees exhibit greater %CA than Gombe chimpanzees at four of 

the six ROIs.  As noted in an earlier study (Carlson et al., in press), Mahale and Taï chimpanzees 

exhibit greater %CA than Gombe individuals at five of these same ROIs (Table 4).  In present 

comparisons, Kibale chimpanzees appear similar to Mahale and Taï chimpanzees.  The similarity 

between individuals from Kibale, Mahale, and Taï communities is illustrated further by 

comparing %CA in right diaphyses, where no significant group differences were observed after 

removing Gombe individuals from the comparisons (Table 4).  Reduced %CA in concert with 

diaphyseal shape change is helpful for identifying reduced functional loading in the limbs 

(Carlson et al., in press).  Reduced functional loading of the limbs is likely a result of the 

alterations observed in chimpanzee locomotor repertoires with advancing age (Goodall, 1986; 

Morbeck et al., 2002).  Average ages for chimpanzees in the samples from Gombe, Mahale, and 

Tai are 33.3, 30.1, and 25.0 years, respectively (Carlson et al., in press).  Unfortunately precise 

age estimates for Kibale chimpanzees are unavailable (Carter et al., 2008).  Based on the 
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combination of trends in shape ratio and %CA comparisons, it is likely that the chimpanzees 

comprising the Kibale sample had not experienced an age-induced reduction in activity levels, 

such as what seems to characterize many of the individuals comprising the Gombe sample. 

Finally, overall similarity in structural properties of the chimpanzee femoral and humeral 

diaphyses between Kibale and Mahale chimpanzees, versus the relatively distinctive position of 

Taï chimpanzees among the four communities parallels current notions of genetic relatedness 

between chimpanzees in the four communities.  The western chimpanzee (P. t. verus) diverged 

from the more closely related central and eastern chimpanzees (P. t. schweinfurthii) 

approximately 0.84 million years ago (Becquet et al., 2007).  Clearly, however, genes are not the 

only contributing factor to variation in diaphyseal structural properties in the sample.  Assessing 

cross-sectional geometric properties of the limb diaphyses of additional western chimpanzee 

populations would be interesting in this regard.  In addition, incorporating additional populations 

that would expand the range of habitats to include more extreme conditions such as dry, open 

habitats (e.g., Toro-Semliki Wildlife Reserve, Uganda) would be equally useful. 
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Figure caption 

 

Figure 1. Theoretical expectations for shape ratios of individuals occupying more closed 

habitat conditions, performing greater percentages of arboreal locomotion (top row), and 

individuals occupying more open habitat conditions, performing lesser percentages of 

arboreal locomotion (bottom row).
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Table 1. Specimens comprising community samples. 

 Females Males Unknown Represented elements 

Gombe1 5 4  7 left femora 

9 left humeri 

Kibale 4 6 1 9 bilateral femora, 1 left femur 

9 bilateral humeri, 2 left humeri 

Mahale1 3 1  4 bilateral femora 

3 bilateral humeri, 1 left humerus 

Taï1 10 5 1 11 bilateral femora, 3 left femur, 1 right femur 

11 bilateral humeri, 2 left humeri 

1From Carlson et al. (in press).  An additional individual from Taï, Nipla, was included in 

the present sample.  The additional Taï individual was listed in field notes as originating 

from a group to the south of the main group that contributed all other individuals.  

However, since the habitat conditions for the added individual were likely more similar to 

the habitat conditions for the other Taï chimpanzees relative to the habitat conditions for 

chimpanzees in any of the other three communities, it was reasonable to include this 

individual in the Taï sample.



Table 2. Habitat characteristics of habituated groupsa. 

