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1. Introduction

String theory provides microscopic description of the entropy of certain types of black

holes through the counting of D-brane bound states. The predictions of string theory in-

clude not only a confirmation of the leading semi-classical entropy formula of Bekenstein

and Hawking which was first confirmed in [1] (see, e.g. [2,3] for a review and references) but

also all the subleading quantum gravitational corrections which was proposed in [4] (build-

ing on the work of [5,6,7,8,9]). These higher derivative corrections have been confirmed by

explicit microscopic enumeration in a number of examples [10,11,12,13,14,15].

An important feature of extremal black hole solutions in N = 2, 4, 8 supergravity

in four space-time dimensions is that some of the scalar fields (lowest components of the

vector multiplets) acquire fixed values at the horizon. These values are determined by

the magnetic and electric charges (pI , qI) of the black hole and does not depend on the

asymptotic values of the fields at infinity. The so-called attractor mechanism, which is
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responsible for such fixed point behavior of the solutions, was first studied in [16,17,18,19]

in the context of the BPS black holes in the leading semiclassical approximation. Later,

the attractor equations describing these fixed points for BPS black hole solutions were gen-

eralized to incorporate the higher derivative corrections to N = 2 supergravity Lagrangian

(see [20] for a review).

Using these supergravity results OSV [4] conjectured a simple relation of the form

ZBH = |Ztop|2 between the (indexed) entropy of a four-dimensional BPS black hole in

a Type II string Calabi-Yau compactification, and topological string partition function,

evaluated at the attractor point on the moduli space. Viewed as an asymptotic expansion

in the limit of large black hole charges, this relation predicts all order perturbative con-

tributions to the black hole entropy due to the F -term corrections in the effective N = 2

supergravity Lagrangian. Over the last few years, this led to a significant progress in un-

derstanding the spectrum of D-brane BPS states on compact and non-compact Calabi-Yau

manifolds, and gave new insights on the topological strings and quantum cosmology. For

a recent review and references on this subject, see [21].

Define a mixed partition function for a black hole with magnetic charge pI and electric

potential φI by

ZBH(pI , φI) =
∑

qI

Ω(pI , qI) e
−φIqI , (1.1)

where Ω(pI , qI) represent supersymmetric black hole degeneracies for a given set of

charges (pI , qI). Then the OSV conjecture [4] reads

Ω(pI , qI) =

∫
dφIeqIφI ∣∣Ztop(pI , φI)

∣∣2. (1.2)

As was already mentioned in [4], expression (1.2) needs some additional refinement. In

particular, rigorous definition of (1.2) requires taking care of the background dependence of

the topological string partition function Ztop, governed by the holomorphic anomaly [22].

Also, the integration measure, as well as the choice of a suitable integration contour needs

to be specified. Some of these issues were investigated in [12,14,15,23,24], see [25] for a

recent discussion of these and other subtleties.

In this paper we will address an even more fundamental ambiguity in (1.2) that is

present already at the semiclassical level (without considering higher genus topological

string corrections). The problem is that although the right hand side of (1.2) can be

defined for any set of charges (pI , qI), it is well known [26] that not for all such (pI , qI) a
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supersymmetric spherically symmetric black hole solution exists. Typically, there is a real

codimension one ‘discriminant’ hypersurface D(pI , qI) = 0 in the space of charges, such

that supersymmetric black hole solutions exist only when D(pI , qI) < 0. Therefore, in this

case Ω(pI , qI) on the left hand side of (1.2), representing a suitable index of BPS states of

charge (pI , qI), is zero.

This phenomenon can be illustrated by several examples. Consider compactification

of Type IIB string theory on the diagonal T 6 = Στ × Στ × Στ [26,27], where Στ is the

elliptic curve with modular parameter τ , with D3-brane wrapping a real 3-cycle on T 6.

This can be viewed as part of the Calabi-Yau moduli when we orbifold T 6. In this paper

when we refer to the diagonal T 6 we have in mind the corresponding locus in the moduli of

an associated Calabi-Yau 3-fold with N = 2 supersymmetry where part of the homology

of the CY 3-cycles is identified with the charges (pI , qI). Let the charge configuration

be invariant under the permutation symmetry of the three elliptic curves Στ . Note also

that the diagonal T 6 model is a good approximation to the generic behavior of Type

IIB compactification on a one-modulus Calabi-Yau threefold in the large radius limit.

If we label homology of 3-cycles on T 6 according to the mirror IIA D-brane charges as

(u, q, p, v) = (D0, D2, D4, D6), the leading contribution to the corresponding black hole

degeneracy takes the form

Ωsusy(p, q, u, v) ≈ exp
(
π
√
−D(p, q, u, v)

)
, (1.3)

where the discriminant is D(p, q, u, v) = −
(
3p2q2 +4p3u+4q3v+6pquv−u2v2). It is clear

that for some sets of charges this quartic polynomial can become positive (for example,

it is always the case for D0 − D6 system, where D(0, 0, u, v) = u2v2), and (1.3) breaks

down. Similar situations occurs in N = 2 truncation of the heterotic string on T 6, the

so-called STU model, where D becomes Cayley’s hyperdeterminant [28] that can also

be either positive or negative. Another example of this phenomenon arises in Type IIB

compactification on K3 × T 2. This leads to N = 4 supergravity in four dimensions, and

corresponding expression for the degeneracy [19,29,30]

Ωsusy(p
I , qI) ≈ exp

(
π
√

(P · P )(Q ·Q) − (P ·Q)2
)
. (1.4)

breaks down when (P ·Q)2 > (P · P )(Q ·Q).

