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Abstract

Nodal and Activin are morphogens of the TGFbeta superfamily of signaling molecules that direct differential cell fate
decisions in a dose- and distance-dependent manner. During early embryonic development the Nodal/Activin pathway is
responsible for the specification of mesoderm, endoderm, node, and mesendoderm. In contradiction to this drive towards
cellular differentiation, the pathway also plays important roles in the maintenance of self-renewal and pluripotency in
embryonic and epiblast stem cells. The molecular basis behind stem cell interpretation of Nodal/Activin signaling gradients
and the undertaking of disparate cell fate decisions remains poorly understood. Here, we show that any perturbation of
endogenous signaling levels in mouse embryonic stem cells leads to their exit from self-renewal towards divergent
differentiation programs. Increasing Nodal signals above basal levels by direct stimulation with Activin promotes
differentiation towards the mesendodermal lineages while repression of signaling with the specific Nodal/Activin receptor
inhibitor SB431542 induces trophectodermal differentiation. To address how quantitative Nodal/Activin signals are
translated qualitatively into distinct cell fates decisions, we performed chromatin immunoprecipitation of phospho-Smad2,
the primary downstream transcriptional factor of the Nodal/Activin pathway, followed by massively parallel sequencing, and
show that phospho-Smad2 binds to and regulates distinct subsets of target genes in a dose-dependent manner. Crucially,
Nodal/Activin signaling directly controls the Oct4 master regulator of pluripotency by graded phospho-Smad2 binding in
the promoter region. Hence stem cells interpret and carry out differential Nodal/Activin signaling instructions via a
corresponding gradient of Smad2 phosphorylation that selectively titrates self-renewal against alternative differentiation
programs by direct regulation of distinct target gene subsets and Oct4 expression.
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Introduction

Morphogens are secreted signaling molecules that orchestrate

the spatial distribution and sequence of cellular differentiation

events throughout embryonic development. The specific cell types,

their localization and order of induction from recipient stem cell

populations are determined by the concentration gradient of

morphogens diffusing from the source of secretion. Previous

studies have proposed some of the models by which morphogen

gradients are initiated, established and stabilized including the

level of receptor occupancy, positive/negative feedback and feed

forward mechanisms [1–3]. However, little is understood about

the transcriptional mechanisms responding to variable receptor

activation and how they permit pluripotent stem cells to interpret

signaling levels and direct the appropriate differentiation programs

during mammalian development.

Nodal and Activin are morphogens of the TGFb superfamily of

signaling molecules. In Xenopus embryos, Activin is a potent

concentration-dependent inducer of mesoderm, mesendoderm

and endoderm in animal cap cells [2,4,5]. Nodal has also been

shown to be a classical morphogen in zebrafish where it functions

in a concentration gradient independently of any relaying

mechanisms [6]. In the early mouse embryo, mutations that

perturb the level of Nodal/Activin signaling show that the

pathway plays crucial roles in the induction of the primitive

streak/mesoderm, mammalian organizer (node), mesendoderm

and endoderm during the establishment of the anterior-posterior

axis [7–11]. In contrast to in vivo evidence that Nodal/Activin

PLoS Genetics | www.plosgenetics.org 1 June 2011 | Volume 7 | Issue 6 | e1002130



signaling predominantly promotes differentiation events, the

pathway also paradoxically has important roles in the mainte-

nance of self-renewal and pluripotency. Indeed Activin A is

frequently used directly in culture for the continued propagation

and expansion of human embryonic and mouse epiblast stem cells

[12–15].

The signaling level of the Nodal/Activin pathway is determined

by the overall activity of its components many of which have been

identified. Both the Nodal and Activin ligands bind to the same

type I/II serine-threonine receptor kinase complexes consisting of

ActRIIA/B and Alk4/5/7 respectively in the mouse [16]. Nodal

requires the cofactors Cripto/Criptic for receptor activation as

opposed to Activin that can bind directly to the receptors and is

inhibited by Cripto [17–19]. Upon ligand docking, the Type I

receptors phosphorylate the downstream signal transducers

Smad2 and Smad3 (Smad2/3) which form hetero- or homodimers

and trimers [20]. Both Smad2/3 are also phosphorylated by

crosstalk with EGF/ERK/MAPK signaling [21–23] but only the

serine residues of the SSXS motif on the extreme carboxy

terminus are specifically phosphorylated by Nodal/Activin/

TGFbeta signaling. This phosphorylation is important for the

translocation of Smad2/3 to the nucleus in association with

Smad4 [24,25] where the complex recruits a number of

transcription factors including FoxHI, p53, b-catenin and Jun/

Fos for the direct regulation of target genes [20]. Specificity of the

Smads for their direct target genes is partly conferred by a DNA

domain in the MH1 region to the Smad-binding DNA element

(SBE) consisting of a basic CAGA sequence or its complement

[26]. The other partner transcription factors within the complex

are required for additional target gene affinity and specificity.

While Smad2/3 share more than 90% protein homology, they

are not functionally equivalent. Full-length Smad2 differs from

Smad3 as the presence of an inhibitory domain in the MH1 region

prevents direct DNA binding while Smad3 can bind directly to

SBE boxes [27]. However, an alternatively spliced variant of

Smad2 that lacks the inhibitory domain can bind DNA directly

and has been shown to be the isoform that accounts for all

developmental Smad2 functions in vivo [28]. The developmental

roles of Smad2/3 are also disparate. Smad2 knockout mouse

embryos fail to form mesoderm and endoderm due to defects in

primitive streak specification after implantation at 6.5 dpc [29]

closely phenocopying Nodal mutants [10]. In contrast, Smad3

mutant mice are born alive and are fertile but develop chronic

intestinal inflammation leading to colorectal cancer [30]. This

suggests that Smad2 is the primary transcriptional mediator of

early developmental events while Smad3 is involved in immune

function and possibly acts as a tumor suppressor postnatally.

Our focus here is to clarify how mechanistically different levels

of Nodal/Activin signaling lead to different embryonic stem (ES)

cell fate decisions. ES cells were differentiated using three different

quanta levels of Nodal/Activin signaling. We showed that ES cells

are able to arbitrate between three distinct cell fate decisions.

Maintenance of endogenous Nodal/Activin signaling is required

for self-renewal of ES cells where any perturbation leads to an exit

from self-renewal and pluripotency programs towards mesendo-

derm induction at high signaling and trophectoderm differentia-

tion at low signaling.

One obvious question to resolve is whether different levels of

Nodal/Activin signaling recruit different sets of genes. While

genome wide transcriptome studies have suggested possible

Nodal/Activin targets, the identity of many transcriptional targets

directly regulated by Smad2/3 remains unknown. One ChIP-chip

study to date has been performed to address endogenous Smad2/3

binding in transformed human keratinocytes [31] while none have

been carried out in the context of stem cell fate decisions, graded

Nodal/Activin signaling or examining beyond promoter regions.

Here we performed quantitative chromatin immunoprecipitation

(ChIP) of phospho-Smad2 (pSmad2) during graded Nodal/Activin

signaling followed by massively parallel sequencing (ChIP-Seq)

covering the full extent of pSmad2 binding to the ES cell genome

including 59/39 UTRs, exons/introns and gene deserts. PSmad2

binding and regulation of direct target gene expression does not

vary uniformly across the genome but changes in both a

qualitative and quantitative manner with different signaling levels.

Some targets are up- or downregulated proportionate to the

activity of the Nodal/Activin pathway. However, separate subsets

of target genes are regulated only during high or low signaling

conditions. The downstream consequences of this is differential

expression of the target genes that combine dose-dependent genes

with different subsets of genes activated or repressed specifically for

each signaling level. Thus ES cells carry out alternative cell fate

decisions via the recruitment of target gene subsets in a pSmad2

dose-dependent manner.

To reconcile some of the conflicting functions of Nodal/Activin

signaling in self-renewal and pluripotency versus differentiation

cell fate decisions, we examined the regulation of the Oct4

pluripotency and self-renewal master gene. Oct4 was directly

regulated by pSmad2 binding in the promoter region independent

of all other cis regulatory elements. Consistent with the

modulation of pSmad2 binding, both endogenous mRNA and

protein levels of Oct4 were also repressed by inhibition of Nodal/

Activin signaling. Hence pSmad2 is a direct upstream regulator of

Oct4 transcription where it permits an exit from maintenance of

the stem cell state towards mesendoderm or trophectoderm

differentiation programs as specified by the signaling level.

