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Quantum phase transitions of metals in two spatial dimensions:
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Department of Physics, Harvard University, Cambridge MA 02138

(Dated: January 6, 2010)

Abstract
We present a renormalization group theory for the onset of Ising-nematic order in a Fermi liquid in

two spatial dimensions. This is a quantum phase transition, driven by electron interactions, which

spontaneously reduces the point-group symmetry from square to rectangular. The critical point is

described by an infinite set of 2+1 dimensional local field theories, labeled by points on the Fermi

surface. Each field theory contains a real scalar field representing the Ising order parameter, and

fermionic fields representing a time-reversed pair of patches on the Fermi surface. We demonstrate

that the field theories obey compatibility constraints required by our redundant representation of

the underlying degrees of freedom. Scaling forms for the response functions are proposed, and

supported by computations up to three loops. Extensions of our results to other transitions of

two-dimensional Fermi liquids with broken point-group and/or time-reversal symmetry are noted.

Our results extend also to the problem of a Fermi surface coupled to a U(1) gauge field.
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I. INTRODUCTION

A number of recent experiments1–4 have noted the presence of Ising-nematic order in

the enigmatic normal state of the cuprate superconductors. This order is associated with

electronic correlations which spontaneously break the square lattice symmetry to that of a

rectangular lattice: i.e. the symmetry of 90◦ rotations is lost, and the x and y directions

become inequivalent. This broken symmetry is associated with an Ising order parameter,

which we will represent below by a real scalar field φ.

Of particular interest are recent experiments on the anisotropy of the Nernst signal4 in

YBa2Cu3Oy, which indicate that the Ising-nematic order has its onset at the temperature

T = T ∗, which also marks the boundary between the ‘pseudogap’ region and the ‘strange

metal’. These results call for the theory of the quantum phase transition involving Ising-

nematic ordering in a Fermi liquid metal. Such a quantum critical point would play an

important role in the theory of the strange metal. The metallic Ising-nematic critical point

is also of importance in experiments5 on Sr3Ru2O7, where the observations of resistance

anisotropies have demonstrated spontaneous Ising-nematic ordering. Finally, there are clear

indications of Ising-nematic order driven by electron correlations in the pnictides.6–9

One approach to the Ising-nematic ordering is to take a liquid-crystalline perspective10,

and view it among a class of phases with broken square lattice symmetry11–14. Ising nematic

phases are also a generic feature of frustrated and doped antiferromagnets, because the

Ising-nematic order survives after antiferromagnetism (at wavevectors 6= (π, π)) has been

disrupted by thermal15,16 or quantum17,18 fluctuations.

A complementary point of view19–31 is to start from the Fermi liquid with perfect square

lattice symmetry and look for the Pomeranchuk instability of Landau’s Fermi liquid theory

in the angular momentum ℓ = 2 channel. Almost all of these works rely on the perspective

of Hertz32, in which the electrons are integrated out to yield a Landau-damped effective

action for the scalar order parameter φ; the low energy particle-hole excitations near the

Fermi surface lead to long-range interactions in the action for φ. However, this procedure of

successive integration of fermionic and then bosonic degrees of freedom is clearly dangerous.

A systematic renormalization group analysis requires that all excitations at a given energy

scale be treated together. Consequently, a complete scaling analysis of the Ising nematic

critical point is lacking: such an analysis should be based on a local field theory, and provide

a scheme for computing the scaling dimensions of all perturbations of the critical point.

We can also consider the onset of Ising-nematic order in a superconductor, rather than

in a Fermi liquid. In a s-wave superconductor, the fermionic excitations are fully gapped,

and so the theory for φ has no long-range interactions: consequently the transition is in

the universality class of the 2+1 dimensional pure Ising model. A d-wave superconductor

does have gapless fermionic excitations at special ‘nodal points’ in the Brillouin zone, and

these nodal fermions do modify the universality of the transition away from pure Ising33,34.

A fairly complete understanding of the Ising-nematic transition in d-wave superconductors
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has been reached in recent work35,36 using a large-N expansion, where N is the number of

fermion components.

This paper provides a scaling theory of the Ising-nematic quantum critical point in two-

dimensional metals, satisfying the requirements stated above. Our theory builds upon the

work in the d-wave superconductor35,36, and also on advances by Polchinski37, Altshuler,

Ioffe, and Millis38, and Sung-Sik Lee39,40 on a closely-related problem: the dynamics of a

Fermi surface with the fermions coupled minimally to a U(1) gauge field.

We focus on a pair of time-reversed patches on the Fermi surface and describe their

vicinity by a local 2+1 dimensional field theory. In principle, there are separate critical

theories for each pair of time-reversed points on the Fermi surface, as is also the case in

the Fermi surface ‘bosonization’ methods.27,28,41–45 However, a key difference from the latter

methods is that each Fermi surface point is associated with a 2+1 dimensional theory, and

not a 1+1 a dimensional theory. This means that there is a redundancy in our description,

and sowing the theories together is not trivial: we show in Section IVA how this is done in

a consistent manner.

Apart from their application to the Ising-nematic transition of interest, simple extensions

of our results apply also to the U(1) gauge field case, and to other symmetry breaking

transitions in Fermi liquids involving order parameters which carry momentum ~Q = 0. We

will describe these cases in Section II below, and briefly indicate the needed extensions in

the body of the paper.

Transitions with order parameters which carry momentum ~Q 6= 0 lead to different field

theories, which will be described in a subsequent paper.46

After a discussion of the one loop results in Section III, we present our main scaling

analysis in Section IV. This includes a discussion of Ward identities which strongly constrain

the structure of renormalization group flow. Finally, explicit three loop computations appear

in Section V and Appendix B.

II. THE MODEL

We consider quantum phase transitions in metals of electrons cσ (σ =↑, ↓), involving an

onset of a real order parameter φ(x) at wave-vector ~Q = 0. The order parameter is taken

to have the same transformation properties under lattice symmetries and time reversal as,

O(~x) =
1

V

∑

~q

∑

~kσ

d~kσc
†
~k−~q/2,σc~k+~q/2,σe

i~q·~x (2.1)

For definiteness, we consider a system on a square lattice. Then, φ can describe the following

patterns of symmetry breaking:

1. Breaking of the point-group symmetry with d~k↑ = d~k↓ and d~kσ = d−~kσ. In these cases

d~k has either dx2−y2, dxy, or g-wave symmetry. The Ising-nematic transition of most
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interest to us here corresponds to the dx2−y2 or dxy cases. These cases all belong to

one-dimensional representations of the square lattice point group, and we will argue

that these transitions are all in the same universality class.

2. Breaking of time-reversal and point-group symmetry with d~k↑ = d~k↓ and d~kσ = −d−~kσ.
In this case d~k transforms under the two-dimensional p-wave representation, and so

requires a two component order parameter ~φ = (φx, φy). We will not consider the

two-component case explicitly, but our results have an immediate generalization to

this transition. This case corresponds to the “circulating current” order parameters

proposed by Simon and Varma47, as was argued in Refs. 33 and 48.

3. Breaking of spin-inversion symmetry with d~k↑ = −d~k↓. In this case, d~k can have

either s-wave symmetry (Ising ferromagnet), d-wave symmetry (Ising spin-nematic)

or g-wave symmetry. Unlike transitions i) and ii), which respect the full SU(2) spin

rotation symmetry, in the present case we assume this symmetry is explicitly broken

to a U(1) “easy axis” subgroup.

Notice that in all cases, there is a Z2 symmetry (either π/2 rotation, reflection or time-

reversal) under which φ→ −φ.
Apart from the above symmetry breaking cases, we will also consider the problem of a

Fermi surface minimally coupled to a U(1) gauge field37–40,49–58. This case is similar to case

2 above, as we describe below Eq. (2.4). Such models arise in theories57,58 of certain U(1)

spin liquid phases in which cσ describe the fermionic spinons. We will therefore refer to this

model as the “spin-liquid” case below. The same theory also describes59–61 “algebraic charge

liquids” in which case the cσ are spinless, charge −e fermions, and σ represents the charge

of the fermion under the emergent U(1) gauge field; we will not refer to this case explicitly

below.

Given the order parameter in Eq. (2.1), we may write down an effective spacetime La-

grangian describing the interactions of the order parameter φ with the fermions as,

L = c†σ

(

∂τ + ǫ(−i∇)
)

cσ − O(x)φ(x) +
1

2
(∇φ)2 + r0

2
φ2 (2.2)

Here, we have added by hand a gradient term and a mass for the bosonic mode φ. Such

terms will be generated automatically after integrating out the high-energy fermions. The

absence of higher order terms in φ and gradients of φ will be justified below.

The Lagrangian L in Eq. (2.2) is not yet in a form suitable for our analysis of quantum

criticality. The main point is that the fermion spectrum ǫ(~k) has zeros along the entire

Fermi surface of large momenta ~k: so, as is well known, we are not in a position to make

a low momentum expansion needed for a field theory. One strategy is to use the Hertz

approach32 of integrating out all the c fermions to obtain a non-local effective action for the

order parameter φ. The latter is singular only at small momenta ~q and ω, and so it is then
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at least permissible to make a low momentum and frequency expansion. However, the terms

in the effective for φ turn out to be highly singular as ~q → 0 (see Ref. 26 and Appendix A).

Moreover, in d = 2, the strength of the singularity increases with increasing powers of φ in

the effective action. The situation now seems hopeless, but progress becomes possible after a

key observation: the leading singularities in the φ effective action appear only when all the φ

fields have their momenta nearly collinear to each other, as is explained in Appendix A, and

as will become clear from the structure of our analysis below (by nearly collinear we mean

that the angle θ between the momenta is of order θ ∼ |~q|/kF ). In other words, if we are

interested only in leading critical behavior, φ fields with non-collinear momenta effectively

decouple from each other. The couplings between φ fields with non-collinear momenta are

then irrelevant corrections to the critical theory. The argument supporting this statement

is presented in Appendix A. More generally, consider an n-point function

〈φ(~q1)φ(~q2)φ(~q3) . . . φ(~qn)〉 .

In a Gaussian theory for φ, which is the claim of Hertz32, such a correlator would decouple

into products over pairs of momenta which sum to zero. However, such a decoupling is too

drastic: rather, the decoupling is only over sets of momenta which are collinear with each

other, so that the leading critical singularity of the above correlator takes the form

∏

a

〈φ(~qa1)φ(~qa2) . . .〉 .

Here all the momenta ~qai in a group Qa are collinear to each other, while being non-collinear

to momenta in groups Qb with b 6= a. We can therefore limit ourselves to φ fields with

momenta along a fixed direction ~q. We will now argue that for each such direction ~q, there

is a sensible and powerful continuum limit of Eq. (2.2).

It is now clear that we may restrict our search for a field theory to that describing the

singularities in the φ correlations for a single group of collinear momenta Qa. So let us pick

a direction ~q for φ. It is believed that a bosonic mode with momentum ~q interacts most

strongly with the patches of the Fermi-surface to which it is tangent37–40. Assuming that

only a single Fermi surface is present, for each ~q there will be two such points with opposite

Fermi-momenta ~k0 and −~k0, see Fig. 1. We will denote fermions at these momenta as ψ+

and ψ−:

ψ+σ(~k) = c~k0+~k,σ , ψ−σ(~k) = c−~k0+~k,σ. (2.3)

We choose coordinate vectors x̂ and ŷ to be respectively perpendicular and parallel to ~q.

Then, expanding the fermion energy near ~k0 and −~k0, the needed, low energy, continuum
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FIG. 1. The shaded region represents the occupied states inside a Fermi surface. Fluctuations of

the order parameter φ at wavevectors parallel to ~q couple most strongly to fermions near the Fermi

surface points ±~k0. These fermions are denoted ψ±.

