
Human Leg Model Predicts Ankle Muscle-Tendon 
Morphology, State, Roles and Energetics in Walking

Citation
Krishnaswamy, Pavitra, Emery N. Brown, and Hugh M. Herr. 2011. Human leg model predicts 
ankle muscle-tendon morphology, state, roles and energetics in walking. PLoS Computational 
Biology 7(3): e1001107.

Published Version
doi://10.1371/journal.pcbi.1001107

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:5360622

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:5360622
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Human%20Leg%20Model%20Predicts%20Ankle%20Muscle-Tendon%20Morphology,%20State,%20Roles%20and%20Energetics%20in%20Walking&community=1/4454685&collection=1/4454686&owningCollection1/4454686&harvardAuthors=19f4e5bd51b74e0f56fdbbea47d2a138&department
https://dash.harvard.edu/pages/accessibility


Human Leg Model Predicts Ankle Muscle-Tendon
Morphology, State, Roles and Energetics in Walking
Pavitra Krishnaswamy1, Emery N. Brown1,2,3, Hugh M. Herr1,4*

1 Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America, 2 Department of

Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America, 3 Department of Anesthesia, Critical Care and

Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America, 4 The Media Laboratory, Massachusetts Institute

of Technology, Cambridge, Massachusetts, United States of America

Abstract

A common feature in biological neuromuscular systems is the redundancy in joint actuation. Understanding how these
redundancies are resolved in typical joint movements has been a long-standing problem in biomechanics, neuroscience
and prosthetics. Many empirical studies have uncovered neural, mechanical and energetic aspects of how humans resolve
these degrees of freedom to actuate leg joints for common tasks like walking. However, a unifying theoretical framework
that explains the many independent empirical observations and predicts individual muscle and tendon contributions to
joint actuation is yet to be established. Here we develop a computational framework to address how the ankle joint
actuation problem is resolved by the neuromuscular system in walking. Our framework is founded upon the proposal that a
consideration of both neural control and leg muscle-tendon morphology is critical to obtain predictive, mechanistic insight
into individual muscle and tendon contributions to joint actuation. We examine kinetic, kinematic and electromyographic
data from healthy walking subjects to find that human leg muscle-tendon morphology and neural activations enable a
metabolically optimal realization of biological ankle mechanics in walking. This optimal realization (a) corresponds to
independent empirical observations of operation and performance of the soleus and gastrocnemius muscles, (b) gives rise
to an efficient load-sharing amongst ankle muscle-tendon units and (c) causes soleus and gastrocnemius muscle fibers to
take on distinct mechanical roles of force generation and power production at the end of stance phase in walking. The
framework outlined here suggests that the dynamical interplay between leg structure and neural control may be key to the
high walking economy of humans, and has implications as a means to obtain insight into empirically inaccessible features of
individual muscle and tendons in biomechanical tasks.

Citation: Krishnaswamy P, Brown EN, Herr HM (2011) Human Leg Model Predicts Ankle Muscle-Tendon Morphology, State, Roles and Energetics in Walking. PLoS
Comput Biol 7(3): e1001107. doi:10.1371/journal.pcbi.1001107

Editor: Karl J. Friston, University College London, United Kingdom

Received August 16, 2010; Accepted February 10, 2011; Published March 17, 2011

Copyright: � 2011 Krishnaswamy et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the NIH Pioneer Award DP1 OD003646 (to ENB) and the MIT Media Lab (Consortia Accounts 2736448 and 6895867). The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: hherr@mit.edu

Introduction

A common feature in biological neuromuscular systems is the

redundancy in joint actuation. Redundancies in actuating a joint

with a prescribed force and motion can be classified at three levels.

Joints can be actuated by multiple muscle-tendon units (MTUs)

working simultaneously. At any instant, energy for MTU work

could come from the series elastic tendon or from the active

muscle. Each muscle has many sensors and can be controlled by

multiple neural pathways acting together. Understanding how

these redundancies are resolved in typical joint movements has

been a long-standing problem in biomechanics, neuroscience and

prosthetics [1,2].

There is a large literature (reviewed in [3]) on objectives that

might drive the way humans resolve neuromechanical redundan-

cies. Several objectives ranging from metabolic cost, efficiency,

and mechanical economy to fatigue and active muscle volume

have been proposed as driving factors. Direct measurements in

humans have revealed some details pertaining to the ‘inner

workings’ of individual muscles and tendons resulting from the

resolution of neuromechanical redundancies in natural execution

of common tasks. Electromyography (EMG) has long quantified

neurally stimulated electrical activity (activation) in individual

muscles, and indicated which MTUs contribute to joint dynamics

during the course of a movement [4]. Recently, ultrasonography

has resolved ankle plantar flexor and knee extensor MTU strain

into muscle strain and tendon strain during walking, running, and

jumping [5–7]. Novel approaches using powered exoskeletons to

replace leg muscle work have helped estimate the metabolic

efficiency of ankle joint actuation in walking [8,9]. Together, the

above studies have uncovered critical neural, mechanical and

energetic aspects of individual muscle and tendon contributions to

joint actuation.

However, the abundance of research on the (a) driving

objectives underlying and (b) empirical observations on redun-

dancy resolution is not accompanied by a unifying theoretical

framework that relates the two. There is a need to explain the

breakdown of joint actuation, possibly driven by one or more of

the above driving objectives, into observed individual element

contributions.

Previous studies [10,11] have proposed that the optimality of

neural control for prescribed objectives can resolve individual
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muscle-tendon contributions to joint actuation in walking. These

studies model leg MTUs with morphological parameters based on

literature estimates, assert a control objective such as tracking

biological joint mechanics or minimizing metabolic cost of

transport, and obtain optimal muscle activation profiles for the

specified objective. While the importance of neural control in

determining the operation of individual muscles and tendons is

undisputed, such approaches neglect the fact that many sets of

activation patterns can correspond to similar values for the driving

objective - making it difficult to uniquely resolve individual muscle

activation profiles from an overall mechanical or energetic

prescription. Further, several control objectives may be operating

in tandem to generate neural activations given the highly non-

linear, multi-input multi-output nature of the system - making it

difficult to obtain optimal neural activations using a top-down

approach. These observations reduce the utility of such approach-

es for explaining empirical results and making testable predictions

on the workings of individual muscles and tendons within the

system.

An alternative proposal for resolving individual muscle-tendon

contributions to joint actuation in walking is found in optimal

design. A starting point for such an approach lies in a recent study

by Lichtwark & Wilson [12]. They propose that optimal muscle-

tendon design for efficient actuation of an isolated MTU can

explain empirically observed muscle and tendon strain profiles

within the MTU. The empirically realistic nature of this proposal

may directly stem from the well-documented fact that compliant

tendons enable muscles to produce force economically [13,14].

However, this proposal does not scale to explain the breakdown of

joint actuation amongst individual elements, as the forces

produced by individual MTUs are not known a priori for a given

joint actuation.

Thus, existing optimal control and optimal design approaches

are limited, albeit in different ways, by the very joint actuation

redundancies they seek to address. Extra sources of information

are needed to address this problem. EMG data contains

information about muscle activity, and could potentially be used

as a source of biologically realistic neural control commands to

muscles. This promises to circumvent the above-mentioned

difficulties in obtaining optimal muscle activations. Further, having

muscle activation profiles could also enable a more systematic

study of the effects of MTU structure (design) on the breakdown of

joint actuation amongst individual elements. In other words,

estimating muscle activations from the data allows a consideration

of both neural control and muscle-tendon design, in tandem, on

the operation of individual muscles and tendons.