Thus, the OSV formula (1.2) needs to be modified even at the semiclassical level.

One remedy one may think is to sum in (1.1) only over the charges that support BPS
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states: ZBH(pI , φI) =
∑

qI :D(pI ,qI)≤0

Ωsusy(p
I , qI) e

−φIqI . This, however, will not work be-

cause the inverse transform of the topological string partition function would have to

automatically give zero when (pI , qI) are non-supersymmetric. This however turns out

not to be the case, and one gets the naive analytic continuation of the BPS case (lead-

ing to imaginary entropy!). Instead, we can use an observation that in many examples

studied recently in the literature [31,32,33,34,35,36] there exists a non-supersymmetric

extremal black hole solution for those sets of charges that do not support a BPS black

hole: D(pI , qI) > 0. The attractor behavior of a non-supersymmetric extremal black

hole solutions [37,38,39,40,41,42,43,44,45] is similar to the BPS black hole case, since it

is a consequence of extremality rather than supersymmetry [46]. Moreover, in the sim-

plest examples, the macroscopic entropy of a non-supersymmteric extremal black holes is

proportional to the square root of the discriminant: Sn−susy
BH ≈ π

√
D, so that a general

expression for the extremal black holes degeneracy takes the form

Ωextrm(pI , qI) ≈ exp
(
π
√∣∣D(pI , qI)

∣∣
)
, (1.5)

which is valid both for supersymmetric D ≤ 0 and non-supersymmetric D > 0 solutions.

Therefore, it is natural to look for an extension of the OSV formula (1.2) that can be

applied simultaneously for both BPS and non-BPS extremal black holes and obtain correc-

tions to their entropy due to higher derivative terms in the Lagrangian as a perturbative

series in the inverse charge. Recently, several steps in this direction were taken from the

supergravity side. A general method (the entropy function formalism) for computing the

macroscopic entropy of extremal black holes based on N = 2 supergravity action in the

presence of higher-derivative interactions was developed in [47,48], and applied for studying

corrected attractor equations and corresponding entropy formula for non-supersymmetric

black holes in [49,50,51,52,53,54,55,56,57]. A five-dimensional viewpoint on higher deriva-

tive corrections to attractor equations and entropy, based on the c-function extremization,

was developed in [58,59]. Black hole partition function for non-supersymmetric extremal

black holes was discussed in [51,60].

In this paper we propose a generalization of (1.2) motivated by the topological string

considerations as well as the work [50]: It was observed in [50] that the higher order cor-

rections to the non-supersymmetric black hole entropy needs higher derivative corrections

in the N = 2 theory which are not purely antiself-dual in the 4d sense, because unlike

the BPS case, the radii of AdS2 and S2 factors of the near horizon geometry are not the
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same. Thus, more information than F -terms computed by topological strings, which only

capture antiself-dual geometries, is needed. Indeed if one considers only the antiself-dual

higher derivative corrections to the 4d action, there is already a contradiction with the

microscopic count of the non-supersymmetric black hole at one loop [50]. Instead it is

natural to look for an extension of topological string which incorporates non-antiself-dual

corrections as well. Such a generalization of topological strings, in the context of geomet-

rically engineered gauge theories have been proposed by Nekrasov [61], where the string

coupling constant is replaced by a pair of parameters (ǫ1, ǫ2) which roughly speaking cap-

ture the strength of the graviphoton field strength in the 12 and 34 directions of the 4d

non-compact spacetime respectively. In the limit when ǫ1 = −ǫ2 = gtop one recovers back

the ordinary topological string expansion. However when ǫ1 6= −ǫ2 this refinement of the

topological string partition function computes additional terms in the 4d effective theory,

as appears to be needed for a correct accounting of the entropy for non-supersymmetric

black holes. This includes a term proportional to R2 which as was found in [54] is needed

to get the correct one loop correction which is captured by the refined topological string

partition function, but not the standard one.

Motivated by this observation and identifying (ǫ1, ǫ2) with physical fluxes in the non-

supersymmetric black hole geometry, and motivated by the computations in [50] we propose

a conjecture for the partition function of an OSV-like ensemble which includes both BPS

and non-supersymmetric extremal black holes. We conjecture

Ωextrm(pI , qI) =

∫
dφIeqIφI

∑

susy,n−susy

∣∣∣e iπ
2 G(pI ,φI)

∣∣∣
2

, (1.6)

where G(pI , φI) is obtained from the G-function

G =
1

2

(
P I

ǫ −XI
)(
P J

ǫ −XJ
)
F IJ (X, ǫ) +

(
P I

ǫ −XI
)
FI(X, ǫ) + F (X, ǫ)+

+
1

2
(ǫ1 + ǫ2)X

IFI(X, ǫ) −
1

2
(ǫ1 + ǫ2)