Lagrangian becomes

Lk0 = ψ†
+σ

(

∂τ − ivF∂x −
1

2m
∂2y

)

ψ+σ + ψ†
−σ

(

∂τ + ivF∂x −
1

2m
∂2y

)

ψ−σ

− d+σ φψ
†
+σψ+σ − d−σ φψ†

−σψ−σ +
1

2
(∂yφ)

2 +
r0
2
φ2 (2.4)

Here vF and m are the Fermi velocity and the band mass at k0, while d±σ = d±k0σ, and we

have added a subscript k0 to L emphasize that this is the Lagrangian for the patch near

±~k0.
We should emphasize here that all the fields in Eq. (2.4) are 2+1 dimensional quantum

fields, with full dependence upon x, y, and τ i.e. the fields are φ(x, y, τ) and ψ±σ(x, y, τ). In

principle, we should also add a term (∂xφ)
2 to Eq. (2.4); however, we omit it at the outset

because it will later be seen to be irrelevant near criticality. Further, because of this full

dependence on x, and y, the fermion fields ψ±σ describe an extended patch of the Fermi

surface near the points ±~k0, and not just the two points ±~k0. We place some finite cutoff

Λ on the size of this patch, and will be interested in the scaling behavior at momenta much

smaller than this cutoff.

We now discuss the structure of the couplings d±σ in Eq. (2.4). For the transitions in s, d

and g channels in case 1 above d+σ = d−σ by inversion symmetry, and d±σ is σ independent.

For case 2, we have d+σ = −d−σ and also σ independent, although the fermions now couple

to a projection of the two component order parameter ~φ · ~d, while the bosonic gradient term
generally involves both components of the order parameter. The spin liquid case also has

d+σ = −d−σ and σ independent, and φ is associated with the transverse component of the
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spatial gauge field in the Coulomb gauge37–40; moreover the spin-liquid has r = 0 by gauge

invariance. Finally, the Ising ferromagnet case 3 has d+σ = d−σ and d±↑ = −d±↓.

We note that for transitions in non-zero angular momentum channels, the coupling d

vanishes along certain axes in the Brillouin zone. The intersections of these axes with the

Fermi surface are known as cold-spots, as the fermion coupling to the order parameter at

these points involves additional derivatives and is much weaker. The scaling theory that

follows only describes the Fermi surface away from cold spots.

It is convenient to rescale coordinates and fields in (2.4), x = (2mvF )
−1x̃, ψ = v

−1/2
F ψ̃,

φ = 1
2m|d| φ̃. We drop the tildes in what follows. Then,

L = ψ†
+σ

(

η∂τ − i∂x − ∂2y
)

ψ+σ + ψ†
−σ

(

η∂τ + i∂x − ∂2y
)

ψ−σ

− λ+σ φψ†
+σψ+σ − λ−σ φψ†

−σψ−σ +
1

2e2
(∂yφ)

2 +
r

2
φ2 (2.5)

with e2 = 2md2/vF , r = r0/(2md
2), η = 2m, and λsσ = dsσ/|d|, and we will henceforth drop

the subscript k0 on L. We note that as usual, the relation between the parameters of the

effective theory and the original model should not be taken literally. Rather, in the critical

regime, we have r0 − r0c = Zr(r − rc), where rc and r0c denote the critical points of the

effective theory and the microscopic theory respectively. Moreover, the original fields and

the fields defined in each patch of the Fermi surface are related by,

φ(~q, ω) ∼ Z
1/2
φ Kφpatch(Kqx, qy, ω), ψ(~q, ω) ∼ Z

1/2
ψ Kψpatch(Kqx, qy, ω) (2.6)

Note that the “metric factors” K, Zr, e
2, Zψ, Zφ are generally dependent on the direction

of the boson momentum q̂ and the cut-off of the low-energy theory Λ.

For brevity, we will only present explicit calculations for the case that does not involve

spin (Ising-nematic transition and spin-liquid); the extension of the results to the Ising fer-

romagnet case will be noted. Moreover, we extend the number of spin components (flavours)

to N from the physical value N = 2 with the view towards performing a large-N expansion.

For this purpose, it is convenient to rescale e2 and r, yielding our Lagrangian in its final

form

L =
∑

s=±
ψ†
s

(

η∂τ − is∂x − ∂2y
)

ψs −
∑

s=±
λs φψ

†
sψs +

N

2e2
(∂yφ)

2 +
Nr

2
φ2. (2.7)

Here and below we suppress the flavour index. To reiterate, the Ising-nematic case has

λ+ = λ− and the spin-liquid case (i.e. Fermi surface coupled to U(1) gauge field) has

λ+ = −λ−.
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III. ONE LOOP PROPAGATORS

To gain some insight into the low energy properties of the theory (2.7), it is useful to

compute the one loop boson and fermion self-energies.

(a)

(b)

FIG. 2. One loop contributions to the (a) boson, and (a) fermion self-energies.

The one-loop boson polarization in Fig. 2 a) is given by,

Π0(q) = N

∫

dlτd
2~l

(2π)3
G0
s(l)G

0
s(l + q) (3.1)

We first evaluate this diagram with a bare fermion propagator,

G0
s(k) =

1

−iηkτ + skx + k2y
(3.2)

The resulting polarization function takes on a characteristic Landau-damped form,

Π0(q) = N

∫

dlτdly
(2π)2

i [θ(lτ )− θ(lτ + qτ )]

−iηqτ + 2qyly + qx + q2y
+ (~q → −~q)

=
Nqτ
2π

∫

dly
2π

(−i)
−iηqτ + 2qyly + qx + q2y

+ (~q → −~q) = cbN
|qτ |
|qy|

, cb =
1

4π
. (3.3)

Note that η has dropped out of the final result. We are interested above only in the singular

contribution to Π0, and this is insensitive to orders of integration: so unlike the conventional

order, we have integrated over lx before lτ . We include the RPA polarization bubble (3.3)

into the bosonic propagator to obtain

D(q) =
1

N

(

cb
|qτ |
|qy|

+
q2y
e2

+ r

)−1

. (3.4)
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Note that the q2y term is not renormalized by the polarization contribution at this order, and

the bare co-efficient represents the phenomenological contribution of higher energy modes.

The one-loop correction to the fermion propagator is given by Fig. 2 b). For simplicity, we

work at the critical point and set r = 0. Then, the fermion self-energy assumes a non-Fermi

liquid form

Σs(k) = −
∫

dlτd
2~l

(2π)3
D(l)G0

s(k − l)

= − i

2N

∫

dlτdly
(2π)2

(

cb
|lτ |
|ly|

+
l2y
e2

)−1

× sgn(kτ − lτ )

= −icf
N

sgn(kτ )|kτ |2/3, cf =
2√
3

(

e2

4π

)2/3

. (3.5)

Note, again, that η has dropped out of the result. Incorporating this correction into the

fermion propagator,

Gs(k) =

(

−icf
N

sgn(kτ )|kτ |2/3 + skx + k2y

)−1

(3.6)

Here we have dropped the bare fermion time derivative term proportional to η, which is

irrelevant at low energies compared to the dynamically induced self-energy (3.5).

As is well known,37 the one-loop expressions (3.3), (3.5) actually satisfy the Eliashberg-

like equations, in which the lines of Fig. 2 become self-consistent propagators. In what

follows, we will use these self-consistent propagators (3.4), (3.6) in our calculations and drop

self-energy corrections like those in Fig. 2.

IV. SCALING AND RENORMALIZATION

As has been argued by a numer of authors37–40, a useful starting point for the renormal-

ization group analysis of the theory (2.7) is obtained by using the scaling,

kx → s2kx, ky → sky, ω → s3ω,

ψ(x, y, τ)→ s2ψ(s2x, sy, s3τ), φ(x, y, τ)→ s2φ(s2x, sy, s3τ) (4.1)

This scaling is suggested by the one-loop calculation of fermion and boson propagators in

Eqs. (3.4), (3.6). The bare fermion time derivative term ψ†∂τψ is irrelevant under this

scaling, and so we will take the limit η → 0+. Note that neither of the one loop corrections

Eqs. (3.3), (3.5) depend upon η.

Alternatively, note that the scaling of time in (4.1) could also have been derived by de-

manding that the ‘Yukawa coupling’ λs be invariant. This avoids the somewhat unnatural

appeal to the one-loop self-energy to set bare scaling dimensions, and yields all the scaling
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dimensions in (4.1) by a simple rescaling of the bare Lagrangian L in Eq. (2.7). Of course,

once we have set λs to be invariant, then the coupling η becomes irrelevant. These fea-

tures of the scaling analysis are shared by the theory of the nematic transition in d-wave

superconductors in Ref. 36.

Note also the different scaling of spatial momenta kx and ky in Eq. (4.1). The main

physical consequence of such momentum anisotropy is the effective decompactification of

the Fermi surface, which allows one to focus on a theory with two Fermi patches. Also

observe that under (4.1) the (∂xφ)
2 part of the boson tree level action is irrelevant, which

justifies omitting this term in eqs. (2.4), (2.7).

Apart from the fermion time derivative term and the relevant mass perturbation (r →
s−2r), all the terms in the Lagrangian (2.7) are marginal. Higher order perturbations to

(2.7), consistent with the Z2 symmetry of the order parameter, such as a φ4 term, are

irrelevant.

We would like to note that for the case of the Ising-nematic (or g-wave) transition the

low-energy action (2.7) does not possess a φ → −φ symmetry. This is due to the fact that

the direction of bosonic momentum ~q is transformed under π/2 rotations (reflections) and

hence the physics is controlled by a different pair of patches of the Fermi surface. Hence,

in principle, it is possible that in the kinematic regime of interest a φ3 term is generated by

the renormalization group process. Such a term would be marginal under the scaling (4.1).

A linear term in φ can also be generated by the effective theory. However, the one-point

function has momentum ~q = 0 and, hence, does not belong to any particular kinematic

regime. In practice, we can demand that the expectation value of φ is zero in the disordered

phase by tuning the coefficient of the φ-linear term. In any case, as we will show below,

there exists a Ward identity, which guarantees that if these terms are initially zero, they

are not generated by the RG of the low-energy theory (2.7). Note that for the case of the

spin-liquid or Ising ferromagnet transitions, the low energy theory (2.7) respects the time

reversal symmetry which maps Fermi patches at k0 and −k0 into each other and, hence,

terms odd in φ are prohibited.

An important observation is that the theory (2.7) lacks an expansion parameter. To see

this, note that due to the rescaling performed in section II, the engineering dimensions,

[kx] = [ky]
2, but the dimension of ω is kept independent. Then, the coupling constant e2

has the dimensions [ky]
3/[ω]. Therefore, e2 is a dimensionful quantity and cannot be used as

an expansion parameter. Moreover, e2 is actually the only parameter in the theory relating

frequencies and momenta. Hence, its flow under RG is equivalent to an appearance of a

non-trivial dynamical critical exponent.

Note that up to this point we have dropped an allowed relevant fermion chemical potential

term,

∆L = −δ ψ†
sψs (4.2)

This term can be absorbed into the definition of the momentum ~k0 about which the theory is
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expanded and, thus, is redundant (note, the scaling dimension [δ] = [kx] = 2). Nevertheless,

it is convenient to leave this term in the Lagrangian for renormalization group purposes. We

assume that when the theory is tuned to the criticality r = rc and the coefficient δ is set to

δ = δc, the Fermi surface passes through the points ~k0,−~k0.
We now discuss the renormalization of our theory. The Lagrangian contains four marginal

operators, which each requires a renormalization constant. However, as we will argue below,

emergent low-energy symmetries of the theory (2.7) imply certain relations between these

constants. Moreover, the two relevant operators, have the same bare dimension, [r] = [δ] = 2.

Thus, we need to consider possible mixing between these operators.

A. Rotational Symmetry

Observe that the initial shape of the Fermi surface does not enter the low-energy theory

(2.7). In fact, we could have started with a circular Fermi surface with kF = mvF . This is

reflected by the fact that Eq. (2.7) has an emergent continuous “rotational symmetry”,

φ(x, y)→ φ(x, y + θx), ψs(x, y)→ e−is(
θ
2
y+ θ2

4
x)ψs(x, y + θx) (4.3)

Equivalently in momentum space,

φ(qx, qy)→ φ(qx − θqy, qy), ψs(qx, qy)→ ψs

(

qx − θqy − s
θ2

4
, qy + s

θ

2

)

(4.4)

Note that the rotation angle θ becomes non-compact and the rotation group becomes R

instead of U(1). This is a consequence of the effective decompactification of the Fermi

surface. Moreover, due to the anisotropic scaling θ is now dimensionful [θ] = [ky]. In

fact, the situation is analogous to the transformation of the Lorentz symmetry to Galilean

invariance in the non-relativistic limit ω ≪ c|~q|. Here the role of ω is played by qx and the

role of |~q| by qy.
The symmetry (4.4) implies the following form of the bosonic and fermionic Green’s

functions (we suppress the frequency dependence):

D(qx, qy) = D(qy) (4.5)

Gs(qx, qy) = G(sqx + q2y). (4.6)

In particular, the form of the fermionic Green’s function implies that the terms ψ†
s(−is∂x)ψs

and ψs(−∂2y)ψs in the Lagrangian (2.7) must renormalize in the same way. Physically, this

means that the curvature radius of the Fermi surface K does not flow under RG (i.e. K has

a limit as the cutoff Λ→ 0).