Motivated by the above ideas, we have developed a theoretical

framework to (a) address how the load of actuating a joint is shared

amongst the many MTUs, (b) elucidate features of leg design and

neuromuscular control enabling the breakdown and (c) clarify

functional advantages arising from the load sharing. As a case study,

we examine ankle joint actuation in human walking. We model the

three primary leg MTUs contributing to ankle action in walking

(Figure 1). Each MTU is characterized by (a) Hill-type muscle

dynamics [15], (b) a common non-linear tendon model [16] and (c)

a bilinear excitation-activation relation [3] - all of which are

assumed to be internally consistent. These relations are parameter-

ized with a minimal set of twelve muscle-tendon morphological

features (representing leg MTU design). We conduct a computa-

tional exploration of the muscle-tendon design space for correspon-

dence to well-known biological objectives. Specifically, for each set

of system parameters, we actuate the model with joint state and

muscle activations from healthy human gait data (Methods) to

characterize the resulting joint torque and metabolic consumption.

An overview of the modeling scheme is presented in Figure 1.

Our results are organized into five sections. First we present our

estimates of muscle activations from EMGs recorded during

human walking. In the second section, we characterize the leg

parameter space by ability to produce human-like ankle torques

and economy. We show that there is a unique parameter vector

that is able to accomplish both, and that this unique vector

corresponds to the maximum metabolic economy. Third, we

present the optimal leg parameters, compare them with biological

values and discuss their influence on metabolic economy. Fourth,

we present model plantar flexor muscle and tendon strain

predictions, compare them with two sets of independent empirical

recordings and use them to evaluate mechanical power breakdown

between muscle and tendon within each MTU. In the fifth section,

we present metrics regarding the breakdown of ankle actuation

amongst the two different plantar flexors.

Results

Estimating Muscle Activation
Muscle activation is an indicator of a muscle’s force-generation

capability, indicated by the proportion of troponin bound to

calcium [17–19]. It is driven by neurally stimulated electrical

activity in the muscle. Since EMG data is a qualitative indicator of

muscle electrical activity [4], it contains valuable information

about individual muscle activity and can be useful in understand-

ing the breakdown of joint actuation. However, quantitative uses

of EMG data have been limited by variability in the signal and

measurement artifacts. Here we show that considering dominant

biophysical characteristics of the muscle activation build-up along

with the randomness inherent in the EMG measurement yields

repeatable and reasonable activation estimates.

Classic EMG analysis involves rectification and low-pass

filtering [20,21]. But low-pass filters smear out the filtered signal,

leading to loss of both phase and amplitude information,

particularly turn-on and turn-off of muscle activity [22]. Recently

Sanger proposed a probabilistic method to resolve the signal

variability and noise floor related problems in analyzing EMG

Author Summary

Biological neuromuscular systems are generally able to
perform a specified movement task in several ways – as
they have significantly more degrees of freedom than
mechanical constraints. Understanding how humans
resolve these redundancies to drive individual muscles
and tendons in typical joint movements is of interest in the
fields of biomechanics, neuroscience and prosthetics.
Many experimental studies have uncovered neural, me-
chanical and energetic features of individual muscle and
tendon function in common tasks like walking and
running. However, a unifying theoretical framework that
explains the many independent empirical observations is
yet to be established. In this work, we show that leg
muscle-tendon morphology and neural co-ordination,
together, enable efficient ankle movements in walking.
This finding provides quantitative insight into the opera-
tion and performance of posterior-leg muscles and
tendons in walking, and motivates the idea that different
muscle-tendon units take on different mechanical roles to
best actuate the ankle in gait. Results reported have
implications both for better understanding neuromuscular
co-ordination in gait, and for the design of lower limb
prosthetic and orthotic technologies.

Leg Model Predicts Muscle Function in Walking
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signals [22]. In this paper, the muscle electrical activity x(t) driving

the EMG signal was modeled as a jump-diffusion process:

dx~E(dW )z(U{x)dNb ð1Þ

where dW is a diffusion process with rate E, dN is a jump process

with frequency b and U represents a uniform distribution

indicating that x(t) is a uniform random variable when there is

a jump. The measured EMG signal was modeled as a random

process with an exponential density and rate given by 1=x(t):

P(emgjx)~
exp ({emg=x)

x
ð2Þ

Propagating the probability densities in a classic recursive

Bayesian manner, to estimate the x(t) that best describes the

Figure 1. Schematic of model and experiment. The dynamical model of muscle-tendon units contributing to ankle action in walking is shown.
Anatomical correlates of the model are indicated. The soleus and gastrocnemius are collectively referred to as plantar flexor muscles. The red
triangles denote muscles, green springs denote tendons, the dashed pink lines denote moment arms and gray rectangles denote body segments.
The term ‘leg’ is used as per its anatomical definition throughout this paper. All muscle-tendon units are defined with Hill-type dynamics,
parameterized with 12 muscle-tendon morphological features ~mmtrial (tendon slack length, tendon material properties and muscle maximum isometric
force). For randomly generated parameter vectors ~mmtrial, the model was actuated with kinematic and EMG data from healthy subjects. Details on data
collection, model dynamics, computation of model torque and metabolic cost are in Methods. The resulting model ankle torque and metabolic
consumption were characterized to understand biophysical features underlying the gait data.
doi:10.1371/journal.pcbi.1001107.g001

Leg Model Predicts Muscle Function in Walking
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observed EMG signal, Sanger reported excellent temporal

resolution of EMG turn-on/turn-off during forced maximal

contraction tasks. However, the biophysical relevance to analyzing

EMG from dynamic tasks is limited by (a) the sharp, near-

instantaneous turn-on and turn-off in the Sanger estimates, and (b)

the lack of amplitude-buildup when the muscle is on (Figure 2).

We attribute this to differences between the modeled jump-

diffusion process and the true buildup of muscle active state in

normal tasks (Supplementary Text S2). The constant frequency

and uniform amplitude of the jump process [22] compromises the

history dependence of active-state buildup, causing sudden jumps

in the estimates when the EMG signal turns on/off. Further, the

Sanger model has the same jump rate for source and sink or for

activation and deactivation. This neglects the differences in

activation and deactivation time constants that are critical to

muscle activation build-up [19]. Thus the Bayesian approach

Figure 2. Estimating muscle activations from EMG data. The rectified EMG signal is shown in blue, the Bayesian estimate of muscle electrical
activity x(t) based on [22] is shown in green and activation estimates a(t) obtained by feeding in the Bayesian estimate through bilinear activation
dynamics are in red. The step-like feature of the Bayesian estimate is apparent. The muscle activation estimate builds up after the EMG bursts on, and lasts
well after the EMG turns off. Step to step variations in the EMG signals are seen, as are their effects on the activation estimates. The position of the leg
corresponding to the time axis is shown for interpretation. The leg is shaded during stance (between heel strike and toe off) and transparent during swing.
doi:10.1371/journal.pcbi.1001107.g002

Leg Model Predicts Muscle Function in Walking
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proposed in [22] appears to estimate the times when muscle

electrical activity turns on/off, and not the muscle active state

because activation dynamics (relating electrical activity to cross

bridge formation) are not explicitly included.

One way to account for the activation dynamics would be to

incorporate them directly into the jump-diffusion model and

numerically evaluate a solution. We chose a simpler approxima-

tion, and applied the activation dynamics on the muscle electrical

activity x(t) from Sanger’s model to estimate muscle active state

a(t). Activation dynamics was specified by the classic bilinear form

[3]:

da(t)

dt
z

1

tact

(cz(1{c)x(t))|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
rateconstant

2
664

3
775a(t)~

1

tact

x(t),

where 0vc~
tact

tdeact
v1

ð3Þ

This differential equation models the history dependence in

build-up of muscle activation, and captures differences between

activation (tact) and deactivation (tdeact) time constants with the

ratio c. Notes on the biophysical relevance of our estimation

procedure are available in Supplementary Text S2.