(
ǫ1∂ǫ1 − ǫ2∂ǫ2

)
F (X, ǫ) + O(ǫ1 + ǫ2)

2,

P I
ǫ = −ǫ2pI +

i

π
ǫ1φ

I ,

(1.7)

by extremizing ImG with respect to the parameters ǫ1,2 and (extended) Calabi-Yau mod-

uli XI , and then substituting corresponding solution ǫ1,2 = ǫ1,2(p, φ), XI = XI(p, φ)

back into G (1.7). The sum in (1.6) is over all such solutions to the extremum equa-

tions ∂ǫ1,2
ImG = ∂IImG = 0, one of which ends up being the supersymmetric one given

by XI(p, φ) = pI + i
πφ

I , reproducing the OSV conjecture for this case. The function

5



F (X, ǫ) ≡ F (XI , ǫ1, ǫ2) in (1.7) denotes Nekrasov’s refinement of the topological string

free energy1. Depending on the choice of the charges (pI , qI), integration over φI near

the saddle point picks out supersymmetric or non-supersymmetric black hole solution. In

the supersymmetric case it reduces to the OSV formula. In the non-supersymmetric case

the corrections have the general structure suggested by [50] (however the exact match

cannot be made because [50] only consider higher derivative terms captured by standard

topological string corrections).

The above conjecture is the minimal extension of OSV needed to incorporate non-

supersymmetric corrections. It is conceivable that there are further O(ǫ1 +ǫ2)
2 corrections

to this conjecture. Such corrections will not ruin the fact that supersymmetric saddle point

still reproduces the OSV conjecture.

The rest of the paper is organized as follows: In section 2 we review the attractor

equations and entropy formula for supersymmetric and non-supersymmetric extremal black

holes of d = 4, N = 2 supergravity arising in the leading semiclassical approximation. In

section 3 we discuss an alternative formulation of the attractor equations which helps us

to treat supersymmetric and non-supersymmetric black holes in a unified way, suitable

for using in an OSV-like formula. In section 4 we formulate the inverse problem that

allows us to find magnetic and electric charges of the extremal black hole in terms of

the values of the moduli in vector multiplets fixed at the horizon. We give a solution

to this problem for a general one-modulus Calabi-Yau compactification. In section 5 we

discuss semiclassical approximation to the generalized OSV formula for extremal black

holes. In section 6 we review the results [50,51,57] for a corrected black hole entropy in

N = 2 supergravity with higher-derivative couplings, obtained using the entropy function

formalizm. In section 7 we observe that matching with the supergravity computations

requires replacing the string coupling constant with two variables on the topological string

side, and identify these variables as an equivariant parameters in Nekrasov’s extension of

the topological string. This allows us to formulate a generalization of the OSV entropy

formula which is conjectured to be valid asymptotically in the limit of large charges both

for the supersymmetric and non-supersymmetric extremal black holes. We conclude in

section 8 with a discussion of our results and directions for future research. Appendix A

contains explicit solutions of the inverse and direct problems relating the charges and

corresponding attractor complex structures for the diagonal T 6 model.

1 Supersymmetric solution corresponds to ǫ1 = −ǫ2 = 1, in this case we use the same conven-

tions as in [4], and find Gsusy(pI , φI) ≡ F (pI + i
π
φI , 256). Nekrasov’s extension of the topological

string is discussed in section 7.1 below.
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2. The Black Hole Potential and Attractors

Let us review the attractor equations for extremal black holes in d = 4, N = 2 super-

gravity, arising in the context of type IIB compactification on a Calabi-Yau manifold M .

We start by choosing a symplectic basis of 3-cycles (AI , BI)I=0,...h2,1 on M , such that

XI =

∫

AI

Ω, FI = ∂IF =

∫

BI

Ω, (2.1)

where Ω is a holomorphic 3-form and F is the prepotential of the Calabi-Yau manifold.

We also choose a basis of 3-forms (αI , β
I) ∈ H3(M,ZZ) dual to (AI , BI). The Kähler

potential is given by2

K(X,X) = − log
(
− i

∫

M

Ω ∧ Ω
)

= − log i
(
XIFI −XIF I

)
. (2.2)

It defines the Kähler metric gij = ∂i∂jK. Let us introduce the superpotential

W =

∫

M

Ω ∧H, (2.3)

where

H = pIαI + qIβ
I (2.4)

is the RR 3-form, parameterized by a set of (integral) magnetic and electric charges (pI , qI).

The central charge is defined by

Z = e
K
2 W. (2.5)

Attractor points are the solutions minimizing the so-called black hole potential [18,19,46,62]

VBH = |Z|2 + |DZ|2. (2.6)

Here D is a fully covariant derivative3, and |DZ|2 = gijDiZDjZ. Notice that for a fixed

complex structure on Calabi-Yau the central charge (2.5) is linear in the charges (pI , qI),

and therefore the black hole potential (2.6) is quadratic in the charges.

