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We study N = 1 supersymmetric U(N) gauge theories coupled to an adjoint chiral

field with superpotential. We consider the full supersymmetric moduli space of these the-

ories obtained by adding all allowed chiral operators. These include higher-dimensional

operators that introduce a field-dependence for the gauge coupling. We show how Feyn-

man diagram/matrix model/string theoretic techniques can all be used to compute the

IR glueball superpotential. Moreover, in the limit of turning off the superpotential, this

leads to a deformation of N = 2 Seiberg-Witten theory. In the case where the superpoten-

tial drives the squared gauge coupling to a negative value, we find that supersymmetry is

spontaneously broken, which can be viewed as a novel mechanism for breaking supersym-

metry. We propose a new duality between a class of N = 1 supersymmetric U(N) gauge

theories with field-dependent gauge couplings and a class of U(N) gauge theories where

supersymmetry is softly broken by nonzero expectation values for auxiliary components of

spurion superfields.
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1. Introduction

The last decade has seen great progress in our understanding of the dynamics of

N = 1 supersymmetric gauge theories, with string theory playing a large role in these de-

velopments thanks to its rich web of dualities. In particular, motivated by string theoretic

considerations [1], a perturbative approach was proposed for the computation of glueball

superpotentials in certain N = 1 supersymmetric gauge theories using matrix models [2],

which leads to non-perturbatively exact information for these theories at strong coupling.

Further evidence for this proposal was provided through direct computations [3], as well

as from consideration of N = 1 chiral rings [4].

The simplest class of gauge theories considered in [1] involve anN = 1 supersymmetric

U(N) gauge theory with an adjoint superfield Φ together with a superpotential

TrW (Φ) =
∑

k

akTrΦk.

In this paper, we consider further deforming this theory by the most general set of single-

trace chiral operators. This is accomplished by the introduction of superpotential terms

∫
d4xd2θTr [α(Φ)WαW

α] ,

whereWα is the field strength superfield. In string theory, these theories are constructed by

wrapping D5 branes on vanishing cycles in local Calabi-Yau three-folds, where the addition

of a background B-field which depends holomorphically on one complex coordinate of the

three-fold leads to the above deformation, with

α(Φ) = B(Φ) =
∑

k

tkΦ
k.

We show how the strongly coupled IR dynamics of these theories can be understood using

both string theoretic techniques (large N duality via a geometric transition) and a direct

field theory computation as in [3]. Moreover, following [5], we can consider the limit where

W (Φ) is set to zero, in which case we recover an N = 2 supersymmetric theory with

Lagrangian given by

L =

∫
d4xd4θF(Φ).

The prepotential F(Φ) is related to α(Φ) by

F ′′(Φ) = α(Φ), (1.1)
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where Φ is an adjoint-valued N = 2 chiral multiplet. In this limit, our solution reduces to

that of the extended Seiberg-Witten theory with general prepotential (1.1). Our results are

in complete agreement with the beautiful earlier work of [6], which uses Konishi anomaly

[4] and instanton techniques [7] to study these same supersymmetric gauge theories.1

The stringy perspective which we develop, however, sheds light on nonsupersymmetric

phases of these theories, which will be our main focus. In particular, it turns out that if

α(Φ) is chosen appropriately, there are vacua where supersymmetry is broken. The idea is

that a suitable choice of higher-dimensional operators can lead to negative values of g2
YM

for certain factors of the gauge group. Motivated by string theory considerations, we will

show that strong coupling effects can make sense of the negative value for g2
YM, and at

the same time lead to supersymmetry breaking. In the string theory construction, this

arises from the presence of antibranes in a holomorphic B-field background. When g2
YM is

negative in all the gauge group factors, we propose a complete UV field theory description

of these vacua. This is another U(N) gauge theory, already studied in [9,10,11], with an

adjoint field Φ̃ and superpotential

∫
d2θ Tr[t0W̃αW̃

α + W̃ (Φ̃)], (1.2)

where

W̃ (Φ̃) =
∑

k

(ak + 2itkθθ)Φ̃
k.

Note that since the spurion auxiliary fields have nonzero vevs tk, this theory breaks super-

symmetry.

A duality between supersymmetric and nonsupersymmetric theories may appear con-

tradictory. The way this arises is as follows (see figure 1). We have an IR effective N = 1

theory which is valid below a cutoff scale Λ0. The IR theory is formulated in terms of chi-

ral fields which we collectively denote by χ (for us, these are glueball fields). The theory

depends on some couplings t, and for each value of t we find two sets of vacua – one which

is supersymmetric, and one which is not. However, for any given values of t, only one of

these vacua is physical, in that the expectation value of the chiral fields is below the cutoff

scale |〈χ〉| < Λ0. The other solution falls outside of this region of validity. In particular,

in one regime of parameter space, only the supersymmetric solution is acceptable. As we

change t, the supersymmetric solution leaves the allowed region of field space, and at the

1 A special case of these theories with a particular choice of W (Φ) was also studied in [8].
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same time the nonsupersymmetric solution enters the allowed region. We obtain in this

way a duality between a supersymmetric and a nonsupersymmetric theory. Moreover, we

are able to identify two dual UV theories. However, unlike the effective IR theory, which

is valid for the entire parameter space, each UV theory is valid only for part of the full

parameter space. The supersymmetric IR solution matches onto a supersymmetric UV

theory, and the nonsupersymmetric IR solution matches onto another UV theory where

supersymmetry is broken softly by spurions.

t

Λ
0

SUSY SUSY

< >χ

Fig. 1. A phase diagram for the supersymmetric/nonsupersymmeric duality. The

horizontal axis represents the full parameter space, and the vertical axis represents

field vevs. A wavy line at the cutoff Λ0 is the region where we begin to lose validity

of a given solution – we can trust solutions only below this scale.

The organization of this paper is as follows: In section 2 we establish the

basic field theories which will be studied. In section 3 we show how these field

theories can be realized in type IIB string theory on local Calabi-Yau three-folds.

In section 4 we show how this string theory construction leads to a solution for

the IR dynamics of the theory. In section 5 we derive the same result directly

from field theory considerations. In section 6 we specialize to the N = 2 case.

In section 7 we consider these field theories when some of the gauge couplings

g2
YM become negative. We explain why this leads to supersymmetry-breaking

and propose a dual description. Some aspects of the effective superpotential

computation are presented in an appendix.
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2. Field Theory

Consider an N = 2 supersymmetric U(N) gauge theory with no hyper-

multiplets. Classically, this theory is described by a holomorphic prepotential

F(Φ) which appears in the N = 2 Lagrangian,

L =

∫
d4xd4θF(Φ) (2.1)

where Φ is an adjoint-valued N = 2 chiral multiplet, and

F(Φ) =
t0
2

TrΦ2. (2.2)

Above, t0 determines the classical gauge coupling and θ angle

t0 =
θ

2π
+

4πi

g2
YM

, (2.3)

and the integral in (2.1) is over a chiral half of the N = 2 superspace. The

low energy dynamics of this theory were studied in [12], where it was shown

that the theory admits a solution in terms of an auxiliary Riemann surface and

one-form.

This theory admits a natural extension via the introduction of higher-

dimensional single-trace chiral operators,

F(Φ) =
∑

k=0

tk
(k + 1)(k + 2)

TrΦk+2, (2.4)

which deform the theory in the ultraviolet. One effect of these new terms is

that the effective gauge coupling at a given point in moduli space now depends

explicitly on the expectation value of the scalar component φ of the superfield

Φ,

t0 → F
′′(φ) =

∑

k=0

tkφ
k.

We therefore define

α(Φ) ≡ F ′′(Φ).

In this paper, we will solve for the low energy dynamics of this extended Seiberg-

Witten theory.
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We will also study deformations of the theory (2.1) to an N = 1 supersym-

metric theory by the addition of a superpotential,

TrW (Φ) =
n+1∑

k=0

akTrΦk, (2.5)

for the N = 1 chiral multiplet Φ that sits inside Φ. In N = 1 language, the full

superpotential of the theory then becomes

∫
d2θ
(
Tr [α(Φ)WαW

α]− TrW (Φ)
)
, (2.6)

where Wα is the gaugino superfield.

Classically, the superpotential W (Φ) freezes the eigenvalues of φ at points

in the moduli space where

W ′(φ) = 0. (2.7)

For generic superpotential, we can write

W ′(x) = g

n∏

i=1

(x− ei), (2.8)

with ei all distinct, so the critical points are isolated and the choice of a vacuum

breaks the gauge symmetry as

U(N)→
n∏

k=1

U(Ni) (2.9)

for the vacuum with Ni of the eigenvalues of φ placed at each critical point

x = ei.

As long as the effective gauge couplings of the low-energy theory are posi-

tive, i.e.

Im[α(ei)] =

(
4π

g2
YM

)

i

> 0, i = 1, . . . n (2.10)

the general aspects of the low energy dynamics of this theory are readily ap-

parent. In the vacuum (2.9), at sufficiently low energies, the theory is pure

N = 1 super-Yang-Mills, which is expected to exhibit confinement and gaugino

condensation.
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When the original N = 2 theory has canonical prepotential (2.2), the

condition (2.10) is satisfied trivially, and in this case the problem of computing

the vacuum expectation values of gaugino condensates in the N = 1 theory,

Sk = TrWα,kW
α
k , (2.11)

has been studied extensively from both string theory [1] and gauge theory [3,4]

perspectives. The question can be posed in terms of the computation of an

effective glueball superpotential [1],

Weff (Si),

whose critical points give the supersymmetric vacua of the theory. In this

paper, we will show how to compute Weff for the N = 1 theory with the more

general prepotential (2.4). Note that physically inequivalent choices of α(Φ)

correspond to polynomials in Φ of degree at most n − 1. This is because, for

the supersymmetric theory, any operator of the form

Tr
[
ΦkW ′(Φ)WαW

α
]
∼ 0

is trivial in the chiral ring [4].

In section 7, we will ask what happens when (2.10) is not satisfied and it ap-

pears that some of the gauge couplings of (2.9) become negative in the vacuum.