In conclusion, the molecular switching of binding locations and

target genes by pSmad2 across the ES cell genome in a dose-

dependent manner provides a mechanism for the shift in the

balance between maintenance of the stem cell state and the

opposing induction of differentiation. Key signaling pathways have

Author Summary

Nodal and Activin are extracellular signaling molecules
that diffuse from the source of secretion and induce
recipient stem cells to become new cell types according to
a concentration gradient. In the early embryo, they are
important for the specification of tissues at the correct
place and time, but paradoxically they drive the opposite
function in embryonic and epiblast stem cells where they
maintain the stem cell state instead of promoting
differentiation. The molecular basis of how the level of
signaling determines stem cell fate decisions remains
poorly understood. We found that Smad2, the main
transcription factor of the Nodal/Activin pathway was
phosphorylated according to the level of signaling. By
mapping where phospho-Smad2 binds in the embryonic
stem cell genome and how this affects transcription of the
associated target genes, we show that phospho-Smad2
can recruit and regulate different sets of target gene
depending on the signaling level. Moreover, phospho-
Smad2 also directly regulates Oct4, a master gene
controlling the stem cell state thereby reconciling the
opposing functions of the Nodal/Activin pathway in
differentiation versus self-renewal programs. The pathway
can mediate the exit from self-renewal via Oct4 and
simultaneously drives differentiation towards particular
lineages by recruiting the relevant gene subsets for this
purpose.

Nodal/Activin Signaling in ES Cell Fate Decisions
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been predominantly studied in a binary context where they are

either present or absent in a biological system. This view has only

been able to account for some of their many and often conflicting

roles. Our findings challenge this view and support multi-level

signaling in stem cells where different signaling strengths can

engender different cell fate decisions reflective of the in vivo

development of embryos directed not just by Nodal/Activin

signaling but possibly Hedgehog, FGF, Wnt and other morphogen

pathways.

Results

The Peak of Transcriptional Activity Induced by Graded
Nodal/Activin Signaling Occurs at 18 Hours

The direct cellular function of the Nodal/Activin pathway

notably of the downstream components Smad2/3/4 is for the

regulation of transcription. To address the relation between

graded signaling and how they affect transcription, we quantified

the changes in expression of known target genes under different

signaling levels in chemically defined KSR media conditions.

Pluripotent mouse embryonic stem (ES) cells were used to assess

the mechanism of morphogen activity as they can differentiate into

all tissue types of the adult and express all components of the

pathway permitting response to manipulated Nodal/Activin

signaling.

Some of the known target genes include Pitx2 and Lefty2 which

are responsible for the establishment of left-right asymmetry

during early embryogenesis, a key developmental role of Nodal/

Activin signaling [32]. In addition, both Lefty2 and Smad7 function

as inhibitors of the pathway in a negative feedback mechanism for

the attenuation of Nodal/Activin signaling strength [33,34].

Although direct Smad2/3 binding and regulation of the Pitx2

and Lefty2 genes have not yet been demonstrated, in vivo reporter

assays suggest that specific enhancers are responsive to Nodal/

Activin signaling and are active only on the left side of the embryo

[35,36]. Moreover, these enhancers have been shown to contain

FoxH1 binding sites, a known key transcriptional copartner of

Smad2/3. Smad7 has been shown to be a direct target of Smad2/

3/4 binding in the promoter region by gel shift assays [37,38] and

it antagonizes the interaction of Smad2/3 with the Type I kinase

receptors [39] during negative feedback.

Using real-time PCR quantitation, the expression of the 3 target

genes was examined in the ES cells following the induction of high

signaling by direct treatment with Activin in a time-course. In the

reciprocal experiment, the small chemical inihibitor SB-431542

that specifically prevents the kinase domains of the Type I kinase

receptors from phosphorylating Smad2/3 [40] was used to

generate low Nodal/Activin signaling conditions. Pitx2, Lefty2

and Smad7 were up- and downregulated in direct correlation with

the level of signaling under chemically defined conditions

compared to the DMSO carrier control representing endogenous

or medium signaling (Figure 1). Over the course of 24 hours, the

maximum expression of Pitx2 and Lefty2 occurred at 18 hours

(Figure 1A and 1B) while that of Smad7 (Figure 1C) occurred

earlier at 12 hours. We therefore conclude based on these known

target genes that Nodal/Activin signal transduction and its effects

on transcription require up to 18 hours to fully develop and any

earlier time points result in weaker inductions.

We further confirmed that Pitx2, Lefty2 and Smad7 are direct

targets of the Nodal/Activin pathway by conducting chromatin

immunoprecipitation of phosphorylated Smad2 in the ES cells

under the same chemically defined conditions at 18 hours followed

by quantification of the enriched genomic DNA fragments by real-

time PCR using tiling primers (Figure S1 and Table S3). The

antibody used for the pulldown was raised against the phosphor-

ylated serines 465 and 467 on the carboxy-terminus of Smad2 that

are specifically targeted by TGFbeta signaling and not by EGF/

ERK/MAPK signaling. At 18 hours where there is maximum

expression of the 3 target genes, there was also a robust divergence

in the level of pSmad2 binding according to the signaling level for

the enhancers of Pitx2 and Lefty2 (Figure S1A and S1B).

Interestingly pSmad2 binding was invariant on the known

TGFbeta response element of the Smad7 promoter (Figure S1C).

This suggested that Nodal/Activin target genes had different

binding efficiencies for pSmad2 at each Nodal/Activin signaling

level and this was not uniformly changed for all target genes.

In conclusion, we confirm that Pitx2, Lefty2 and Smad7 were

direct targets of Nodal/Activin signaling and graded pSmad2

binding. Differential signaling sustained for 18 hours also leads to

the maximum level of differential gene expression with clear

changes in pSmad2 binding on the Pitx2 and Lefty2 genes.

Graded Nodal/Activin Signaling Mediates 3 Distinct Cell
Fate Decisions in ES Cells

Given the downstream changes in pSmad2 binding and

transcription of the known direct target genes, we next addressed

how extracellular signal levels are translated into intracellular

levels of signal transduction. We hypothesized that this could be

directly related to changes in pSmad2 levels in ES cells as a

consequence of Type I receptor kinase activity. Hence ES cells

subjected to differential morphogen signaling conditions may be

able to produce different amounts of pSmad2 in cells generating a

corresponding differential level of intracellular signaling that leads

to differential transcription.

It has recently been shown that overexpression of the

constitutively active Alk4 type I kinase receptor is sufficient to

drive phosphorylation of Smad2 independent of all other Nodal/

Activin receptor complex components [41]. Here we show that

direct treatments of the ES cells with Activin and the specific Type

I receptor kinase inhibitor SB-431542 in chemically defined

conditions also tightly regulates receptor complex activity and

produces the phosphorylation of Smad2 in a signaling dependent

manner (Figure 2A). During Activin stimulation (high signaling)

for 18 hours, there is a defined 2-fold increase in pSmad2 levels

while repression with 10 mM SB (low signaling) leads to a 2-fold

decrease that is within the limits of physiological change compared

to the DMSO vehicle control (equivalent of medium signaling).

Differential signaling had no effect on the equilibrium of total

Smad2 suggesting that only phosphorylation and not regulation of

the total Smad2 population is mediated by Nodal/Activin

signaling. Hence extracellular signaling levels are translated into

an equivalent gradient of intracellular Smad2 phosphorylation in

ES cells.

Subsequently we addressed the long-term consequences of

increased and decreased signaling on ES cell fate decisions by

examining how manipulation of the pathway recapitulates in vivo

cell fate decisions by direct treatment with Activin or SB for 6

days. Analysis of a broad range of early cell fate markers

(Figure 2B) shows that enhanced Nodal/Activin signaling

promotes mesendoderm differentiation in ES cells with strong

upregulation of mesendodermal lineage genes including Gsc, Mixl,

Eomes and Fgf8. The marker for mesoderm, Brachyury (T), was also

strongly induced although this was not reflected by the other

mesodermal markers such as Flk1 and Tbx6. This was consistent

with the finding that T is also co-expressed in mesendoderm in vivo

at the anterior primitive streak [42]. Taken together, this suggests

that high signaling induced by Activin predominantly drives

mesendoderm differentiation.

Nodal/Activin Signaling in ES Cell Fate Decisions
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Figure 1. Pitx2, Lefty2, and Smad7 Are Transcriptional Targets of Graded Nodal/Activin Signaling. Real-time PCR quantification of
changes in mRNA levels for (A) Pitx2, (B) Lefty2 and (C) Smad7 in mouse ES cells during a 0 to 24 hours time course under graded Nodal/Activin
signaling conditions. High signaling was induced by direct treatment with 25 ng/ml Activin (red), low signaling with 10 uM of SB431542 inhibitor
(green) and a control treatment with 1/5000 dilution of DMSO carrier (blue) was carried out following pretreatment of all cells for 6 hours in
chemically defined KSR media with 10 mM SB (26 to 0 hours). b-actin was used as a housekeeping control and error bars show s.e.m for n = 3
replicates.
doi:10.1371/journal.pgen.1002130.g001

Nodal/Activin Signaling in ES Cell Fate Decisions
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Figure 2. Smad2 Phosphorylation and Induction of Distinct Cell Fate Decisions Are Determined by Differential Nodal/Activin
Signaling. (A) Western blot and densitometry quantitation of Smad2 phosphorylation in ES cells after 18 hours stimulation with Activin (ACT) and
inhibition with SB-431542 (SB) compared to DMSO vehicle control at the indicated doses in chemically defined KSR media. The same blot was
stripped and reprobed with total Smad2 and Pcna loading control antibodies. Secondary band in the total Smad2 blot corresponds to cross-reaction
with total Smad3. Graph shows densitometry measurements of pSmad2 protein bands relative to total Smad2 in each treatment with the DMSO
control at 100%. (B) Real-time PCR analysis of early cell fate markers in differentiated ES cells after 6 days treatment in ACT, DMSO and SB normalized
to b-actin housekeeping control. Top panel shows induction of markers in ACT treatments expressed as fold change over the control KSR media.