2 We use the Einstein convention and always sum over repeated indices in the paper.
3 On the objects of Kähler weight w it acts as D = ∂ + w∂K + Γ, where Γ is the Levi-Civita

connection of the Kähler metric. For example, DZ = ∂Z + 1
2
Z∂K.
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We are interested in describing the extremum points of the potential (2.6). These

points correspond to the solutions of the following equations [46]

∂iVBH = 2ZDiZ + gkj
(
DiDkZ

)
DjZ = 0,

∂iVBH = 2ZDiZ + gjk
(
DiDkZ

)
DjZ = 0.

(2.7)

There are two types of the solutions, which can be identified as follows. From the second

equation in (2.7) we find, assuming Z 6= 0

DjZ = −
glk
(
DjDkZ

)

2Z
DlZ. (2.8)

By substituting this into the first equation in (2.7), we obtain4

M j
i DjZ = 0, (2.9)

where

M j
i = 4|Z|2δ j

i −
(
DiDkZ

)
gkm

(
DmDnZ

)
gnj (2.10)

Now it is clear that there are two types of solutions to (2.9):

susy : detM 6= 0, DiZ = 0

non − susy : detM = 0, DiZ = vi,
(2.11)

where vi are the null-vectors: M j
i vj = 0 of the matrix (2.10).

Solutions to the extremum equations (2.7) minimize the black hole potential (2.6), if

the Hessian

Hess(VBH) =

(
∂i∂jVBH ∂i∂jVBH

∂i∂jVBH ∂i∂jVBH

)
, (2.12)

computed at the extremal point, is positive definite: Hess(VBH)
∣∣
∂VBH=0

> 0. We will refer

to such solutions as attractor points. According to the classification (2.11), these attractors

can be supersymmetric or non-supersymmetric. It is easy to show that all supersymmetric

4 Similar expression was derived in [40], see eq. (3.5). In fact, it is straightforward to see that

up to a term which annihilates DjZ due to (2.7), the matrix M j
i is the square M ∼ MM of the

matrix Mij used in [40]. Also, note that the matrix M j
i can be used to classify the attractor

solutions without assuming Z 6= 0 (see, e.g. [35] for explicit examples of the non-supersymmetric

attractor solutions with Z = 0). We thank S. Ferrara for this clarification.
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solutions (2.11) minimize the black hole potential. This is, however, not true in general

for the non-supersymmetric solutions, see e.g. [31,36,40] for some examples.

The black hole potential (2.6) is related to the Bekenstein-Hawking entropy of the

corresponding black hole in a simple way. In the classical geometry approximation (at the

string tree level) the entropy is just π times the value of the potential (2.6) at the attractor

point

SBH = πVBH

∣∣
∂VBH=0

. (2.13)

After appropriate modification of the black hole potential this formula gives corrections to

the classical Bekenstein-Hawking entropy in the presence of higher derivative terms. This

can be effectively realized using the entropy function formalism [47,48].

3. An Alternative Form of the Attractor Equations

In this section we discuss an alternative form of the attractor equations describing

extremal black holes in d = 4,N = 2 supergravity coupled to nV vector multiplets in

the absence of higher derivative terms. We describe two versions of attractor equations,

one involving inhomogeneous and another involving homogeneous coordinates on Calabi-

Yau moduli space. A natural generalization of these equations in the presence of higher

derivative corrections will be introduced later in section 7.

It is convenient to start with the following representation of the black hole poten-

tial [46]

VBH = −1

2

(
qI −NIJp

J
)( 1

ImN
)IJ(

qJ −N JKpK
)
, (3.1)

where

NIJ = F IJ + 2i
Im
(
FIK

)
XKIm

(
FJL

)
XL

Im
(
FMN

)
XMXN

, FIJ =
∂2F

∂XI∂XJ
. (3.2)

Notice that NIJ is (nV +1)×(nV +1) symmetric complex matrix, and ImNIJ is a negative

definite matrix, as opposed to ImFIJ , which is of signature (1, nV ). This is clear from the

following identity [62]

−1

2

( 1

ImN
)IJ

= eK
(
XIXJ + gijDiX

JDjX
J
)
. (3.3)

One can use (3.3) and the defining relation [62]

FI = NIJX
J (3.4)
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to bring (3.1) into the form (2.6). Indeed, since

(qI −NJIp
J )XI = qIX

I − pIFI = W, (3.5)

the black hole potential (3.1) takes the form

VBH = eK
(
WW + gijDiWDjW

)
, (3.6)

which is equivalent to (2.6).

3.1. Attractor equations and inhomogeneous variables

Let us introduce an auxiliary field P I that later will be identified with the complexified

magnetic charge pI , and consider a modified black hole potential

VBH =
1

2
P IIm(NIJ )P

J − i

2
P I(qI −NIJp

J ) +
i

2
P I(qI −N JKp

K), (3.7)

where P I serves as a Lagrange multiplier. We want to describe the extrema of VBH.

Variation of (3.7) with respect to P I gives

P I = − i

ImNIJ

(
qJ −N JKp

K
)
. (3.8)

By plugging this expression form P I back to (3.7) we obtain the original black hole po-

tential (3.1). It is straightforward to solve equations (3.8) in terms of the charges:

pI = Re
(
P I
)

qI = Re
(
NIJP

J
)

(3.9)

Variation of (3.7) with respect to the Calabi-Yau moduli ∂iVBH = 0 gives

P IP J∂iImNIJ + i
(
P I∂iNIJ − PJ∂iN IJ

)
pJ = 0. (3.10)

After using the solution (3.9), we obtain

P I∂iNIJP
J − P I∂iN IJP

J = 0. (3.11)

This set of the extremum equations can also be written in a compact form as follows

∂iIm(P INIJP
J ) = 0.