We will show that in this case, the theory (2.6) generically breaks supersym-

metry. Moreover, the supersymmetry-breaking vacua still exhibit gaugino con-

densation and confinement, and we will be able to compute the corresponding

expectation values (2.11) as critical points of a certain effective scalar potential

Veff(Si).

3. The String Theory Construction

In this section we give the string theory realization of the above gauge

theory. To begin with, we consider type IIB string theory compactified on an

A1 singularity,

uv = y2, (3.1)
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which is fibered over the complex x-plane. This has a singularity for all x at

u, v, y = 0, which can be resolved by blowing up a finite P1. Wrapping N D5

branes on the P1 gives a d = 4 U(N) N = 2 gauge theory at sufficiently low

energies. The adjoint scalar φ of the gauge theory corresponds to motion of the

branes in the x-plane.

In the microscopicN = 2 gauge theory we also have a choice of prepotential

F(Φ). What does this correspond to geometrically? To answer this, note

that the microscopic prepotential determines the bare 4d gauge coupling, which

arises in the geometry from the presence of nonzero B-fields,

θ

2π
+

4πi

g2
YM

=

∫

P1

(
BRR +

i

gs
BNS

)
. (3.2)

In the undeformed theory with the prepotential (2.2), the gauge coupling was a

constant t0. This translates to the statement that, classically, as the ALE space

is fibered over the x-plane, the Kähler modulus of the P1 (in particular the B-

fields in (3.2)) does not vary with x. In the extended Seiberg-Witten theory, the

complexified gauge coupling becomes φ-dependent. Since the adjoint scalar φ

parameterizes the positions of the D5 branes in the x plane, making the gauge

coupling φ-dependent should correspond to letting the background B-fields in

(3.2) be x-dependent,

B(x) =

∫

S2
x

(
BRR +

i

gs
BNS

)
, (3.3)

where the integral on the right hand side is over the S2 at a point in the x

plane. In order to reproduce the gauge theory, we require

B(x)→ B0(x) = α(x) =
n−1∑

k=0

tkx
k. (3.4)

To summarize, the gauge theory in section 2 is realized as the low-energy

limit of N D5 branes wrapped on an A1×C singularity with H-flux turned on,

∫

S2
x

H0 = dB0(x) 6= 0. (3.5)
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It may seem surprising that turning on H-flux does not break supersymmetry

down to N = 1.2 In the case at hand, the flux we are turning on is due to a

B-field that varies holomorphically over the complex x-plane. It is known that

if the B-field varies holomorphically, the full N = 2 supersymmetry is preserved

[13].

As was explained in [1], turning on a superpotential TrW (Φ) for the adjoint

chiral superfield, as in (2.5), corresponds in the geometry to fibering the ALE

space over complex x-plane nontrivially,

uv = y2 −W ′(x)2, (3.6)

where

W (x) =
n+1∑

k=1

akx
k.

The resulting manifold is a Calabi-Yau three-fold and supersymmetry is broken

to N = 1. After turning on W (x), the minimal S2’s (the holomorphic P1’s)

are isolated at n points in the x-plane, x = ei, which are critical points of the

superpotential,

W ′(x) = g
n∏

i=1

(x− ei).

At each of these points, the geometry develops a conifold singularity, which is

resolved by a minimal P1. The gauge theory vacuum where the gauge symmetry

is broken as in (2.9) corresponds to choosing Ni of the D5 branes to wrap the

i’th P1. In particular, the tree-level gauge coupling for the branes wrapping

the P1 at x = ei is given by

∫

P1
i

B0 =

(
θ

2π
+

4πi

g2
YM

)

i

= α(ei), (3.7)

which agrees with the classical values in the gauge theory.

In summary, we can engineer the N = 1 theory obtained from the extended

N = 2 theory by the addition of a superpotential W (Φ) with N D5 branes

wrapping the S2 in the Calabi-Yau (3.6), with background flux H0. In the next

section, we will study the closed-string dual of this theory.

2 The fact that it preserves at least N = 1 supersymmetry is clear for a holomorphic B-field,

since the variation of the superpotential W =
∫

H ∧ Ω with respect to variations of Ω vanishes if

H is holomorphic.
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4. The Closed String Dual

The open-string theory on the D5 branes has a dual description in terms of

pure geometry with fluxes. The gauge theory on the D5 branes which wrap the

P1’s develops a mass gap as it confines in the IR. The confinement of the open-

string degrees of freedom can be thought of as leading to the disappearance of

the D5 branes themselves. This has a beautiful geometric realization [1] which

we review presently.

In flowing to the IR, the D5 branes deform the geometry around them so

that the P1’s they wrap get filled in, and the S3’s surrounding the branes get

finite sizes. This is a conifold transition for each minimal S2, after which the

geometry is deformed from (3.6) to

uv = y2 −W ′(x)2 + fn−1(x), (4.1)

where fn−1(x) is a polynomial in x of degree n − 1. This has n coefficients

which govern the sizes of the n resulting S3’s.

In addition, there is H-flux generated in the dual geometry,

H = HRR +
i

gs
HNS.

Before the transition, the S3’s were contractible and had RR fluxes through

them due to the enclosed brane charge. After the transition, they are no longer

contractible, but the fluxes must remain. In other words we expect the disap-

pearance of the branes to induce (log-)normalizable RR flux, localized near the

branes’ previous locations, which we denote by HRR. If we denote the S3 that

replaces the k’th S2 by Ak-cycles, then

∮

Ak

HRR = Nk. (4.2)

It is also natural to expect that there will be no HRR flux through the Bk-cycles,

as there were no branes to generate it. In other words

∫

Bk

HRR = 0. (4.3)

In addition to the induced flux HRR, we have a background flux H0 due

to the variation of the background B0 field, which was present even when there
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were no branes, and which we denote by H0 = dB0. Thus we expect the total

flux after the transition to be given by

H = HRR + dB0.

Note that before the transition, there are no compact 3-cycles, and so there is

no compact flux associated with dB0. It is then natural to postulate that after

the transition, dB0 will have no net flux through any of the compact 3-cycles.

Moreover, far from the branes, we expect B0 to be given by its value before the

transition. For the noncompact 3-cycles in the dual geometry, denoted by Bk,

we can then explicitly evaluate the periods of H0,

∫

Bk

H0 =

∫

Bk

dB0 =

∮

S2

Λ0

B0 = B(Λ0). (4.4)

Because these cycles are noncompact, the integral is regulated by the introduc-

tion of a long distance cutoff Λ0 in the geometry. As usual, we identify this

scale with the UV cutoff in the gauge theory.

To summarize, the total flux H = HRR + dB0 after the transition should

be determined by the following facts: HRR is (log-)normalizable, with only

nonzero Ak periods (given by Nk), and far from the branes, B0 is given by its

background value (3.4), i.e.,

dB0 ∼ dα(x) =

n−1∑

k=1

ktkx
k−1.

The fact that the deformed background flux is given by an exact form dB0

emphasizes the fact that it is cohomologically trivial and has no nonzero periods

around compact 3-cycles.

The striking aspect of the duality is that in the dual geometry, the gaugino

superpotential Weff becomes purely classical. We will turn to its computation

in the next subsection.
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4.1. The effective superpotential

The effective superpotential is classical in the dual geometry and is gener-

ated by fluxes,

Weff =

∫

CY

(HRR +H0) ∧ Ω,

where Ω is a holomorphic three-form on the Calabi-Yau,

Ω =
dx ∧ dy ∧ dz

z
.

This has a simpler description as an integral over the Riemann surface Σ which

is obtained from (4.1) by setting the u, v = 0:

0 = y2 −W ′(x)2 + fn−1(x). (4.5)

The Riemann surface Σ is a double cover of the complex x-plane, branched over

n cuts. The 3-cycles Ak and Bk of Calabi-Yau three-fold descend to one-cycles

on the Riemann surface Σ, withAk cycles running around the cuts andBk cycles

running from the branch points to the cutoff (see figure 2). In addition, HRR

descends to a one-form on Σ with periods (4.2), (4.3). Moreover, Ω descends

to a one form on Σ, given by

ydx,

where y solves (4.5). The effective superpotential then reduces to an integral

over the Riemann surface,

Weff =

∫

CY

(HRR +H0) ∧ Ω =

∫

Σ

(HRR + dB0) ∧ ydx. (4.6)

The one-form HRR is defined by its periods

∮

Ai

HRR = Ni,

∫

Bi

HRR = 0,

and the asymptotic behavior of B0 is determined by

dB0(x) ∼ ±dα(x),

where ± correspond to the values of the one-form on the top and bottom sheets

of Σ.
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Fig. 2. The Calabi-Yau three-fold (4.1) projects to the x-plane by setting u = v = 0.

This can be described as a multi-cut Riemann surface Σ, where the nontrivial three-

cycles of the Calabi-Yau reduce to one-cycles as drawn.

The evaluation of the superpotential is now straightforward. Using the

Riemann bilinear identities, we can evaluate the first term,

∫

Σ

HRR ∧ ydx =

n∑

k=1

∮

Ak

HRR

∫

Bk

ydx−

∮

Ak

ydx

∫

Bk

HRR =

n∑

k=1

Nk ∂F0

∂Sk

where ∮

Ak

ydx = Sk,

∫

Bk

ydx =
∂F0

∂Sk
,

and F0 is the genus 0 prepotential of the Calabi-Yau. The background contri-

bution to the superpotential is also straightforward to evaluate, since there are

no internal periods for the flux,

∫

Σ

dB0 ∧ ydx =

∮

P

B0(x) ydx ∼ ±
n∑

k=1

∮

Ak

α(x)ydx,

where the last equality follows from the fact that B0(x) = α(x) for large x by

Cauchy’s theorem (since the cycle around P is homologous to the sum of all

the Ak-cycles).

Thus, the full effective superpotential is

Weff =

n∑

k=1

Nk
∂

∂Sk
F0 +

∮

Ak

α(x)ydx. (4.7)

This expression is in line with our intuition from the open-string description.