The identities (4.5,4.6) ensure that the Green’s functions at a given physical momentum

remain invariant under small changes in the choice of the points ±~k0 on the Fermi surface
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FIG. 3. The momentum of the fermion at point P can be measured with respect to either the

co-ordinate system at ~k0, or that at ~k1.

about which the field theory is defined. Let us demonstrate this explicitly using Fig. 3. We

set the co-ordinate system so that ~k0 = (0, 0), and measure the momentum of a fermion at

the point P to be (qx, qy). Now let us shift to the field theory defined at the Fermi surface

point ~k1 = (κx, κy). As this point has to be on the Fermi surface, we have κx + κ2y = 0. We

denote the co-ordinates of the point P in the new co-ordinate system by (q′x, q
′
y). These are

obtained from the old co-ordinates by a shift in origin followed by a rotation by an angle θ,

where tan θ = 2κy; this yields

q′x = qx − κx + 2κy(qy − κy)
q′y = qy − κy , (4.7)

where we only keep terms to the needed accuracy of O(x, y2). It can now be verified that

q′x+ q′2y = qx+ q2y , and so by Eq. (4.6) the fermion Green’s function remains invariant under

the change in the Fermi surface reference point. Also, by choosing κy = qy we can set q′y = 0,

and then qx + q2y is identified as the invariant measuring the distance between P and the

closest point on the Fermi surface. For the boson Green’s function, there is no shift in origin

of the co-ordinates, and the corresponding transformation is q′x = qx + 2κyqy, q
′
y = qy, and

this remains invariant under Eq. (4.5).

These invariances are essential in ensuring the consistency of our description of each pair

of time-reversed Fermi surface points by a separate 2+1 dimensional field theory. Note that

such a consistency requirement would not have arisen if we had used a 1+1 dimensional field

theory at each Fermi surface point,27,28,41–45 because then every fermion momentum would

appear only in the theory defined at the closest point on the Fermi surface. In our case, we

are free to use the 2+1 dimensional theory at this closest point, or at any of the neighboring

points.
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Before concluding this section, we would like to point out that in the case of the Ising-

nematic transition, the “rotational symmetry” (4.4) is not related in any way to “large”

rotations by π/2, which are actually not implemented in the low-energy theory.

B. Ward Identities

We now examine the consequences of Ward identities associated with the global symme-

tries of Eq. (2.7). Similar consequences were implicit in the analysis of the superconducting

case in Ref. 36. Here we will present a more formal analysis, which also shows that Eq. (3.20)

in Ref. 36 holds to all orders in 1/N .

The low energy theory (2.7) has two continuous global U(1) symmetries. The first of

these is related to the conservation of particle number,

U(1)F : ψ+ → eiαψ+, ψ− → eiαψ− (4.8)

The conserved current associated with this symmetry is,

(jτ , jx, jy)F = (iη(ψ†
+ψ+ + ψ†

−ψ−), ψ
†
+ψ+ − ψ†

−ψ−,−i(ψ†
+

←→
∂ yψ+ + ψ†

−
←→
∂ yψ−)) (4.9)

For the spin-liquid problem, the gauge field φ couples precisely to the x component of jF .

The second U(1) symmetry is lattice translation. Indeed, ψ+ and ψ− come from opposite

points in the Brilloin zone and, hence, transform under general lattice translations as,

U(1)T : ψ+ → eiαψ+, ψ− → e−iαψ− (4.10)

The conserved current associated with this symmetry is

(jτ , jx, jy)T = (iη(ψ†
+ψ+ − ψ†

−ψ−), ψ
†
+ψ+ + ψ†

−ψ−,−i(ψ†
+

←→
∂ yψ+ − ψ†

−
←→
∂ yψ−)) (4.11)

Observe that the Ising-nematic order parameter φ couples to the x component of jT . Note

that despite the similarity of the spin-liquid and Ising-nematic problems, there is an impor-

tant difference. In the spin-liquid case, the gauge field couples to the fermion current on all

energy scales. In the case of the Ising-nematic transition, the order parameter couples to a

conserved current only at low energies.

We note in passing that for an Ising ferromagnet transition, the current to which the

order parameter couples is related to the symmetry,

U(1)I : ψ+↑ → eiαψ+, ψ−↑ → e−iαψ−, ψ+↓ → e−iαψ+↓, ψ−↓ → eiαψ−↓ (4.12)

In fact, this is not a symmetry of the underlying theory, but only of the low-energy La-

grangian (2.4). The symmetry is broken by four-Fermi interactions, which are however
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irrelevant under (4.1).

Current conservation implies that the insertion of ∂τjτ + ∂xjx + ∂yjy into any correlation

function is zero, up to contact terms (we have dropped the current subscript; the current,

which couples to the order parameter is implicitely assumed). We note that the temporal

component of the currents (4.9), (4.11) has a coefficient η in front and, therefore, can be set

to zero in the kinematic regime of interest. We, thus, have ∂xjx + ∂yjy ∼ 0. Defining the

one-particle irreducible polarization function,

Πij(q) =

∫

dτd2xeiqτ τ−i~q·~x〈ji(x)jj(0)〉1PI (4.13)

we have

qxΠxx(q) + qyΠyx(q) = 0 (4.14)

We note that Πxx(q) = Πxx(qτ , qy) is precisely the irreducible boson self-energy. Hence,

Πyx(qτ , qx, qy) = −
qx
qy
Πxx(qτ , qy)

Power counting indicates that Πxx has the following UV structure

Πxx(qτ , qy)
UV
= K1 +K2r +K3q

2
y (4.15)

where K1 ∼ Λ2, K2, K3 ∼ log Λ and Λ is the UV cut-off with dimensions of qy. For

Πyx(qτ , qx, qy) to have an analytic UV behaviour (as again expected from power counting),

we must have

K1 = K2 = 0

Thus, the coefficient of the mass operator φ2 requires no renormalization (i.e. the metric

factor Zr has a limit as Λ→ 0).

An interesting question is whether the polarization function Πxx actually vanishes for

qy → 0 as suggested by Eq. (4.14). However, for finite qτ we already know from one-loop

calculations that such a limit does not exist within the scaling regime, as

Πxx(qτ , qy)1loop = cb
|qτ |
|qy|

, Πyx(qτ , qx, qy)1loop = −cb
qx
qy

|qτ |
|qy|

However, one might hope that the limits limqy→0 limqτ→0Πxx(qτ , qy),Πxy(qτ , qx, qy) do exist.

In this case, we would conclude,

lim
qy→0

lim
qτ→0

Πxx(qτ , qy) = 0 (4.16)

which would be a stronger statement than the non-renormalization of the mass term. Oth-
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erwise, if the limit above exists only for Πxx by not Πxy then,

lim
qy→0

lim
qτ→0

Πxx(qτ , qy) = crr (4.17)

with cr - some universal constant. We have explicitly checked that to three loop order cr = 0

and the strong form of the non-renormalization identity Eq. (4.16) holds.

One can generalize the discussion above to higher order correlation functions of the order

parameter. Ward-identities imply that the effective potential for the φ field is not renormal-

ized from its tree-level form,

V (φ) =
r

2
φ2 (4.18)

This property is also shared by the theory of the nematic transition in a d-wave superconductor.35,36

In particular, no φ3 term is induced in the Lagrangian by the renormalization group process

if this term is originally zero. (Note that if a φ3 term is initially present, correlation func-

tions of currents no longer coincide with the correlation functions of the order parameter,

and the Ward identities do not constrain the renormalization properties of the theory). The

effective potential (4.18) becomes unstable for r < 0. Thus, we expect that in the ordered

phase the theory is controlled by dangerously irrelevant operators, such as φ4.

Finally, one can derive a Ward identity for the fermion boson vertex,

qxΓx(q, p, p+ q) + qyΓy(q, p, p+ q) = G−1(p+ q)−G−1(p) (4.19)

with

Γi(q, p, p+ q) =

∫

dxτd
2xdyτd

2ye−iqτxτ+i~q·~xei(p+q)τyτ−i(~p+~q)·~y〈ji(x)ψ(y)ψ†(0)〉1PI (4.20)

G(p) =

∫

dτd2xeiqτ τ−i~q·~x〈ψ(x)ψ†(0)〉 (4.21)

Γx is precisely the irreducible fermion-boson vertex. Power counting gives UV structure of

Γx and G−1 as,

Γx(q, p, p+ q) = C1 (4.22)

G−1(p) = C2 + C3(px + p2y) (4.23)

Thus, for the UV behaviour of Γy to be analytic in external momenta, C1 = C3. Therefore,

the vertex and the fermion self-energy renormalize in the same way. Hence, the boson field

requires no field-strength renormalization (i.e. the metric factor Zφ has a limit as Λ→ 0).

Before concluding this section, we would like to note that perturbation theory based on

self-consistent propagators (3.4), (3.6) actually does not respect the Ward identities. This is

due to the fact that these one-loop propagators include the fermion self-energy correction,

but not the vertex correction. However, since the fermion self-energy is only frequency
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dependent, Ward identities involving currents at zero external frequency are still respected.

C. RG equations

From the discussion above, we conclude that at criticality, our theory needs only two

renormalizations: a rescaling of the field strength of the fermion field ψ and a renormalization

of e2,

ψ = Z
1/2
ψ ψr, e2 = Zee

2
r (4.24)

Here the subscript r denotes renormalized quantities and we define renormalized irreducible

correlation functions of nb boson and nf fermion fields as,

Γ
nb,nf
r = Z

nf/2
ψ Γnb,nf (4.25)

Both Zψ and Ze are functions of Λ/µ where µ is a renormalization scale (which we choose

to have dimensions of qy) and of the number of fermion flavours N . As e2 is dimensionful,

Zψ and Ze cannot depend on it. We introduce the anomalous dimensions,

b = Λ
∂

∂Λ
logZe (4.26)

ηψ = −Λ ∂

∂Λ
logZψ (4.27)

The constants ηψ and b are expected to be pure universal numbers, independent of Λ/µ.

Away from criticality, we recall that by the Ward identity, the coupling r does not renor-

malize. On the other hand, the coupling δ can pick up a renormalization linear in r,

δ = δc + δr + Zrδe
2
rr (4.28)

with Zrδ again a function of Λ/µ only. In what follows, we denote δ − δc as δ for brevity.