Nodal/Activin Signaling in ES Cell Fate Decisions
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Conversely, inhibition of the pathway with SB (Figure 2B) led to

the upregulation of trophectoderm specific markers including

Dlx3, Esx and Hand1 and a less significant induction of extra-

embryonic primitive endoderm markers such as Gata4/6 and

Pdgfra. Similar results were obtained when the ES cells were

treated with recombinant Lefty1 protein for the same period of

time (data not shown) suggesting that the trophectoderm induction

was specific to low Nodal/Activin signaling. Interestingly there

was no induction of mesendodermal markers as in the Activin

treatment and instead some of these such as Gsc, Mixl and Fgf8

were strongly downregulated. Together, these results suggest that

perturbation of the level of Nodal/Activin signaling and

consequently endogenous Smad2 phosphorylation led to an exit

from self-renewal in ES cells towards highly divergent cell fate

decisions of either mesendoderm or trophectoderm differentiation.

To confirm these results, fluorescent immunostaining was

carried out to assess the protein markers of trophectodermal and

mesendodermal lineages (Figure S2) after differentiation in serum

containing media. The cell fates obtained under these conditions

are similar to the results from the marker analysis performed in

chemically defined conditions. Differentiated cells staining positive

for Mixl and Lim1 in the nucleus could be detected in Activin

cultures. Similarly, Hand1 and placental Cadherin (P-cad) positive

giant cells could also be derived from SB treated ES cells. Control

treatments with a low dose of DMSO carrier (1/5000 dilution)

contained large populations of ES cells that stained strongly for

Oct4 and SSEA-1. These results confirmed that the level of

Nodal/Activin signaling is responsible for at least 3 cell fate

decisions. The endogenous level of signaling is permissive for self-

renewal and maintenance of pluripotency, an increase in signaling

leads to the induction of mesendoderm like cells while reduction of

signaling results in trophectoderm differentiation.

Differential Levels of Nodal/Activin Signaling Regulates
the Expression of Distinct Subsets of Target Genes

We hypothesized that for divergent differentiation programs to

be initiated in ES cells, differential gene expression mediated by

pSmad2 transcription would be a pre-requisite, which is in turn

dependent on the level of Nodal/Activin signaling. Each discrete

signaling threshold should induce an independent and unique

transcriptional signature distinct from other thresholds. To

determine the genetic targets regulated downstream of Nodal/

Activin signaling and their pattern of expression, microarray

analysis was carried out to examine genome-wide gene expression

following Activin, DMSO or SB treatments in chemically defined

KSR media for 18 hours.

No significant changes in gene expression out of 26,000 probes

could be detected between the DMSO and KSR media control

suggesting that the effect of the low concentration of DMSO was

negligible on ES cells (Figure 3A). In contrast, Activin and SB

treatments induced specific changes in gene expression compared

to the DMSO and KSR media controls. Most significantly, we

were able to identify subsets of target genes that were regulated by

one signaling level and not the other consistent with our hypothesis

of threshold specific target gene regulation. For example, 19 genes

including Gdf15, Msmb and Orai3 were consistently upregulated in

Activin treated cells while showing no significant changes in SB. In

contrast, a larger subset of 131 target genes were specifically up-

and down-regulated only in the SB treatment and not in Activin. A

core subset of 12 targets was co-regulated by both high and low

signaling changing their expression in correlation with the

treatment including the known Nodal/Activin target genes

Lefty1/2 and Pitx2 that were upregulated by Activin and down-

regulated in SB.

Interestingly, the number of SB regulated targets significantly

exceeds that of Activin targets, suggesting that endogenous Nodal/

Activin signaling in ES cells is high or near saturation levels such

that a 2-fold increase in pSmad2 could only induce a smaller

subset of genes compared to a 2-fold downregulation. Higher

doses of Activin treatments and greater than 2-fold increases in

pSmad2 may be required to mirror the strength of SB inhibition

providing an explanation for asymmetric up- or downregulation of

gene expression during different levels of signaling. Some of the

target genes driven by Nodal/Activin signaling were indeed

implicated in the mesoderm, endoderm and trophectoderm

lineages. Fgf15 plays an important role in the development of

cardiac mesoderm [43] and Chst15 is specifically expressed in

definitive endoderm in vivo [44] with both targets being

upregulated by Activin. For SB treatments, Gata3, Tcfap2c and

Igf2 were specifically upregulated. Gata3 is a driver of trophecto-

derm development [45,46] while Tcfap2c is expressed specifically

in the placenta where it regulates essential ADA expression [47,48]

and Igf2 is an imprinted gene that modulates nutrient supply

between the placenta and fetus [49,50]. Together these target

genes support some of the mesendodermal and trophectodermal

differentiation programs that may be initiated at 18 hours after the

induction of differential Nodal/Activin signaling. With longer-

term graded Nodal/Activin signaling over 6 days differentiation, it

is likely that additional target genes reinforcing the specification of

both lineages may be brought into play over time.

Lefty1, Pitx2, Fgf15 and Spsb1 were validated by RT-PCR

(Figure 3B) to be co-regulated target genes of high, medium and

low signaling displaying a gradient of expression following the

signaling level. Cripto, Bcar3, Nphs1 and Cdh3 were targets that were

predominantly downregulated by SB inhibition of signaling

showing no significant change during Activin stimulation.

Conversely, the ID1/2/3 family of transcriptional repressors and

Serping1 are specifically upregulated only by the SB treatment

showing no difference in response to either Activin or the DMSO

control. Hence we conclude that different thresholds of Nodal/

Activin signaling are indeed able to regulate the expression of

specific subsets of target genes providing an important explanation

for the establishment of divergent differentiation programs.

Phospho-Smad2 Binding to Target Gene Subsets and
Regulatory Elements Changes Dynamically Depending
on the Level of Nodal/Activin Signaling

While whole genome microarrays are able to identify the

putative subsets of target genes differentially expressed during

specific Nodal/Activin signaling levels, this does not provide a

molecular mechanism for how different target genes can be

directly regulated by the same pathway at different signaling

strengths. To address this question, we examined the recruitment

of the pSmad2 transcription factor to target genes after subjecting

ES cells to Activin, SB or DMSO control treatments in chemically

defined KSR media that produce 2-fold up- and downregulation

of Smad2 phosphorylation by 18 hours. ChIP-Seq of pSmad2 was

employed to identify where pSmad2 was binding on a whole

genome scale in parallel cultures of ES cells under the 3 signaling

Bottom panel shows fold change in marker expression during SB treatment compared to KSR media supplemented with 1/5000 DMSO vehicle. Error
bars show standard error of the mean (s.e.m) for n = 4 replicates.
doi:10.1371/journal.pgen.1002130.g002

Nodal/Activin Signaling in ES Cell Fate Decisions
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Figure 3. Increased and Decreased Nodal/Activin Signaling Leads to Transcriptional Regulation of Specific Subsets of Target
Genes. (A) Heatmap showing microarray analysis of ES cells after 18 hours treatment with Activin (ACT), SB or DMSO vehicle control in KSR media.
Transcript levels are expressed as log2 fold change over the average of DMSO controls with red showing upregulation and green showing
downregulation in n = 4 biological replicates from passage numbers 20 to 24 (P20-P24). Highlighted gene names indicate known roles or domains of
expression in endoderm (red), mesoderm (blue), trophectoderm (green) or cancer (magenta). Color bar shows fold change in gene expression on a
log2 scale. (B) RT-PCR validation of target genes identified in the microarrays that are specifically regulated in ACT and/or SB treatments compared to
the DMSO control. Ywhaz was used as a housekeeping control.
doi:10.1371/journal.pgen.1002130.g003
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conditions. ChIP samples from each condition were sequenced to

a similar depth of 10-13 million tags. Interestingly the number and

magnitude of pSmad2 binding events did not correspond to the 2-

fold up- or downregulation of pSmad2 in ES cells under Activin

and SB treatments. In fact the greatest number of binding peaks

(7423) occurred in the control DMSO condition that maintains

self-renewal and pluripotency of ES cells (Figure 4A). When

homeostatic Nodal/Activin signaling was perturbed by Activin

and SB treatments, the number of binding events decreased to

5094 and 4859 respectively suggesting that any change in the

levels of endogenous pSmad2 from the ES cell undifferentiated

condition also caused a dynamic change in pSmad2 binding across

the ES cell genome. The lower numbers may also be reflective of

the transition where pSmad2 is dissociating from former target

genes and establishing the recruitment of new genes. This was

further supported by the percentage of overlapping peaks that

were common to the 3 treatments being relatively small at 10.3%

with a significantly larger number of unique peaks appearing in

specific treatments (37.25% in DMSO, 20.44% in SB and 19.5%

in Activin out of 12979 total peaks in the union).