Namely, to the leading order we have

∮

Ak

α(x)ydx ∼ α(ek)Sk + . . .
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where the omitted terms are higher order in Si. To this approximation, the

superpotential is given by

Weff ∼
∑

k

α(ek)Sk +Nk
∂F0

∂Sk
+ . . .

Note that the first term above comes from the classical superpotential of the

gauge theory, since the Ai-cycle periods Si in the geometry are identified with

glueball superfields in the gauge theory. The coefficient of Si in the effective

superpotential is the microscopic gauge coupling of the U(Ni) gauge group

factor in the low energy effective field theory. This is precisely equal to the

B-field on the S2 wrapped by the branes (3.7).

However, this cannot be the whole story. After the deformation, the lo-

cation of the P1 is no longer well defined, as the P1 at the point x = ek has

disappeared and been replaced by an S3 which is a branch cut on the x-plane.

The geometry has been deformed around the branes and the two sheets of the

Riemann surface connect through a smooth throat. We need to specify where

the gauge coupling is to be evaluated, and since the point in the x-plane has

been replaced by a throat, the most natural guess is that we smear the B-field

over the cuts. This is precisely what (4.7) does! In the appendix, we provide

more details for the derivation of (4.7) based on the use of the Riemann bilinear

identities.

In the next section, we will show that the same effective superpotential

follows from a direct gauge theory computation. Moreover, we will relate the

gauge theory computation to an effective matrix model. We will also give a

more explicit expression for Weff ,

Weff =

n−1∑

k=0

tk
∂

∂ak
F0 +Nk

∂

∂Sk
F0, (4.8)

which arises from the following nontrivial identity that we prove in section 5

using the formulation of the topological string in terms of matrix models [14]:

∮

P

α(x)ydx =

n−1∑

k=0

tk
∂

∂ak
F0.

Equations (4.7) and (4.8) agree with the results of [6,8].
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The form of the superpotential (4.8) suggests a dual role played by (ak, Sk)

and (tk, Nk) – indeed it suggests a formulation in terms of fluxes [15] (see also

[10]). We can think of the fluxes Nk as turning on auxiliary fields for the Sk

superfields in the N = 2 effective theory, where Sk is the lowest component of

the superfield,

Sk → Sk + · · ·+ 2iNkθ2θ2 + · · ·

The N = 1 superpotential arises by the integration over half of the chiral N = 2

superspace ∫
d4θF0(Sk) =

∫
d2θNk

∂F0

∂Sk
+ . . .

Similarly, we can view the background parameters ak as scalar components of

non-normalizable superfields, and the tk as the corresponding fluxes leading to

vevs for their associated auxiliary fields,

ak → ak + · · ·+ 2itkθ2θ2 + · · ·

Thus the full superpotential can be obtained from theN = 2 formulation simply

by giving vevs (tk, Nk) to the auxiliary fields of (ak, Sk).

4.2. Extrema of the superpotential

With the closed-string dual of our gauge theory identified, we turn to the

extremization of the flux superpotential. We wish to solve

∂Weff

∂Sk
=

∫

Σ

(HRR +H0) ∧
∂

∂Sk
ydx = 0. (4.9)

From (4.8) this can be written as

n−1∑

i=0

ti ηik =
n∑

i=1

Ni τik (4.10)

where η is an n× n matrix,

ηik =
∂2F0

∂ai∂Sk
(4.11)

and τik is the usual period matrix,

τik =
∂2F0

∂Si∂Sk
. (4.12)
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Note that for a fixed choice of Higgs branch, specified by Ni, the number

of parameters specifying the choice of B0(x) and the number of parameters

determining the normalizable deformations of the geometry, given by fn−1(x),

are both equal to n. Therefore we would expect to generically have a one-to-one

map. This allows us to invert the problem. Instead of asking how B0 determines

fn−1, i.e.,

B0 → fn−1,

we can instead ask for which choice of B0(x) we obtain a given deformed ge-

ometry, fn−1(x), i.e.,

B0 ← fn−1.

In this formulation, the extremization problem has a simple solution. We choose

a set of complex structure moduli for the Riemann surface,

y2 =
(
W ′(x; a)

)2
− fn−1(x; a, S),

by picking values for the Si (or equivalently for the coefficients of fn−1). This

completely determines the matrices τij and ηij through (4.11) and (4.12). The

equations (4.9), (4.10) can then be thought of as n linear equations for the n

coupling constants {ti}
n−1
i=0 , thus determining B0(x).

The equations (4.9) determine the explicit form of the flux HRR+H0 on the

solution. Recall that, off-shell, HRR +H0 was defined by its compact periods,

∮

Ai

HRR +H0 = Ni

∫

Bi

HRR +H0 = α(Λ0), (4.13)

and asymptotic behavior for large x,

HRR +H0(x) ∼ ±dB(x).

The equations of motions (4.9) then imply that the one-form HRR + H0 is

holomorphic on the punctured Riemann surface Σ− {P,Q}, and given by

HRR +H0 =
n∑

k=1

Nk
∂

∂Sk
ydx−

n−1∑

k=0

tk
∂

∂ak
ydx. (4.14)
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Above, P and Q correspond to points at infinity of the top and the bottom

sheet of the Riemann surface, and

∂

∂Sk
ydx

are linear combinations of the n− 1 holomorphic differentials on Σ,

xkdx

y
, k = 0, . . . n− 2,

together with xn−1dx/y, which has a pole at infinity.

To derive this, we note that (4.9) implies that HRR +H0 is orthogonal to

the complete set of holomorphic differentials in the interior. This implies that

HRR + H0 is holomorphic away from the punctures. We can also show that

(4.14) has the correct periods and asymptotic behavior. Consider the periods

of ωi = ∂
∂Si

ydx, ∮

Ak

ωi = δki ,

∫

Bk

ωi = τik (4.15)

and the periods of ρi = ∂
∂ai

ydx,

∮

Ak

ρi = 0,

∫

Bk

ρi = ηik + Λi0. (4.16)

The reason for the Λi0 term in (4.16) is that ∂F0

∂Si
is the Bi-period with boundary

term subtracted. The Ak periods also match – this is because the ∂
∂ak

deriva-

tive is taken at fixed Sk, per definition. Using these periods and (4.10), we

immediately see that (4.14) has the correct periods (4.13). It is also clear that

the large x behavior is dominated by ρi and this yields dα(x) for the large x

behavior of HRR +H0 as required.

5. Gauge Theory Derivation

In this section we will sketch the derivation of the effective glueball su-

perpotential directly in the gauge theory language, and show that this exactly

reproduces the results of the string theoretic derivation. In [3] the effective su-

perpotential for the glueball superfields was computed by explicitly integrating

out the chiral superfield Φ. This is possible as long as we are only interested in
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the chiral
∫
d2θ terms in the effective action. In the absence of the deformation

(2.6), computation of the relevant gauge theory Feynman graphs with Φ run-

ning around loops directly translates into the computation of planar diagrams

in a certain auxiliary matrix integral. We will see that this is the case even

after the deformation, albeit with a novel deformation of the relevant matrix

integral.

Let us review the results of [3]. For simplicity, consider the vacuum where

the U(N) gauge symmetry is unbroken. The propagators for Φ can be written

in the Schwinger parameterization as

∫
dsi exp[−si(p

2
i +Wαπα +m)],

where si are the Schwinger times, pi are the bosonic momenta, and πα the

fermionic momenta. The mass parameter m is given by m = W ′′(φ0). These

propagators have the property that each Φ loop brings down two insertions of

the glueball superfield Wα. Using the chiral ring relation

{Wα,Wβ} ∼ 0, (5.1)

only those operators of the form

Sk = (TrWαW
α)k

are nontrivial as F-terms. In particular, there must be at most two insertions

of Wα per index loop. This implies that only planar Φ-diagrams contribute to

the superpotential – nonplanar graphs have fewer index loops than momentum

loops.

The integration over bosonic and fermionic loop momenta in a planar dia-

gram with h holes gives a constant factor,

NhSh−1, (5.2)

independent of the details of the diagram. The planar graphs have one more

index loop (hole) than momentum loop, and there is one insertion of S per

momentum loop,with h choices of which index loop goes unoccupied. At the

same time, the index summation for the unoccupied loop leads to the factor of

N .
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The rest of the computation, namely combinatorial factors, contributions of

vertices, and an additional factor of 1/mh−1 from the propagators, is captured

by a zero-dimensional, auxiliary holomorphic matrix theory with path integral

ZM =
1

Vol (U(M))

∫
dΦ exp(−TrW (Φ)/gtop), (5.3)

where Φ is an M ×M matrix, and W (Φ) is the same superpotential as in (2.5).

The coefficient

F0,h

of (5.2) is computed by summing over the planar graphs of ZM with h holes

and extracting the coefficient of Mhgh−2
top . In other words, by rewriting the sum

F0(S) =
∑

h

F0,hS
h

where

ZM ∼ exp(−F0/g
2
top).

In the semiclassical approximation, the effective superpotential of the unde-

formed theory is simply

Weff = t0S +N∂SF0(S).

In the full answer, F0 contains a 1
2
S2 logS piece which, in the matrix model,

comes from the volume of the gauge group in (5.3).

5.1. The deformed matrix model

Now consider the gauge theory with the more general tree-level superpo-

tential (2.6) (for a special form of the superpotential, this theory was studied

in [8]). In this case, the propagators of the theory are unchanged, but there are

now additional vertices coming from the first term in (2.6). What is the effect

of this? Clearly, it is still only the planar graphs that can contribute to the

amplitude, since nonplanar graphs still have too few index loops to absorb the

Wα insertions. This, together with (5.1), implies that the extra vertices from

Tr[α(Φ)WαWα] can only be brought down once for each planar graph, where
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they are inserted on the sole index loop that would have otherwise been unoc-

cupied. The prescription for extracting the contributions of these new graphs

from the matrix model is now clear. Consider the deformed matrix model

ZM =
1

Vol(U(M))

∫
dΦ exp(−TrW (Φ)/gtop + Tr Λα(Φ)/gtop), (5.4)

where the matrix Λ stands for WαWα insertions that do not come from the

propagators. Summing over planar graphs, the matrix integral now has the

form

ZM ∼ exp(−F0/g
2
top −TrΛG0/gtop + . . .)

where the omitted terms contain higher powers of traces of Λ that will not play

any role. The effective superpotential, including the contribution of the new

vertices from Tr[α(Φ)WαWα], is now

Weff = SG0(S) +N∂SF0(S).