 Gombe Kibaleb Mahale Taï 

Annual mean rainfall 1775 mm 1671 mm 1836 mm 1829 mm 

Ground cover more open woodland evergreen moist forest M-group: closed forest, vine tangles tropical moist forest 

Elevation range (above sea level) 772-1500 m 1000-1700 m 772-2462 m about 120 m 

Slope of terrain 16.5 degrees 6.8 degrees 8.3 degrees slightly undulating 

aData sources described in Carlson et al. (in press), except annual mean rainfall data which has been updated to reflect data reported 

by Hunt and McGrew (2002).  Hunt and McGrew (2002) broadly compare ecological parameters (e.g., annual mean rainfall) for 

numerous chimpanzee habitats, including but not limited to the four habitats in the present study.  Ultimately, we report values 

provided by Hunt and McGrew (2002) rather than those in Carlson et al. (in press) because the former favor more general 

comparisons and applications.   bKibale values calculated from data reported in Chapman et al. (1997).  Slope of terrain reported as 

the average of four study areas characterized as moderately undulating valleys.
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ROI Gombe (left) Kibale (left) Kibale (right) Mahale (left) Mahale (right) Taï (left) Taï (right) 
F35 shape 1.38 

(0.19) 
7 

1.42 
(0.12) 

10 

1.40 
(0.11) 

9 

1.31 
(0.05) 

4 

1.30 
(0.04) 

4 

1.50 
(0.08) 

14 

1.53 
(0.13) 

12 
F50 shape 1.44 

(0.16) 
7 

1.37 
(0.15) 

10 

1.33 
(0.13) 

9 

1.30 
(0.08) 

4 

1.35 
(0.10) 

4 

1.49 
(0.08) 

14 

1.56 
(0.17) 

12 
F65 shape 1.42 

(0.11) 
7 

1.42 
(0.17) 

10 

1.40 
(0.13) 

9 

1.40 
(0.14) 

4 

1.38 
(0.14) 

4 

1.43 
(0.14) 

14 

1.52 
(0.11) 

12 
H35 shape 1.26 

(0.10) 
9 

1.40 
(0.21) 

11 

1.46 
(0.22) 

9 

1.24 
(0.02) 

4 

1.20 
(0.03) 

3 

1.13 
(0.08) 

13 

1.17 
(0.10) 

11 
H50 shape 1.12 

(0.05) 
9 

1.26 
(0.15) 

11 

1.21 
(0.13) 

9 

1.19 
(0.05) 

4 

1.15 
(0.02) 

3 

1.35 
(0.12) 

13 

1.38 
(0.11) 

11 
H65 shape 1.11 

(0.05) 
9 

1.20 
(0.09) 

11 

1.18 
(0.07) 

9 

1.16 
(0.10) 

4 

1.11 
(0.02) 

3 

1.26 
(0.13) 

13 

1.29 
(0.17) 

11 
        
F35 %CA 50.1 

(11.9) 
7 

59.4 
(8.4) 
10 

59.3 
(7.4) 

9 

65.3 
(12.1) 

4 

64.5 
(11.9) 

4 

61.4 
(6.0) 
14 

60.6 
(4.6) 
12 

F50 %CA 53.0 
(12.4) 

7 

65.2 
(9.0) 
10 

64.9 
(8.7) 

9 

72.2 
(13.1) 

4 

71.2 
(13.4) 

4 

67.2 
(5.7) 
14 

66.8 
(4.4) 
12 

F65 %CA 52.3 
(12.2) 

7 

66.6 
(9.3) 
10 

66.9 
(10.3) 

9 

73.5 
(15.7) 

4 

73.0 
(15.8) 

4 

68.8 
(6.3) 
14 

68.5 
(4.6) 
12 

H35 %CA 51.5 65.3 67.6 69.5 67.1 64.4 65.2 

Table 3. Community means (1 s.d.) for shape ratios (Imax/Imin), % cortical area, and normalized Imax (sImax). 
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(13.8) 
9 

(7.3) 
11 

(5.8) 
9 

(13.9) 
4 

(15.9) 
3 

(8.1) 
13 

(7.1) 
11 

H50 %CA 47.0 
(11.6) 

9 

60.3 
(7.1) 
11 

61.9 
(5.8) 

9 

67.6 
(13.0) 

4 

64.2 
(15.2) 

3 

61.7 
(5.8) 
13 

63.3 
(4.3) 
11 

H65 %CA 43.5 
(9.3) 