Note that there is no renormalization constant in front of δr since a finite change in δ only

shifts the value of kx in correlation functions:

Γnb,nf ({p}, δ + a) = Γnb,nf ({p− sax̂} , δ) (4.29)

where s = ±1 for momenta of fermions ψ± and s = 0 for boson momenta. We let,

α = Z−1
e Λ

∂

∂Λ
Zrδ (4.30)

Now, differentiating Eq. (4.25) we obtain the renormalization group equations

(

Λ
∂

∂Λ
+ be2

∂

∂e2
+ αe2r

∂

∂δ
− nf

2
ηψ

)

Γnb,nf ({py}, {px}, {ω}, r, δ, e2,Λ) = 0 (4.31)
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It is convenient to get rid of the derivative with respect to δ in Eq. (4.31). To do so, let

the location of the Fermi-surface of fermion ψ+ at finite δ and r be given by kx + k2y =

∆k(r, δ, e2,Λ). Then, ∆k is clearly a physical quantity and must satisfy,

(

Λ
∂

∂Λ
+ be2

∂

∂e2
+ αe2r

∂

∂δ

)

∆k(r, δ, e2,Λ) = 0. (4.32)

We will solve this equation shortly. However, first note that

∂∆k

∂δ
= 1. (4.33)

Now, it is convenient to expand momenta around the physical Fermi-surface, defining,

Γ̃nb,nf ({p}, r, δ, e2,Λ) = Γnb,nf ({p+ s∆k(r, δ, e2,Λ)x̂}, r, δ, e2,Λ) (4.34)

The resulting Γ̃ is independent of δ and by Eqs. (4.29), (4.31), (4.32), (4.33) satisfies,

(

Λ
∂

∂Λ
+ be2

∂

∂e2
− nf

2
ηψ

)

Γ̃nb,nf ({py}, {px}, {ω}, r, e2,Λ) = 0 (4.35)

By dimensional analysis,

Γ̃nb,nf = Λ6−2nf−2nb(e2)nf/2−1fnb,nf
({

py
Λ

}

,

{

px
Λ2

}

,

{

ωe2

Λ3

}

,
Λ2r

µ2

)

(4.36)

and solving the RG equation, we obtain

fnb,nf (s{p̃y}, s2{p̃x}, s3−b{ω̃}, s2−br̃) = s6−b+(b−ηψ−4)nf/2−2nbfnb,nf ({p̃y}, {p̃x}, {ω̃}, r̃)
(4.37)

Hence, the critical theory is invariant under,

py → spy, px → s2px, ω → szω (4.38)

with

z = 3− b, (4.39)

where z is the dynamic critical exponent. Note that we have defined z with reference to

length scales associated with directions tangent to the Fermi surface (y); as indicated in

(4.38), length scales orthogonal to the Fermi surface scale as the square of length scales

tangent to the Fermi surface. Moreover, if we define ξ as the correlation length along the y

direction then upon approaching the critical point, ξ ∼ r−ν, with

ν =
1

z − 1
. (4.40)
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Note that by combining Eqs. (4.24,4.26,4.39) we can write down the RG equation for the

coupling e:

Λ
∂e2

∂Λ

∣

∣

∣

∣

e2r,µ

= −(z − 3)e2. (4.41)

This shows that the renormalization of the coupling e is directly related to the dynamic

critical exponent, as we had claimed earlier.

Now, let us consider a few explicit examples of correlation functions. For the bosonic

two-point function we have,

D−1(qy, ω) = rg
(

qy(re
2Λz−3)−

1

z−1 , ω(rze2Λz−3)−
1

z−1

)

(4.42)

Note that,

lim
qy→0

lim
ω→0

D−1(qy, ω) = rg(0, 0) (4.43)

i.e. the Ising-nematic susceptibility satisfies χ ∼ r−γ with the exponent

γ = 1. (4.44)

We may also write more succinctly,

D−1(qy, ω) ∝ ξ−(z−1)g(qyξ, ωe
2Λz−3ξz) (4.45)

So far, we have been concentrating on a fixed direction of bosonic momentum ~q. Now let

us study the dependence of the result on q̂. Using Eq. (2.6)

D−1(~q, ω) = Z−1
φ K−1Z−1

r r0g
(

|~q|(Z−1
r e2Λz−3r0)

− 1

z−1 , ω(Z−z
r e2Λz−3rz0)

− 1

z−1

)

(4.46)

where for brevity r0 is taken to denote the deviation from the critical point. We concentrate

on the static limit ω = 0. In a Fermi liquid, the susceptibility must have a continuous limit

as ~q → 0. Therefore, we conclude that the combination ZφKZr must be independent of the

direction q̂. This is quite plausible, as neither of the constants run under RG.

Now let us look at the behaviour of susceptibility at the critical point,

D−1(qy, ω) =
qz−1
y

e2Λz−3
h

(

ωe2Λz−3

qzy

)

(4.47)

In particular, the static susceptibiltiy satisfies,

D−1(~q, 0) ∼ a(q̂)|~q|z−1 (4.48)

In the context of the spin-liquid problem, many studies50,52–56 examined the structure

of the higher loop corrections to the susceptibility. In particular, Kim et al.50 examined
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two-loop corrections to ImD−1(~q, ω) for real frequencies |ω| ≪ |~q|, and found no corrections

to the leading answer ∼ ω/|qy| in Eq. (3.4); Fermi liquid arguments were made50,52–54,56 that

this functional form held at higher orders. However, this result by itself does not fix the

value of z; indeed, ImD−1(~q, ω) ∼ ω/|qy| is consistent with the scaling form (4.47) for any

z. These studies also implicitly assumed a Fermi liquid picture with D−1(~q, ω = 0) ∼ ~q2,

and this does imply z = 3. We will examine D−1(~q, ω = 0) up to 3 loops in Section VA,

and find no correction to z = 3.

Proceeding to the fermion Green’s function,

G−1
s (~k, ω) = Λ2

(

re2

Λ2

)

2−ηψ
z−1

L
(

k(re2Λz−3)−
2

z−1 , ω(rze2Λz−3)−
1

z−1

)

(4.49)

with k = skx + k2y - the distance to the Fermi surface. More compactly,

G−1(~k, ω) ∝ ξ−(2−ηψ)L
(

kξ2, ωe2Λz−3ξz
)

(4.50)

A crucial property of the theory that is manifested by the above expression is that the

“fermionic correlation length” scales as the square of the “bosonic correlation length”.

For ω ≪ ξ−z, k ≪ ξ−2 we expect the fermion Green’s function to assume a Fermi-liquid

form,

G(~k, ω) =
Z

−iω + vFk
(4.51)

By matching to the scaling form,

vF ∼ ξ−(z−2), Z ∼ ξ−(z+ηψ−2) (4.52)

Notice that both the Fermi velocity vF and the residue Z tend to zero as we approach the

critical point, albeit with different power laws. Finally, at the quantum critical point,

G−1(~k, ω) = Ληψk1−ηψ/2P

(

ωe2Λz−3

kz/2

)

, (4.53)

where we reiterate that k = skx + k2y is the distance to the Fermi surface. In particular, the

self-energy on the Fermi surface scales as,

G−1(0, ω) ∼ ω(2−ηψ)/z (4.54)

and the static self energy,

G−1(~k, 0) ∼ k1−ηψ/2 (4.55)
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Moreover, from Eq. (4.53) we can obtain the tunneling density of states,

N(ω) =

∫

d2k

(2π)2
A(~k, ω) (4.56)

where

A(~k, ω) = −1

π
ImG(~k, iω → ω + i0+) (4.57)

The ~k integral in Eq. (4.56) factorizes into integrals over components along and perpendic-

ular to the Fermi surface. The former gives a factor proportional to the perimeter of the

Fermi surface, while the later yields the frequency dependence,

N(ω) ∼ ωηψ/z (4.58)

We remind the reader that the expression in Eq. (4.58) corresponds to the physically ob-

servable electron tunneling density of states only in the case of a nematic transition, as for

the spin/charge-liquid problem, the physical electron operator is a product of ψ and a boson

operator.

Related scaling forms for the fermion Green’s function were discussed on a phenomeno-

logical basis by Senthil.58 However his definition of z differs from ours. We define it using

the fermion momentum parallel to the Fermi surface, because this is the natural momentum

scale appearing also in the boson correlations. He defines it by the fermion momentum

orthogonal to the Fermi surface, which scales as the square of the parallel momentum.

Finally, let us discuss the shift of the Fermi surface ∆k. Using Eq. (4.33) in the RG

equation (4.32), we obtain,

∆k =
α

z − 3
re2 + Ck(re

2Λz−3)2ν + δ (4.59)

Thus, the shift of the Fermi surface upon deviation from the critical point receives two contri-

butions: one analytic in r and the other non-analytic. Reexpressing the second contribution

in terms of the correlation length,

∆k =
α

z − 3
re2 + C̃kξ

−2 + δ (4.60)

where the coefficient C̃k is expected to be universal. We would like to point out that the

case z = 3 has to be treated separately. In this situation one obtains,

∆k =
αre2

2
log

re2

Λ2
= −Ĉkξ−2 log(Λξ) + δ (4.61)

with Ĉk again universal.

The value of the Fermi surface shift ∆k can be used to compute the compressibility, ∂n
∂µ
,
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where µ is the physical chemical potential. Indeed, by Luttinger’s theorem the change in

density can be obtained as,

δn =
N

(2π)2

∫

ds∆k(θ) (4.62)

where the integral is over the circumference of the Fermi-surface. The main question is how

does the chemical potential enter our low-energy theory. If µ only couples to the operator

ψ†ψ, renormalizing the value of δ, then from Eqs. (4.59), (4.61) we would conclude that

the compressibility tends to a constant and has no interesting corrections near the quantum

critical point. On the other hand, if the coupling r has a non-trivial µ dependence, then we

would conclude,
∂n

∂µ
= κ0 + κ1ξ

z−3, z 6= 3 (4.63)

∂n

∂µ
= κ0 + κ̂1 log Λξ, z = 3 (4.64)

Note that for z ≥ 3 the above forms imply that the compressibility diverges as we approach

the critical point.

V. ANOMALOUS EXPONENTS TO THREE LOOPS

In this section, we evaluate the exponents z and ηψ to three loop order. We find that the

exponent ηψ is non-zero at this order. The value of ηψ is not suppressed in the large-N limit.

On the other hand, the dynamical critical exponent z remains unrenormalized from its RPA

value z = 3 to this order. Moreover, in the large-N limit, the boson self energy acquires a

finite correction of order N3/2, which is larger than the bare value (order N). Finally, we

find that the constant α in Eq. (4.30) associated with the shift of the Fermi-surface away

from criticality is non-zero at three loop order. We note that the N3/2 correction to the

boson self-energy and the non-zero ηψ are only present for the Ising-nematic and spin-liquid

universality classes, and are absent for the Ising ferromagnet transition.

A. Dynamical critical exponent

Let us first address the question of renormalization of e2. At two-loops the only correction

to the static boson-self energy Π(qτ = 0, ~q), which is not already taken into account by the

solution to self-consistent Eliashberg equations is given in Fig. 4. However, this diagram

vanishes when the external frequency is equal to zero. Indeed, as pointed out in Ref. 40, any

diagram with fermions from a single patch, in which the fermion propagators involve a sum

of two or less internal momenta, vanishes in the static limit (one picks the internal frequency

with the largest absolute value and integrates over the corresponding x component of the

momentum. All poles will be in the same half-plane). Actually, a calculation presented in
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Appendix B shows that the diagram in Fig. 4 vanishes for any external frequencies and

momenta.

FIG. 4. Two loop corrections to the polarization.

FIG. 5. Three loop corrections to the boson self-energy with one fermion loop.

The three loop corrections to Π(q) are shown in Figs. 5 and 6. By the argument described

above, all of these diagrams vanish when the external frequency is zero if all the fermions

are from the same patch. Hence, the only non-zero corrections to Π(qτ = 0, ~q) come from

the Aslamazov-Larkin type diagrams, Fig. 6,
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(a)

(b)

FIG. 6. Aslamazov-Larkin type three loop contributions to the boson self-energy.

δ3Π(q) = −1
2

∫

dlτd
2~l

(2π)3
Γ3(q, l,−(l + q))Γ3(−q,−l, l + q)D(l)D(l + q) (5.1)

Here Γ3 is the fermion-induced cubic boson vertex, which receives contribution from the two

fermion patches,

Γ3 = Γ3
+ + Γ3

− (5.2)

Γ3
s(l1, l2, l3) = Nλ3s(fs(l1, l2, l3) + fs(l2, l1, l3)) (5.3)

fs(l1, l2, l3) =

∫

dpτd
2~p

(2π)3
Gs(p)Gs(p− l1)Gs(p+ l2) (5.4)

The diagrams where the fermions in the two loops come from the same patch give a vanishing

contribution to Π(qτ = 0, ~q). Thus, to three loops,

δ3Π(qτ = 0, ~q) = −1
2

∫

dlτd
2~l

(2π)3
Γ3
+(q, l,−(l + q))Γ3

−(−q,−l, l + q)D(l)D(l + q) + (q → −q)

= −λ3+λ3−N2

∫

dlτd
2~l

(2π)3

[

f+(q, l,−(l + q))(f−(−q,−l, l + q)

+ f−(−q, l + q,−l))D(l)D(l + q)
]

+ (q → −q). (5.5)

The two terms in brackets in the equation above originate respectively from diagrams in

Figs. 6 a) and b). Converting these diagrams into the double line representation of Ref. 40,
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(a)

(b)

FIG. 7. Double line representation of Ref. 40 applied to the Aslamazov-Larkin diagrams in Fig. 6.