Note that it is manifest in the matrix model that the effective superpotential is

invariant under the addition to α(Φ) of terms the form ΦkW ′(Φ), as mentioned

in section 2. These terms can be removed by a shift in Φ

Φ→ Φ + ΛΦk,

and as such they do not affect the matrix integral.

It is easy to generalize this to vacua of the gauge theory where the gauge

group is broken as in (2.9). The superpotential in these vacua is computed by

the same matrix model, but where one now considers the perturbative expansion

about the more general vacuum, where the gauge symmetry of the matrix model

is broken to
∏n
k=1 U(Mk) [16]. The contributions of insertions of

Tr[α(Φk)Wα,kW
α
k ]

are now captured by deforming the matrix model to

ZM =
1∏

k Vol(U(Mk))

∫ ∏

k

dΦk . . . exp

(
−

1

gtop

∑

k

(TrW (Φk) + TrΛk α(Φk))

)
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where the omitted terms . . . are gauge fixing terms [16] corresponding to

the choice for Φ to be block diagonal, and breaking the gauge symmetry to
∏
k U(Mk). Summing over the planar graphs returns

ZM ∼ exp

(
−F0/g

2
top −

∑

k

TrΛk G0,k/gtop − . . .

)

where F0 and G0,k are functions of the matrix model ’t Hooft couplings gtopMk.

These are identified with the glueballs Si in the physical theory. The effective

superpotential is now given by

Weff =
∑

k

SkG0,k +Nk∂Sk
F0,

and all that remains is to compute the new terms in G0,k.

5.2. Matrix model computation

Now let us compute the relevant correction from the matrix model. Since

we are only interested in the planar graphs linear in TrΛk, the contribution of

interest can be extracted from the special case where we choose

Λk = λk1Mk×Mk

The matrix model partition function then becomes

ZM =

∫
. . . exp

(
−
∑

k

λkTrα(Φk)/gtop

)
∼ exp

(
−F0/g

2
top −

∑

k

MkλkG0,k/gtop

)

which implies

G0,k = 〈Tr[α(Φk)]〉/Mk,

where the expectation value is evaluated in the planar limit of the
∏
k U(Mk)

vacuum of the undeformed matrix model. These can be computed using well

known large M matrix model saddle point techniques [2]. The answer can be

formulated in terms of a Riemann surface,

y2 − (W ′(x)2) + fn−1(x) = 0,
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with a one-form ydx, where the coefficients of fn−1 are chosen so that

Mkgtop =

∮

Ak

ydx.

Namely, the result is that

〈Trα(Φk)〉 =
1

gtop

∮

Ak

α(x)ydx.

Since the glueballs Sk are identified with Mkgtop in the matrix model, we can

write the corresponding contribution to the effective superpotential

δWeff =
∑

k

Sk G0,k

simply as

δWeff =
∑

k

∮

Ak

α(x)ydx.

A look back at (4.7) shows that this agrees with the result of our string theoretic

analysis. Moreover, this is consistent with the results of [4] for the expectation

values of the corresponding chiral ring elements.

In the next subsection, we will use matrix model technology to derive the

identity (4.8) for expressing δWeff , as a function of Sk.

5.3. Evaluation of δWeff

To begin with, note that δWeff can be rewritten as

δWeff =
∑

k

Sk〈Trα(Φk)〉

Mk

= gtop
∑

k

〈Trα(Φk)〉 = gtop〈Trα(Φ)〉

where the trace is over the M ×M matrix Φ.3 The expectation value is now

straightforward to compute. The problem amounts to the computation of

〈TrΦk〉, k = 0, . . . n− 1

3 This leads to the same expression (4.7) for the large M average using y(x) = W ′(x) +

gtop〈
1

x−Φ
〉, and the fact that the sum over the Ak-cycles is homologous to the cycle around

infinity in x-plane.
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in the matrix model. Recall that

W (Φ) =
n+1∑

k=0

akΦ
k,

which implies that, for k = 0, . . . , n− 1

〈TrΦk〉 = −
gtop
ZM

∂ZM
∂ak

with ZM as defined in (5.3). In particular, since

ZM ∼ exp

(
−

1

g2
top

F0(S, a)

)
,

it follows that

〈TrΦk〉 =
1

gtop

∂F0

∂ak
.

Thus we have derived (4.8),

δWeff =

n−1∑

k=0

tk
∂F0

∂ak
.

6. The N = 2 Gauge Theory

6.1. Extended Seiberg-Witten theory

With the results of the previous section in hand, we are now in position to

recover the solution to the extended N = 2 theory with classical prepotential

F(Φ) =
∑

k=0

tk
(k + 1)(k + 2)

TrΦk+2. (6.1)

The analysis of this section closely mirrors the approach taken in [5], and the

results also follow from [6].

To begin with, consider a special case of the N = 1 theories studied in the

previous section. We deform the extended U(N) N = 2 theory (6.1) to N = 1

by the addition of a degree N + 1 superpotential,

W (Φ) =
N+1∑

k=0

akx
k (6.2)
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with

W ′(Φ) = g

N∏

k=1

(x− ek). (6.3)

In particular, we now study a generic vacuum on the Coulomb branch of the

theory, where the gauge symmetry is broken as

U(N)→ U(1)N .

This is important, because if we now take the limit of vanishing superpotential

(6.2) while keeping the expectation value of the adjoint fixed,

g → 0, ek = const,

we expect to recover the N = 2 vacuum at the same point in moduli space. As

discussed in section 3, this corresponds in string theory language to reverting to

studying N D5 branes on the P1 in the A1 ALE space, but with a holomorphi-

cally varying B-field turned on. The nontrivial B-field background corresponds

in the low energy theory on the branes to turning on the higher dimensional

terms in the classical prepotential (6.1).

We found in section 4 that the critical point of this theory corresponds to

a Riemann surface

y2 = (W ′(x; a))2 − fN−1(x;S, a) (6.4)

where the N parameters tk in (6.1) are determined in terms of the complex

structure moduli Si of (6.4) by extremizing the superpotential (4.9). Moreover,

at the critical point, the net flux HRR +H0 is given by a holomorphic one-form

on the Riemann surface (6.4),

HRR +H0 =
N∑

k=1

∂

∂Sk
ydx−

N−2∑

k=0

tk
∂

∂ak
ydx, (6.5)

with periods

∮

Ai

HRR +H0 = 1

∫

Bi

HRR +H0 = α(Λ0)

∮

P

x−k(HRR +H0) = ktk, k = 1, . . .N − 2.
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It turns out that all of the holomorphic information about the N = 2 theory

in the infrared can be recovered from calculations in the N = 1 theory, just as

in [5]. To observe this, we note that if we extract an overall factor of g from y

in (6.4) and use new g-independent functions W̃ ≡ 1
g
W and f̃N−1 ≡

1
g2
fN−1,

then

y = g

√
W̃ (x)2 + f̃N−1(x),

and the periods of y have a trivial g-dependence. In particular,

1

g
Si,

1

g

∂F0

∂Si
,

are independent of g. Consequently, the period matrix

τij =
∂2F0

∂Si∂Sj
=

∂

∂(Si/g)

(
1

g

∂F0

∂Sj

)

is independent of g. This fact can be made more manifest by considering the

geometry in question,
y2

g2
= W̃ (x)2 + f̃N−1(x).

It is clear that the variation of g can just be absorbed into a rescaling of the

coordinate y.

It is also crucial that in the process of sending g → 0, the values of tk for

which the Riemann surface in question satisfies the equations of motion remain

fixed. The superpotential

Weff =

∫

Σ

(HRR +H0) ∧ ydx

is simply proportional to g, and hence its critical points are g-independent.

Lastly, we note that the Seiberg-Witten one-form on the Riemann surface

can be recovered from the N = 1 analysis as well. First note that the H-flux

HRR +H0 at the critical point of the superpotential is given by a g-independent

holomorphic one-form (6.5). Just as in [5], it follows that the Seiberg-Witten

one-form on the Riemann surface is given by

λSW = x(HRR +H0) (6.6)

which we can read off from the N = 1 theory. This can be seen as follows.

Periods of λSW compute the masses of dyons in the N = 2 theory. However,
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these dyons can be identified with D3 branes wrapping Lagrangian 3-cycles in

the Calabi-Yau, or one-cycles on the Riemann surface, and their mass can be

derived from string theory to be given by periods of the one-form (6.6).

In summary, we can obtain the full N = 2 curve and the Seiberg-Witten

one-form λSW that capture the low energy dynamics of the extended N = 2

theory (6.1). These results are consistent with those obtained recently in [17]

using very different techniques. There, the authors formulate the solution of

the N = 2 theory in terms of a hyperelliptic curve of genus N − 1

y2 =
N∏

i=1

(x− ai,+)(x− ai,−), (6.7)

and a holomorphic one-form dΦ with the properties that∮

Ai

dΦ = 1

∫

Bi

dΦ = 0

∮

P

x−kdΦ = ktk, k = 1, . . . , N − 2

and which is related to the Seiberg-Witten one-form by

λSW = xdΦ.

Comparing with our results, it is clear that dΦ should be identified with HRR +

H0.