9 

58.1 
(6.4) 
11 

59.2 
(6.3) 

9 

62.9 
(13.8) 

4 

59.6 
(16.5) 

3 

61.1 
(7.3) 
13 

61.9 
(6.1) 
11 

        
F35 sImax - 1.18 

(0.20) 
10 

1.18 
(0.18) 

9 

1.05 
(0.12) 

4 

1.09 
(0.10) 

4 

1.37 
(0.32) 

6 

1.35 
(0.16) 

7 
F50 sImax - 1.20 

(0.18) 
10 

1.18 
(0.16) 

9 

1.07 
(0.14) 

4 

1.15 
(0.14) 

4 

1.41 
(0.33) 

6 

1.41 
(0.16) 

7 
F65 sImax - 1.22 

(0.20) 
10 

1.21 
(0.18) 

9 

1.12 
(0.14) 

4 

1.14 
(0.08) 

4 

1.34 
(0.24) 

6 

1.37 
(0.13) 

7 
H35 sImax - 0.77 

(0.15) 
11 

0.79 
(0.17) 

9 

- - 
 

0.78 
(0.09) 

7 

0.78 
(0.11) 

5 
H50 sImax - 0.83 

(0.12) 
11 

0.81 
(0.12) 

9 

- - 0.94 
(0.18) 

7 

0.95 
(0.21) 

5 
H65 sImax - 0.85 

(0.13) 
11 

0.85 
(0.11) 

9 

- - 0.95 
(0.18) 

7 

0.93 
(0.21) 

5 
F = femur, H = humerus; 35 = mid-distal diaphysis, 50 = midshaft, 65 = mid-proximal diaphysis.  Cells contain mean values and 1 

standard deviation in parentheses.  Rows represent values of shape (Imax/Imin) or %CA at a given ROI (e.g., F35).  Gombe individuals 

are represented by left elements only.  1 Gombe, Mahale, and Taï data from Carlson et al. (in press). 
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Table 4. Community structural comparisons. 

Imax/Imin n F p 
Bonferroni 

post hoc analysis
Imax/Imin n F p 

LSD 

post hoc analysis

left F35 35 3.560 0.025 T > M right F35 25 7.382 0.004 T >> M; T > K 

left F50 35 3.312 0.033 none right F50 25 6.901 0.005 T >> K; T > M 

left F65 35 0.047 0.986 - right F65 25 3.233 0.059 - 

left H35a 37 8.250 < 0.001 K,M >> T; G > T right H35 23 9.244 0.001 K >> T; K > M 

left H50 37 8.066 < 0.001 T >> G; K > G right H50 23 7.765 0.003 T >> K,M 

left H65a 37 4.175 0.013 T >> G right H65a 23 3.661 0.044 T > M 

%CA     %CA     

left F35 35 3.405 0.030 none right F35a 25 0.775 0.473 - 

left F50 35 5.080 0.006 M,T > G right F50a 25 0.887 0.426 - 

left F65 35 5.745 0.003 M,T >> G; K > G right F65a 25 0.632 0.541 - 

left H35 37 4.492 0.009 K,M,T > G right H35a 23 0.240 0.789 - 

left H50 37 7.419 0.001 M,T >> G; K > G right H50a 23 0.169 0.846 - 

left H65 37 9.465 < 0.001 K,M,T >> G right H65 23 0.312 0.735 - 

sImax
b     sImax

b     

left F35a 20 2.490 0.113 - right F35 20 3.614 0.049 T > M 

left F50a 20 2.948 0.080 - right F50 20 5.710 0.013 T >> K; T > M 

left F65 20 1.521 0.247 - right F65 20 3.717 0.046 T > K,M 

left H35 18 0.007 0.937 - right H35 14 0.014 0.907 - 

left H50 18 2.706 0.119 - right H50 14 2.656 0.129 - 

left H65 18 1.846 0.193 - right H65 14 0.713 0.415 - 
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>: p < 0.05; >>: p < 0.01; G = Gombe, K = Kibale, M = Mahale, T = Taï; F = femur, H = humerus; 35 

= mid-distal diaphysis, 50 = midshaft, 65 = mid-proximal diaphysis.  aFailed a Levene test of 

homogeneity of variances, thus when ANOVA was significant a Tamhane’s T2 post hoc analysis was 

conducted.  bFemoral comparisons exclude Gombe, while humeral comparisons exclude Gombe and 

Mahale because of unavailable data for the scaling measurements.