The fermions in the two loops are assumed to come from opposite patches. We have reversed the

directions of the fermion propagators from the second patch, and the dotted arrows indicate the

true directions of the fermion momenta.

we obtain Figs. 7 a) and b). [We remark that the genus expansion of Ref. 40 was developed

for a theory with only a single Fermi-surface patch. The extension to the present case of

a pair of time reversed patches is simple: a reversal of the direction of loops with fermions

from the second patch reduces the problem to that with one patch only. The diagrams in

Fig. 7 have their lines reversed precisely in this way. The additional dotted arrow besides

each propagator indicates the true direction of fermion momentum.] In this representation,

the graph a) contains a loop while the graph b) does not. As a result, in the genus expansion

of Ref. 40, the diagram in Fig. 6 a) is enhanced to O(N), while the diagram in Fig. 6 b)

is of O(1). However, we will see that the diagrams are actually individually ultra-violet

divergent, as a result the counting of Ref. 40 is inapplicable here. It turns out that the sum

of the diagrams is UV finite and of O(N3/2).

We give details of the evaluation of Eq. (5.5) in Appendix B, where we find

δ3Π(qτ = 0, ~q) = Cλ+λ−
q2y
e2

(5.6)

In the large-N limit, the coefficient C is given by,

C ≈ −0.09601N3/2, N →∞ (5.7)
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while for the physical value N = 2,

C ≈ −0.04455, N = 2 (5.8)

The N3/2 behaviour in Eq. (5.7) indicates a breakdown of the genus expansion of Ref. 40.

Moreover, since this correction is parametrically larger than the tree level value, the existence

of the large-N limit of the theory is cast into doubt. In particular, it is not clear if there

are higher loop graphs with even stronger divergences in the large-N limit. Moreover, we

expect contributions to the bosonic self-energy analytic in qy to be generated from kinematic

regimes involving the whole Fermi-surface and not just the two Fermi patches. Such analytic

contributions might also exhibit anomalous scaling with N .

Note that there is no logarithmic dependence on Λ/µ in Eq. (5.6), and so we have z = 3

at this order. For the physical value of N = 2, the finite three-loop correction turns out to

be rather small numerically.

B. Fermion anomalous dimension

The Feynman diagrams for the fermion self-energy up to three loop order are shown in

Figs. 8, 9 and 10. By reasons explained in the previous section, the diagrams in Figs. 8 and

9 vanish when the external frequency is zero and, hence, do not contribute to the fermion

anomalous dimension.

FIG. 8. Fermion self-energy at two loops.

Thus, the only fermion self-energy diagrams that can give UV divergences are shown in

Fig. 10. Actually, the diagram in Fig. 10 a) is zero since the polarization correction in Fig.

4 vanishes. Thus, we only need to consider the two diagrams in Fig. 10 b) and c). For these

graphs to be UV divergent, the fermions running in the loop and the external fermions must

come from different patches. The diagram in Fig. 10 b) contains two loops in the double

line representation (Fig. 11 a)) and is expected to be of order 1/N , while the one in Fig.

10 c) has no loops in the double line representation (Fig. 11 b)) and, hence, is expected to

scale as 1/N2.
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FIG. 9. Three loop fermion self-energy diagrams with no fermion loops

.

A calculation presented in Appendix B gives the UV divergent contribution,

δ3bΣ+(ω = 0, ~p) = λ+λ−Jb(px + p2y) log

(

Λy
|px + p2y|1/2

)

, (5.9)

δ3cΣ+(ω = 0, ~p) = δ3cΣ+(ω = 0, ~p = 0) + λ+λ−Jc(px + p2y) log

(

Λy
|px + p2y|1/2

)

(5.10)

The constant Jb is independent of N and given numerically by,

Jb ≈ 0.1062 (5.11)

On the other hand, the constant Jc is N -dependent. For N = 2 we obtain,

Jc ≈ −0.03795, N = 2 (5.12)
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(a)

(b) (c)

FIG. 10. Three loop fermion self-energy diagrams with one fermion loop

(b)

(a)

FIG. 11. Double line representation of fermion self-energy diagrams in Figs. 10b,c, as in Fig. 7.

The external fermions and the fermions inside the loop are assumed to come from opposite patches.

while in the large-N limit,

Jc ≈
9

4π2N2
log3N, N →∞ (5.13)

Notice that there is no 1/N suppression in Eq. (5.9). A way to interpret this, is that the

diagram is really of order 1/N (as the genus expansion predicts), however, it is a function

of N(px + p2y). Indeed, recall that the genus expansion assumes N(px + p2y) ∼ 1. However,

the UV divergent piece of the diagram cannot depend on the magnitude of px + p2y and is

valid for any external momentum or frequency. On the other hand, the infrared scale under
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the log is expected to become ω1/3 once ω ≫ N3/2|px + p2y|3/2. Also observe that up to a

logarithmic enhancement, the non-planar diagram 10 c) (11 b)) is of order 1/N2, as expected

from the genus expansion.

Note that the UV divegence in Eqs. (5.9), (5.10) is logarithmic, as expected from power

counting, and comes from a region where both internal momenta and frequencies diverge

in accordance with the scaling (4.1). This is unlike the anomalous linear divergences of

the Aslamazov-Larkin diagrams that occur when the internal momenta qy are of order of

external momenta, while internal qx, qτ diverge.

Thus, to three loop order,

δ3Σ+(ω = 0, ~p) = δ3Σ+(ω = 0, ~p = 0) + λ+λ−J(px + p2y) log

(

Λy
|px + p2y|1/2

)

(5.14)

J = Jb + Jc ≈
{

0.06824 N = 2

0.10619 N =∞ (5.15)

Although the self-energy correction (5.14) is not parameterically suppressed compared to

the bare value even when N = ∞, it appears to be suppressed numerically. Thus, we may

estimate,

Zψ = 1− λ+λ−J log Λ/µ

ηψ = λ+λ−J = ±0.06824 (5.16)

where the upper sign refers to the Ising-nematic transition and the lower sign to the spin-

liquid and we have used the value of J at N = 2.

C. Fermi surface shift

We now evaluate the coefficient α, Eq. (4.30), associated with the renormalization of

chemical potential δ away from criticality. This coefficient can be obtained from the insertion

of the φ2 operator into the two-point fermion Green’s function at criticality. By setting

all external frequencies to zero, we find that at three loop order the only UV divergent

contribution can originate from the diagrams in Figs. 10 b) c) with the φ2 operator inserted

into the boson propagators. The details of the calculation are presented in appendix B. We

find,

δ3
∂Σ

∂r
UV
= Jre

2 log Λy (5.17)
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with

Jr = 0.00208, N = 2

Jr ∼ O

(

1

N3

)

, N →∞ (5.18)

Absorbing this divergence into the chemical potential,

Zrδ = Jr log Λy/µ (5.19)

and

α = Jr (5.20)

Thus, the φ2 operator mixes with the ψ†ψ operator. If the dynamical critical exponent

z = 3, this leads to a logarithmic divergence of the compressibility, Eq. (4.64). Note that

the magnitude of the mixing α is suppressed in the large N limit and is also numerically

small for N = 2.

VI. CONCLUSIONS

This paper has presented the scaling properties of the field theory in Eq. (2.7) which

describes a number of problems involving the breakdown of Landau Fermi liquid theory at

all points on a two dimensional Fermi surface. The main motivation was provided by the

quantum phase transition caused by the onset of Ising-nematic order, which reduces the

point-group symmetry from square to rectangular. However our theory also directly applies

or can be generalized to breaking of other point-group and/or time-reversal symmetries,

and these were described in Section II. One of these cases is the “circulating current”

order parameter of Simon and Varma33,47,48. Apart from applications to quantum critical

points, our theory also described non-Fermi liquid phases associated with spin liquids57,58 or

algebraic charge liquids59–61, which have Fermi surfaces coupled to U(1) gauge fields.

Our critical theory was formulated in terms of a time-reversed pair of patches on the Fermi

surface, centered at the wavevectors ±~k0 (see Fig. 1). The value of ~k0 was determined by

requiring that the tangent to the Fermi surface at ~k0 be parallel to the wavevector ~q carried

by the order parameter insertion in the correlation function being computed. However, in

general, there is nothing special about the point ~k0, and neighboring points on the Fermi

surface should behave in a similar manner. This key feature was implemented in our theory

by the rotational symmetry discussed in Section IVA, and the identities (4.5,4.6), which

show that the Green’s function remains invariant as we move along the Fermi surface.

We emphasize that although we have critical theories associated with every pair of points

on the Fermi surface, the Lagrangian (2.7) and all the fields are 2+1 dimensional i.e. φ and

ψσ are integrated over arbitrary functions of x, y, and τ . Thus, as we noted earlier, our
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approach and results differ from studies using a ‘tomographic’ representations of the Fermi

surface, in which every point on the Fermi surface is described by a 1+1 dimensional field

theory.27,28,41–45 Our 2+1 dimensional representation leads to a redundancy in our description

of the degrees of freedom, and the identities of Section IVA ensure the consistency of this

redundant description.

Our main results include the scaling relations for the order parameter susceptibility in

Eq. (4.45), and for the fermion Green’s function in Eq. (4.50). These are associated with only

two independent exponents, the dynamic scaling exponent z, and the fermion anomalous

dimension ηψ. The correlation length exponent ν was given by exact scaling relation in

Eq. (4.40), while the susceptibility exponent γ = 1. For the spin-liquid case, Fermi liquid

arguments were made49,50,52–54,56 suggesting that z = 3; we found z = 3 to three loop order in

Section V, although we did not prove this to all orders, and our scaling theory is compatible

with a general value of z. Our three loop computation also gave a non-zero value of ηψ,

with opposite signs for the Ising-nematic and spin-liquid cases. In the case of the nematic

transition, a non-zero positive ηψ implies the suppression of the electron tunneling density

of states, Eq. (4.58). Another striking effect that we find for the case of a nematic transition

is the power law divergence of the compressibility for z > 3, which turns into a logarithmic

divergence if z = 3.

Our scaling results were expressed in terms of correlators of the fermionic field ψ+σ

carrying momentum ~q as measured from the point ~k0 from the Fermi surface, implying from

(2.3) that the electron cσ has momentum ~k0+ ~q (and similarly for ψ−σ). However, note that

(after appropriate rescaling of momenta, and for a circular Fermi surface) |~k|−kF ≈ qx+ q
2
y .

Thus the identity (4.6) implies that the scaling function (4.50) for the two-point fermion

Green’s function depends only on |~k| − kF . This is similar to the dependence found in

other treatments e.g. in the recent critical theories62–65 obtained by applying the AdS/CFT

duality to fermions propagating near a Reissner-Nordstrom black hole. The latter theories,

in their current classical gravity formulation, find64 ηψ = 0.

It is also interesting to compare the structure of the critical theory in the AdS/CFT frame-

work to that found here. We have an infinite set of 2+1 dimensional field theories labeled by

pairs of momenta on a one-dimensional Fermi surface i.e. a S
1/Z2 set of 2+1 dimensional

field theories. In the low-energy limit, the AdS/CFT approach yields64 a AdS2 × R
2 geom-

etry: this can be interpreted as an infinite set of chiral 1+1 dimensional theories labeled by

a R
2 set of two-dimensional momenta ~k. It is notable, and perhaps significant, that both

approaches have an emergent dimension not found in the underlying degrees of freedom.

We began with a 2+1 dimensional Hamiltonian, and ended up with a S
1/Z2 set of 2+1

dimensional field theories. In AdS/CFT, there is the emergent radial direction representing

energy scale. These emergent dimensions imply redundant descriptions, and require associ-

ated consistency conditions: we explored such consistency conditions in Section IVA, while

in AdS/CFT the consistency conditions are Einstein’s equations representing the renormal-

ization group flow under changes of energy scale. It would be interesting to see if fluctuations
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about the classical gravity theory yield corrections to the AdS2×R
2 geometry which clarify

the connection to our theory.

In the analysis of the spin-liquid problem, Ref. 40 considered a single patch of the Fermi

surface, and argued that the 1/N expansion should be organized by the genus of the Feynman

graph (after the propagators are written in a suitable double line representation, and the

graph is interpreted as lying on a two-dimensional surface). In our two-patch theory here,

we have shown that this genus counting is violated. This is the implication of the N3/2

dependence of the boson self-energy in Eq. (5.6). In fact, at present, it is not clear how

to take the large-N limit of the theory. On the other hand, for the physical value N = 2,

we found that the higher loop contributions are numerically small, which suggests that the

critical exponents are close to the Hertz mean-field values. However, because the loop-wise

expansion does not possess even a formal expansion parameter, it is not clear if there is a

systematic way to extract corrections to the mean-field exponents. Thus, our value of the

fermion anomalous dimension ηψ, Eq. (5.16), should be regarded as an estimate only.
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Appendix A: Decoupling of non-collinear momenta

In this section we will argue that the fluctuations of the order parameter at non-collinear

momenta effectively decouple. We focus for simplicity on the case of an Ising-nematic

transition. We follow the standard Hertz approach, integrating out the fermions to obtain

an effective action for φ,

S[φ] =
∞
∑

n=2

1

n!