The agreement is almost complete, apart from two points. First, our

Seiberg-Witten curve (6.4) is not a generic genus N hyperelliptic curve like

(6.7), but rather is one where all the dependence on the parameters tk is in the

polynomial fN−1(x) of degree N − 1. More precisely, note that the defining

equation of the hyperelliptic curve has 2N parameters and generally all such

parameters appear. However, half the parameters correspond to the choice of

the point on the Coulomb branch ei, while the other half define the quantum

deformation which depends on the choice of the α(x). In our formulation, there

is a natural way to separate how these parameters appear in the defining equa-

tion of the Seiberg-Witten curve. Secondly, there is an apparent discrepancy

in that in the current solution, the Bi periods of HRR +H0 do not all vanish,

but are instead equal to α(Λ0). It is possible that in the definition of the Bk

integrals (6.1) of [17], there is a hidden subtraction of the value of the integral

at infinity, which would account for the vanishing Bk periods and resolve this

discrepancy.
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7. Duality and Supersymmetry Breaking

In this section we study the phase structure of the N = 1 models under

consideration. We find that there is a region in the parameter space where

supersymmetry is broken. This leads to a novel and calculable mechanism

for breaking supersymmetry. Even though this method for supersymmetry

breaking is motivated by string theoretic considerations, we will see that it can

also be phrased entirely in terms of the underlying N = 1 supersymmetric

gauge theory.

The organization of this section is as follows. We first discuss some general

features of the phase structure for these theories, and point out a region where

classical considerations are not sufficient to provide a reasonable picture. We

next turn to focus on the meaning of this new phase and show how string

dualities can shed light on its meaning. Furthermore, we show that, generically,

supersymmetry is spontaneously broken in the new phase. We propose UV dual

field theory descriptions for some of these phases which turn out to be N = 1

supersymmetric gauge theories with supersymmetry broken softly by nonzero

expectation values for the auxiliary components of spurion superfields.

7.1. Parameter space with g2
YM < 0

Consider the N = 1 supersymmetric U(N) gauge theory studied in the

previous sections, with adjoint field Φ together with superpotential W (Φ), and

gauge kinetic term in Lagrangian is captured by α(Φ) as below

∫
d4xd2θ Tr [α(Φ)WαW

α] .

As already discussed, the classical vacua correspond to all the ways of dis-

tributing the eigenvalues of φ among the critical points of W ′(φ) = 0. For

concreteness, let

W ′(Φ) = g

n∏

i=1

(Φ− ei),

and consider the classical vacuum with Ni eigenvalues of Φ equal to ei. For

generic superpotential, Φ will be massive, and at sufficiently low energies the

light degrees of freedom describe pure N = 1 supersymmetric Yang-Mills theory
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with gauge symmetry
∏
i U(Ni). The coupling constant of each of the U(Ni)

in the UV is given by

αi = α(ei).

As long as the gauge coupling for each factor of the gauge group is positive, i.e.,

Im[αi] =
4π

(gYM)2i
> 0 (7.1)

for all i with Ni 6= 0, we expect a supersymmetric theory in the IR to which

the analysis of the previous section applies. This suggests the question: What

is the meaning of the phase where (7.1) is not satisfied for some i? It is to this

question which we now turn our attention.

One may be inclined to consider such cases as pathological, as one is not

able to give a meaning to such a theory in the UV. However, we also know from

various examples that the appearance of a negative g2
YM is often the smoking

gun for the existence of a dual description. Thus all we can conclude is that

when Im[α(ei)] do not have the correct sign, the original UV picture is not

appropriate, and we should look for an alternative description.

Generically4, for an arbitrary choice of W (Φ) and α(Φ), Imα(ei) will not

have the same sign for all the critical points, and thus some vacua will have

gauge group factors with g2
YM < 0. We have a practical way to analyze the IR

theory in these vacua directly from the field theory approach. We can start with

parameters such that the UV theory makes sense, and then compute the effec-

tive IR action in terms of the glueball superfields, as discussed in the previous

sections. We then change the parameters so that the UV theory would formally

develop a negative value of g2
YM for some of the gauge group factors. However,

the effective IR theory still makes sense when we do this, so we can simply

study the IR action, without worrying about the dual UV description. As we

will show, in the IR theory this change of parameters leads to supersymmetry-

breaking.

We are thus naturally led to ask: What is the corresponding UV theory

in such cases? When only some of the gauge couplings are negative, we will

4 Generic in the sense of generic functions α(x) and W (x). From a field theory perspective, it

is natural for the nonrenormalizable operators in α(Φ) to be suppressed by large mass scales, in

which case the phenomenon discussed in this section will be unusual.
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argue that supersymmetry is broken, but we will not have a full field theory

description in the UV. However, if they are all negative, we can formulate a

complete UV field theory description for which supersymmetry is manifestly

broken. In all cases, the UV description provided by string theory exists, and

we will argue that it involves both branes and antibranes.

In the general, these theories have two sources of supersymmetry breaking.

One, which comes from any of the gauge factors with negative Imα(ei), cor-

responds to giving a nonzero vev to spurion auxiliary fields. The other effect

comes from the fact that when both signs of Imα(ei) are present, the interac-

tion between the gauge group factors are not supersymmetric, as each factor

tries to preserve a different supersymmetry.

We first study the situation of the first kind – all Imα(ei) negative – where

the internal dynamics of the gauge theory softly break supersymmetry. For this

case, we quantify the supersymmetry-breaking effect in terms of a dimensionless

parameter which measures fractional mass splittings in the supermultiplets.

Moreover, we motivate and provide strong evidence for the existence of a dual

nonsupersymmetric UV theory. We motivate this from field theory as well as

describing its natural explanation in the context of string theory.

We then move to the multi-sign case and show that when some Imα(ei)

have different signs, there is an additional effect which breaks supersymmetry.

Essentially, this arises from each factor of the gauge group trying to preserve

a different half of a background N = 2 supersymmetry, and charged bifunda-

mental matter communicates supersymmetry breaking. For this case, we only

have a stringy dual description in the UV.

7.2. Negative gauge couplings and duality

We now discuss, from both string theory and field theory perspectives,

how a gauge coupling squared becoming negative can be sensibly understood

in terms of the dual description. The simple example which we review, where

both the original and the dual theories are supersymmetric, has already been

studied in [18].
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Consider N D5 branes on the resolved conifold geometry with a single P1.

As in section 3, we can view this geometry as obtained by fibering an A1 ALE

singularity over the x-plane as

uv = y2 −W ′(x)2 (7.2)

where

W (x) =
1

2
mx2. (7.3)

We turn on a constant B-field through the S2 at the tip of the ALE space,

α =
θ

2π
+

4πi

g2
YM

=

∫

S2
x

(
BRR +

i

gs
BNS

)
.

In the language of section 2, this means that the gauge coupling is independent

of φ. More generally, the effective gauge coupling of the 4d U(N)theory is given

by 4π/g2
YM =

√
r2 +B2

NS/gs, where r is the physical volume of the P1. This is

usually written in terms of single complex variable t, the complexified Kähler

class, given by t = BNS + ir, as 4π/g2
YM = |t|/gs. In the present paper we have

permanently set r = 0, so t = BNS.

N

N

Φ

Fig. 3. By changing the B-field, an S2 undergoes a flop, and N branes on the S2

become N antibranes on the flopped S2. If the B-field is constant on x-plane, then

the antibrane system preserves an N = 1 supersymmetry opposite to that of the brane

system. If the B-field varies holomorphically, then the B-field and antibranes preserve

orthogonal N = 1 supersymmetries, leading to a stable N = 0 vacuum.
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Now consider the same geometry, but with the complexified Kähler class

varied so that it undergoes a flop (see figure 3), corresponding to t → −t. We

now get a new P1. Moreover, the charge of the wrapped D5 branes on this

flopped P1 is opposite to what it was before the flop. Therefore, in order to

conserve D5 brane charge across the flop, we will end up with anti-D5 branes

on the new P1. In the case of constant B-field, we again obtain a U(N) gauge

theory with N = 1 supersymmetry at low energies. However, the N = 1

supersymmetry that the theory preserves after the flop has to be orthogonal to

the original one, since branes and antibranes preserve different supersymmetries.

This stringy duality is directly manifested in field theory. It turns out, as

we now review, that this situation has a simple and elegant realization in terms

of the glueball superfields which emerge as the IR degrees of freedom. Consider

first the situation before the flop. In the IR, we have a deformed conifold ge-

ometry where S, the modulus of the deformation, is identified with the glueball

superfield, S = TrWαWα. The Veneziano-Yankielowicz superpotential, which

can be derived in either the field theory or the dual string theory, is given by

W(S) = −αS +N∂SF0 = −αS +
1

2πi
NS

(
log

(
S

mΛ2
0

)
− 1

)
.

As was already reviewed in previous sections, in the gravitational dual picture,

the two terms above correspond to flux contributions to the superpotential.

One should note that this effective description is only valid for field values

where |S/m| ≪ |Λ2
0|.

Extremizing W with respect to S gives

∂SW = 0→ SN = (mΛ2
0)
Nexp (2πiα) . (7.4)

As long as the bare UV gauge coupling satisfies

Im[α] =
4π

g2
YM

≫ 0,

this is an acceptable solution in the sense that S is within the allowed region of

field space. Note that in addition to the chiral superfield, the theory in the IR

still has a U(1) vector multiplet, because only the SU(N) ⊂ U(N) is confined.

In the string theory construct, the extra U(1) is identified with the reduction of
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the 4-form IIB gauge potential on the deformed S3. In other words, this theory

describes a massive chiral multiplet consisting of S and its fermionic partner ψ,

as well as a massless photon A and its partner λ,

(S, ψ), (A, λ). (7.5)

Together these would form an N = 2 chiral multiplet before the supersymmetry

is broken to N = 1 by fluxes.

Now consider the same theory, but in the limit where

Im(α)≪ 0,

which would have corresponded to 1/g2
YM ≪ 0. Then the above solution (7.4) is

not valid anymore, since |S/m| ≫ |Λ2
0| lies outside the regime of validity of the

effective theory. Thus the original supersymmetry is broken, since we cannot

set ∂SW to zero. Even so, as was shown in [18], there are still physical vacua

which minimize an effective scalar potential Veff . Moreover, the theory in these

minima is exactly the same as one would expect for the IR limit of an N = 1

supersymmetric U(N) theory, with a positive squared gauge coupling. In fact,

a new supersymmetry does re-emerge! It turns out that ψ becomes the massless

goldstino of the original supersymmetry which is broken, whereas λ picks up a

mass and becomes the superpartner of S under the new supersymmetry, giving

realigned supermultiplets

(S, λ), (A,ψ). (7.6)

This beautifully reflects the physics of the string theory construction. After the

flop, the D5 branes are replaced by anti-D5 branes, which still give rise to a

U(N) gauge theory with N = 1 supersymmetry, albeit a different supersym-

metry than the original one, explaining the above realignment.