Table 5.  Sex-specific community means (1 s.d.) for shape ratios (Imax/Imin) and % cortical area. 

 Females 
 Gombe (left) Kibale (left) Kibale (right) Mahale (left) Mahale (right) Taï (left) Taï (right) 
F35 shape 1.38 

(0.21) 
5 

1.48 
(0.07) 

3 

1.50 
(0.11) 

3 

1.30 
(0.05) 

3 

1.29 
(0.04) 

3 

1.48 
(0.09) 

8 

1.53 
(0.14) 

8 
F50 shape 1.45 

(0.17) 
5 

1.45 
(0.12) 

3 

1.47 
(0.13) 

3 

1.29 
(0.09) 

3 

1.33 
(0.10) 

3 

1.47 
(0.09) 

8 

1.53 
(0.14) 

8 
F65 shape 1.43 

(0.09) 
5 

1.46 
(0.05) 

3 

1.46 
(0.07) 

3 

1.42 
(0.16) 

3 

1.40 
(0.16) 

3 

1.45 
(0.15) 

8 

1.51 
(0.09) 

8 
H35 shape 1.24 

(0.09) 
5 

1.36 
(0.09) 

4 

1.39 
(0.09) 

2 

1.25 
(0.02) 

3 

1.21 
(0.04) 

2 

1.14 
(0.09) 

9 

1.15 
(0.09) 

8 
H50 shape 1.13 

(0.07) 
5 

1.24 
(0.16) 

4 

1.18 
(0.20) 

2 

1.19 
(0.06) 

3 

1.16 
(0.01) 

2 

1.38 
(0.12) 

9 

1.40 
(0.09) 

8 
H65 shape 1.08 

(0.04) 
5 

1.16 
(0.09) 

4 

1.12 
(0.01) 

2 

1.15 
(0.12) 

3 

1.10 
(0.03) 

2 

1.29 
(0.14) 

9 

1.35 
(0.15) 

8 
        
F35 %CA 44.7 

(7.6) 
5 

48.7 
(0.7) 

2 

51.3 
(2.9) 

2 

65.7 
(14.8) 

3 

64.8 
(14.6) 

3 

60.8 
(5.5) 

8 

60.2 
(5.2) 

8 
F50 %CA 48.1 

(9.8) 
5 

55.1 
(7.5) 

2 

57.2 
(9.7) 

2 

71.7 
(15.9) 

3 

70.3 
(16.3) 

3 

66.4 
(5.3) 

8 

65.7 
(4.8) 

8 
F65 %CA 47.3 

(9.1) 
5 

55.9 
(6.5) 

2 

56.0 
(8.9) 

2 

72.3 
(19.0) 

3 

71.8 
(19.1) 

3 

67.0 
(5.3) 

8 

67.2 
(4.6) 

8 
H35 %CA 42.3 60.8 66.7 67.9 63.2 63.8 64.3 
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(9.4) 
5 

(9.2) 
3 

(-) 
1 

(16.6) 
3 

(20.4) 
2 

(8.3) 
9 

(6.0) 
8 

H50 %CA 39.9 
(8.0) 

5 

54.6 
(6.6) 

3 

56.6 
(-) 
1 

67.0 
(15.8) 

3 

61.6 
(20.5) 

2 

60.9 
(6.3) 

9 

62.8 
(3.9) 

8 
H65 %CA 37.9 

(6.2) 
5 

54.5 
(3.4) 

3 

56.3 
(-) 
1 

63.3 
(16.8) 

3 

58.8 
(23.3) 

2 

60.8 
(8.7) 

9 

61.9 
(6.4) 