The muscle activation profiles estimated using our two-step

procedure are shown in Figure 2. The intermediate Bayesian

estimate x(t) has a step-like shape as it primarily captures the turn

on and turn off of the muscle electrical activity measured by EMG.

The estimated activations a(t) have profiles that are qualitatively

expected from known temporal features of ankle muscle force build-

up [4]. Further, the synergistic soleus and gastrocnemius muscles

have similar profiles. Random step to step variations in EMG signals

do not drastically change the estimated activation profiles. A

repeatable ensemble average was obtained in as few as eight trials in

cases of minimal motion artifact. The ensemble average estimates

(Supplementary Text S2) show little variability in turn-on/turn-off

times, and show greater variability in amplitude features (particu-

larly when activation is high). The method and resulting estimates

were found to be quite robust to normal, day-to-day variations in

electrode placement for a given subject. We used our estimates of

neurally stimulated muscle activations observed in walking to

conduct the computational exploration (illustrated in Figure 1) of

muscle-tendon morphologies.

Mechanical and Metabolic Effects of Muscle Activations
and MTU Morphologies

Using the muscle activations a(t) and joint kinematics hjoint(t)
estimated from normal walking data, we actuated the leg muscle-

tendon model M parameterized by a set of morphological features~mm.

The parameter vector ~mm comprises the tendon reference strain lref ,

the tendon shape factor Ksh, the muscle maximum isometric force

Fmax and the tendon slack length lsl for each of the three ankle

MTUs. We randomly generated sets of leg muscle-tendon parameter

vectors, ~mm (from a uniform distribution with bounds stated in

Supplementary Text S1), and computed both the model ankle torque

profile, tmod(t) and metabolic energy consumed, C, for each set:

M(~mm,a(t),hjoint(t))~½tmod(t),C� ð4Þ

The resulting errors between model and human ankle torques

are plotted against the model metabolic consumption (Figure 3).

Notable features of the plot include (a) the overall L shape, (b) a

vertical boundary evidently representing the minimum energy that

model muscles have to expend given the inputs, regardless of

torque match and (c) an evidently systematic horizontal boundary

below the population representing the best match between model

and data. Each point along this horizontal boundary corresponds

to a different metabolic consumption for the same level of error

between model and human dynamics. A published empirical

estimate of the range of metabolic consumption for ankle actuation

in walking [8] is indicated, and is seen to be well-approximated by

points exhibiting near-minimal economies, close to the the vertical

boundary.

Remarkably, this overall parameter-space characterization

reveals that the empirically observed realization is among the

most economical of the many ways to produce human-like torque.

Thus the human leg and the nervous system controlling it resolve

the load-sharing redundancies in actuating the ankle most

economically.

Points that best approximate human-like dynamics and optimal

human-like metabolics lie near the bottom horizontal and left

vertical boundary respectively. Thus points representing a logical

intersection of the model’s ability to best produce both human-like

dynamics and metabolics lie in a small region at the lower-left

corner (indicated by box in Figure 3). Points in this region not only

have similar values of the torque and metabolic cost but also have

similar values for the morphological parameters defining them.

The coefficients of variance amongst parameter values in the

corner region, listed in the caption of Figure 3, are low for most of

the parameters (details in Supplementary Text S3). Further, all

points outside the corner region compromise on either torque

match, or economy, or both.

Thus, parameter vectors defining the corner region points can

be identified computationally by encoding the simultaneous

realization of two objectives (torque match and optimal economy)

into a multi-objective problem. Solutions for such problems are

generally sets of points that simultaneously realize both objectives

as best as possible. These solutions, known as Pareto solutions,

typically form a frontier along which the two objectives can be

traded off against each other to varying degrees. In the special case

that both objectives logically intersect at a mathematically sharp

corner, there is a single strong Pareto optimal solution that best

fulfils both objectives without any tradeoffs. As demonstrated

above, our problem resembles this special case - within systematic

limits of experimental precision, data variability and functional

relevance. Thus it is possible to interpret our problem within the

strong Pareto optimal framework, and simplify standard multi-

objective optimization methods (such as Aggregate Objective

Functions, Pareto ranking, evolutionary algorithms, or cost-

constraint techniques [23]) to solve for the biologically realistic

parameter vectors.

Our simplified approach relies on the observation that

biologically realistic muscle-tendon morphological parameters

(henceforth referred to as ~mmb) should (a) produce the normal

human walking mechanics, and (b) minimize metabolic cost. To

solve for ~mmb we take a two-step path: (a) restrict the search to

parameter vectors that enable the model to produce human-like

torque (horizontal boundary), and (b) look, within the restricted

space, for parameter vectors that optimize economy. Thus, the

problem of finding ~mmb is akin to a constrained optimization,

performed by generating candidate parameter vector populations

and iteratively focussing the search on the biologically realistic left

corner (Methods).

For each of the five subjects, we used the training gait data to

obtain activation and joint state estimates, automated the above

Leg Model Predicts Muscle Function in Walking
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exploration to find corner region parameters (listed in Supple-

mentary Text S3) and defined the model with the optimal vector

to be the ‘trained model’. We cross-validated the trained model

against variations in input data (Supplementary Text S3) and

proceeded to characterize the biological relevance of the trained

model morphology.

Biologically Realistic Morphologies and Relevance to
Metabolic Economy

The optimal leg morphological features ~mmb for each subject

were seen to fall within physiological ranges [18]. To gain insight

into non-apparent features underlying the solution, we extracted

both functional and geometrical features that significantly

influence muscle-tendon action and the associated metabolics: (a)

tendon stiffnesses and (b) muscle-tendon rest length ratios.

To compute these metrics, the trained model dynamics were

solved numerically (Methods) to obtain muscle lengths lCE, muscle

velocities vCE, tendon lengths lSE, muscle-tendon unit force profiles

Fm and model ankle torques tmod. Tendon stiffness was

approximated as the best fit slope of the tendon force-length

relation defined by the computed morphologies Ksh, lref and Fmax

(Methods). Only regions of the tendon F–l curve where force was

over 10% of the peak force were considered to prevent the non-

linear toe regions from artificially reducing the stiffness estimates.

Geometric metrics were computed using the optimized morpho-

logical features. Since the ankle metabolic cost guiding identification

of biologically realistic morphological parameters is dominated by

stance-phase activity of the powerful soleus and gastrocnemius

muscles, we focus on predictions for these two plantar flexor

muscles.

Table 1 highlights the MTU structure trends. Notably, the model

soleus and gastrocnemius tendon stiffness values (kSOL and kGAS)

are quite compliant and lie within literature ranges [12,24]. While

the stiffness trends encapsulate effects of parameters Ksh, lref and

Fmax, the effect of slack length lsl is captured in a geometric effect

described in the last two rows of Table 1. The ratio of muscle rest

length lopt to the computed tendon slack length lsl is conserved for

both plantar flexor muscles across subjects. This trend is consistent

with published human cadaver studies as well [25].

Figure 3. Relation between model dynamics and metabolics across the leg parameter space for normal gait data. Each point encodes
a different parameter vector ~mmtrial, and therefore a different leg morphology. The torque axis is defined relative to human ankle torques in normal
walking. The metabolic consumption values are calculated as outlined in Methods. The corner region, marked by the box, is the region corresponding
to biologically realistic ankle torques and metabolic energies. The dimensions of the box correspond to the normal range (within error) of the ankle
torques (from kinetic data obtained in this study) and metabolic energies (from independent studies [8,9]). Points in the corner region have similar
values for the morphological parameters defining them. Coefficients of variance indicating spread amongst parameter vectors in this corner region
are within 4% for most of the 12 parameters: ½2:31%,7:56%,2:52%� for the SOL, GAS and TA reference strains, ½10:9%,49:7%,13:1%� for the SOL, GAS
and TA shape factors, ½1:44%,1:57%,2:04%� for the SOL, GAS and TA slack lengths and ½2:86%,1:79%,3:84%� for the SOL, GAS and TA muscle isometric
forces respectively (more details in Supplementary Text S3).
doi:10.1371/journal.pcbi.1001107.g003

Table 1. Trends in optimal muscle-tendon morphological
parameters.