Let us review in more detail how the flop is manifested in the IR field

theory of [18]. When Im(α)≪ 0, we must look for critical points of the physical

potential

Veff = gSS̄ |∂SW|
2. (7.7)

At leading order, the theory spontaneously breaks an underlying N = 2 su-

persymmetry, so the tree-level Kähler metric should be determined by special
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geometry. While we do not expect this to be an exact statement, we never-

theless make the assumption for the remainder of this section that the Kähler

metric is that of the N = 2 theory5. Thus the action for the IR dual is given

by ∫
d4xd2θd2θ̄Λ−4

[
Si∂iF0 − c.c.

]
+

[∫
d4xd2θW (Si) + c.c.

]
(7.8)

where Λ4 gets identified with M4
string in the string context. This leads to the

Kähler metric

GSS̄ = Im(τ) · Λ−4,

where

τ(S) = ∂2
SF0 =

1

2πi
log

(
S

mΛ2
0

)
.

The effective potential can then be made explicit,

Veff =
2i

(τ − τ̄)
|α−Nτ |2,

and the critical points, ∂SVeff = 0, are located at the solutions to

2i

(τ − τ̄)2
∂3
SF0 (ᾱ−Nτ̄) (α−Nτ̄) = 0.

This can be satisfied through either

α−Nτ = 0 or α−Nτ̄ = 0. (7.9)

The first solution preserves the manifest N = 1 supersymmetry, and corre-

sponds to the solution of ∂SW = 0. The second solution does not preserve

the original supersymmetry as ∂SW 6= 0. Only one of these two solutions is

valid at a given point in parameter space if S is to be within the field theory cut-

off of |S| ≪ |mΛ2
0|. For Im(α) > 0 the first solution is physical, and this is the

supersymmetric solution we discussed above. However, for Im(α) = 1/g2
YM < 0,

it is the second solution which is physical, and we obtain

SN = (mΛ0
2)N exp (2πiᾱ) . (7.10)

This solution looks very much like the solution (7.4) for the original U(N) con-

fining theory, except that α → ᾱ. This is what one would expect if we were

discussing the theory of N antibranes on the flopped geometry. In fact, as dis-

cussed in detail in [18] one can show that this theory is indeed supersymmetric,

with supermultiplets aligned as in (7.6).

5 See [19] for a discussion of stringy corrections to the Kähler metric.
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7.3. Supersymmetry breaking by background fluxes

Now consider the same geometry as in the previous subsection, but with

a holomorphically varying B-field introduced. If we wrap branes on the coni-

fold, this gives rise to the supersymmetric theories considered in sections 3-4.

However, in the case of antibranes, we will see that supersymmetry is in fact

broken. This is due to the fact that, while branes preserve the same half of

the background N = 2 supersymmetry as the B-field, antibranes preserve an

opposite half.

As in the previous section, we will consider branes and antibranes on the

conifold geometry (7.2) with superpotential given by (7.3), but now with the

holomorphically varying B-field given by6

B(Φ) = t0 + t2Φ
2. (7.11)

We will study this from the perspective of the IR effective field theory of the

glueball superfield S. Because of the underlying N = 2 structure of this theory,

we will have a good description regardless of whether it is branes or antibranes

which are present. In the next subsection, we will provide UV field theories

describing both situations.

The superpotential in the dual geometry is given by (4.7), which we repeat

here for convenience

W(S) = −

∮

A

B(x)ydx+N
∂F0

∂S
. (7.12)

An explicit computation in the geometry yields an exact expression for the first

term, ∮

A

B(x)ydx = t0S + t2
S2

m
.

The scalar potential is again given by (7.7) with the same metric and prepo-

tential F0, but now with superpotential (7.12). There are two vacua which

extremize the potential, ∂SVeff = 0,

−

(
t0 + 2t2

S

m

)
+Nτ = 0,

−

(
t0 + 2t2

S

m

)
+Nτ̄ + 4πi(τ − τ̄)t2

S

m
= 0.

(7.13)

6 We could have also added a term linear in Φ, but this has no effect due to the symmetry of

the problem.
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The first solution satisfies ∂W = 0. This has solutions in the case where branes

are present, with

Im[α]≫ 0.

Here α is defined as α = t0 + 2t2
S
m
, and large positive values of Im[α] give

|S/m| ≪ |Λ2
0| within the allowed region. This vacuum is manifestly supersym-

metric, and we have studied it in sections 3-4.

We can instead study antibranes by allowing the geometry to undergo a

flop, so

Im[α]≪ 0.

Then the supersymmetric solution is unphysical, and we instead study solutions

to the second equation in (7.13). We already know that the manifest super-

symmetry is entirely broken in this vacuum, because ∂W 6= 0. Moreover the

fact that the second equation in (7.13) is not holomorphic in S suggests that no

accidental supersymmetry emerges here, unlike the cases in previous subsection

and [18]. We can directly observe the fact that supersymmetry is broken in this

vacuum by computing the tree-level masses of the bosons and fermions in the

theory, and showing that there is a nonzero mass splitting.

From the N = 1 Lagrangian, we can read off the fermion masses,

Λ−4mψ =
1

2i (Imτ)
2

1

2πiS

(
t0 +Nτ̄ + 2t2

S

m

)
+

1

Imτ

2t2
m

Λ−4mλ =
1

2i (Imτ)
2

1

2πiS

(
t0 +Nτ + 2t2

S

m

)
,

while the bosonic masses are given by

Λ−4m2
b,± =

1

Imτ

(
∂∂̄Veff ± |∂∂Veff |

)
.

Evaluating the masses in the brane vacuum, we see that λ is massless and acts

as a partner of the gauge field A, while ψ is a superpartner to S. In other

words, supersymmetry pairs up the bosons and fermions as in (7.5).

Evaluating the masses in the antibrane vacuum, ψ becomes the massless

goldstino. However, there is no longer a bose/fermi degeneracy like where the

background B-field was constant. Instead,

m2
b,± = |mλ|

2 ± 4πΛ4|mλ∂α|. (7.14)
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This mass splitting shows quite explicitly that all supersymmetries are broken in

this vacuum. We can capture the strength of this breaking with a dimensionless

quantity,

ǫ =
∆m2

b

m2
b

∼ 2πΛ4

∣∣∣∣
2t2/m

mλ

∣∣∣∣ ∼
t2S

m

log |S|

N
.

We can get a heuristic understanding of this measure of supersymmetry

breaking as follows. The reason supersymmetry is broken in this phase is that

B-field varies in a way incompatible with the normalizable fluxes/branes. Thus

its variation over the cut in the IR geometry is a natural way to quantify

supersymmetry breaking. More precisely, we expect that measuring

ǫ = ∆B

across the cut should give a quantification of the supersymmetry breaking by

a dimensionless number. Evaluating this explicitly yields ǫ = t2S/m, which is

in rough agreement (up to a factor of order log |S|/N) with the dimensionless

quantity coming from the mass splittings.

7.4. A susy/non-susy duality

Motivated by the considerations of the previous example, we now formulate

a duality between two field theories – one which is manifestly supersymmetric,

and the other in which supersymmetry is broken softly by spurions. Consider

an N = 1 supersymmetric U(N) gauge theory with an adjoint field Φ and

superpotential terms
∫
d2θ1 Tr [B(Φ)WαW

α +W (Φ)] (7.15)

where, as before,

B(Φ) =

n−1∑

k=0

tkΦ
k, W (Φ) =

n+1∑

k=0

akΦ
k.

Consider a choice of parameters (ak, tk) such that

ImB(ek) < 0 (7.16)

for all ek with W ′(ek) = 0. Then this theory is not sensible in this regime

as it has no unitary vacuum. However, we propose that this theory is dual to
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another U(N) gauge theory already studied in [11], with an adjoint field Φ̃ and

superpotential term ∫
d2θ2 Tr[t0W̃αW̃

α + W̃ (Φ̃)] (7.17)

where

W̃ (Φ̃) =
n+1∑

k=1

(ak + 2itkθ2θ2)Φ̃
k.

Note that since the auxiliary field in the spurion supermultiplets have vevs tk,

this theory breaks supersymmetry. Also, the fermionic parts of the superspaces

for these two actions are not related in any way. Indeed, they are orthogonal

subspaces of an underlying N = 2 superspace. This is indicated by the first

theory being formulated in terms of coordinates θα1 , and the second in terms of

θα2 – two different N = 1 superspaces.

Note that this is natural from the string theory perspective. In the regime

of parameters where (7.16) holds, one should describe the physics in terms of

the flopped geometry, and ask how the antibrane theory perceives the geometry.

Since the background B-field is holomorphic, it breaks supersymmetry. Indeed

the tension of the antibranes will vary as they change position in the x-plane

(and we do not expect a canceling term as would be the case for branes). We

thus expect the potential to depend on x through a term proportional to the

B-field,

Veff ∼ ImB(x). (7.18)

Indeed, the soft supersymmetry-breaking term in (7.17) gives precisely this

contribution when we identify the eigenvalues of Φ with positions in the x-

plane. Moreover, note that in going from (7.15) to (7.17) we have flipped the

sign of Im(t0) ∼ 1/g2
YM, which is consistent with the fact that (7.17) describes

the same physics from the antibrane perspective. As an aside, note that in this

section (unlike in much of the rest of the paper), t0 and tk>0 enter on different

footings.

We now provide evidence for this duality. We will show that both theo-

ries (7.15) and (7.17) have the same IR description in terms of glueball fields.

The effective superpotential for the supersymmetric theory we have already

discussed, and is given by
∫
d2θ1Weff (Si, ak) (7.19)
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where

Weff =
∑

i

t0Si +
∑

k>0

tk
∂F0

∂ak
+
∑

i

Ni
∂F0

∂Si
.