∫

dDx1 . . . d
DxnΓ

n(x1, x2, . . . xn)φ(x1)φ(x2) . . . φ(xn) (A1)

The n-point effective vertex Γn is given by,

Γn(q1, q2, . . . qn) =
N

n
fn(q1, q2, . . . qn) + permutations of q1, q2, . . . qn (A2)

with

fn(q1, q2, . . . qn) =

∫

dkτd
2k

(2π)3

n−1
∏

i=0

[

G(k + li)d~k+
~li+

~li+1

2

]

(A3)
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where li =
∑i

j=1 qj. For now we work with “undressed” propagators,

G(ω,~k) =
1

−iω + vF (θ)k
(A4)

with k - the distance to the Fermi surface and vF (θ) - the local Fermi velocity. As is

well-known, for ω ≪ vF |~q| and |~q| ≪ kF the two-point vertex has a Landau-damped form,

Γ2(ω, ~q) = N

[

γ(q̂)
|ω|
|~q| +

~q2

e2
+ r

]

(A5)

where the coefficient of the non-analytic term γ(q̂) = Kd2/(2πv2F ) with the Fermi-surface

curvature radius K, Fermi-velocity vF and form-factor d evaluated at the point on the Fermi

surface to which ~q is tangent. On the other hand, the coefficients of the analytic terms r

and 1/e2 come from the entire Fermi-surface.

If we truncate the series (A1) at the quadratic order,

S2 =
N

2

∫

dωd2~q

(2π)3

[

γ(q̂)
|ω|
|~q| +

~q2

e2
+ r

]

|φ(~q, ω)|2 (A6)

then at the critical point r = 0 the action (A6) is invariant under the scale transformation,

φ(~x, τ)→ s3/2φ(s~x, s3τ) (A7)

Note that here, in contrast to Eq. (4.1), all components of ~q are scaled in the same way as we

are not studying the effects of fluctuations with collinear wave-vectors. We can regard the

terms in Eq. (A1) with n > 2 as perturbations to the Hertz action (A6). Hertz noted that if

the effective vertices Γn possess a regular expansion in frequencies and momenta, such that

the corresponding operators can be represented as polynomials in the order parameter φ and

its derivatives, then the perturbations with n > 2 are irrelevant due to the large effective

dimensionality, Deff = d+ z = 5, with d = 2 - spatial dimension and z = 3 - the dynamical

critical exponent. Indeed, the perturbation
∫

d2~xdτφn(x) scales as s3n/2−5 under (A7) (in

the special case n = 3, the operator φ3 is actually prohibited by the 90◦ lattice rotation

symmetry. The lowest dimension local operators with three powers of φ that are allowed

by symmetry are φ((∂xφ)
2 − (∂yφ)

2) in the dx2−y2 case and φ∂xφ∂yφ in the dxy case, which

scale as s3/2).

However, due to the presence of low-energy excitations on the Fermi-surface there is no

reason to expect that the effective vertices Γn would possess a regular expansion in momenta.

Indeed, we have already seen that the two-point vertex has the non-analytic Landau-damped

form (A5). As we now show, similar non-analyticities occur in the higher order vertices.

Let us estimate the vertices (A2) when the external frequencies and momenta obey the
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Hertz scaling (A7), ω ∼ |~q|3, ~q → 0. In this regime,

fn(q1, q2, . . . qn) =

∫

dkτdkdθ

(2π)3

∣

∣

∣

∣

∣

d~kF
dθ

∣

∣

∣

∣

∣

d(θ)n
n−1
∏

i=0

1

−i(kτ + liτ ) + vF (θ)(k + v̂F (θ) ·~li)
(A8)

Let us perform the integral over k. Observe that if |kτ | > Ω, with Ω = maxi |liτ | then the

integral vanishes as all the poles of the integrand are in the same half-plane. Thus, the range

of the internal frequency is limited by the external ones. With this in mind,

fn(q1, q2, . . . qn) = i

∫

|kτ |<Ω

dkτ
2π

∫

dθ

2π

∣

∣

∣

∣

∣

d~kF
dθ

∣

∣

∣

∣

∣

d(θ)n

vF (θ)

×
n−1
∑

j=0

ϑ(kτ + ljτ )

n−1
∏

i=0,i 6=j

1

−i(liτ − ljτ) + v̂F (θ) · (~li −~lj)
, (A9)

where we have used the symbol ϑ for the step function, to avoid confusion with the angular

variable θ. Now, since qτ ∼ |~q|3/(γe2) ≪ vF |~q|, for general θ we can ignore the frequency

dependence in the denominator of Eq. (A9). Then the angular integration yields a factor of

O(1) and the integral over kτ yields a factor of external frequency, so that

Γn(q1, q2, . . . qn) ∼
qτ
|~q|n−1

(A10)

Note that the momentum dependence in Eq. (A10) is far from analytic. Also, note that for

n = 2 the result is consistent with the standard Landau damping.

The only possible caveat to the estimate (A10) is associated with regions of angular

integration where v̂F (θ) · (~li −~lj) → 0, i.e some combination of external momenta becomes

tangent to the Fermi surface. Then the angular integration acquires poles just off the real

axis, with the imaginary parts of the poles provided by the frequency dependence in the

denominator of Eq. (A9). As long as the real parts of the poles do not coalesce, i.e no

two momenta ~li −~lj and ~li′ −~lj are collinear, the angular integration still yields a factor of

O(1) and the estimate (A10) remains correct. This is the regime that we are considering in

the present appendix. The rest of the paper is devoted to the opposite limit, where all the

external momenta are nearly collinear and the angular integral in Eq. (A9) is dominated by

the vicinity of two antipodal points on the Fermi surface to which the external momenta are

tangent. This observation motivates the introduction of the two patch theory in Section II

and all the subsequent development of the present work.

Returning to the non-collinear regime, upon combining Eq. (A10) with the Hertz scaling

(A7), we conclude that the n-th term in the series (A1) scales as sn/2−1. Therefore, all terms

with n > 2 represent non-local irrelevant perturbations, which confirms that the fluctuations

with non-collinear momenta decouple.

We would like to point out that the argument above still holds if one dresses the fermion
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propagator by the one-loop self-energy, Σ(ω, k) ∼ −isgnω|ω|2/3. This modifies the frequency

dependence in the denominator of Eq. (A9) via, −i(liτ − ljτ ) → Σ(kτ + liτ ) − Σ(kτ + ljτ).

However, since Σ(ω)≪ vF |~q| for typical ω ∼ |~q|3, the estimate (A10) is still correct.

Appendix B: Computations of Feynman diagrams

Here we provide some details of the computations of the diagrams in Section V.

1. Boson self-energy

We begin by evaluating the two-loop polarization correction in Fig. 4,

δ2Π(q) = N
∑

s

∫

dpτd
2p

(2π)3
dlτd

2l

(2π)3
D(l)Gs(p)Gs(p+ q)Gs(p− l)Gs(p+ q − l) (B1)

The contributions to the integral from the two patches are equal. Thus, integrating over px,

lx we obtain,

δ2Π(q) = 2N

∫

dpτdpy
(2π)2

dlτdly
(2π)2

D(l)
θ(pτ )− θ(pτ + qτ )

icf
N
({p} − {p+ q}) + 2qypy + qx + q2y

× θ(lτ − pτ )− θ(lτ − pτ − qτ )
icf
N
({l − p− q} − {l − p}) + 2qy(py − ly) + qx + q2y

(B2)

where here and below we use the notation {p} = sgn(pτ )|pτ |2/3. We observe that the poles

of the py integral are always in the same half-plane. Thus, δ2Π(q) = 0. This is consistent

with Ref. 50, which found that the two loop corrections to Eq. 3.3 are suppressed by factors

of |ω|2/3 or |ω|/|qy| ∼ |ω|2/3.
Now, let us proceed to compute the Aslamazov-Larkin diagrams, Fig. 6. We begin by

evaluating the three point-function fs(q, l,−(l+q)) in Eq. (5.4). Note that f−(q, l,−(l+q)) =
f+(Pxq, Pxl,−Px(l+q)) where Px(k0, kx, ky) = (k0,−kx, ky). The calculation of f is simplified

when qτ = 0. Then, performing the integral over px and, subsequently, py, in Eq. (5.4),

f+(q, l,−(l + q))
qτ=0
=

∫

dpτdpy
(2π)2

i(θ(pτ + lτ )− θ(pτ ))
icf
N
({p+ l} − {p})− lx − 2lypy − l2y

×

1
icf
N
({p+ l} − {p})− qx − lx − 2(qy + ly)py + q2y − l2y

=
1

2qy

∫

dpτ
2π

|θ(pτ + lτ )− θ(pτ )|(θ(ly)− θ(qy + ly))
−icf
N

({p+ l} − {p}) + lx − qx
qy
ly + ly(qy + ly)

(B3)
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Thus,

δ3Π(qτ = 0, ~q) =
λ+λ−N

2

4q2y

∫

dlτd
2~l

(2π)3
dpτ
2π

dp′τ
2π

D(l)D(l + q)×

|θ(pτ + lτ )− θ(pτ )||θ(p′τ + lτ )− θ(p′τ )||θ(ly)− θ(ly + qy)|
−icf
N

({p+ l} − {p}) + lx − qx
qy
ly + ly(qy + ly)

×
(

1
−icf
N

({p′ + l} − {p′})− lx + qx
qy
ly − ly(qy + ly)

− 1
−icf
N

({p′ + l} − {p′})− lx + qx
qy
ly + ly(qy + ly)

)

+ (q → −q) (B4)

Finally, integrating over lx,

δ3Π(qτ = 0, ~q) =
λ+λ−N

2

4q2y

∫

dlτdly
(2π)2

dpτ
2π

dp′τ
2π

D(l)D(l + q)×

isgn(lτ )|θ(pτ + lτ )− θ(pτ )||θ(p′τ + lτ )− θ(p′τ )||θ(ly)− θ(ly + qy)| ×
(

1
−icf
N

({p+ l} − {p}+ {p′ + l} − {p′})

− 1
−icf
N

({p+ l} − {p}+ {p′ + l} − {p′}) + 2ly(qy + ly)

)

+ (q → −q)

(B5)

The integral is invariant under q → −q. Moreover, the integrals in the regions l0 > 0 and

l0 < 0 are related by complex conjugation. Thus,

δ3Π(qτ = 0, ~q) = −λ+λ−N
q2y

∫ ∞

0

dlτ
2π

∫ lτ

0

dpτ
2π

∫ lτ

0

dp′τ
2π

∫ |qy|

0

dly
2π

1

cb
lτ
ly
+

l2y
e2

1

cb
lτ

|qy|−ly +
(|qy|−ly)2

e2

×

(

1

cf((l − p)2/3τ + p
2/3
τ + (l − p′)2/3τ + p

′2/3
τ )

− cf((l − p)2/3τ + p
2/3
τ + (l − p′)2/3τ + p

′2/3
τ )

c2f ((l − p)
2/3
τ + p

2/3
τ + (l − p′)2/3τ + p

′2/3
τ )2 + 4N2l2y(|qy| − ly)2

)

(B6)

Notice that the integral over ly is bounded by the external momentum qy. This leads to a

violation of the naive power counting, which would predict that each diagram in Fig. 6 has

a superficial degree fo divergence Λ2
y ∼ Λ

2/3
τ . Instead, we find that for lτ → ∞, the two

diagrams behave as,

δ3aΠ(0, ~q) = −δ3bΠ(0, ~q) ∼ −λ+λ−N |qy|
(

Λτ
e4

)1/3

(B7)

(In reality, the divergence is cut once we exit the two patch regime where the momentum
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lx ≪ ly. This occurs when lx ∼ l
2/3
τ becomes of order ly. However, for the Aslamazov-

Larkin diagrams the internal momentum ly is controlled by external momentum qy. Hence,

Λτ ∼ q
3/2
y and δ3aΠ = −δ3bΠ ∼ q

3/2
y , as found in Ref. 26).