Subject 1 2 3 4 5

kSOL [N/mm] 228 291 214 245 337

kGAS [N/mm] 111 103 96 103 150

SOL lopt

�
lsl 0:127 0:130 0:127 0:129 0:130

GAS lopt

�
lsl 0:119 0:121 0:120 0:117 0:128

doi:10.1371/journal.pcbi.1001107.t001

Leg Model Predicts Muscle Function in Walking
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Next, we sought to understand the significance of the optimal

morphologies (specifically as embodied in the above in tendon com-

pliance and the conserved lopt/lsl ratio trends) to metabolic economy.

For this, we compared a metabolic efficiency metric accounting for the

effects of tendon elasticity against the efficiency of muscle positive work

alone. Muscle positive work efficiency was computed based on the

metabolic cost of muscle mechanical work during active shortening

(Equation 12). For comparison, a net joint level mechanical efficiency

based on the total metabolic cost of performing mechanical work at

the joint (inclusive of muscle work during active shortening, active

lengthening and passive tendon contributions) was calculated

(Equation 13). In the latter case, the metabolic and mechanical

calculations are not restricted to muscle positive work phases, as the

MTU dynamics can allow tendons to perform positive mechanical

work at the joint even when the muscle cannot.

Table 2 details the resulting muscle positive work efficiency and

the overall joint mechanical work efficiency. The average stance

phase efficiency of muscles doing positive work (without regard to

storage and release of elastic energy) is 0:25+0:06. This is

consistent with empirically measured performance of isolated

skeletal muscle doing positive work [8,16]. Though the plantar

flexor muscles themselves perform at ordinary efficiencies,

accounting for tendon elastic energy contributions boosts their

efficiency in performing joint mechanical work to a high net ankle

mechanical efficiency of 0:68+0:13 during stance phase (Table 2).

To ensure this is not an over-estimate due to neglect of tendon

viscosity, we recalculated with a nominal viscous loss of 10% of the

tendon elastic energy [18] - and obtained a 0:61+0:12 joint work

efficiency, still 2:5 times higher than positive muscle work

efficiency. The observation that accounting for elastic energy

affords a dramatic increase in efficiency of joint work is

qualitatively consistent with another recent report [8].

Thus the biologically realistic morphologies correspond to

compliant tendons that store and release elastic energy to enhance

joint work with little extra metabolic cost to muscles. As the elastic

storage and release is timed to allow muscles to work efficiently,

there is an optimal tendon slack length lsl that is tuned to muscle

optimal length lopt and the input activation profiles. In summary,

our exploration of the muscle-tendon morphological space predicts

that the optimal muscle-tendon morphologies enable the nervous

system to drive ankle muscles in high performance regimes.

Muscle and Tendon Operation within Plantar Flexor
MTUs

We queried the model for further details regarding individual

muscle and tendon operation regimes. Plantar flexor muscle and

tendon length estimates from the model are shown in Figure 4.

Across subjects, both soleus and gastrocnemius muscle strains were

noticeably less than tendon strains. Plantar flexor tendons are

stretched slowly over most of stance, and released quickly before

toe-off just as the muscles shorten rapidly. In accordance with

observations in the previous section, we see that the optimal

morphologies enable the timely storage and release of tendon

elastic energy (stretching and shortening of tendons), giving rise to

efficient (near-isometric) muscle operation. The model’s plantar

flexor muscle strain predictions are qualitatively consistent with

trends reported in independent ultrasonography-based in vivo

measures [5,6].

Further, the model captures the diversity represented in the in vivo

data from different studies. For the gastrocnemius muscle, model

profiles (Figure 4, Panel B) are consistent with ultrasound recordings

reported in [5] for some subjects, and with the measures from [6] for

other subjects (Figure 4, Panel C). Specifically, there are differences

in early stance action that appear to arise largely from differences in

early stance ankle angle, and orientation of the foot at the moment

of ground impact. There are also differences in the degree of peak

shortening towards toe-off. Thus, our results suggest that qualitative

trend variations among different in vivo measures [5,6] may arise

from subject-to-subject gait variations and not necessarily due to

differences in the ultrasonography techniques.

Beyond these qualitative observations, model soleus muscle

peak strains (Figure 4, Panel A) are quantitatively consistent with

those published in [5]. But quantitative differences exist between

model predictions for the gastrocnemius muscle (Figure 4, Panels

B and C) and the two sets of in vivo measurements. Model

gastrocnemius peak shortening strains range from 30{35%, while

[5] and [6] report peak shortening strains of *9% and 20{25%
respectively. To understand the reason for these differences in

muscle strains, we studied the tendon and MTU strain profiles.

Interestingly, model tendon lengths (Figure 4) and MTU lengths

(not displayed) agree quantitatively with both sets of in vivo

measures. However, this does not translate to quantitative

agreement between model and the in vivo muscle strains.

Since muscle length is a geometric function of the tendon and

MTU lengths, the quantitative differences can be attributed to

inconsistencies between the model’s geometry and the complex in

vivo geometry. Sources for discrepancy include (a) dimensions of

the subjects studied, and (b) differences between our lumped

element model geometry and the true anatomical geometries,

arising possibly from the two-dimensional nature of our analyses

(no volume or shape considerations) and from other model

simplifications like constant pennation angles. Nevertheless, the

overall trends in model muscle and tendon strain predictions are

robust to these errors, and empirically realistic.

The value of our modeling effort extends well beyond enabling

comparisons between our theory and published empirical

measurements. Difficulties in directly measuring individual muscle

and tendon forces within a muscle-tendon unit have precluded

resolution of how the total MTU power output breaks down

between the muscle and the tendon. Our analysis provides

estimates of individual muscle and tendon forces, and therefore

enables calculation of muscle power and tendon power within

each MTU - as displayed in Figure 5. The most striking feature of

these plots is that much of the MTU power arises from the tendons

not the muscles. In particular, during the late stance positive

power generation period, tendons provide over 80% of the MTU

power across subjects. This is consistent with the above

observations of tendon strains being much larger than muscle

strains for both plantar flexors. Overall, the soleus MTU has

higher peak MTU powers than the gastrocnemius MTU. This

Table 2. Contribution of tendon elasticity to overall
metabolic efficiency of joint work.

Subject 1 2 3 4 5

Metabolic Cost for Positive Muscle
Work (J)

16:0 11:9 5:7 2:6 5:0

Positive Muscle Mechanical Work (J) 3:2 3:4 1:2 0:55 1:7

Efficiency of Positive Muscle Work 0:20 0:29 0:20 0:21 0:33

Total Metabolic Cost (J) 20:7 24:4 17:1 13:3 9:9

Net Mechanical Work at Joint (J) 13:9 11:6 11:5 10:5 7:8

Mechanical Efficiency at Joint 0:67 0:48 0:67 0:79 0:79

Efficiencies calculated with and without accounting for mechanical work
contributions from the elastic tendon are compared
doi:10.1371/journal.pcbi.1001107.t002
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granularity of information motivates a more detailed study of

similarities and differences in the operation of the different muscles

and tendons.

Roles of Plantar Flexors and Load-Sharing
The synergistic soleus and gastrocnemius muscles are similar in

that they shorten significantly right before toe-off, and move with

low velocities, as is expected from their compliant tendons. But

there are two easily apparent differences in the movement of these

two muscles - during mid and late stance respectively.