The effective glueball theory for the nonsupersymmetric theory, in which

auxiliary spurion fields have nonzero vevs, has been studied in [10,11]. As shown

in [11], turning on soft supersymmetry-breaking terms that give spurionic F-

terms to the ai in the UV theory has the expected effect in the IR of simply

giving spurionic F-terms to ak>0 in that theory,

∫
d2θ2W̃eff(Si, ak + 2itkθ2θ2) (7.20)

where

W̃eff = t0Si +
∑

i

Ni
∂F0

∂Si
.

We will see that the two effective glueball theories are in fact identical!

As we reviewed in section 4, one way to arrive at the effective IR theory

is via a dual gravity theory. Both theories (7.19) and (7.20) originate from the

same Calabi-Yau after the transition, and so have the same underlying N = 2

theory with prepotential F0(S, a) at low energies,7

Im
(∫

d2θ1d
2θ2 F0(Si, ak)

)
,

with appropriate fluxes or auxiliary spurion fields turned on. In fact, it was

shown in [20,21] that turning on fluxes is also equivalent to giving vevs to

auxiliary fields, so both (7.19) and (7.20) can be thought of as originating from

the N = 2 theory with prepotential F0(S, a), where auxiliary fields for the

glueball fields Si and the background fields ak are subsequently given vevs.

This breaks supersymmetry explicitly to N = 1 in the case of (7.19), and to

N = 0 in case of (7.20).

To be more precise, (7.19) can be obtained by shifting the auxiliary fields

of the N = 2 multiplets containing S and a according to

Si → Si + 2iNiθ2θ2, ak → ak + 2itkθ2θ2, k > 0,

7 More precisely, the Lagrangian also contains the N = 2 FI terms t0F
i
11 + t0F

i
22 where F i’s

are the auxiliary fields discussed in the text.
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and integrating over θ2. Meanwhile, (7.20) arises from instead shifting

Si → Si + 2iNiθ1θ1 ak → ak + 2itkθ2θ2, k > 0,

and integrating over θ1.

These two situations differ in how they shift the auxiliary fields F i11 and

F i22 = F
i

11 which lie in the N = 2 chiral multiplet containing Si,

Si = Si + . . .+ θ1θ1F
i
11 + θ2θ2F

i
22.

Shifts of fields alone cannot affect any aspect of the physics if the shift can be

undone by an allowed field redefinition. Indeed, the difference between the shifts

of (7.19) and (7.20) is an allowed auxiliary field redefinition, so these theories are

equivalent! Put another way, in integrating out the auxiliary fields, we end up

summing over all of their values, so any difference between the two theories will

disappear. Note that, if F i11 and F i22 were independently fluctuating degrees of

freedom, we could use this argument to say that both theories were equivalent

to the original N = 2 theory. They are not, however, since the auxiliary field

shifts we made cannot be undone by a field redefinition obeying F i22 = F
i

11,

which the fluctuating part of the auxiliary fields must satisfy.

To make this duality more explicit, we will show that both theories give

rise to the same IR effective potential, Veff (Si). For the supersymmetric theory

(7.19), the superpotential (7.15) is

Weff = tk
∂F0

∂ak
+Ni

∂F0

∂Si
,

which leads to an effective potential

Veff = Gij̄
(
Nkτki + t0 + tkηki

)
(Nrτrj + t0 + trηrj),

where in the summation tkηki, we have removed the m = 0 term and written it

explicitly. This will be convenient for the manipulations below, where we will

continue to use this summation convention. We can rewrite Veff grouped by

order in tk,

Veff = Gij̄NkτkjNrτrj + Gij̄(t0 + tkηki)(t0 + trηrj)

+ Gij̄Nkτki(t0 + trηrj) + Gij̄(t0 + tkηki)Nrτrj.
(7.21)
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Now we will show that the effective potential of the nonsupersymmetric

theory (7.17) agrees with (7.19). The Lagrangian can be written in N = 1

superspace,

L = Im

(∫
d2θd2θ̄S̄i

∂F0

∂Si

)
+ Im

(∫
d2θ

1

2

∂2F0

∂Si∂Sj
Wα,iW

α
j

)

+

(∫
d2θW̃eff (S) + c.c.

)
,

(7.22)

and the superpotential of this nonsupersymmetric theory is simply

W̃eff = t0Si +Ni
∂F0

∂Si
.

Let Fi be the auxiliary field in the Si superfield. Performing the d2θ integral for

the superpotential term (the last terms of (7.22)) and picking out the spurion

contribution (note that ∂2F0

∂Si∂ak
= ηik), gives

∫
d2θW̃eff(S) = (t0 +Niτij)Fj + 2iNiηiktk.

The remaining terms come from the Kähler potential term (the first term of

(7.22)). This gives Gij̄FiF̄j before spurion deformation, while the spurions pro-

duce additional terms, giving a total contribution

Im

(∫
d2θd2θ̄Si

∂F0

∂Si

)
= Gij̄FiF j + Fiη̄ik t̄k + F̄iηiktk + . . .

With the full F-term Lagrangian, it is now easy to check that integrating out

the auxiliary fields Fi, produces precisely the effective potential (7.21), which

arose from the supersymmetric theory (7.19).

We have seen that the tree-level effective potentials for the supersymmetric

theory (7.15) and the nonsupersymmetric theory (7.17) agree exactly, corrobo-

rating the proposed the duality between the two theories.

7.5. Multi-cut geometries and supersymmetry breaking

In the previous subsections we have focused on the case where all gauge

couplings have the same sign, positive or negative. We now shift to consider

the more general case in which both signs are present. For simplicity, we will

focus on the case where the superpotential has two critical points, with a brief
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discussion of the generalization to an arbitrary number of critical points reserved

for the end of this subsection.

In particular, we now consider the UV theory where the superpotential

appearing in the geometry (7.2) is given by

W (Φ) = gTr

(
1

3
Φ3 −m2Φ

)

and the holomorphic variation of the B-field gives rise to an effective field-

dependent gauge coupling

α(Φ) = t0 + t1Φ.

The two critical points of the superpotential are given by Φ = ±m, at which

points the gauge coupling takes values

α± ≡ α(±m) = t0 ±mt1.

We wish to study the case where the imaginary parts of gauge couplings have

opposite signs (see figure 4). Without loss of generality, we then consider

Im(α−)≪ 0≪ Im(α+). (7.23)

We will consider the vacuum where the U(N) gauge group is broken to U(N1)×

U(N2) with Ni both nonzero. It is clear from the discussion in section 7.2 that

this theory is that of N1 branes wrapping the S2 at e1 and N2 antibranes

wrapping the flopped S2 at e2.

There are now two sources of supersymmetry breaking present. First,

for the N2 antibranes (even if N1 = 0), supersymmetry is broken due to the

holomorphic variation of the B-field, as discussed in section 7.3. However,

this effect is secondary to that which arises from the fact that branes and

antibranes are both present and preserve disparate halves of the background

supersymmetry. This more dominant source of supersymmetry breaking was

studied in a slightly simpler context in [18,22,23].

40



N

N 1

2

N 2

1 2e e

Φ

Fig. 4. By changing the parameters of the B-field continuously, it can arranged for

only the second S2 to undergo a flop, with the N2 branes replaced by N2 antibranes

on the flopped S2 at e2. This configuration clearly breaks supersymmetry, as branes

and antibranes preserve orthogonal supersymmetries.

We now show that this stringy UV picture is borne out in the dual IR

theory. The superpotential for the closed-string dual geometry is given by (4.8)

W(S1, S2) = t0(S1 + S2) + t1
∂F0

∂a1

+Nk
∂F0

∂Sk
.

In the large Ni limit, it is a sufficient approximation to work to 1-loop order in

the associated matrix model. For the geometry in question, the superpotential

then takes the form

W(S1, S2) = α+S1 + α−S2 +N1

∂F0

∂S1

+N2

∂F0

∂S2

,

where a1 = −m2g and F0 was computed in [1],

∂S1
F0 ≈

1

2πi

(
−W (e1) + S1(log

S1

8gm3
− 1)− 2(S1 + S2) log(

Λ0

2m
)

)
,

∂S2
F0 ≈

1

2πi

(
−W (e2) + S2(log

S2

8gm3
− 1)− 2(S1 + S2) log(

Λ0

2m
)

)
.

(7.24)

Note that at this order, the effect of the varying B-field is just to change the

effective coupling constants in the superpotential from α0 to α±. As a result,
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the only supersymmetry-breaking effects which appear are due to the presence

of antibranes.

This theory has no physical supersymmetric vacua, so in order to study its

low energy dynamics, we minimize the physical scalar potential,

Λ−4 Veff = Gij̄∂iW∂jW,

where again the Kähler metric is determined by N = 2 supersymmetry,

Gij̄ = Im(τij) = Im

(
∂2F0

∂Si∂Sj

)
.

The critical points are given by solutions to

GiāGbj̄Fabk
(
αi −N

lτ̄li
)
(αj −Nrτrj) = 0.

At one-loop order in the matrix model, Fijk only has nonzero diagonal elements,

in which case the vacuum equations simplify. In particular, for the case at hand

they simplify to

N1τ11 = α+ −N2τ̄12,

N2τ̄22 = α− −N1τ12,

and using the expression for the Kähler metric arising from (7.24), we obtain

following explicit solutions

(S1)
N1 =

(
2gmΛ2

0

)N1

exp (2πiα+)

(
Λ2

0

4m2

)−N2

(−S2)
N2 =

(
2gmΛ2

0

)N2

exp (2πiα−)

(
Λ2

0

4m2

)−N1

.

In addition, we can compute the vacuum energy, and find it to be

Veff∗

Λ4
= 4N2|Imα−|+

4

π
N1N2 log

∣∣∣∣
Λ0

2m

∣∣∣∣ .

The first term we identify as the brane tension due to antibranes on the flopped

P1, which agrees with (7.18), while the second term suggests a Coulomb re-

pulsion between brane stacks preserving opposite supersymmetries. A similar
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expression for the potential energy between branes and antibranes can be found

in [18,22,23].