A previous study has profiled Smad2/3 binding sites using

promoter arrays in human keratinocytes [31]. However, reporter

assays on Nodal/Activin responsive target genes such as Lefty1/2,

Nodal [36,51] and Pitx2 [35] suggest that Smad2/3 may also

regulate DNA elements in the introns rather than at the promoter

region. Consistent with the reporter assay studies, our ChIP-Seq

data showed that the majority of pSmad2 binding (Figure 4B)

occurs in introns (,30%) with only a minority of sites in the

proximal promoters (,10%). Furthermore, there was a significant

shift in pSmad2 binding from the distal 59 and 39 regions towards

the promoters of genes in the SB treatment compared to DMSO

and Activin (Figure 4B). Examination of binding specifically in the

promoter region showed a clear preference for pSmad2 to

associate in the +/2600 bp proximal region of transcriptional

start sites (TSS) with a steady decrease in binding further away

from the TSS (Figure 4C). In addition, the increase in number of

pSmad2 binding peaks during low signaling with the SB treatment

can be confirmed in the promoter region both up- and

downstream of the TSS. In conclusion, pSmad2 binding, similar

to the changes in gene expression identified by microarrays, also

demonstrates binding to distinct subsets of genomic locations at

different signaling levels.

Phospho-Smad2 Binding Is Positively Associated with
Transcriptional Activity and Its Binding Preference for
Specific DNA Motifs Changes with Signaling Levels

We next examined the relationship governing the degree of

pSmad2 binding and the level of transcription across the genome

(Figure 5A). In all 3 conditions, a clear trend emerges suggesting

that more pSmad2 binding drives higher levels of gene expression.

However, the possibility that pSmad2 is not driving expression but

preferentially associates with more transcriptionally active genes

and open chromatin cannot be excluded. To distinguish between

the 2 possibilities, we examined the trend between pSmad2

binding events and differential gene expression from the micro-

array analysis in the 3 signaling conditions. Indeed, a significant

majority (64.2%) of microarray target genes had pSmad2 binding

within +/250 kb and all displayed .1.5 fold change in binding in

each signaling condition or had different number of binding events

or changed the location of pSmad2 binding (Table S1) suggesting

that the pattern of gene expression was indeed dynamically driven

by pSmad2-DNA interactions.

To account for how pSmad2 is able to switch binding locations

during differential Nodal/Activin signaling, we examined its

preference for specific DNA motifs under each condition. It is

known that Smad2/3 are able to bind directly the basic CAGA

motif and at the same time they possess a number of partner

transcription factors that modulate the specificity and strength of

binding. Here we see that there is strong pSmad2 association with

the basic CAGA SBE specifically in the Activin treatment

(Figure 5B). This was also confirmed when we examined the

strong CAGAC canonical SBE as defined by the TRANSFAC

PWM database which also appears with high frequency at the

center of pSmad2 ChIP-seq peaks in the Activin treatment and not

in DMSO, SB or the random mouse genome sequence control

(Figure 5C). This suggests that both CAGA and CAGAC

displayed graded pSmad2 binding that varied with the signaling

level and were preferentially bound in the Activin condition. To

compare the contribution of CAGA against non-CAGA sequences

towards pSmad2 binding, the top 10 de novo motifs in each

condition were identified using the Weeder program (Figure 5D).

Motifs that occurred with significant frequency but were not

enriched in the center of pSmad2 ChIP-Seq peaks were excluded

to remove the influence of comotifs around the peaks. A number of

non-CAGA motifs that occurred with similar or greater frequency

than CAGA were isolated. Interestingly, these de novo motifs also

showed a graded effect on pSmad2 association similar to the

CAGA SBE. Other non-CAGA motifs were preferentially bound

by pSmad2 only in the DMSO and SB condition and depleted

during the high signaling Activin condition. This suggested that

while CAGA binding was significant, binding to non-CAGA

sequences accounted for the majority of pSmad2 association

within the ES cell genome suggesting that this was primarily

mediated by transcriptional co-partners. Indeed, when the top

consensus motifs in the center of all ChIP-seq peaks in each

signaling condition and in the combined dataset were studied

(Figure 5E), there was a strong enrichment for motifs belonging to

transcription partners such as E2f and Ap1 instead of Smad

binding CAGA boxes. To confirm the association of the putative

transcriptional cofactors and establish their identity, we expanded

the analysis to TRANSFAC co-motifs occurring within +/2 1 kb

range of pSmad2 binding sites (Table S2). A large number of

known pSmad2 transcription partners such as Ap1, Sp1 and E2f

are indeed associated within the vicinity of pSmad2 peaks

regardless of the level of Nodal/Activin signaling. However, there

were additional co-motifs bound by transcription factors such as

Oct4, Stat3 and p53 that only appear prominently in Activin

treatments and Hes1, Lrf and Plzf appearing in SB. This is

supportive of an exchange of transcription partners in association

with pSmad2 that was governed by the level of Nodal/Activin

signaling which was likely to be responsible for the change in

specificity of pSmad2 transcriptional complexes for target gene

subsets and their level of expression. Furthermore, while pSmad2

does bind to its own CAGA sequence, transcriptional copartners

played a greater role both in binding affinity and specificity of

pSmad2 protein complexes for the ES cell genome.

Graded, Low Signaling Dominant, High Signaling
Dominant, and Multimodal Models of Binding Occur for
Phospho-Smad2 Target Genes

To investigate the different models of pSmad2 binding during

differential Nodal/Activin signaling, we examined the ChIP-Seq

profiles including those of the transcriptionally regulated micro-

array targets and identified at least 4 types of pSmad2 binding.

The first model is that of ‘‘graded’’ target genes that follow closely

the changes in Nodal/Activin signaling with increased binding and

transcription during high signaling, have moderate response in

endogenous baseline signaling and showed a loss of binding with
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Figure 4. Phospho-Smad2 Binding to the Global ES Cell Genome Changes Dynamically in a Dose-Dependent Manner. (A) Proportional
Venn diagram of overlapping and treatment specific pSmad2 binding peaks identified by ChIP-Seq from same passage ES cells cultured for 18 hours
in Activin (ACT), DMSO control or SB in KSR media. Overlaps were defined using genomic coordinates of the start and end of peak positions identified
with the MACS program using the same parameters for each treatment. Total numbers of peaks are stated for each condition and percentage of
peaks in each Venn diagram segment is indicated in parentheses. (B) Graph showing frequency of pSmad2 peaks with respect to distribution in the
indicated genomic locations including the transcriptional start sites (TSS) and transcriptional termination sites (TTS) relative to mouse RefSeq genes.
Frequency is expressed as percentage of all pSmad2 binding peaks in conditions of high (Activin), medium (DMSO) and low (SB) signaling. (C) High
resolution view of pSmad2 binding frequency within +/22 kb of the TSS of target genes. Genomic distance is expressed in base pairs (bp) upstream
(negative) and downstream (positive) of the TSS while frequency is shown as percentage of pSmad2 binding peaks binned in 50 bp intervals out of
the total number of peaks for each treatment.
doi:10.1371/journal.pgen.1002130.g004

Nodal/Activin Signaling in ES Cell Fate Decisions

PLoS Genetics | www.plosgenetics.org 9 June 2011 | Volume 7 | Issue 6 | e1002130



Figure 5. Target Gene Expression Increases with Phospho-Smad2 Binding, Which Demonstrates Dose-Dependent Affinity for
Specific DNA Motifs. (A) Plot of relationship between pSmad2 binding affinity and expression levels of associated target genes in the Activin,
DMSO and SB conditions. Horizontal axis shows ,8000 RefSeq microarray targets ranked based on normalized log2 expression with a cutoff of 5.5 to
exclude non-expressing genes and non-functional probes. The largest pSmad2 ChIP-Seq peaks occurring within +/-50 kb of the RefSeq genes were
identified for each condition, normalized to average DMSO enrichments and subjected to a 500 gene moving average calculation on the vertical axis.
(B) Plot showing frequency distribution of basic CAGA Smad-binding DNA element (SBE) sequence in 100 base pair (bp) intervals up- and
downstream of ChIP-Seq peak positions. Horizontal axis shows distance in bp from the center (broken red line) of ChIP-Seq peaks and vertical axis
shows frequency of CAGA motifs in each interval. The frequency of CAGA sequences in 10,000 random mouse genome locations was computed as a
control for comparison (black line). (C) Plot of frequency distribution for the canonical Smad CAGAC sequence in intervals around ChIP-Seq peak