(3.12)

10



For a fixed set of charges (pI , qI), solutions to the combined system of equations (3.9) and

(3.12) which minimize the modified potential (3.7) correspond to the extremal black holes.

Among these, there is always a special solution of the form

P I = CXI , (3.13)

where C is the complex constant. Indeed, in this case extremum equations (3.12) read

C2XIXJ∂iNIJ − C2XIXJ∂iN IJ = 0. (3.14)

The second term in (3.14) vanishes since XI∂iN IJ = ∂i

(
N IJX

J
)

= ∂iF I = 0 according

to (3.4). The first term in (3.14) vanishes because of the special geometry relation

0 =

∫

M

Ω ∧ ∂iΩ = XI∂iFI − FI∂iX
I = XIXJ∂iNIJ . (3.15)

The solution (3.13) describes supersymmetric attractors [16,17,18], since (3.9) gives in this

case the well-known equations {
pI = Re

(
CXI

)

qI = Re
(
CFI

)
.

(3.16)

3.2. Attractor equations and homogeneous variables

Consider the following potential:

VBH = qIImP
I + Im(FIJ )Re

(
(P I −XI)(P J −XJ)

)
− 1

2
Im
(
FIJP

IP J). (3.17)

We will keep P I fixed (in particular, ReP I = pI) and vary XI . In order to get rid of the

scaling of XI let us introduce a new variable T by

XI = X̂IT, (3.18)

and integrate out T as follows:

eV̂BH ≈
∫
dTeVBH . (3.19)

The potential (3.17) is quadratic in T

VBH = qI ImP
I + Im(FIJ )Re

(
P IP J + X̂IX̂JT 2 − 2X̂IP JT

)
− 1

2
Im
(
FIJP

IP J), (3.20)

11



since FIJ has zero weight under the rescaling (3.18). Variation with respect to T gives:

T =
X̂IIm(FIJ )P J

X̂IIm(FIJ )X̂J
(3.21)

Therefore, the semiclassical approximation to (3.19) gives

V̂BH = qIImP
I +

i

4
P INIJP

J − i

4
P IN IJP

J , (3.22)

where

NIJ = F IJ + 2i
Im(FIK)X̂KIm(FJL)X̂L

X̂KIm(FKL)X̂L
. (3.23)

The expression (3.22) should be compared to the modified black hole potential (3.7), which

reduces to (3.22) if we use ReP I = pI .

The choice of the potential (3.17) can be motivated by looking at the N = 2 su-

pergravity action [63]. At tree level, the coupling of the vector fields can be described

as

8πStree
vec =

∫
d4x
( i

4
FIJF−I

µν F−Jµν +
1

4
Im(FIJ )XJF−I

µν T
−µν−

− 1

32
Im(FIJ )XIXJT−

µνT
−µν + h.c.

)
.

(3.24)

Then VBH − qI ImP
I in (3.20) can be interpreted as a zero-mode reduction of (3.24), with

the following identification:
F−I

µν → iP I

XI → X̂I

T−
µν → 4iT

∫
d4x→ 1.

(3.25)

Let us now discuss the attractor equations that describe the minima of the modified

black hole potential (3.17). We can derive them in two equivalent ways. First, we can vary

(3.22) with respect to the Calabi-Yau moduli, which gives (3.12). Or, second, we can vary

the potential (3.17) with respect to the homogeneous coordinates XI before we integrate

out the overall scale T . This gives ∂IVBH = 0 and we obtain the following attractor

equations:

− i

2
CIJKRe

(
(P J −XJ)(PK −XK)

)
− Im(FIK)

(
PK −XK

)
+
i

4
CIJKP

JPK = 0, (3.26)

12



where

CIJK = ∂IFJK = ∂I∂J∂KF. (3.27)

Using the identity

CIJKX
K = 0, (3.28)

which follows from the homogeneity relation XIFI = 2F , we can write (3.26) as

CIJK

(
P J −XJ

)(
PK −XK

)
= 4iIm(FIJ )

(
P J −XJ

)

(3.29)

It is clear that XI = P I is the solution of (3.26). If we identify T → C, XI → X̂I , we

obtain P I = CX̂I , which is the supersymmetric solution (3.13),(3.16). Moreover, if we

contract (3.29) with XI and use (3.28), we get

Im(FIJ )XI
(
P J −XJ

)
= 0. (3.30)

In the next section will use this relation to find all other solutions P I(X) of the attractor

equations (3.29) in the one-modulus Calabi-Yau case.