We can further study the masses of the bosonic and fermionic excitations

about the nonsupersymmetric vacua. At the current order of approximation,

most of the expressions from [18] still hold. We obtain four distinct bosonic

masses, given by [18]

(m±,c)
2

=
(a2 + b2 + 2abcv)±

√
(a2 + b2 + 2abcv)2 − 4a2b2(1− v)2

2(1− v)2
(7.25)

where c = ±1,

a ≡ Λ4

∣∣∣∣
N1

2πS1Imτ11

∣∣∣∣ , b ≡ Λ4

∣∣∣∣
N2

2πS2Imτ22

∣∣∣∣

v ≡
(Imτ12)

2

Imτ11Imτ22
,

and Λ is a mass scale in the action (7.8). The tree-level fermionic masses can

also be computed from the off-shell N = 1 Lagrangian. As in [18], they are

given by8

mψi
=

(
a

1− v
, 0

)
, mλi

=

(
0,

b

1− v

)
. (7.26)

The presence of two massless fermions can be thought of as representing

two goldstinos due to the breaking of off-shell N = 2 supersymmetry. Alter-

natively, this fermion spectrum can be viewed as the natural result of breaking

supersymmetry collectively with branes and antibranes. There is a light gaug-

ino localized on both the branes and the antibranes. However, since these

preserve different supersymmetries, we see the gauginos as arising one from the

gaugino sector and one from the sfermion sector with respect to a given N = 1

superspace.

For a generic choice of parameters, supersymmetry breaking is not small,

and there is no natural way to pair up bosons and fermions in order to write a

8 Note that the relation [24]

∑

boson

m
2 −

∑

fermion

m
2 = Tr(−)F

m
2 = 0

holds for our system, as well as for (7.14).
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mass splitting as a measure of how badly supersymmetry is broken. However

from the mass formula we have given, it is clear that in the limit v → 0, the

spectrum becomes supersymmetric, and there does emerge a natural pairing of

bosonic and fermionic excitations. In this limit, v becomes a good dimensionless

measure of the mass splitting, and we can write it in terms of parameters

(Λ0, α±, m,Ni) as

v =
N1N2

(
log
∣∣ Λ0

2m

∣∣)2
(
π |Im(α+)|+ ∆N log

∣∣ Λ0

2m

∣∣) (π |Im(α−)| −∆N log
∣∣ Λ0

2m

∣∣) .

where ∆N = N1 −N2. For ∆N = 0, this further simplifies to

v =
N2
(
log
∣∣ Λ0

2m

∣∣)2

π2 (|Im(α+)|) (|Im(α−)|)
.

This vanishes and supersymmetry is restored for large separation mt1 ≫ 1, cor-

responding to the extreme weak-coupling limit. One can also consider another

extreme where N1 ≫ N2. In this limit we again expect supersymmetry to be

restored. Indeed, in this limit v ∝ N2/N1, and so vanishes.

It should be noted that, unlike the case where all gauge couplings are neg-

ative and the background flux is small, in this case the dimensionless parameter

v does depend explicitly on the cutoff Λ0. This may be related to the fact that,

in this case, there is no field theory description in the UV. Namely, even though

we know that this system should be described by branes and antibranes, these

brane configurations do not admit a good field theory limit. Nevertheless the

arguments of the previous section can be used to show that below the scale

of gauge symmetry breaking, there is an effective field theory description in

terms of a
∏
i U(Ni) gauge theory which breaks supersymmetry and captures

the same IR physics. In this theory, the gauge group factors with positive

gauge couplings have an effective field dependent gauge coupling, while those

with negative gauge couplings have supersymmetry softly broken by spurions.

However, this is not a satisfactory description for the full dual UV theory.

Before concluding this section, let us briefly consider the generalization of

the previous discussion to the n-cut geometry. Here, the superpotential in (7.2)

is given by

W ′(Φ) = g
n∏

i=1

(Φ− ei).
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Starting with D5 branes wrapped on n shrinking P1’s at x = ei, we perform

a geometric transition and study the dual closed-string geometry with n finite

S3’s. The distance between critical points are

∆ij ≡ ei − ej .

From the period expansion of [1] we have following expressions in a semiclassical

regime

2πiτii =2πi
∂2F0

∂Si
2
≈ log

(
S1

W ′′(ei)Λ2
0

)
+O(S)

2πiτij =2πi
∂2F0

∂Si∂Sj
≈ − log

(
Λ2

0

∆2
ij

)
+O(S)

Generalizing the vacuum condition from the two cut geometry, the physical

minima of effective potential are then determined by

0 = −Re(αi) +
∑

j

Re(τ)ijNj ,

0 = −Im(αi) +
∑

j

Im(τ)ijNjδj

where δi ≡ sign [Imαi]. The expectation values of Si are expressed explicitly

below,

〈Si〉
Ni =

(
W ′′(ei)Λ

2
0

)Ni

δiδj>0∏

j 6=i

(
Λ0

∆ij

)2Nj δiδk<0∏

k 6=i

(
Λ0

∆ik

)−2Nk

exp (2πiαi) , δi > 0

〈Si〉
Ni =

(
W ′′(ei)Λ

2
0

)Ni

δiδj>0∏

j 6=i

(
Λ0

∆ij

)2Nj δiδk<0∏

k 6=i

(
Λ0

∆ik

)−2Nk

exp (2πiαi) , δi < 0.

The vacuum energy density formula is now given by

Veff∗

Λ4
= 2

∑

i

Ni(|Imαi| − Imαi) +



δi>0,δj<0∑

i,j

2

π
NiNj log

∣∣∣∣
Λ0

∆ij

∣∣∣∣


 , (7.27)

where the first term is the brane tension contribution from each flopped P1

with negative g2
YM (matching with (7.18)), and the second term suggests that

opposite brane types interact to contribute a repulsive Coulomb potential energy

(as in the cases considered in [23])
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7.6. Decay mechanism for nonsupersymmetric systems

It is straightforward to see how the nonsupersymmetric systems studied

in this section can decay. This is particularly clear in the UV picture. If

the gauge coupling constants are all negative, the branes want to sit at the

critical point which minimizes |ImB(ei)|, as this will give the smallest vacuum

energy according to (7.27). Thus we expect that in this case the system will

decay to one which is the U(N) theory of antibranes in a holomorphic B-

field background. This still breaks supersymmetry, but it is completely stable.

Considering that RR charge has to be conserved, no further decay is possible.

If there are some critical points where ImB(ei) is positive, there is no unique

stable vacuum. Instead, there are as many as there are ways of distributing N

branes amongst the critical points x = ei where ImB(ei) > 0. Thus, we find

numerous supersymmetric vacua which could be the end point of the decay

process, each one minimizing the potential energy to zero. As in [18], these

decays can be reformulated in the closed-string dual in terms of Euclidean D5

brane instantons, which effectively transfer branes/flux from one cut to another.

Acknowledgments

We would like to thank Ken Intriligator for pointing out the potential

relevance of spurion fields for this project. We also like to thank Jonathan

Heckman, David Poland, Stephen Shenker and Martijn Wijnholt for valuable

discussions.

The research of M.A. and C.B. is supported in part by the UC Berkeley

Center for Theoretical Physics and NSF grant PHY-0457317. The research of

M.A. is also supported by a DOI OJI Award and the Alfred P. Sloan Fellowship.

The research of J.S. and C.V. is supported in part by NSF grants PHY-0244821

and DMS-0244464. The research of J.S. is also supported in part by the Korea

Foundation for Advanced Studies.

46



Appendix A. Computation of Weff

Here we provide more detail on the derivation of (4.7) using the Riemann

bilinear identity and its extension to a noncompact Riemann surface Σ. In

particular, we wish to compute the integral

∫

Σ

χ ∧ λ (A.1)

for closed one-forms χ and λ which are now allowed to have arbitrarily bad

divergences at infinity. We need to be extra careful due to this worse-than-

usual behavior at infinity. In particular, the contribution of the interior of

the Riemann surface will be exactly the same as the usual case, with the only

difference coming from a careful treatment of contributions coming from the

boundary at infinity.

P

Q

B

B

B

A A A

1

2

3

1 2 3

Fig. 5. A noncompact Riemann surface represented as a compact Riemann surface

Σ with two points P and Q at infinity removed.

We can represent the noncompact Riemann surface Σ as a compact Rie-

mann surface of genus n with two points representing the points at infinity on

the top and bottom sheet (labeled by P and Q, respectively) removed. The

derivation of the Riemann bilinear identity on the surface then goes through

as usual, by cutting the Riemann surface open into a disk, except that we get

an additional contribution from the boundary piece connecting the points P

and Q (see figure 5). In particular, the contributions of the n − 1 compact

47



B-cycles Bi − Bi+1 and the dual n − 1 compact A-cycles are the usual ones.

The contribution from the boundary at infinity is given by

∮

P

fλ+

∮

Q

fλ−

∮

P

χ

∫ P

Q

λ (A.2)

where χ = df and f is a function defined on the simply connected domain which

represents the cut-open surface Σ.9 Evaluating this for our case of interest, with

λ = ydx

χ = HRR +H0,

(A.2) gives a contribution

∮

P

B(x)ydx−

∮

P

(HRR +H0)

∫ P

Q

ydx

where we have used the fact that
∮
P

= −
∮
Q

and that HRR +H0 ∼ dB(x) for

large x (and so at the contour around P ). Combining all contributions, the

superpotential can indeed be rewritten as

Weff =
n∑

i=1

∮

Ai

B(x)ydx−
n∑

i=1

Ni∂Si
F0

9 Note that when f has at worst a logarithmic divergence at P and Q, and λ has at worst a

simple pole, then we can write

∮

P

fλ +

∮

Q

fλ =
(
f(P ) − f(Q)

)∮

P

λ =

∫ P

Q

χ

∮

P

λ

which returns the standard form for the integral (A.2). However, in the case where f has poles

at P and Q, the resulting equations are modified.
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