However, as expected for problems involving a boson field coupled to the charge sector

of the Fermi-surface, the divergence cancels when we add the two diagrams. In fact, for

N ≫ 1, the divergence is cut-off at
cf
N
l
2/3
τ ∼ q2y , i.e.

lτ ∼ N3/2q3y/e
2 (B8)

so that

δ3Π(0, ~q) ∼ −λ+λ−N3/2
q2y
e2

(B9)

Note that the result is parameterically larger in the large-N limit than the bare boson

polarization, Eq. (2.7) (although it has the same scaling as the bare term). Also observe

that the sign of the contribution (B9) is positive for the spin-liquid and negative for the

Ising-nematic transition.

One may ask whether the enhancement in (B9) is an artifact of taking qτ = 0. However,

since the integral in Eq. (B9) is saturated in the region (B8), we expect the result (B9) to

be valid for, qτ ≪ N3/2q3y/e
2, which is certainly satisfied by the typical bosonic momenta

qτ ∼ q3y/e
2.

We can compute the proportionality factor in Eq. (B9) in the large-N limit. Changing

variables to lτ =
(

N
cf

)3/2

|qy|3l̄τ , pτ = lτx, p
′
τ = lτx

′, ly = |qy|y,

δ3Π(0, ~q) = Cλ+λ−
q2y
e2

(B10)

C = −2
5/233/4N3/2

π

∫ ∞

0

dl̄τ

∫ 1

0

dx

∫ 1

0

dx′
∫ 1

0

dy
l̄
4/3
τ y3(1− y)3

(l̄τ +
(

2
N
√
3

)3/2

y3)(l̄τ +
(

2
N
√
3

)3/2

(1− y)3)

× 1

A(A2 l̄
4/3
τ + 4y2(1− y)2)

(B11)

with,

A = x2/3 + (1− x)2/3 + x′2/3 + (1− x′)2/3 (B12)

For N ≫ 1, the integral over l̄τ is saturated in the region l̄τ ∼ 1, so,

C ≈ −2
5/233/4N3/2

π

∫ ∞

0

dl̄τ

l̄
2/3
τ

∫ 1

0

dx

∫ 1

0

dx′
∫ 1

0

dy
y3(1− y)3

A(A2 l̄
4/3
τ + 4y2(1− y)2)

(B13)
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After a change of variables, z = Al̄
2/3
τ /(2y(1− y)),

C ≈ −3
7/4N3/2

π

∫ ∞

0

dz

z1/2(z2 + 1)

∫ 1

0

dy y3/2(1−y)3/2
∫ 1

0

dx

∫ 1

0

dx′
1

A3/2
=

311/4πN3/2

215/2

∫ 1

0

dx

∫ 1

0

dx′
1

A3/2

(B14)

The integral over x, x′ can be evaluated numerically,

∫ 1

0

dx

∫ 1

0

dx′
1

A3/2
= 0.269653 (B15)

so that

C ≈ −0.09601N3/2, N →∞ (B16)

We may also compute the constant C in Eq. (B10) for the physical value N = 2,

C ≈ −0.04455 (B17)

2. Fermion self-energy

We next compute the three loop corrections to the fermion self-energy in diagrams Fig.

10 b), c):

δ3bΣ(pτ = 0, ~p) = Nλ3+λ
3
−

∫

dkτd
2k

(2π)3
dl1τd

2l1
(2π)3

dl2τd
2l2

(2π)3
G+(p− l1)G+(p− l2)G−(k)G−(k + l1)G−(k + l2)

× D(l1)D(l2)D(l1 − l2) (B18)

δ3cΣ(pτ = 0, ~p) = Nλ3+λ
3
−

∫

dkτd
2k

(2π)3
dl1τd

2l1
(2π)3

dl2τd
2l2

(2π)3
G+(p+ l1)G+(p+ l2)G−(k)G−(k + l1)G−(k + l2)

× D(l1)D(l2)D(l1 − l2) (B19)

Integrating over l1x and l2x we obtain,

δ3bΣ(pτ = 0, ~p) = −Nλ+λ−
∫

dkτd
2k

(2π)3
dl1τdl1y
(2π)2

dl2τdl2y
(2π)2

D(l1)D(l2)D(l1 − l2)
1

− icf
N
k
2/3
τ + δ−k

θ(l1τ + kτ )− θ(−l1τ )
− icf

N
((l1 + k)

2/3
τ + l

2/3
1τ ) + δ−k + 2(k + p)yl1y − δ+p

θ(l2τ + kτ)− θ(−l2τ )
− icf

N
((l2 + k)

2/3
τ + l

2/3
2τ ) + δ−k + 2(k + p)yl2y − δ+p

(B20)
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δ3cΣ(pτ = 0, ~p) = −Nλ+λ−
∫

dkτd
2k

(2π)3
dl1τdl1y
(2π)2

dl2τdl2y
(2π)2

D(l1)D(l2)D(l1 − l2)
1

− icf
N
k
2/3
τ + δ−k

θ(l1τ + kτ )− θ(−l1τ )
− icf

N
((l1 + k)

2/3
τ + l

2/3
1τ ) + δ−k + 2(k + p)yl1y + 2l21y + δ+p

θ(l2τ + kτ )− θ(−l2τ )
− icf

N
((l2 + k)

2/3
τ + l

2/3
2τ ) + δ−k + 2(k + p)yl2y + 2l22y + δ+p

(B21)

where δ±p = ±px + p2y. Note the cancellation of the fermi-surface curvature terms l21y,2y in

the “planar graph” δ3bΣ.

We can reduce the integration range to kτ > 0, as the region kτ < 0 is related by

complex conjugation. There are then four different kinematic regimes: i) l1τ > 0, l2τ > 0,

ii) l1τ < −kτ , l2τ > 0, iii) l1τ > 0, l2τ < −kτ , iv) l1τ < −kτ , l2τ < −kτ . The integral over kx
in the regime i) vanishes as all the poles are in the same half-plane. The regimes ii) and iii)

are related by l1 ↔ l2. Thus,

δ3bΣ(pτ = 0, ~p) = −Nλ+λ−
[

− 2

∫ ∞

0

dkτ
2π

∫

d2k

(2π)2

∫ ∞

kτ

dl1τ
2π

∫ ∞

0

dl2τ
2π

∫

dl1ydl2y
(2π)2

D(l1)D(l2)D(l1τ + l2τ , l1y − l2y)
1

− icf
N
k
2/3
τ + δ−k

1
icf
N
((l1 − k)2/3τ + l

2/3
1τ ) + δ−k + 2(k + p)yl1y − δ+p

1

− icf
N
((l2 + k)

2/3
τ + l

2/3
2τ ) + δ−k + 2(k + p)yl2y − δ+p

+

∫ ∞

0

dkτ
2π

∫

d2k

(2π)2

∫ ∞

kτ

dl1τ
2π

∫ ∞

kτ

dl2τ
2π

∫

dl1ydl2y
(2π)2

D(l1)D(l2)D(l1 − l2)
1

− icf
N
k
2/3
τ + δ−k

1
icf
N
((l1 − k)2/3τ + l

2/3
1τ ) + δ−k + 2(k + p)yl1y − δ+p

1
icf
N
((l2 − k)2/3τ + l

2/3
2τ ) + δ−k + 2(k + p)yl2y − δ+p

]

+h.c. (B22)
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δ3cΣ(pτ = 0, ~p) = −Nλ+λ−
[

− 2

∫ ∞

0

dkτ
2π

∫

d2k

(2π)2

∫ ∞

kτ

dl1τ
2π

∫ ∞

0

dl2τ
2π

∫

dl1ydl2y
(2π)2

D(l1)D(l2)D(l1τ + l2τ , l1y − l2y)
1

− icf
N
k
2/3
τ + δ−k

1
icf
N
((l1 − k)2/3τ + l

2/3
1τ ) + δ−k + 2(k + p)yl1y + 2l21y + δ+p

1

− icf
N
((l2 + k)

2/3
τ + l

2/3
2τ ) + δ−k + 2(k + p)yl2y + 2l22y + δ+p

+

∫ ∞

0

dkτ
2π

∫

d2k

(2π)2

∫ ∞

kτ

dl1τ
2π

∫ ∞

kτ

dl2τ
2π

∫

dl1ydl2y
(2π)2

D(l1)D(l2)D(l1 − l2)
1

− icf
N
k
2/3
τ + δ−k

1
icf
N
((l1 − k)2/3τ + l

2/3
1τ ) + δ−k + 2(k + p)yl1y + 2l21y + δ+p

1
icf
N
((l2 − k)2/3τ + l

2/3
2τ ) + δ−k + 2(k + p)yl2y + 2l22y + δ+p

]

+ h.c. (B23)

Integrating over kx and shifting ky → ky − p,

δ3bΣ(pτ = 0, ~p) = −Nλ+λ−
[

2i

∫ ∞

0

dkτ
2π

∫

dky
2π

∫ ∞

kτ

dl1τ
2π

∫ ∞

0

dl2τ
2π

∫

dl1ydl2y
(2π)2

D(l1)D(l2)D(l1τ + l2τ , l1y − l2y)
1

− icf
N
(k

2/3
τ + (l1 − k)2/3τ + l

2/3
1τ )− 2kyl1y + δ+p

1

− icf
N
((l1 − k)2/3τ + l

2/3
1τ + (l2 + k)

2/3
τ + l

2/3
2τ ) + 2ky(l2 − l1)y

+ i

∫ ∞

0

dkτ
2π

∫

dky
2π

∫ ∞

kτ

dl1τ
2π

∫ ∞

kτ

dl2τ
2π

∫

dl1ydl2y
(2π)2

D(l1)D(l2)D(l1 − l2)

1
icf
N
(k

2/3
τ + (l1 − k)2/3τ + l

2/3
1τ ) + 2kyl1y − δ+p

1
icf
N
(k

2/3
τ + (l2 − k)2/3τ + l

2/3
2τ ) + 2kyl2y − δ+p

]

+ h.c.

(B24)
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δ3cΣ(pτ = 0, ~p) = −Nλ+λ−
[

2i

∫ ∞

0

dkτ
2π

∫

dky
2π

∫ ∞

kτ

dl1τ
2π

∫ ∞

0

dl2τ
2π

∫

dl1ydl2y
(2π)2

D(l1)D(l2)D(l1τ + l2τ , l1y − l2y)
1

− icf
N
(k

2/3
τ + (l1 − k)2/3τ + l

2/3
1τ )− 2kyl1y − 2l21y − δ+p

1

− icf
N
((l1 − k)2/3τ + l

2/3
1τ + (l2 + k)

2/3
τ + l

2/3
2τ ) + 2ky(l2 − l1)y + 2(l22y − l21y)

+ i

∫ ∞

0

dkτ
2π

∫

dky
2π

∫ ∞

kτ

dl1τ
2π

∫ ∞

kτ

dl2τ
2π

∫

dl1ydl2y
(2π)2

D(l1)D(l2)D(l1 − l2)

1
icf
N
(k

2/3
τ + (l1 − k)2/3τ + l

2/3
1τ ) + 2kyl1y + 2l21y + δ+p

1
icf
N
(k

2/3
τ + (l2 − k)2/3τ + l

2/3
2τ ) + 2kyl2y + 2l22y + δ+p

]

+h.c. (B25)

The integration regions l1y > 0 and l1y < 0 give the same contribution. So, integrating over

ky,

δ3bΣ(pτ = 0, ~p) = Nλ+λ−

[

2

∫ ∞

0

dkτ
2π

∫ ∞

kτ

dl1τ
2π

∫ ∞

0

dl2τ
2π

∫ ∞

0

dl1y
2π

∫ ∞

l1y

dl2y
2π

D(l1)D(l2)D(l1τ + l2τ , l1y − l2y)
1

− icf
N
(l2y((l1 − k)2/3τ + l

2/3
1τ + k

2/3
τ ) + l1y((l2 + k)

2/3
τ + l

2/3
2τ − k

2/3
τ )) + (l2 − l1)yδ+p

+

∫ ∞

0

dkτ
2π

∫ ∞

kτ

dl1τ
2π

∫ ∞

kτ

dl2τ
2π

∫ ∞

0

dl1y
2π

∫ ∞

0

dl2y
2π

D(l1)D(l2)D(l1τ − l2τ , l1y + l2y)

1

− icf
N
(l2y((l1 − k)2/3τ + l

2/3
1τ + k

2/3
τ ) + l1y((l2 − k)2/3τ + l

2/3
2τ + k

2/3
τ )) + (l1 + l2)yδ+p

]

+ h.c.