4. The Inverse Problem

For a given set of charges (pI , qI) solutions to the system (2.7) define the complex

structure on M . However, since these equations are highly non-linear, it is hard to write

down solutions explicitly for a general Calabi-Yau manifold. On the other hand, since the

black hole potential (2.6) is quadratic in charges5 (pI , qI), we can try to solve the inverse

problem: For a given point ti on the Calabi-Yau moduli space, find corresponding set of

the charges (pI , qI) that satisfy (2.7). Similar techniques were used in [64] to solve the

inverse problem for metastable non-supersymmetric backgrounds in the context of flux

compactifications.

5 This is clear from looking at the alternative representation (3.1) of the black hole potential.
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4.1. Inverse problem and inhomogeneous variables

Strictly speaking, the physical charges (pI , qI) are quantized, but in semiclassical

approximation in the limit of large charges we can ignore this integrality problem and treat

the charges as continuous coordinates. Another ambiguity in defining the inverse problem

is related to the fact that all sets of charges (pI , qI) connected by an Sp(2nV + 2, ZZ)

transformations give the same point on the moduli space, since the black hole potential

(2.6) and hence the extremum equations (2.7) are symplectically invariant. Therefore, we

need to choose some canonical symplectic basis in H3(M,ZZ) and keep it fixed. However,

even including that, the inverse problem is not well-defined, since the extremization of

(2.6) gives only 2nV real equations (2.7) for 2nV + 2 real variables (pI , qI). In order to

fix this ambiguity, we suggest to look only at the critical points where the superpotential

(2.3) takes some particular value:

W = ω, (4.1)

where ω is a new complex parameter. This can be viewed as a convenient gauge fixing.

Therefore, we are interested in solving the system of equations

∂iVBH = ∂iVBH = 0, W = ω. (4.2)

at some particular point ti on the Calabi-Yau moduli space. Then solution of this inverse

problem gives a (multivalued) map: (ti, ω) → (pI , qI).

Since
∫

M
Ω ∧H = qIX

I − pIFI , the equation (4.1) can be written as

XI
(
qI −NIJp

J
)

= ω. (4.3)

If we then use (3.9), this gives XIIm(NIJ )PJ = iω. Therefore, the solution of the inverse

problem is given by the following system of equations:

pI = Re
(
P I
)

∂iIm(P INIJP
J ) = 0

qI = Re
(
NIJP

J
)

XIIm
(
NIJ

)
PJ = iω

(4.4)

In other words, fixing Calabi-Yau moduli and the gauge (4.1) allows one to solve for P I

from the two equations on the right of (4.4). Then the charges are given by the two

equations on the left of (4.4).

Among the solutions to (4.4), there always is a supersymmetric solution (3.13), that

can be written as

P I = 2ieKωXI , (4.5)

14



where we used K = − log
(
− 2X · ImN ·X

)
to fix the constant C as

C = 2iωeK = 2i
(
qIX

I − pIF I

)
eK = 2iZe

K
2 . (4.6)

An example of the explicit solution of the inverse problem in the diagonal T 6 model

is presented in Appendix A.1

4.2. Inverse problem and homogeneous variables: one-modulus Calabi-Yau case

We can think of the homogeneous variables XI as parameterizing extended space M̃
of the complex structures on a Calabi-Yau threefold M . This space can also be viewed as a

total space M̃ of the line bundle L → M of the holomorphic 3-forms H3,0(M,C) over the

Calabi-Yau moduli space (to be precise, the Teichmüller space) M. Let us comment on the

dimension of the space of solutions to the system (3.29). For a fixed extended Calabi-Yau

moduli, this is a set of nV +1 complex quadratic equations for nV +1 complex variables P I .

Therefore, this system can have at most 2nV +1 solutions. One of them describes super-

symmetric black hole and thus there are at most 2nV +1 −1 non-supersymmetric solutions.

Let us discuss the inverse problem for a one-modulus Calabi-Yau case, when

F = (X0)2f(τ), τ =
X1

X0
. (4.7)

The homogeneity relation gives F0 = 2X0f − X1f ′, where f ′ ≡ ∂τf , and we obtain the

following matrix of second derivatives

FIJ =

(
2f − 2τf ′ + τ2f ′′ f ′ − τf ′′

f ′ − τf ′′ f ′′

)
. (4.8)

an the matrix of third derivatives

C0IJ = −τC1IJ =
1

X0

(
−τ3f ′′′ τ2f ′′′

τ2f ′′′ −τf ′′′

)
(4.9)

To simplify expressions below, let us introduce the notation

yI = P I −XI . (4.10)

Then the attractor equations (3.26) read

{
C0JKy

JyK = 4iIm(F0J)yJ

C1JKy
JyK = 4iIm(F1J)yJ .