First, the length estimates of the two plantar flexors are very

different in mid-stance (Figure 4). In particular, the soleus

lengthens (eccentric operation) during mid-stance while the

gastrocnemius appears characteristically isometric (&30%{55%
GC). Thus the soleus absorbs mechanical work in mid-stance,

while the gastrocnemius holds the tendon in place at the muscle

end and does little mechanical work. This observation is consistent

with ultrasound literature reports [5,7].

Moreover, there are differences in late stance operation of the

two muscles, which are apparent from an analysis of muscle

velocities (Figure 6, Panel A). During pre-toe-off shortening, the

soleus operates at a peak velocity of 0:15vmax{0:20vmax, while

the gastrocnemius operates at a larger peak velocity of

0:25vmax{0:35vmax (pv0:025). These peak toe-off velocities fall

in well-recognized ranges. Muscle efficiency is known to peak

around vCE&0:17vmax for a wide range of muscle lengths, while

muscle mechanical power peaks around v~0:3vmax [13,26].

Within precision of these empirical numbers, our results suggest

that stance-end muscle operation may be driven by peak efficiency

for the soleus and peak mechanical power for the gastrocnemius.

Motivated by this idea, we compared each muscle’s positive

mechanical work and metabolic consumption during the positive

work phase of late stance. Table 3 reports ratios of positive

mechanical work, metabolic energy cost and the resulting

efficiencies of the two muscles in late stance. While the relation

between soleus and gastrocnemius mechanical work and metabolic

cost had varying trends across subjects, soleus is consistently more

efficient than the gastrocnemius. In other words, soleus achieves a

much bigger bang (mechanical work-wise) for its buck than the

gastrocnemius. Further, the fact that the mechanical work ratios

are low (0:8{2) for most subjects - despite the fact that soleus is

nearly 3 times as large (in cross-section area) as gastrocnemius -

suggests that the gastrocnemius may be more powerful than soleus

on a per fiber basis (due to the velocity difference noted above).

The above results argue that soleus may be an economical force

Figure 4. Model predictions of soleus and (medial) gastrocne-
mius muscle fascicle and tendon lengths. Panel A displays soleus
muscle and tendon length predictions, while Panels B and C display
gastrocnemius muscle and tendon length predictions for two different
subjects. Dashed lines in panels A, B and C represents standard
deviations, propagated from standard deviations of data-based
activation and muscle-tendon unit length estimates. Notable features
across the panels include (a) the relatively small changes in muscle
lengths for much of stance, (b) the slow stretch of tendons in mid-
stance, and (c) the rapid recoil of tendons in late stance. These
observations are qualitatively consistent with previously published
ultrasonography-based measures on walking humans [5,6]. Model
muscle-tendon unit lengths (not shown) are directly related to the
model muscle lengths and tendon lengths. Soleus and gastrocnemius
actions have distinct features. Soleus fascicle strain profile has an
eccentric phase between 35{55% GC, while gastrocnemius fascicle
length is largely isometric between 30{55% GC. The gastrocnemius
fascicle strain profile is variable across subjects during the early stance
and toe-off phases of the gait cycle.
doi:10.1371/journal.pcbi.1001107.g004
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Figure 5. Breakdown of power generation within the soleus and gastrocnemius MTUs. Panel A shows model predictions of soleus muscle,
tendon and MTU power, while Panel B shows similar predictions for the gastrocnemius group. Powers are computed along the tendon axis, and
considered positive during shortening phases for each element (muscle, tendon and MTU). 100% gait cycle is equivalent to a stridetime of 1.1
seconds for the gait cycle displayed. For both the MTUs, tendons contribute much more to the MTU power output than do muscles - especially
during late stance. Soleus has higher peak MTU power than the gastrocnemius MTU primarily because the soleus has a larger cross-section area.
doi:10.1371/journal.pcbi.1001107.g005
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Figure 6. Roles and breakdown amongst different muscle-tendon units spanning the ankle. Panel A shows model predictions of soleus
and gastrocnemius muscle (fascicle) velocity. Plantar flexor muscle velocities are close to zero through most of stance. Standard deviations (thin
dashed lines) are obtained by propagating the standard deviations of the input activations and muscle-tendon lengths through the model. Soleus
and gastrocnemius velocities are significantly different right around toe-off. The asterisks (**) indicate a paired difference t-test significance with
pv0:025. Panel B shows the breakdown of ankle torque amongst the different muscle-tendon units. Peak gastrocnemius torque is nearly half of the
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producing muscle, while gastrocnemius fibers may be more

powerful and metabolically demanding than soleus fibers. Details

of the metabolic and mechanical powers of the two muscles are

available in Supplementary Figure S1.

To further elucidate roles of the two plantar flexors, we studied

the metabolically optimal breakdown of ankle torque between

the two (Figure 6, Panel B). The ratio of peak soleus and

gastrocnemius torque contributions to ankle actuation is an

average of 2:23+0:23 across subjects. This ratio does not directly

follow either the ratios of the optimal Fmax values or the metabolic

costs of the two muscles. It is likely due to a combination of the

Fmax, metabolic costs and the muscle activations. Interestingly, the

most efficient partitioning of ankle torque amongst the synergistic

plantar flexor muscles appears commensurate with the ratios of

soleus and gastrocnemius stiffness reported in Table 1. This

suggests that the soleus and gastrocnemius tendon extensions may

be similar, which is just what we see in Figure 4.

Finally, the muscle operation and load-sharing results arise

uniquely from the optimal parameter vectors. A point ~mm along the

horizontal boundary of Figure 3 - that has a greater metabolic

consumption than the biologically realistic corner points - also

corresponds to (a) different muscle velocities than the optimal

corner points (one-to-one relation between metabolic cost and

muscle velocities), (b) different forces generated for the same

activations, and (c) different (non-optimal) load-sharing solutions

(see Supplementary Text S3).

Discussion

Our results describe how humans resolve redundancies within

and between MTUs involved in ankle joint actuation. We have

demonstrated that there is a unique leg morphology which (a) most

economically relates activations and angles from gait data with

torques therein, (b) produces the above data via plantar flexor

muscle motions, tendon motions, and metabolic performance that

are consistent with experimental observations and (c) resolves

empirically inaccessible features ranging from individual muscle

forces and metabolic demand to mechanical power and working

efficiencies. This morphology (defined by maximum isometric

forces, tendon material properties and slack lengths for the ankle

MTUs) is anatomically realistic, and Pareto optimal for the two

objectives of torque match and efficiency.

To understand features of the morphology that enable this

multi-objective optimality, we make a few observations about the

solution. The optimal muscle isometric forces result in the most

efficient breakdown of joint torque amongst the different MTUs.

The tendon slack lengths balance the capacity for a timely buildup

of force in response to the activations against the need to cycle

tendon elastic energy for efficient force generation. Finally the

optimal tendon material properties make for just the right stiffness

values to produce the required joint torque but with just enough

compliance to reduce muscle metabolic cost. These features

indicate that leg muscles and tendons are designed to enable a

metabolically optimal realization of human-like ankle mechanics

under neural controls observed in normal walking.

Interestingly, the optimal parameters for any one MTU do not

arise independently of those for the other MTUs, as both efficiency

and torque match are net objectives for all the MTUs operating

together. Rather the optimal structural parameters are a solution

for the system as a whole to achieve the two objectives. Therefore,

unlike the Lichtwark & Wilson study [12] that predicted the most

efficient force generating design for an isolated MTU, our results

predict the leg structure that most efficiently breaks down ankle

torque amongst the different MTUs, and then the muscles and

tendons within each MTU - all in an empirically consistent

manner.