(B26)

δ3cΣ(pτ = 0, ~p) = Nλ+λ−

[

2

∫ ∞

0

dkτ
2π

∫ ∞

kτ

dl1τ
2π

∫ ∞

0

dl2τ
2π

∫ ∞

0

dl1y
2π

∫ ∞

l1y

dl2y
2π

D(l1)D(l2)D(l1τ + l2τ , l1y − l2y)
1

− icf
N
(l2y((l1 − k)2/3τ + l

2/3
1τ + k

2/3
τ ) + l1y((l2 + k)

2/3
τ + l

2/3
2τ − k

2/3
τ )) + 2l1yl2y(l2 − l1)y − (l2 − l1)yδ+p

+

∫ ∞

0

dkτ
2π

∫ ∞

kτ

dl1τ
2π

∫ ∞

kτ

dl2τ
2π

∫ ∞

0

dl1y
2π

∫ ∞

0

dl2y
2π

D(l1)D(l2)D(l1τ − l2τ , l1y + l2y)

1

− icf
N
(l2y((l1 − k)2/3τ + l

2/3
1τ + k

2/3
τ ) + l1y((l2 − k)2/3τ + l

2/3
2τ + k

2/3
τ ))− 2l1yl2y(l1 + l2)y − (l1 + l2)yδ+p

]

+ h.c. (B27)

Expanding the self-energy in δ+p and performing a change of variables l1τ = kτx1, l2τ =

40



kτx2, l1y = (cbe
2kτ )

1/3y1, l2y = (cbe
2kτ)

1/3y2,

δ3bΣ+(pτ = 0, ~p) = λ+λ−(J1 + J2)δ
+
p

∫ ∞

0

dkτ
kτ

(B28)

δ3cΣ+(pτ = 0, ~p) = δ3cΣ+(pτ = 0, ~p = 0) + λ+λ−(J3 + J4)δ
+
p

∫ ∞

0

dkτ
kτ

(B29)

where

J1 =
6

π2

∫ ∞

1

dx1

∫ ∞

0

dx2

∫ ∞

0

dy1

∫ ∞

y1

dy2
y1y2(y2 − y1)2

(x1 + y31)(x2 + y32)(x1 + x2 + (y2 − y1)3)

× 1

(y2((x1 − 1)2/3 + x
2/3
1 + 1) + y1((x2 + 1)2/3 + x

2/3
2 − 1))2

(B30)

J2 =
3

π2

∫ ∞

1

dx1

∫ ∞

1

dx2

∫ ∞

0

dy1

∫ ∞

0

dy2
y1y2(y1 + y2)

2

(x1 + y31)(x2 + y32)(|x1 − x2|+ (y1 + y2)3)

× 1

(y2((x1 − 1)2/3 + x
2/3
1 + 1) + y1((x2 − 1)2/3 + x

2/3
2 + 1))2

(B31)

J3 =
6

π2N2

∫ ∞

1

dx1

∫ ∞

0

dx2

∫ ∞

0

dy1

∫ ∞

y1

dy2
y1y2(y2 − y1)2

(x1 + y31)(x2 + y32)(x1 + x2 + (y2 − y1)3)

× 3y21y
2
2(y2 − y1)2 − 1

N2 (y2((x1 − 1)2/3 + x
2/3
1 + 1) + y1((x2 + 1)2/3 + x

2/3
2 − 1))2

(3y21y
2
2(y2 − y1)2 + 1

N2 (y2((x1 − 1)2/3 + x
2/3
1 + 1) + y1((x2 + 1)2/3 + x

2/3
2 − 1))2)2

(B32)

J4 =
3

π2N2

∫ ∞

1

dx1

∫ ∞

1

dx2

∫ ∞

0

dy1

∫ ∞

0

dy2
y1y2(y1 + y2)

2

(x1 + y31)(x2 + y32)(|x1 − x2|+ (y1 + y2)3)

× 3y21y
2
2(y1 + y2)

2 − 1
N2 (y2((x1 − 1)2/3 + x

2/3
1 + 1) + y1((x2 − 1)2/3 + x

2/3
2 + 1))2

(3y21y
2
2(y1 + y2)2 +

1
N2 (y2((x1 − 1)2/3 + x

2/3
1 + 1) + y1((x2 − 1)2/3 + x

2/3
2 + 1))2)2

(B33)

Cutting off the UV divergence in (B28), (B29) at kτ = Λτ ∼ Λ3
y/e

2, we obtain to

logarithmic accuracy,

δ3bΣ+(pτ = 0, ~p) = λ+λ−(J1 + J2)δ
+
p log

Λ3
y

|δ+p |3/2
(B34)

δ3cΣ+(pτ = 0, ~p) = δ3cΣ+(pτ = 0, ~p = 0) + λ+λ−(J3 + J4)δ
+
p log

Λ3
y

|δ+p |3/2
(B35)

which is equivalent to Eqs. (5.9), (5.10) with Jb = 3(J1 + J2), Jc = 3(J3 + J4). Note that J1

and J2 are constants independent of N ,

J1 ≈ 0.01276 (B36)

J2 ≈ 0.02264 (B37)
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On the other hand, the constants J3 and J4 are N dependent. In the large-N limit we can

evaluate these constants analytically to leading logarithmic accuracy by setting N = ∞ in

the integrand.

J3 ≈
2

π2N2

∫ ∞

1

dx1

∫ ∞

0

dx2

∫ ∞

0

dy1

∫ ∞

y1

dy2
1

y1y2(x1 + y31)(x2 + y32)(x1 + x2 + (y2 − y1)3)
(B38)

The above integral diverges logarithmically when y1, y2, x2 → 0. Hence,

J3 ≈
2

π2N2

∫ ∞

1

dx1
x21

∫ 1

0

dx2

∫ 1

0

dy1

∫ 1

y1

dy2
1

y1y2(x2 + y32)
≈ 2

π2N2

∫ 1

0

dy2
y2

log(y−3
2 )

∫ y2

0

dy1
y1

(B39)

Inspecting the original integral (B32), we observe that the logarithmic divergence in (B39)

is cut-off when y1(y2 − y1) ∼ 1
N
. Hence,

J3 ≈
2

π2N2

∫ 1

N−
1
2

dy2
y2

log(y−3
2 )

∫ y2

(Ny2)−1

dy1
y1
≈ 1

4π2N2
log3N (B40)

Similarly,

J4 ≈
1

π2N2

∫ ∞

1

dx1

∫ ∞

1

dx2

∫ ∞

0

dy1

∫ ∞

0

dy2
1

y1y2(x1 + y31)(x2 + y32)(|x1 − x2|+ (y1 + y2)3)

≈ 4

π2N2

∫ ∞

1

dx1
x21

∫ 1

0

dy2
y2

∫ y2

0

dy1
y1

log((y1 + y2)
−3) (B41)

Inspecting Eq. (B33), we see that the logarithmic divergence in (B41) is cut-off when

y1y2 ∼ 1
N
. Writing, y1 = y2z,

J4 ≈ −
12

π2N2

∫ 1

N−
1
2

dy2
y2

∫ 1

(Ny2
2
)−1

dz

z
(log y2 + log(1 + z)) ≈ 1

2π2N2
log3N (B42)

We note that expressions (B40), (B42) do not include subleading polynomial corrections in

logN . We can also calculate the constants J3, J4 numerically for N = 2,

J3 ≈ −0.004491 (B43)

J4 ≈ −0.008158 (B44)

Finally, we compute the insertion of the φ2 operator into the fermion two-point function,

which determines the renormalization of the chemical potential δ away from criticality. The

UV contribution at three loop order comes from the diagrams in Figs. 10 b) c) and can be

obtained by expanding the bosonic propagators in Eqs. (B26), (B27) to linear order in r.
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This yields,

δ3b
∂Σ

∂r
UV
= −N

[

2

∫ ∞

0

dkτ
2π

∫ ∞

kτ

dl1τ
2π

∫ ∞

0

dl2τ
2π

∫ ∞

0

dl1y
2π

∫ ∞

l1y

dl2y
2π

(D(l1) +D(l2) +D(l1τ + l2τ , l1y − l2y))D(l1)D(l2)D(l1τ + l2τ , l1y − l2y)
1

− icf
N
(l2y((l1 − k)2/3τ + l

2/3
1τ + k

2/3
τ ) + l1y((l2 + k)

2/3
τ + l

2/3
2τ − k

2/3
τ ))

+

∫ ∞

0

dkτ
2π

∫ ∞

kτ

dl1τ
2π

∫ ∞

kτ

dl2τ
2π

∫ ∞

0

dl1y
2π

∫ ∞

0

dl2y
2π

(D(l1) +D(l2) +D(l1τ − l2τ , l1y + l2y))D(l1)D(l2)D(l1τ − l2τ , l1y + l2y)

1

− icf
N
(l2y((l1 − k)2/3τ + l

2/3
1τ + k

2/3
τ ) + l1y((l2 − k)2/3τ + l

2/3
2τ + k

2/3
τ ))

]

+ h.c.
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δ3c
∂Σ

∂r
UV
= −N

[

2

∫ ∞

0

dkτ
2π

∫ ∞

kτ

dl1τ
2π

∫ ∞

0

dl2τ
2π

∫ ∞

0

dl1y
2π

∫ ∞

l1y

dl2y
2π

(D(l1) +D(l2) +D(l1τ + l2τ , l1y − l2y))D(l1)D(l2)D(l1τ + l2τ , l1y − l2y)
1

− icf
N
(l2y((l1 − k)2/3τ + l

2/3
1τ + k

2/3
τ ) + l1y((l2 + k)

2/3
τ + l

2/3
2τ − k

2/3
τ )) + 2l1yl2y(l2 − l1)y

+

∫ ∞

0

dkτ
2π

∫ ∞

kτ

dl1τ
2π

∫ ∞

kτ

dl2τ
2π

∫ ∞

0

dl1y
2π

∫ ∞

0

dl2y
2π

(B46)

(D(l1) +D(l2) +D(l1τ − l2τ , l1y + l2y))D(l1)D(l2)D(l1τ − l2τ , l1y + l2y)

1

− icf
N
(l2y((l1 − k)2/3τ + l

2/3
1τ + k

2/3
τ ) + l1y((l2 − k)2/3τ + l

2/3
2τ + k

2/3
τ ))− 2l1yl2y(l1 + l2)y

]

+ h.c. (B47)

We observe that the contribution from the diagram in Fig. 10 b) vanishes, while the diagram

in Fig. 10 c) gives upon switching to dimensionless variables,

δ3
∂Σ

∂r
UV
= Jre

2 log Λy (B48)
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with

Jr = −
36

π2N2

∫ ∞

1

dx1

∫ ∞

0

dx2

∫ ∞

0

dy1

∫ ∞

y1

dy2
y21y

2
2(y2 − y1)2

(x1 + y31)(x2 + y32)(x1 + x2 + (y2 − y1)3)
(

y1
x1 + y31

+
y2

x2 + y32
+

y2 − y1
x1 + x2 + (y2 − y1)3

)

1

3y21y
2
2(y2 − y1)2 + 1

N2 (y2((x1 − 1)2/3 + x
2/3
1 + 1) + y1((x2 + 1)2/3 + x

2/3
2 − 1))2

+
18

π2N2

∫ ∞

1

dx1

∫ ∞

1

dx2

∫ ∞

0

dy1

∫ ∞

0

dy2
y21y

2
2(y1 + y2)

2

(x1 + y31)(x2 + y32)(|x1 − x2|+ (y1 + y2)3)
(

y1
x1 + y31

+
y2

x2 + y32
+

y1 + y2
|x1 − x2|+ (y1 + y2)3

)

1

3y21y
2
2(y1 + y2)2 +

1
N2 (y2((x1 − 1)2/3 + x

2/3
1 + 1) + y1((x2 − 1)2/3 + x

2/3
2 + 1))2

(B49)

Evaluating the above integral, we obtain Eq. (5.18).
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