(4.11)
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Using the relation (4.9), we find from (4.11)

Im(F0I)y
I = −τ Im(F1I)y

I , (4.12)

which is equivalent to (3.30). To shorten the notations, let us define

XI ≡ XJ ImFJI . (4.13)

For example, X0 ≡ X0ImF00 +X1ImF10. Then we find from (4.12)

y1 = −X0

X1
y0. (4.14)

If we plug this back into (4.11), we obtain

(y0)2 = Yy0, (4.15)

where

Y = −4iX1

(
X0
)4

det‖ImFIJ‖
f ′′′
(
XIXI

)2 (4.16)

For future reference, let us write down an explicit expression for the ingredients enter-

ing (4.16), in terms of the holomorphic function f defining the prepotential (4.7):

X1 = X0(Imf ′ − Im(τ)f ′′)

XIXI = 2(X0)2
(
Imf − Im(τ)f ′ − i(Imτ)2f ′′

)

det‖ImFIJ‖ = 2Im(f)Im(f ′′) − (Imf ′)2 + 2Im(τ)Im(f ′f ′′) − (Imτ)2|f ′′|2.
(4.17)

In order to solve (4.15), we take the square of the complex conjugate equation and then

use (4.15). This gives

(y0)4 = Y2Yy0. (4.18)

Therefore, in terms of the original variables (4.10) we find the following four solutions:

{
P 0

(0) = X0

P 1
(0) = X1,

(4.19)

and 



P 0
(k) = X0 +

(
Y2Y

)1/3
e2πik/3

P 1
(k) = X1 − X0

X1

(
Y2Y

)1/3
e2πik/3, k = 1, 2, 3.

(4.20)
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where the first solution corresponds to a supersymmetric black hole and the other three

are non-supersymmetric. Corresponding black hole charges are given by

{
pI = ReP I

qI = Re
(
NIJP

J
)
.

(4.21)

5. Semiclassical Entropy in the OSV Ensamble

In this section we develop a semiclassical version of OSV formalism which applies

to both supersymmetric and non-supersymmetric black holes. We then illustrate it using

D0−D4 system in the diagonal T 6 model as an example. This will serve as a preparation for

the discussions in section 6 and the conjecture in section 7 taking into account perturbative

corrections to the extremal black hole entropy.

We begin by recalling some basic ingredients of the OSV formalism. The formula [4]

ZBH(pI , φI) =
∣∣∣eFtop(pI+ i

π
φI)
∣∣∣
2

. (5.1)

describes a relation between the mixed partition function of the supersymmetric (BPS)

black hole and topological string free energy. Here Ftop denotes the topological string

free energy. It is well known [22] that the higher genus contributions to Ftop depend

non-holomorphically on the background complex structure. This dependence, originally

described in [22] as the holomorphic anomaly in the topological string amplitudes coming

from the boundary of the moduli space, was interpreted in [65] as a dependence of the wave-

function Ψtop = eFtop on the choice of the polarization. This viewpoint on the topological

string partition function as a wave-function was further studied in [23,66,67].

As noted in [4], the formula (1.1) can be inverted, and resulting expression

Ω(pI , qI) =

∫
dχIe−iπχIqI Ψ∗

top

(
pI − χI

)
Ψtop

(
pI + χI

)
. (5.2)

can be interpreted as the Wigner function6 associated to the topological string wave func-

tion. Here Ψtop(pI) = 〈pI |Ψtop〉 represents the topological string wave function in real

polarization (see [69] for a comprehensive review and references), and the chemical poten-

tials are restored after deforming the integration contour as φI = −iχI .

6 Let us recall that in quantum mechanics the Wigner function defines the quasi-probablity

measure f(x,p) = 1
2π

∫
dye−iypψ∗(x − h̄

2
y)ψ(x + h̄

2
y) on the phase space, see e.g. [68]. Here the

canonical commutation relation is [p̂, x̂] = −ih̄. In the topological string setup h̄ = 2
π
.
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5.1. Black hole potential and OSV transformation

Let us rewrite modified black hole potential (3.17) in the form

V
(0)
BH = qIImP

I +
( i

4
(P I −XI)(P J −XJ)F

(0)

IJ +
i

2
(P I −XI)F

(0)
I +

i

2
F (0) + c.c.

)
.

(5.3)

We put the superscript (0) to stress that the prepotential F (0) corresponds to a genus zero

part of the topological string free energy. As in the OSV setup [4], we can parameterize the

Lagrange multiplier P I (which can also be viewed as a complexified magnetic charge) as

P I = pI +
i

π
φI , (5.4)

so that the first of the attractor equations (3.9) is automatically satisfied. At the next

step, we rewrite the semiclassical entropy S
(0)
BH = πV

(0)
BH as

S
(0)
BH = qIφ

I − πImG(0), (5.5)

where we introduced a function G(0) defined by

G(0) =
1

2
(P I −XI)(P J −XJ)F

(0)

IJ + (P I −XI)F
(0)
I + F (0). (5.6)

In order to compute the entropy in (5.5) we should find the values of φI and XI that

extremize the black hole potential (5.3). Extremization with respect to the (extended)

Calabi-Yau moduli ∂IV
(0)
BH = 0 gives the equations (3.29). Let us use the index s to label

all solutions to these equations, XI
s = XI

s (P ). There are two types of these solutions,

supersymmetric (s = susy) and non-supersymmetric (s = n − susy) ones. In particular,

the supersymmetric solution is given by XI
susy(P ) = P I . By substituting these solutions

in (5.6) we obtain the functions G(0)
s (P I) = G(0)

s (pI , φI). In the supersymmetric case

G(0)
susy(P I) = F (0)(pI + i

πφ
I). Let us define a mixed partition functions corresponding to

each of the solutions XI
s = XI

s (P ) by

Z(0)
s (pI , φI) = ei π

2 G(0)
s (pI ,φI). (5.7)

For example, the supersymmetric mixed partition function

Z(0)
susy(p

I , φI) = ei π
2 F (0)(pI+ i

π
φI) (5.8)

describes the leading contribution to (5.1).
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For a fixed charge vector (pI , qI) the extremal black hole degeneracy can be written

symbolically as Ωextrm = Ωsusy+Ωn−susy. Therefore, the leading semiclassical contribution

to Ωextrm is given by an OSV type integral

Ω
(0)
extrm(pI , qI) =

∫
dφIeqIφI

∑

s

∣∣Z(0)
s (pI , φI)