Further, the load-division implied by the optimal leg morphol-

ogy also reveals a role division amongst the different muscles. The

gastrocnemius muscle has a very compliant tendon - allowing it to

work isometrically like a clutch in mid-stance, store energy in the

tendon slowly and release it rapidly in late stance to produce high

mechanical power on a per fiber basis - akin to a catapult (as

proposed in [5]). The soleus muscle, on the other hand, has a

stiffer tendon and larger maximum isometric force Fmax - making

it very inefficient to generate high power by rapid shortening in

late stance (as the metabolic cost increases commensurately with

shortening velocities and scales with Fmax). Thus soleus operates at

lower muscle velocities in late stance, and can be thought of as an

efficient force generator. To our knowledge, this is the first

observation of differences in late stance operation of the two

plantar flexor muscles in human walking, and remains to be tested

in future experiments. Interestingly, previous studies have found

differences in energy management by adjacent leg extensor

muscles in insect locomotion [27,28]. Thus differences in

morphology of adjacent synergistically controlled MTUs may

diversify MTU function across species. For smaller muscles like the

tibialis anterior, which contribute little torque or mechanical

power, the efficiency objective appears flat across the MTU design

space. Nevertheless, these muscles may have important roles to

play in fine control or sensing - that could be explored in a future

study. Much of the biomechanics literature has focused on single

objective problems. It has been acknowledged that multiple

objectives could be acting in tandem [3]. Our results motivate the

novel idea that one overall objective (of economically producing

human-like torque) can give rise to different objectives (power,

efficiency, control) for each individual element in the system.

It is possible that the neural controller may be ‘managing’ the

different muscles and tendons spanning the ankle by ‘assigning’

different roles to each - based on their morphology - to efficiently

accomplish ankle actuation in walking. In other words, the

dynamical interplay between neural control (modeled here with

estimated activations from human EMG data) and leg structure

(modeled here with MTU morphologies) may in itself be optimal

for the overall objective of efficiently generating ankle torque. This

idea stands in contrast to previous proposals of the optimality of

neural control alone [10,11,29] or of MTU structure alone [12]

Table 3. Efficiency of positive muscle mechanical work:
Soleus vs. gastrocnemius.

Subject 1 2 3 4 5

Ratio of Positive Muscle Work
(SOL/GAS)

0:95 52:5 1:27 1:56 2:03

Ratio of Metabolic Energy Consumed
for Positive Muscle Work (SOL/GAS)

0:85 4:55 0:92 0:84 1:01

Ratio of Positive Muscle Work
Efficiencies (SOL/GAS)

1:13 11:5 1:39 1:87 2:01

doi:10.1371/journal.pcbi.1001107.t003

peak soleus torque. Total model torque is within normal variations of the biological ankle torques for this subject. Since it is only meaningful to
evaluate muscle action when muscles are ‘on’ and working, figures are presented for stance phase only.
doi:10.1371/journal.pcbi.1001107.g006
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for a prescribed control or performance objective. The interaction

between neural control and muscle-tendon unit mechanics may be

facilitated by any subset of many neural pathways - particularly

reflex pathways. However, there are many possible reflexes

(muscle force [30], fascicle length and velocity [31,32]) that can

modulate impedance of ankle muscles at any given point in the

gait cycle. This neural pathway redundancy has posed a challenge

to decipher when and by how much each reflex pathway may

contribute to activation of any given muscle. A systematic

approach to quantify the role of specific reflexes and resolve this

redundancy is desirable.

Our framework has implications as a starting point for such an

endeavor. Since every reflex pathway is sensitive to specific

changes in muscle state (force, length and velocity), inspecting the

dominant trends in our muscle state and activation estimates

provides insight on possible pathways contributing to the observed

state changes. For instance, a period of muscle stretch and low

activation followed by a period of isometric behavior and a

coincident rise in activation is likely to correspond to a stretch

reflex (gastrocnemius in mid-stance period of walking). A period of

similarly shaped force and activation profiles may involve positive

force feedback (soleus in late stance of walking). Such observations

generate hypotheses on how impedance is modulated within the

neuromuscular system. Forward dynamical simulations with

perturbation analyses could used to test such hypotheses and

quantify contributions of different reflexes to legged dynamics.

Insights gained from such efforts are of interest for applications in

the control of assistive devices [15]. Also, understanding the reflex

responses that (along with tendon and MTU dynamics) modulate

leg extensor muscle impedance after heel-strike may add

perspective to studies on neuro-motor control during mechanical

contact [33].

Finally, the framework described in this study also has

implications as an analytical tool to probe empirically inaccessible

metrics to understand regulation, roles, operation and perfor-

mance of individual elements in gait. The first steps would be to

extend the theory across muscles and joints for walking. Difficulties

in obtaining inputs from gait and EMG data for deeper and more

proximal muscles could be overcome via a forward dynamical

simulation approach wherein both the timings of muscle activity,

along with the muscle-tendon morphological parameters, are

evaluated for our two objectives. If feedback control loops linking

muscle state to activation are also included, perhaps other

objectives of dynamical stability could be considered in tandem -

in a similar framework, to quantitatively characterize the interplay

between neural control and leg morphology. Accounting for feed-

forward contributions to this interplay constitutes an important

challenge that needs to be overcome. Another natural extension

would be to characterize different tasks with our framework. A

question of fundamental interest is to understand whether the

same leg morphology is energetically optimal for the neural

controls and joint mechanics across tasks. An affirmative answer

would suggest that, for any specified task, humans select the joint

mechanics that minimizes metabolic cost for the legs they have. A

negative outcome would imply that human leg morphology and

neuromuscular co-ordination are specifically energetically optimal

for self-selected-speed walking.

Methods

Ethics Statement
This study was conducted in strict accordance with the

principles expressed in the Declaration of Helsinki. The study

was approved by the MIT Committee on the Use of Humans as

Experimental Subjects (protocol number 0903003157). All

subjects provided written informed consent for the collection of

data, subsequent analysis and publication of results.

Data
Data collection. Kinematic, kinetic and electromyographic

(EMG) data were collected at an instrumented motion analysis

facility in the MIT Computer Science and Artificial Intelligence

Lab. Five healthy adult males participated in the study. After

obtaining informed consent, participants were asked to walk

barefoot at a self-selected speed (typically around 1:25{1:35m=s).

Walking trials within 5% of self-selected speed were accepted. For

each participant, a total of 25–30 trials were collected. For two

subjects, data were collected on multiple days (with consistent

calibrations) to test robustness of the modeling and estimation

techniques to day-to-day differences.

Standard procedures were used to collect the three types of data

synchronously. Kinematic data was obtained using an infrared

camera system (16 cameras, VICON motion analysis system,

Oxford Metrics, Oxford, UK) to measure three-dimensional

locations (precision &1mm) of reflective markers at 120Hz. The

markers, 13mm in diameter, were placed at 46 (bilateral) locations

on the participant’s body (Helen Hayes model) to track

movements during trials. Kinetic data was collected using two

back-to-back embedded platforms (Advanced Mechanical Tech-

nology, Inc., Watertown, MA) to measure ground reaction force

and center of pressure locations (precisions &0:1N and 2mm
respectively) at 1080Hz. To ensure natural gait, subjects were not

informed about the force-plate locations. Finally, surface EMGs

were obtained using a 1080Hz 16 channel EMG system and MA-

411 20X gain preamplifiers (Motion Lab Systems, Inc., Baton

Rouge, LA); and disposable pre-gelled surface bipolar electrodes

having 20mm center-to-center spacing (Electrode Store Model

BS-24SAF, part # DDN-20). Electrodes were placed on the

soleus, medial gastrocnemius, lateral gastrocnemius and tibialis

anterior muscles of one randomly chosen leg in the presence of a

physician.