8 
 Males 
 Gombe (left) Kibale (left) Kibale (right) Mahale (left) Mahale (right) Taï (left) Taï (right) 
F35 shape 1.38 

(0.17) 
2 

1.42 
(0.12) 

6 

1.37 
(0.06) 

5 

1.34 
(-) 
1 

1.34 
(-) 
1 

1.53 
(0.08) 

5 

1.51 
(0.14) 

3 
F50 shape 1.39 

(0.16) 
2 

1.34 
(0.17) 

6 

1.28 
(0.06) 

5 

1.34 
(-) 
1 

1.42 
(-) 
1 

1.50 
(0.08) 

5 

1.55 
(0.23) 

3 
F65 shape 1.39 

(0.21) 
2 

1.42 
(0.21) 

6 

1.39 
(0.15) 

5 

1.37 
(-) 
1 

1.31 
(-) 
1 

1.37 
(0.11) 

5 

1.45 
(0.03) 

3 
H35 shape 1.30 

(0.12) 
4 

1.48 
(0.23) 

6 

1.55 
(0.20) 

6 

1.23 
(-) 
1 

1.17 
(-) 
1 

1.11 
(0.06) 

3 

1.22 
(0.17) 

2 
H50 shape 1.10 

(0.02) 
4 

1.22 
(0.11) 

6 

1.17 
(0.07) 

6 

1.17 
(-) 
1 

1.14 
(-) 
1 

1.26 
(0.10) 

3 

1.29 
(0.17) 

2 
H65 shape 1.14 

(0.05) 
4 

1.21 
(0.09) 

6 

1.18 
(0.07) 

6 

1.18 
(-) 
1 

1.12 
(-) 
1 

1.19 
(0.12) 

3 

1.08 
(0.05) 

2 
        
F35 %CA 63.6 

(10.7) 
2 

63.3 
(7.7) 

4 

62.4 
(6.1) 

4 

63.9 
(-) 
1 

63.6 
(-) 
1 

63.4 
(7.2) 

5 

63.0 
(2.3) 

3 
F50 %CA 65.3 69.0 68.8 73.8 73.9 69.2 70.1 
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(10.6) 
2 

(6.9) 
4 

(6.2) 
4 

(-) 
1 

(-) 
1 

(6.9) 
5 

(1.6) 
3 

F65 %CA 65.0 
(11.1) 

2 

70.4 
(6.2) 

4 

71.7 
(6.0) 

4 

76.9 
(-) 
1 

76.7 
(-) 
1 

72.2 
(7.7) 

5 

72.6 
(3.2) 

3 
H35 %CA 63.0 

(8.7) 
4 

68.6 
(4.2) 

4 

68.9 
(4.8) 

4 

74.1 
(-) 
1 

75.0 
(-) 
1 

65.4 
(10.4) 

3 

67.2 
(15.4) 

2 
H50 %CA 55.9 

(9.1) 
4 

63.2 
(5.5) 

4 

63.4 
(4.9) 

4 

69.2 
(-) 
1 

69.5 
(-) 
1 

63.3 
(6.1) 

3 

63.6 
(8.2) 

2 
H65 %CA 50.4 

(8.1) 
4 

60.5 
(8.1) 

4 

60.7 
(7.4) 

4 

61.6 
(-) 
1 

61.2 
(-) 
1 

60.6 
(3.7) 

3 

59.1 
(7.2) 

2 
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Table 6.  Community sex-specific comparisons in diaphyseal shape (Imax/Imin) 