Nodal/Activin Signaling in ES Cell Fate Decisions

PLoS Genetics | www.plosgenetics.org 10 June 2011 | Volume 7 | Issue 6 | e1002130



decreased mRNA levels during signaling repression. This category

of pSmad2 binding comprises 23.87% of high confidence ChIP-

Seq peaks corresponding to 16.28% of target genes associated

within +/250 kb of these peaks (Figure S4). Radil a Rap GTPase

effector that plays a role in the migration of neural crest

progenitors [52] exemplified such pSmad2 binding and transcrip-

tional regulation (Figure 3A, Figure 6A, and Table S1) in the first

intron with normalized relative enrichments of 107 tags in Activin

compared to 51 in the DMSO control and complete loss of

binding indistinguishable from background sequencing levels in

SB. The known target gene Pitx2 showed reproducible results with

the ChIP data obtained by real-time PCR (Figure S1A) both in

terms of the binding location in the intronic enhancer as well as

the level of pSmad2 enrichments under graded Nodal/Activin

signaling. There were normalized enrichments of up to 201 tags in

Activin, 156 in DMSO control and again complete loss of binding

in SB (Figure S3A). Interestingly, Pitx2 had 2 graded binding sites,

one of which is in the known intronic region and a novel site in the

39 region. The graded binding in the Pitx2 locus also correlates

with transcriptional consequences showing strong induction/

inhibition of Pitx2 mRNA levels from 0 to 24 hours (Figure 1A).

The two inducers of the mesendoderm cell fate Mixl [53] and

Nodal [54] also show evidence of graded pSmad2 binding within

50 kb of the genes (Figure S5A and S5B) suggesting that they may

be directly regulated by Nodal/Activin signaling for this purpose.

The binding location in the first intron of Nodal also corresponds to

the intronic enhancer previously described to be important for left

side expression in the early embryo via the Nodal/Activin

signaling autoregulatory loop [55,56] confirming that Nodal is

itself a direct target.

It was also unclear if pSmad2 binding and regulation of target

genes only exists in a 1-to-1 relationship or if the same binding sites

were capable of regulating multiple targets in the genomic vicinity.

While Lefty2 was a known direct target with pSmad2 binding in its

promoter region (Figure S1B), for the first time, to our knowledge,

we characterized an important pSmad2 transcriptional hotspot in

the entire 100 kb Lefty1/2 locus where all the genes within this

region were co-regulated by pSmad2 binding suggesting a

coordinated mode of transcriptional regulation (Figure S3B). This

was further confirmed in the microarray analysis (Figure 3A)

demonstrating that Lefty1/2, Pycr2 and Tmem63a display the same

pattern of gene expression following a graded response to Nodal/

Activin signaling. This was consistent with the real-time PCR

quantification of the pSmad2 pulldown of the Lefty2 promoter

(Figure S1B) that corresponds to the most upstream pSmad2

binding site in the Lefty1/2 hotspot as did a time course profiling of

Lefty2 expression from 0 to 24 hours (Figure 1B).

In the second model of pSmad2 binding, we describe ‘‘low

signaling dominant’’ conditions that permit pSmad2 binding but

less so under other signaling levels. The Id1/2/3 (Figure 6B,

Figure S6, and Table S1) family of transcriptional repressors shows

pSmad2 binding to these genes only in the SB treatments and not

in Activin or the DMSO control. Statistically, 32.73% of pSmad2

binding sites display this mode of behavior associated with 23.44%

of target genes (Figure S4). In contrast, the third model showed the

opposite ‘‘high signaling dominant’’ mode of binding such as in the

case of 220011C2Rik (Figure 6C and Table S1) where pSmad2

only binds strongly in the Activin condition but to a lesser degree

in DMSO or SB also resulting in transcriptional consequences

(Figure 3A and Figure S4). Another known component of the

mesendodermal cell fate Fgf8 [57] also shows strong pSmad2

binding in the promoter region specifically during high signaling

(Figure S5C). Intriguingly, findings in the chick embryo show that

Fgf8 also plays important roles in left-right asymmetry where it can

be induced by Activin [58] in agreement with our results.

In the fourth model which accounts for the regulation of the

largest proportion (33.69%) of target genes associated with

pSmad2 ChIP-Seq peaks (Figure S4B), the same target gene

may be regulated by ‘‘multimodal pSmad2 binding’’ events. Copz2

has two pSmad2 association sites in the intron and promoter

region (Figure 6D). The promoter site only binds pSmad2 in the

SB condition while the intronic enhancer shows a graded response

to the signaling level. In the case of the known target gene Smad7,

we have shown that the pSmad2 binding peak in the promoter

region is invariant in all 3 signaling conditions (Figure S1C) which

could not explain how Smad7 was differentially expressed during

graded Nodal/Activin signaling (Figure 1C). In confirmation with

these results, the ChIP-Seq data showed the same pSmad2

association on the Smad7 proximal region with no change in

binding under all 3 signaling conditions. Surprisingly, we

discovered a previously undescribed pSmad2 regulatory element

in the distal Smad7 promoter region that binds pSmad2 in a graded

manner (Figure S3C) and could account for why Smad7 was

responsive to different Nodal/Activin signaling levels. Hence

pSmad2 binding in the Smad7 proximal region may not be the

dominant regulatory region for Nodal/Activin signaling but may

depend instead on the dynamically changing pSmad2 distal

promoter element for Smad7 regulation. Indeed the proximal

promoter element may be more of a Smad3 regulated region

instead of Smad2 as previously described [38].

In conclusion we demonstrate that pSmad2 dependent binding

and transcription during graded Nodal/Activin signaling occurs in

the ES cell genome in a graded, low or high signaling dominant,

many-to-one or one-to-many multimodal manner in relation to

the target genes that they regulate.

Nodal/Activin Signaling Titrates the Level of Oct4 in ES
Cells, Which Is a Direct Target of Phospho-Smad2 Binding
in the Promoter Region

The mesendodermal and trophectodermal cell fate decisions

brought about by graded Nodal/Activin signaling strikingly

resemble the ES cell response to a less than 2-fold up- or

downregulation of the Oct4 master regulator of stemness in driving

differentiation towards similar cell fates [59]. Furthermore, an

important mechanism for trophectoderm differentiation depends

on the Oct4 repression of Cdx2 expression and the induction of this

lineage is thought to be indicative of loss of stemness [60]. We

therefore hypothesized that Oct4 may be a key downstream target

under Nodal/Activin control during the specification of divergent

cell fate decisions and investigated how the pathway may be

governing Oct4.

positions using the same control calculations as in (B). Insert shows the logo of the Smad binding motif (TRANSFAC PWM SMAD_Q6_01) containing
the CAGAC sequence. (D) Graph showing the sequence and frequency of the top 6-mer motifs in Activin, DMSO and SB. The motifs were defined by
the Weeder program using sequences that occur only in the center of ChIP-Seq peaks. The frequency is expressed as fraction of +/–25 bp sequences
spanning ChIP-Seq peaks containing the indicated motifs. CAGA containing 6-mers are highlighted in red. (E) 8-mer motifs defined by Weeder
program in top 1000 ChIP-Seq peaks ranked by enrichments in +/250 bp intervals for Activin, DMSO, SB and combined conditions correspondingly.
Transcription factors binding to sequences similar to these motifs identified by the STAMP program using TRANSFAC PWM are indicated with
corresponding p-values.
doi:10.1371/journal.pgen.1002130.g005
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Figure 6. Graded, Low Signaling Dominant, High Signaling Dominant, and Multimodal Modes of Phospho-Smad2 Target Gene
Binding. UCSC Genome Browser representation of pSmad2 enrichment peaks under Activin (red), DMSO control (blue) and SB (green) signaling
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We discovered that the Oct4 locus was rich in multiple pSmad2

binding events from ChIP-Seq profiling (Figure 7A). During

graded Nodal/Activin signaling in chemically defined conditions

however, only a pSmad2 peak in the promoter region of Oct4

showed a similarly graded response suggesting that this was the

functional Nodal/Activin signaling response element. We exam-

ined the transcript levels of endogenous Oct4 expression (Figure 7D)

upon inhibition of Nodal/Activin signaling with SB in serum

containing media and found that it was also significantly

downregulated within 24 hours. In agreement with the transcript

data, Oct4 protein levels were similarly downregulated in SB

treated ES cells (7E). Analysis of the 503 bp promoter region

encompassing the beginning and end of the pSmad2 binding peak

showed that it contained eight CAGA sites or their inversion

(Figure 7B). To determine if this regulatory sequence was indeed a

Nodal/Activin response element of the Oct4 promoter, we cloned

this into luciferase reporter constructs and transfected ES cells

subjected to the 3 signaling conditions with Activin, DMSO and

SB (Figure 7C) in serum containing media. The reporter activity of

the wild type Oct4 promoter construct was .100X higher than

that of the empty reporter construct in the DMSO control

signaling condition suggesting that the 503 bp sequence had

strongly driven Oct4 promoter activity in ES cells. Crucially, the

Oct4 promoter reporter displayed a specific graded response to

Nodal/Activin signaling while the control empty reporter did not.