Obtaining joint motion, muscle-tendon geometries and

joint dynamics. Raw marker and force-plate data were

analyzed in SIMM (Software for Interactive Musculoskeletal

Modeling, MusculoGraphics Inc., Evanston, IL) to obtain joint

motion and dynamics. Using biomechanical properties in the

SIMM Full Body Dynamic Model, inverse kinematics was

performed to calculate joint angles, muscle-tendon lengths and

moment arms [25]. Using the SIMM Dynamics Pipeline, inverse

dynamics analyses were performed to determine joint torque

profiles (arising from muscle-tendon contributions only, no

external forces) and full body center-of-mass trajectories. All

steady state walking data were split into gait-cycles and time-

normalized to percent gait cycle (%GC) coordinates. Walking

speed, stride length and timing of key gait cycle events were also

calculated using the motion capture data.

Estimating muscle activation. EMG data was analyzed in

MATLAB(R) (Mathworks, Natick, MA) to estimate the phase and

amplitude of the underlying muscle active state. Raw EMG data

for each muscle was pre-processed by removing DC offsets,

clipping the signal amplitude to within five standard deviations,

full-wave rectifying the clipped signal and then normalizing with

respect to the peak value of the rectified signal [34]. The pre-

processed EMG data was analyzed using the Bayesian algorithm

[22], to estimate the neural excitation x(t) for each muscle. The

bilinear excitation-activation dynamics (Equation 3) was solved in

MATLAB Simulink to estimate muscle activation, a(t). The

activation and deactivation time constants governing Equation 3

Leg Model Predicts Muscle Function in Walking
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were set to average values specified in [18]. The offset in the

minimum estimated amplitude was removed to eliminate the

noise-floor (when muscle was not on).

Plantar flexor muscle EMGs were occasionally corrupted by

motion artifacts. The artifacts were prominent in the neural

excitation estimates x(t) around the foot-flat period (8{30% GC

for soleus, and 15{30% GC for gastrocnemius). The artifacts

were removed using a causal, 100 ms moving average filter applied

on the neural excitation estimates right around foot-flat, while

preserving the shape of the neural excitation profiles.

All gait data for a given subject were split into mutually

exclusive training and testing sets. Within each set, ensemble

averages and standard deviations of temporal profiles of each

variable (joint angle, joint torque, muscle-tendon length, moment

arms, and muscle active state) were used for analysis.

Ankle Musculoskeletal Model
To investigate the leg dynamics underlying the data, we modeled

the major muscle-tendon units contributing to ankle function in

normal walking. Anatomically, this corresponds to the big MTUs

responsible for ankle joint rotation in the sagittal plane - the soleus

and gastrocnemius plantar flexors with the Achilles tendon split

amongst them, and the tibialis anterior dorsiflexor (Figure 1). Both

the medial and lateral heads of the gastrocnemius muscle were

represented as one effective muscle, since they act synergistically in

gait. Other muscle-tendon units spanning the ankle joint were not

included as their contribution to ankle torques and energetics in

normal, level-ground walking is minuscule [4]. The muscle-tendon

dynamics actuating the ankle joint are outlined below.

Muscle dynamics. Each muscle was modeled as a

unidirectional actuator with classic Hill-type dynamics, as in

[30]. The muscle model consists of a contractile element (CE)

representing active fascicles and a parallel elastic component (PE)

representing connective tissue within the muscle. The contractile

force FCE develops as a function of muscle active state a, muscle

fiber length lCE and contractile velocity vCE~l CE
:

. The parallel

elastic element was modeled as a unidirectional non-linear spring,

with force depending on lCE. Muscle force resulting from both the

contractile and parallel elastic elements is denoted by Fm. Muscle-

specific parameters defining the dynamics include (a) the

maximum isometric force Fmax; (b) the optimum fiber length lopt

at which muscle provides the maximum isometric force, a:Fmax for

activity level a; and (c) the maximum contractile velocity of the

muscle vmax (mainly a function of the muscle’s fiber composition).

Tendon dynamics. Each tendon is a non-linear elastic

element in series with the corresponding muscle. Of the several

approximations to tendon force-length relations in the literature,

we chose a general non-linear form [16]:

FSE(lSE)~Fmax

exp
Ksh
lref

l
� �

{1

exp(Ksh){1
for l~

lSE{lsl

lsl
w0 ð5Þ

where FSE, lSE and l represent tendon force, tendon length and

tendon strain with respect to slack length lsl respectively. All

parameters defining the tendon model lsl,Ksh,lref ,Fmax are

morphological. lsl and Fmax capture the dimensions, cross-

sectional areas and space organization in the muscle-tendon

unit. lref and Ksh depend on the material properties and influence

tendon stiffness. Parameter lref represents the reference strain at

which FSE~Fmax. Ksh determines the shape and non-linearity of

the length-tension curve.

Muscle-tendon unit dynamics. Each MTU comprises a

muscle and a tendon connected in series, at pennation angle hpenn

with each other. The MTU dynamics follows from the interaction

between muscle and tendon, described by the first-order implicit

nonlinear differential equation below:

FMTU(t)~FSE(lSE,t)~Fm(a,lCE,l CE

:
,t)coshpenn ð6Þ

lMTU(t)~lSE(t)zlCE(t)coshpenn ð7Þ

where lMTU, denoting MTU length, is related to joint angle hjoint

according to the leg geometry (as specified in the SIMM Dynamic

Model). Each MTU has seven morphological parameters, three

for the muscle dynamics, three for the tendon dynamics, and the

pennation angle.

Joint dynamics. The overall ankle torque resulting from the

three model muscle-tendon units was specified as:

tmod(t)~
X

i

FMTU ,i(t)ri(t) i refers to muscle index ð8Þ

where ri(t) represents the time-varying moment arm for muscle i
spanning the ankle. The moment arms were obtained from joint

angles in the data using the musculoskeletal geometries in SIMM,

as detailed in the Data section.

The full model dynamics was implemented in MATLAB

Simulink, and is defined by 21 muscle-tendon morphological

parameters, 7 for each of the 3 MTUs.

Model Parameters, Inputs and Outputs
For each MTU, we minimized the number of free model

parameters by (a) using literature values where they are known to

be reliable (vmax [30]), (b) fixing values in documented general

ranges when dynamics are insensitive to precise values (hpenn [35]),

and (c) taking advantage of inter-relations between parameters

(example, muscle optimal length lopt and tendon slack length lsl

are inter-related by subject dimensions, so lopt was set to a scaled

nominal value from [35]). Set values for the above three

parameters for each of the three MTUs are provided (with

sensitivity notes) in Supplementary Text S1.

The other twelve parameters each correspond to a key

morphological feature (slack length, reference strain and force,

shape factor) of the three modeled muscle-tendon units. They are

known to be difficult to measure in vivo [36], cadaver measure-

ments are rather unreliable [25] and there is no fool-proof

procedure for scaling nominal values from literature to subject

dimensions [37]. Thus the model is characterized by twelve free

parameters, denoted as ~mm.

The leg muscle-tendon unit dynamics, characterized by ~mm,

relates neurally commanded muscle activation (a(t)) and joint

angle hjoint to joint torque tmod. Considering a specified ~mm, active

state profiles for the three muscles and joint angles from the data

(or equivalently the muscle-tendon unit lengths lMTU(t)) constrain

Equations 5 and 6 for each unit. The relations can be

simultaneously solved for lSE and lCE (implicitly vCE), which in

turn can be used to evaluate FCE and FSE for each unit, and thus

to calculate the model ankle torque tmod.