females (left) females (right)a

 n F p 
Bonferroni 

post hoc analysis
 n F p 

LSD 

post hoc analysis

F35 19 1.914 0.171 - F35 14 4.270 0.042 T > M 

F50 19 1.742 0.201 - F50 14 2.600 0.119 - 

F65 19 0.093 0.963 - F65 14 1.201 0.338 - 

H35 21 7.227 0.002 K >> T H35 12 6.134 0.021 K >> T 

H50 21 5.925 0.006 T >> G H50 12 5.846 0.024 T > K,M 

H65b 21 4.120 0.023 T > G H65 12 4.462 0.045 T > M 

males (left) males (right)a

F35 14 1.410 0.297 - F35 9 2.424 0.169 - 

F50 14 1.216 0.354 - F50b 9 3.426 0.102 - 

F65 14 0.089 0.964 - F65 9 0.517 0.621 - 

H35b 14 3.304 0.066 - H35 9 3.231 0.112 - 

H50 14 2.081 0.166 - H50 9 1.408 0.315 - 

H65 14 0.621 0.617 - H65 9 2.080 0.206 - 

G = Gombe, K = Kibale, M = Mahale, T = Taï; F = femur, H = humerus; 35 = mid-distal diaphysis, 

50 = midshaft, 65 = mid-proximal diaphysis.  aGombe individuals excluded from comparisons.  

bFailed a Levene test of homogeneity of variances, thus when ANOVA was significant a Tamhane’s 

T2 post hoc analysis was conducted.    
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Table 7.  Community sex-specific comparisons in percent cortical bone (%CA) 

females (left) females (right)a

 n F p 
Bonferroni 

post hoc analysis
 n F p 

LSD 

post hoc analysis

F35b 19 4.576 0.018 T > G F35b 14 0.561 0.586 - 

F50 19 4.858 0.015 M,T > G F50b 14 0.469 0.637 - 

F65b 19 4.906 0.014 T > G F65b 14 0.443 0.653 - 

H35 21 6.318 0.004 T >> G; K,M > G H35b 12 0.371 0.700 - 

H50 21 8.137 0.001 M,T >> G; K > G H50b 12 0.017 0.983 - 

H65 21 7.757 0.002 M,T >> G; K > G H65b 12 0.078 0.926 - 

males (left) males (right)a

F35 14 0.044 0.987 - F35 9 0.099 0.907 - 

F50 14 0.370 0.777 - F50 9 0.657 0.552 - 

F65 14 0.804 0.520 - F65 9 0.502 0.629 - 

H35 14 0.871 0.488 - H35b 9 0.396 0.689 - 

H50 14 1.690 0.232 - H50 9 0.662 0.550 - 

H65 14 2.119 0.161 - H65 9 0.039 0.962 - 

G = Gombe, K = Kibale, M = Mahale, T = Taï; F = femur, H = humerus; 35 = mid-distal diaphysis, 

50 = midshaft, 65 = mid-proximal diaphysis.  aGombe individuals excluded from comparisons.  

bFailed a Levene test of homogeneity of variances, thus when ANOVA was significant a Tamhane’s 

T2 post hoc analysis was conducted.   
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Table 8.  Sex-specific community means (1 s.d.) for normalized Imax. 

 Females 
 Kibale 

(left) 
Kibale 
(right) 

Mahale 
(left) 

Mahale 
(right) 

Taï 
(left) 

Taï 
(right) 

F35 Imax 1.04 
(0.25) 

3 

1.06 
(0.17) 

3 

1.00 
(0.09) 

3 

1.05 
(0.05) 

3 

1.53 
(0.28) 

3 

1.40 
(0.21) 

4 
F50 Imax 1.08 

(0.23) 
3 

1.10 
(0.20) 

3 

1.03 
(0.14) 

3 

1.11 
(0.14) 

3 

1.57 
(0.29) 

3 

1.48 
(0.20) 

4 
F65 Imax 1.10 

(0.30) 
3 

1.10 
(0.28) 

3 

1.09 
(0.14) 

3 

1.12 
(0.09) 

3 

1.48 
(0.23) 

3 

1.41 
(0.15) 

4 
H35 Imax 0.70 

(0.07) 
4 

0.66 
(0.07) 

2 

- - 0.80 
(0.09) 

5 

0.82 
(0.07) 

4 
H50 Imax 0.76 

(0.10) 
4 

0.71 
(0.13) 

2 

- - 0.98 
(0.19) 

5 

1.01 
(0.19) 

4 
H65 Imax 0.75 

(0.04) 
4 

0.74 
(0.03) 

2 

- - 0.97 
(0.20) 

5 

0.98 
(0.21) 