To confirm that the Oct4 response to graded Nodal/Activin

signaling was functionally driven by pSmad2 binding, we

determined the exact SBE responsible for Oct4 inducibility

(Figure 7C). Mutagenesis experiments on the Oct4 promoter

region in luciferase assays revealed that the strong CAGAC

consensus SBE site in the middle of the 503 bp fragment was

indispensable for graded Oct4 promoter activity. Loss of this site

completely abolished the promoter response to both high and low

Nodal/Activin signaling. Further point mutations of two minimal

CAGA SBEs flanking the CAGAC site led to no further significant

effects on the Oct4 promoter.

We therefore conclude that Oct4 is a direct target of pSmad2

binding and Nodal/Activin signaling regulates both its promoter

activity and endogenous expression. The 503 bp Oct4 promoter

response element with the essential CAGAC SBE was sufficient

and independent of all other pSmad2 binding events in the Oct4

locus or other DNA regulatory elements in cis that may be

mediated by Nodal/Activin signaling. The regulation of Oct4 is

well known for its importance in cell fate decisions and its

downregulation during loss of Nodal/Activin signaling is signifi-

cant not only as an impetus for trophectoderm differentiation but

also reconciles the alternative role of Nodal/Activin signaling in

maintaining self-renewal and pluripotency.

Discussion

The molecular basis of extracellular signaling instructions

governing differential cell fate decisions in the Nodal/Activin

pathway has been postulated but not shown conclusively.

Primarily, the transcriptional events occurring at the interface

between pSmad2 signal transduction from the activated cell

surface receptors to manipulation of the global stem cell

transcriptome driving specific lineage programs have not been

well characterised. This study provides an important insight into

how quantitative signaling is translated into qualitative cell fate

decisions by showing for the first time, to our knowledge, that the

same transcription factor pSmad2 is able to bind and transcrip-

tionally regulate different subsets of target genes in a dose-

dependent manner.

The specification of cell fate decisions is governed by 2 distinct

events. The first requires an exit from self-renewal and

maintenance of stemness programs by direct control of pSmad2

over key pluripotency factors. Previous studies have revealed that

Nanog is a direct target of Smad2/3 transcription in human ES cells

[61]. Here we show an additional level of control over the stem cell

program by direct transcriptional regulation of the Oct4 master

pluripotency gene by pSmad2. The second event requires an entry

into a specific differentiation program that is in turn brought about

by direct and indirect pSmad2 regulation of differentiation genes

such as Gata3, Tcfap2c and Igf2 that are known to be important

factors for trophectoderm cell fates. This cell fate decision is

further reinforced by loss of Oct4 with inhibition of Smad2

phosphorylation as the former is known to be a potent repressor of

the trophectoderm gene Cdx2 in the blastocyst [60]. The pSmad2

binding target genes driving mesendodermal differentiation

include Mixl, Fgf8 and Nodal itself, while other genes such as

Chst15 expressed in definitive endoderm and Fgf15 for cardiac

mesoderm have also been identified as strong Nodal/Activin

transcriptional targets. It is likely that over the course of long-term

differentiation for 6 days, additional target genes may be recruited

for the specification of both lineage decisions that may not be

apparent at the 18 hours time point in this study which may be too

early for endpoint differentiation. Indeed, strong regulation of Mixl

and Fgf8 and to a lesser extent Nodal could be detected at 3 and 6

days (Figure 2B and data not shown) of treatment in correlation

with the level of Nodal/Activin signaling.

Consistent with the role of Nodal/Activin as morphogens, we

found that many components of the pathway were themselves

feedback targets that were directly regulated by pSmad2 binding

in ChIP-Seq and/or differentially expressed in our microarray

analysis. These include the negative feedback inhibitors such as

Lefty1/2 and Smad7 which are already known targets of Nodal/

Activin signaling. In this study, graded pSmad2 binding could be

detected in the intronic region of Tmepai (Figure S6) which

sequesters Smad2/3/4 from receptor kinase activity [62].

Similarly, SnoN [63] and Ski [64] also present graded intronic

binding of pSmad2 (Figure S6) and both function as transcrip-

tional repressors of Smad2/3/4. There were also positive feedback

components such as Nodal, its cofactor Cripto and FoxH1 the

transcriptional copartner of Smad2 (Figure 8 and Figure S6) that

show graded binding in the intron and promoter regions. The

preponderance of the negative components in the autoregulatory

loop of Nodal/Activin signaling is significant, as it suggests that the

conditions in ES cells. Genomic locations of signaling regulated peaks correspond to (A) graded binding to intron of Radil in all 3 conditions, (B)
discrete binding to promoter and exon of Id1 specific to SB treatment, (C) binding to the 39 region of 2210011C2Rik only in the Activin condition and
(D) multimodal recruitment of pSmad2 in ChIP-Seq peaks marked with (*) where it is SB specific in the promoter region of Copz2 and graded in
correlation with signaling in the intronic region. All target genes were identified to be differentially expressed under the 3 signaling conditions in the
microarray analysis of Figure 3A. Top panels show raw sequencing tag enrichments in Activin/DMSO/SB on the vertical axis. Bottom panels show
ChIP-Seq peak positions and intensities defined by the MACS program based on normalization to the respective input DNA sequencing controls for
each condition. Horizontal scale shows genomic coordinates on the indicated chromosomes and scale bar denotes genomic distance. Structure of
the indicated target genes is represented by thick solid lines for exons, thin solid lines for UTRs and continuous arrows running from 59 to 39 for
introns.
doi:10.1371/journal.pgen.1002130.g006
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Figure 7. Oct4 Is a Direct Target of Nodal/Activin Signaling via Graded Phospho-Smad2 Recruitment to the Promoter. UCSC Genome
Browser plot of the Oct4 genetic locus showing pSmad2 ChIP-Seq enrichment on the vertical scale in ES cells subjected to Activin (red), DMSO control
(blue) and SB (green) treatments with genomic distance in bp on the horizontal scale. Colored bars show ChIP-Seq peak positions and normalized
enrichments for each treatment. (B) 503 bp sequence of the Oct4 promoter region marked with asterisk (*) in (A). Sequences in yellow show canonical
CAGA SBEs or their inverted sequence TCTG while the strong CAGAC SBE is highlighted in blue. Sequences in red boxes denote where mutations
were made in the indicated luciferase constructs. (C) Firefly luciferase assays of the 503 bp sequence cloned into the pGL4.23 reporter construct
(pGL4.23 Oct4) or mutated in the strong CAGAC SBE (pGL4.23 m4 Oct4) or mutated in CAGAC and the two flanking CAGA sites (pGL4.23 m345 Oct4).
The constructs were transfected into ES cells treated with Activin (dark gray bars), DMSO control (light gray) and SB (white). Discontinuous vertical
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pathway mainly dampens and attenuates its own signaling via

negative feedback and less so by positive feedback loops mediated

by Nodal, Cripto and FoxH1.

One of the intriguing findings is that extracellular signaling

gradients were translated into a gradient of Smad2 phosphoryla-

tion that we have now shown to be able to recruit different target

genes in a dose-dependent manner. This was possibly achieved by

an exchange of transcriptional copartners that permits the shifting

of the pSmad2 transcriptional complex to different target gene

subsets as suggested by the differential recruitment of non-CAGA

motifs and comotifs under each signaling condition. The fact that

pSmad2 contains only CAGA sequence binding domains and not

transcription activation domains suggest that it is further

dependent upon copartners for transcription, binding affinity

and specificity. In some cases graded pSmad2 transcription

complex binding drives graded target gene response that follows

signaling strength with high fidelity. In other cases, the target

genes are only regulated and responsive at defined signaling

thresholds (Figure 8). The consequence is that a relatively modest

stimulation with Activin leading to a physiological 2-fold increase

in Smad2 phosphorylation eventually drives mesendodermal

differentiation while the reciprocal SB inhibition resulting in a 2-

fold decrease of pSmad2 is able to promote trophectoderm cell

fates. During this process, the master regulator of pluripotency

Oct4 is itself titrated by the same Nodal/Activin signaling gradients

in the ES cells undergoing differentiation. Hence the same

pathway is able to tilt the balance in favor of maintenance of

pluripotency or mediate an exit from self-renewal and entry into a

specific lineage program. In conclusion, this study for the first

time, to our knowledge, reconciles the multiple divergent roles of

Nodal/Activin signaling in both pluripotency and differentiation

with pSmad2 playing a central role in the cell fate decision making

process.