M(~mm,lMTU(t),a(t),r(t))~½lCE(t),tmod(t)� ð9Þ

Each possible vector ~mm specifies a certain (a) model ankle

torque, (b) distribution of that ankle torque amongst the MTUs,

(c) division of mechanical work and MTU strain amongst the

associated muscle and tendon. Since each parameter vector ~mm
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exacts different mechanical work from the model muscles, it also

causes them to expend different amounts of metabolic energy to

actuate the ankle.

Muscle Metabolic Consumption
Muscle metabolic consumption is known to result from the heats

of activation, maintenance, shortening, resting, and other molecular

processes involved in muscle force generation [38]. While many

schemes have been proposed to comprehensively account for these

different components [10,12,39], they depend on setting several

parameters correctly. To avoid accuracy and sensitivity issues that

accompany multi-parameter metabolic calculations, we used

empirically-based heat measures from classically accepted and

well-reproduced muscle metabolic studies [13,26,38]. The data,

reproduced in Supplementary Text S1 (along with sensitivity

bands), relates the normalized metabolic power required for isolated

muscle activity with the normalized contractile velocity.

At any time t, if muscle i is activated to level ai(t), and is

contracting at velocity vCE,i(t), then the instantaneous (denorma-

lized) metabolic power consumed by that muscle is:

P(t)(~mmi,t)~p(vCE(~mmi,t)): ai(t):Fmax,i½ �:vmax,i ð10Þ

where vCE(t) is implicitly a function of the parameters ~mm due to the

specified muscle-tendon dynamics, p(vCE(~mmi,t)) is the function in

Supplementary Text S1, and the maximum isometric force when

muscle i is activated to level ai(t) during a natural task is

ai(t):Fmax,i. Overall metabolic energy cost for the muscle is the

time integral of its instantaneous metabolic power:

C(~mmi)~

ð
P(~mmi,t) dt when a(t)w0:01 ð11Þ

To avoid numerical errors in computing cost, metabolic power

was only accounted for when ai(t)w0:01, which is a small enough

approximation that it does not affect accuracy. Total metabolic

cost of actuating the ankle muscles in 1 gait cycle is C~
P3

i~1 Ci

for the three muscles i~1 to 3.

In summary, given the data-driven inputs and model dynamics,

each set of morphological parameters defining the dynamics

specifies a model torque profile, and a model metabolic

consumption - as indicated in equation 4.

For analysis, two efficiency metrics were calculated for stance

phase of the gait cycle:

1. Muscle efficiency - accounting for positive mechanical work

from the active muscle (during shortening) only:

enotendon ~

Ð
dlCEv0

Fm dlCEð
t such that dlCE(t)v0

P(~mmi,t) dt when a(t)w0:01
ð12Þ

2. Muscle-tendon efficiency - accounting for both muscle and

tendon contributions to the net ankle joint mechanics:

etot~
Wmech

Wmet
~

Ð
tmod(t) dhjoint(t)

total metabolic cost C
ð13Þ

Identifying Muscle-Tendon Parameters
Mathematical problem statement. Biologically realistic

muscle-tendon parameters ~mmb were identified via the con-

strained optimization procedure, motivated in the parameter

exploration section of Results. Mathematically, the leg muscle-

tendon morphology was specified as that which minimizes

metabolic energy required to produce human-like dynamics:

~mmb~arg min
R

C~
X3

i~1

Ci

" #
ð14Þ

where search is restricted to regions R - in the space of all possible

~mm - satisfying the non-linear torque-match constraint:

tmod(~mm,t){tbio(t)j jvatbio,sd(t), where 0vav1 ð15Þ

tbio is the ensemble mean biological ankle torque for a given

subject, tbio,sd is the ensemble standard deviation in tbio for the

same subject, and atbio,sd represents the narrowest band around

the mean human ankle torque curve within which the model

torque profile for that subject can lie. In other words a indicates

the least RMS error between the model and data torques.

Cost is calculated for stance phase only, as swing phase

metabolic consumption for ankle function is small and rather flat

in the parameter space. Constraint was kept consistent with cost,

and imposed point-wise during stance. As numerical errors in

starting up the model and splitting up gait cycles make it difficult

to satisfy the constraint of matching the steady state biological

torque profile during 0–5% GC, the simulation was started at a

point in the 0-5%GC range when the model-biological torque

matching constraint was fulfilled and ran to completion of one gait

cycle from there on out. Constraint violations between 0{5% GC

were discounted.

Identifying the most economical parameter vector for the best

torque match gives the most energetically conservative estimates

for ~mmb in the slightly rounded corner region of Figure 3. All

analyses are reported for this most conservative point, even though

the points in the corner region are similar in value and function.

Computational algorithm. The parameter space along the

constrained landscape (horizontal boundary of Figure 3) was found

to be rugged. Hence, a stochastic evolutionary method that could

prevent entrapment in local minima was deemed appropriate. We

chose the genetic algorithm (MATLAB Direct Search Toolbox) as

it was easily integrated with the modeling and data analysis

routines. The algorithm was implemented with settings that

enabled speedy exploration of a diverse parameter space

(Supplementary Text S1).

The non-linear constraint was enforced using a simple penalty

method [40]. When the constraint was satisfied, the cost was just

the metabolic energy. When the constraint was violated, a penalty

proportional to the deviations between model and human torque

was imposed:

cost~

C, if constraint satisfied

1000

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPi~n
i~1 (tmod (i){tbio(i))2

n

 !vuut otherwise

8>><
>>: ð16Þ

where n is the number of points during the stance phase. The

penalty drove the optimization down the torque gradient into

regions satisfying constraints. In the rare event that the penalty was

steep enough to entrap the optimization in a particular feasible

region, we used a population segregation approach [41] to

diversify the search. Accuracy and robustness of the computational
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solutions to our problem were cross-checked by (a) inspecting the

optimal parameter vectors for correspondence to features of

Figure 3, (b) performing repeat runs with different starting points

and follow-on gradient descent searches and (c) employing cross-

validation checks against variations in inputs (Supplementary Text

S3) as well as model assumptions (Supplementary Text S1) and (d)

checking for biological features known from independent exper-

iments (Results).

Supporting Information

Figure S1 Plantar Flexor Muscle Metabolic Powers and

Corresponding MTU Mechanical Powers. Panel A shows model

predictions of soleus muscle mechanical power in relation to its

tendon and MTU powers. Panel B shows model predictions of

gastrocnemius muscle mechanical power in relation to its tendon

and MTU powers. Mechanical powers are computed along the

tendon axis, and considered positive during shortening phases for

each element (muscle, tendon and MTU). Panel C shows

metabolic power of soleus and gastrocnemius muscles. 100% gait

cycle is equivalent to a stridetime of 1.16 seconds for the gait cycle

displayed. Both muscles consume significant metabolic energy

even when their MTU is doing negative mechanical work

(,15-50%GC). Comparisons between the mechanical and

metabolic power trends for the two muscles in late stance are

analyzed in Table 3.

Found at: doi:10.1371/journal.pcbi.1001107.s001 (1.88 MB EPS)

Text S1 Model and Solver Settings. Model parameters motivat-

ed from literature, metabolic cost calculation details, bounds and

algorithm settings used to identify optimal parameter vectors.

Found at: doi:10.1371/journal.pcbi.1001107.s002 (0.45 MB PDF)

Text S2 Estimating Muscle Activation. Biophysical interpreta-

tion of the estimation procedure, along with estimated activation

profiles for the 3 ankle muscles across 5 subjects.

Found at: doi:10.1371/journal.pcbi.1001107.s003 (0.71 MB PDF)

Text S3 MTU Parameter Space Exploration. Supplementary

notes on the biologically realistic points in the corner region,

comparisons between corner region points and other points along

the boundaries, tabulation of the optimal parameter values for

5 subjects.

Found at: doi:10.1371/journal.pcbi.1001107.s004 (0.54 MB PDF)
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