4 
 Males 
 Kibale 

(left) 
Kibale 
(right) 

Mahale 
(left) 

Mahale 
(right) 

Taï 
(left) 

Taï 
(right) 

F35 Imax 1.28 
(0.15) 

6 

1.29 
(0.14) 

5 

1.19 
(-) 
1 

1.22 
(-) 
1 

1.28 
(0.44) 

2 

1.29 
(0.01) 

2 
F50 Imax 1.29 

(0.13) 
6 

1.26 
(0.09) 

5 

1.20 
(-) 
1 

1.25 
(-) 
1 

1.30 
(0.46) 

2 

1.33 
(0.07) 

2 
F65 Imax 1.30 

(0.12) 
6 

1.29 
(0.06) 

5 

1.22 
(-) 
1 

1.21 
(-) 
1 

1.24 
(0.25) 

2 

1.36 
(0.05) 

2 
H35 Imax 0.84 

(0.17) 
6 

0.86 
(0.17) 

6 

- - 0.78 
(-) 
1 

- 

H50 Imax 0.87 
(0.12) 

6 

0.85 
(0.11) 

6 

- - 0.97 
(-) 
1 

- 

H65 Imax 0.93 
(0.12) 

6 

0.90 
(0.11) 

6 

- - 1.01 
(-) 
1 

- 
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Table 9.  Kruskal-Wallis tests for community sex-specific comparisonsa in normalized Imax. 

females (left) females (right) 

 n X2 p Mean ranks  n X2 p Mean rank 

F35 9 4.622 0.099 - F35 10 5.573 0.062 - 

F50 9 4.356 0.113 - F50 10 4.564 0.102 - 

F65 9 4.356 0.113 - F65 10 4.564 0.102 - 

H35b 9 2.160 0.142 - H35b 6 3.429 0.064 - 

H50b 9 4.860 0.027 T > K H50b 6 3.429 0.064 - 

H65b 9 6.000 0.014 T > K H65b 6 3.429 0.064 - 

males (left) males (right) 

F35 9 0.156 0.925 - F35 8 1.200 0.549 - 

F50 9 0.156 0.925 - F50 8 1.917 0.384 - 

F65 9 0.289 0.866 - F65 8 4.200 0.122 - 

H35b 7 0.250 0.617 - H35 6 - - - 

H50b 7 1.000 0.317 - H50 6 - - - 

H65b 7 0.250 0.617 - H65 6 - - - 

K = Kibale, M = Mahale, T = Taï; F = femur, H = humerus; 35 = mid-distal diaphysis, 50 = 

midshaft, 65 = mid-proximal diaphysis.  aGombe individuals excluded.  bGombe and Mahale 

individuals excluded from comparisons. 



 Annual rainfall Ground cover Elevation range Slope of terrain1

Community ranking M > T > G > K T > M ≈ K > G M > G > K > T G > M > K > T 

     

Left femur shape  Female 

Male 

35%: T = K > G > M 

35%: T > K > G > M 

50%: T > K = G > M 

50%: T > G > K = M 

65%: K > T > G > M 

65%: K > G > T = M 

Right femur shape  Female 

Male 

35%: T > K > M 

35%: T > K > M 

50%: T > K > M 

50%: T > M > K 

65%: T > K > M 

65%: T > K > M 

Left humerus shape  Female 

Male 

35%: K > M > G > T 

35%: K > G > M > T 

50%: T > K > M > G 

50%: T > K > M > G 

65%: T > K > M > G 

65%: K > T > M > G 

Right humerus shape  Female 

Male 

35%: K > M > T 

35%: K > T > M 

50%: T > K > M 

50%: T > K > M 

65%: T > K > M 

65%: K > M > T 

G = Gombe, K = Kibale, M = Mahale, T = Taï.  1Quantitative data on slope of terrain from Taï Forest National Park were unavailable, 

but based on elevation ranges, it seems reasonable to characterize terrain at Taï as flattest among the sites.

Table 10. Ranked shape ratios (Imax/Imin) vs. ranked habitat characteristics. 
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Figure 1. 
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