Materials and Methods

Cell Culture
E14 TG2A mouse embryonic stem cells (ATCC) were

propagated in FBS media consisting of 20% ES cell-qualified

FBS in DMEM supplemented with 100 mM non-essential amino

acids, 100 U/ml penicillin, 100 mg/ml streptomycin, 2 mM

GlutaMAX-I (Invitrogen), 55 mM b-mercaptoethanol (Sigma)

and 1X homemade Leukemia inhibitory factor (LIF). For the

establishment of Nodal/Activin signaling gradients in chemically

defined conditions, KSR media containing 20% Knockout Serum

Replacement (KSR, Invitrogen) in place of FBS with all other

components of ES media excluding LIF were used. For acute (0 to

48 hours) signaling conditions, 25000 ES cells/cm2 were plated for

18 hours in FBS media followed by adaptation of the cells to

chemically defined conditions with 10 mM SB-431542 (Tocris) in

KSR media for 6 hours as previously described [41]. High

signaling was induced by treatment with KSR media containing

25 ng/ml Activin (R&D Systems) or low signaling with 10 mM SB

and maintenance of endogenous signaling with control KSR

media or 1/5000 dilution of DMSO vehicle as indicated. For long-

term differentiation, 2000 ES cells/cm2 were plated and 18 hours

later directly treated with Activin, DMSO and SB in FBS media

without LIF or KSR media for 6 days with media change

everyday. The DMSO vehicle used to dissolve SB can induce

differentiation and loss of pluripotency in ES cells [65,66]. In the

microarray analysis of the 3 signaling conditions, the effect of

DMSO on differential gene expression was determined by

comparing against the unsupplemented KSR media control

(Figure 3A). The SB inhibitor was used at a high stock

concentration of 50 mM permitting 5000X dilution of DMSO

in ES cell cultures which was well below the limit required for

differentiation. The cultures and treatments were carried out for

the microarray study in 4 biological replicates consisting of ES cells

at 4 different passages from P20 to P24 to identify and eliminate

any cell culture variation effects from analysis.

Western Blotting
ES cells were lysed in RIPA buffer (150 mM NaCl, 1% NP-

40, 0.5% Sodium Deoxycholate, 0.1% SDS, 50 mM Tris pH

8.0) for protein extracts. SDS-PAGE was performed on 10%

polyacrylamide gels and transferred on Immun-Blot PVDF

membranes (Bio-rad Laboratories) followed by probing with

1:1000 dilutions of rabbit anti-Smad2 (pSer465/467, Calbiochem),

rabbit anti-Smad2 (Invitrogen), mouse anti-Pcna (Santa Cruz

Biotechnology) and goat anti-Oct4 (Santa Cruz Biotechnology).

Secondary antibodies used were 1:1000 donkey anti-rabbit IgG-

HRP (GE Healthcare), 1:1000 goat anti-mouse IgG-HRP and

1:2500 donkey anti-goat IgG-HRP (Santa Cruz Biotechnology).

Densitometry measurements of protein bands on western blots

were acquired using Photoshop CS3 (Adobe Systems Incorpo-

rated).

PCR Quantitation of Gene Expression and ChIP DNA
Enrichments

For gene expression, total RNA was extracted from cells using

the RNeasy Mini kit (Qiagen) as per manufacturer instructions.

This was reverse transcribed into cDNA using the High Capacity

RNA-to-cDNA Master Mix (Applied Biosystems). Quantitative

real-time PCR was performed on the 7900HT Fast Real-Time

PCR System (Applied Biosystems) or the Biomark System

(Fluidigm Corporation) on cDNA or ChIP DNA according to

manufacturer instructions. For RT-PCR, products amplified for

25 to 33 cycles were resolved on a 2.5% agarose gel. Primer

sequences for both ChIP-qPCR and gene/marker expression can

be found in Table S3.

Microarray Analysis
Total RNA was reverse transcribed into cDNA and in vitro

transcribed into biotin-labeled cRNA using the Illumina Total-

Prep RNA Amplification kit (Ambion). This was hybridized on

MouseRef-8 v2.0 Expression BeadChips (Illumina). Raw intensity

values were subjected to background subtraction on the Bead-

Studio Data Analysis Software (Illumina) and normalized using the

cross-correlation method [67]. Differential gene expression was

identified based on a fold change cutoff of .1.5 compared to the

DMSO control. The microarray data was deposited in NCBI

GEO with accession number GSE23239.

scale shows relative Firefly luciferase levels normalized to the co-transfection pGL4.75 Renilla luciferase control. Error bars provide s.e.m. for n = 8
replicates. (D) Real-time PCR quantitation of endogenous Oct4 expression in ES cells treated for 0 to 48 hours in SB (gray bars) compared to DMSO
(white bars) after normalizing to the Ywhaz housekeeping control. Vertical axis shows fold change over the 0 h control in each treatment. Error bars
show s.e.m. for n = 8 replicates. (E) Western blot of endogenous Oct4 protein levels in ES cells after treatment with SB or DMSO control in a 0 to 24
hour time course. Pcna was used as a loading control in both conditions. Densitometry plot shows Oct4 protein quantitation after normalizing to the
respective Pcna loading control with the relative level at 0 hours for each treatment at 100%.
doi:10.1371/journal.pgen.1002130.g007
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Figure 8. Model of the Mechanism of ES Cell Fate Decisions Directed by Graded Nodal/Activin Signaling. Schema of the components
and signal transduction of the Nodal/Activin pathway starting with different concentrations of ligands external to the ES cell lipid bilayer membrane
and terminating with the pSmad2 transcriptional complex regulating Oct4 and different subsets of target genes in the nucleus. Red arrows show the
signal transduction circuit, black arrows show transcription and translation of pSmad2 target genes while green inhibitory lines indicate negative
feedback. Protein names in red are targets identified in the microarray analysis and/or pSmad2 ChIP-Seq. Color gradients from red to green denote
components exhibiting a dose-dependent response from high (+) to low (–) activity. Plots represent the graded, high and low signaling dominant
models of pSmad2 binding during differential signaling with the vertical axis showing the level of binding against the horizontal axis with increasing
signaling levels from left to right. Different cell fate decisions and the events triggering them are indicated by lines and arrows in red to green color
gradients.
doi:10.1371/journal.pgen.1002130.g008
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ChIP-Seq
Chromatin Immunoprecipitation (ChIP) using a certified ChIP-

grade rabbit polyclonal anti-Smad2 (phospho S465+S467) anti-

body (ab16509, Abcam) was carried out in ES cells under

chemically defined high, medium or low Nodal/Activin signaling

conditions according to the Agilent Mammalian ChIP-on-chip

protocol v9.1 up to the ChIP DNA purification step. Adapter

ligation, library amplification and size selection in the 200–300 bp

range were performed according to the Illumina ChIP Sample

Prep protocol (#11257047, Rev. A). Massively parallel sequencing

was carried out for ChIP samples in all 3 signaling conditions with

their respective input DNA controls on the Genome Analyzer

(Illumina) up to a sequencing depth of at least 106106 tags pass

filter. The ChIP-Seq data was deposited in NCBI GEO with

accession number GSE23581. Details of the ChIP-Seq, motif and

statistical analysis can be found in the Text S1.

Luciferase Assays
The 503 bp fragment of the mouse Oct4 promoter region

corresponding to chr17:35640683–35641185 was cloned into the

pGL4.23[luc2/minP] Firefly luciferase reporter construct (Pro-

mega) to generate pGL4.23 Oct4. This construct was point mutated

by oligo cloning into unique StuI and NsiI sites to produce

pGL4.23 m4 Oct4 (CAGAC mutated to CATGC) and pGL4.23

m345 Oct4 (TCTGGGCAGACGGCAGA mutated to TATGGG-

CATGCGGCATA). The constructs were transfected into mouse

ES cells in an 80:1 ratio with the pGL4.75[hRluc/CMV] Renilla

luciferase co-transfection control (Promega) using Lipofectamine

2000 (Invitrogen). A control transfection was included with an

80:1 ratio of the empty pGL4.23 vector to pGL4.75 Renilla

control. Immediately after lipofections, the ES cells were

pretreated with FBS media without LIF and with 10 mM SB for

6 hours. Subsequently the cells were split into replicates and plated

in FBS media without LIF containing 25 ng/ml Activin, 1/5000

DMSO vehicle or 10 mM SB, which induces high, medium or low

Nodal/Activin signaling respectively for 8 hours. The cells were

washed once in PBS and lysed in 1XPassive Lysis Buffer and

luciferase assays were performed using the Dual-Luciferase

Reporter Assay System on the GloMax 96 Microplate Luminom-

eter with Dual Injectors (Promega).

Supporting Information

Figure S1 There Is Graded pSmad2 Binding to Pitx2 and Lefty2

but Not the Smad7 Proximal Promoter. Real-time PCR quantifi-

cation of pSmad2 ChIP enrichments using tiling primers across

the intronic enhancer in Pitx2 (A) and the promoter regions of

Lefty2 (B) and Smad7 (C). Y-axis shows fold enrichment over the

non-binding control region in the Sox2 locus after normalizing to

the input DNA for each condition while the x-axis represents

genomic distance in base pairs (bp) from the transcriptional start

site (TSS) of each gene. Upstream and downstream distances are

denoted as negative and positive coordinates respectively. Trends

show the level of pSmad2 ChIP enrichment for the indicated

genomic regions obtained from ES cells treated with Activin (red),

DMSO carrier control (blue) and SB (red) in chemically defined

KSR media. Horizontal bars show coverage of each PCR primer,

vertical error bars show s.e.m. for n = 3 replicates.

(TIF)

Figure S2 Activin/SB Treatments of ES Cells Promote Exit

from Self-Renewal towards Mesendoderm and Trophectoderm

Differentiation. Immunofluorescence detection of the markers of

pluripotency and mesendoderm or trophectoderm differentiation

in ES cells treated for 6 days with Activin, DMSO control and SB.

Phase contrast bright field (BF) images are in the top panels

followed by Hoechst 33342 nuclear staining in blue. Alexa Fluor

546 staining for Lim1, Oct4 and Hand1 are in red for Activin,

DMSO and SB treated cells respectively. Alexa Fluor 488 staining

for Mixl, SSEA-1 and placental Cadherin (P-cad) are in green

while overlays of all fluorescent channels (Merge) are shown in the

bottom panels. Scale bar shows distance under a 20X objective

lens.

(TIF)

Figure S3 Pitx2, the Lefty1/2 Hotspot, and Smad7 Contain

Multiple pSmad2 Regulatory Sites in Their Genetic Loci. UCSC

Genome Browser representation of the genomic loci for Pitx2 (A)

on chromosome 3:128,894,461–128,931,307, Lefty1/2, Pycr2 and

Tmem63a (B) on chromosome 1:182,813,583–182,908,336 and

Smad7 (C) on chromosome 18:75,513,703–75,561,010. Genomic

coordinates are shown on the x-axis while raw pSmad2 ChIP-Seq

tag counts are presented on the y-axis in the top panel followed by

relative enrichments normalized to the respective input DNA

controls of Activin (red), DMSO (blue) and SB (green) treated ES

cells in the bottom panel. The RefSeq genetic structures of the

indicated genes and their isoforms if any are indicated below the

ChIP-Seq panels. Scale bar shows genomic distance in kilo base

pairs (kb) while pSmad2 enrichment peaks corresponding to the

real-time PCR results in Figure S1 are indicated with asterisks (*).

(TIF)

Figure S4 Phospho-Smad2 Binding to Majority of Sites and

Target Genes Varies by .1.25-Fold during Graded Signaling. Pie

charts showing patterns and statistics of pSmad2 binding to sites

and target genes that vary by at least 1.25-fold during Activin,

DMSO and SB treatments. Colored segments display the

indicated models of pSmad2 binding in the 3 signaling conditions.

Proportional segment sizes define the relative contribution of each

type of binding behavior for ChIP-Seq peaks (A) and target genes

within +/250 kb of the peaks (B) out of the total for each. Values

indicate the number of peaks (A) or genes (B) in each regulatory

model with percentages of the total in parentheses.

(TIF)

Figure S5 The Mesendodermal Genes Mixl, Nodal, and Fgf8 Are

Targets of Differential pSmad2 Binding. Binding profile of

pSmad2 ChIP-Seq enrichments on Mixl (A), Nodal (B) and Fgf8

(C) as visualized on the UCSC Genome Browser at the

coordinates chr1:182,571,609–182,632,748, chr10:60,873,730–

60,895,009 and chr19–45:805,804–45,822,014 respectively.

Changes in the level of pSmad2 ChIP-Seq peak enrichments

(raw peaks top panel, normalized peaks bottom panel) are

indicated for Activin (red), DMSO (blue) and SB (green) treated

ES cells on the y-axis. X-axis shows genomic location and genetic

features of the indicated genes are below the Genome Browser

panels. PSmad2 binding peaks showing significant differential

binding with Nodal/Activin signaling are marked with asterisks (*).

Scale bar shows genomic distance in kilo base pairs (kb).

(TIF)

Figure S6 Validation of 15 Genes as Direct Targets of Nodal/

Activin Signaling via Differential Phospho-Smad2 Binding. Real-

time PCR validation of pSmad2 ChIP-Seq enrichment on original

unamplified ChIP DNA from ES cells treated with Activin (ACT),

DMSO and SB in KSR media for 18 hours. Indicated genes were

selected based on transcriptional regulation under the same

conditions in the microarray analysis of Figure 3A and real-time

PCR gene expression detection in Figure 7D. Vertical scale shows

fold-enrichment over the non-binding control region in the Pfkm

locus on chromosome 15:97,934,552–97,934,626 after normaliza-
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tion to the input DNA controls in each treatment. Phospho-Smad2

enriched regions detected by the PCR primers are indicated in the

genomic coordinates above each graph. Error bars show s.e.m. for

n = 12 replicates.

(TIF)

Table S1 64.2% of Microarray Targets Differentially Expressed

by .1.5-fold are also Targets of Differential Phospho-Smad2

Binding. Table showing 104 out of the 162 microarray target genes

from Figure 3A where expression is induced and/or repressed by

.1.5-fold during stimulation or inhibition of Nodal/Activin

signaling in ES cells. These targets also exhibit pSmad2 binding

at +/250 kb from the 59/39UTRs and within the genes themselves.

Only ChIP-Seq peaks that satisfy a size cutoff of .12 sequencing

tags in at least 1 condition are considered significantly above

background sequencing levels and counted for each gene during

Activin (ACT), DMSO vehicle control and SB inhibitor treatments.

Gene IDs of the target genes, their chromosomal locations (Chr) and

their orientation on the sense (+)/antisense (2) strands are as

indicated. Gene names highlighted in yellow are for Activin/SB co-

regulated targets, red for Activin specific targets and green for SB

responsive genes only. The number of sequencing tags within the

largest ChIP-Seq peaks for each gene and under each condition are

as shown. For genes that contain multiple pSmad2 binding sites, the

largest peaks counted may not occur at the same genomic location.

Changes in the level of overall pSmad2 binding during Activin

treatment compared to SB (ACT vs SB), Activin compared to

DMSO control (ACT vs DMSO) and SB compared to DMSO (SB

vs DMSO) are shown as (+) for increased binding and (–) for

decreased binding by .1.5-fold. The overall level of pSmad2

binding for each gene is calculated as the sum of all peak heights

(enrichment counts) proximal to the gene and under each condition.

A value of 0 denotes no significant change in binding at a 1.5-fold

cutoff and NA indicates no detectable peaks for statistical analysis.

(DOC)

Table S2 There Are Dynamic Changes in Phospho-Smad2

Binding Motifs During Graded Nodal/Activin Signaling. Moti-

fEnrich program identification of co-motifs enriched within

#5000 bp of pSmad2 binding peaks. Co-motifs are ranked based

on frequency of occurrence from highest to lowest. Matching of

co-motifs with associated transcription factors was performed

using the TRANSFAC PWM database with p-value thresholds of

1e-05. Transcription factor names in black are present across all 3

signaling conditions with Activin, DMSO and SB treatments.

Activin enriched transcription partners binding on the co-motifs in

proximity to pSmad2 sites are highlighted in red, DMSO enriched

factors in blue and SB in green. The intervals of significant

enrichment for each co-motif are indicated in base pairs (bp).

(DOC)

Table S3 Primers Used for Quantification of ChIP DNA and

Marker/Gene Expression Levels by Real-Time PCR. List of

forward/reverse primer pairs used in SYBR Green real-time PCR

reactions for the quantification of ChIP-DNA (ChIP-qPCR) and

Marker/Gene expression. For tiling ChIP-qPCR analysis of

pSmad2 binding on Pitx2, Lefty2 and Smad7, primers for each

gene are numbered sequentially according to the 59–39 order of

their respective amplified regions shown in Figure S1.

(DOC)

Text S1 Supporting Experimental Procedures and Supporting

References. Description of methods used for motif identification

and statistical analysis of ChIP-Seq data and immunostaining of

the protein markers of differentiation in cells with the associated

supplementary references.

(DOC)
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