∣∣2, (5.9)

where the sum is over all solutions to the extremum equations (3.29). We will discuss

perturbative corrections to this formula later in section 7, but before that let us comment

on the possible wave function interpretation of this expression.

Define

Ψ(X,P ) = exp
iπ

2

(1

2
(P I −XI)(P J −XJ)F

(0)

IJ + (P I −XI)F
(0)
I + F (0)

)
. (5.10)

This is essentially the off-shell version of the partition function (5.7), since we have not

substituted the extremum solution XI
s = XI

s (P ) into (5.10) yet. This can be achieved by

integrating out the fields XI in the semiclassical approximation

∑

s

∣∣Z(0)
s (pI , φI)

∣∣2 ≈
∫
dXIdXI

√
det‖ImFIJ‖Ψ(X,P )Ψ∗(X,P ). (5.11)

The function Ψ(X,P ) given in (5.10) is holomorphic in P I and non-holomorphic in XI .

It turns out that (up to some numerical factors due to a difference in conventions) it

coincides exactly with the DVV ‘conformal block’ [66] appearing in study of the five-

brane partition function! In particular, as was shown in [66], it satisfies the holomorphic

anomaly equation [22]. Using results of [69], it can be identified as the intertwining function

Ψ(X,P ) =(X,X)〈XI |P I〉 between the coherent state |P I〉 in the real polarization and the

coherent state |XI〉(X,X) in the holomorphic polarization appearing in quantization of

H3(M,C). The integral in (5.11) then can naturally be interpreted as averaging over the

wave function polarizations, thus effectively removing the background dependence. We

should stress, however, that only semiclassical approximation to this integral is needed

for (5.9). This would be interesting to develop further, especially in connection with the

topological M-theory [70,71] interpretation of the black hole entropy counting.

We now turn to a simple example of the diagonal T 6 model, where semiclassical

formula (5.9) for extremal black hole entropy can be illustrated.
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5.2. Semiclassical entropy in the diagonal T 6 compactification

Consider Type IIB compactification on the diagonal T 6 threefold [26] (see Appendix A

for more details about this model). The prepotential is

F =
(X1)3

X0
, f(τ) = τ3, (5.12)

where the complex structure parameter τ = X1

X0 . We compute:

FIJ =

(
2τ3 −3τ2

−3τ2 6τ

)
, CIJ0 = − 6τ

X0

(
τ2 −τ
−τ 1

)
, CIJ1 =

6

X0

(
τ2 −τ
−τ 1

)
.

(5.13)

Let us denote yI = P I −XI . The attractor equations (3.29) read

{
C0IJy

IyJ =4iIm(F0I)y
I

C1IJy
IyJ =4iIm(F1I)y

I .
(5.14)

In order to compute the function G(0)(pI , φI), we need to find from these equations a

solution XI = XI(P ) of the direct problem. This can be done by inverting the solutions of

the inverse problem (4.19)-(4.20). However, it turns out that it is easier to findXI = XI(P )

directly from (5.14).

According to (4.9) and (5.13), the third derivatives of the prepotential are related as

C0IJ = −τC1IJ , and therefore (5.14) reduces to

2y0Im(τ3) − 3y1Im(τ2) = 3τy0Im(τ2) − 6τy1Im(τ). (5.15)

Apart from the supersymmetric solution y0 = y1 = 0, this gives

y1

y0
= Reτ − i

3
Imτ, (5.16)

If we recall that yI = P I −XI , we can solve (5.16) for X1:

X1 = X0 4Re(X0P 1) − 2P 1P 0 + P 1P 0

4Re(X0P 0) − |P 0|2 . (5.17)

Then we plug this into the second equation of (5.14) and find7

(
X0 − P 0

)2
= 3X0

(
X0 − P 0

)
. (5.18)

7 assuming Im
(
P 0P 1

)
6= 0.
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This should be compared to (4.15). To solve the equation (5.18), is convenient to work

with the real and imaginary parts of X0 and P 0. Then (5.18) can be reduced to a quartic

equation for ReX0. For a generic choice of ReP 0 and ImP 0, two of the roots of this quartic

equation are complex, and two are real. These real roots lead to the two solutions of the

attractor equations (5.14), supersymmetric

X0 = P 0,

X1 = P 1,
(5.19)

and non-supersymmetric one. Explicit expression for the non-supersymmetric solution

depends on the signs of ReP 0 and ImP 0. For example, when ImP 0 > |ReP 0|, it is given

by8

ReX0 =
1

4
ReP 0+

3

8

(
ReP 0 + ImP 0

) 2
3
(
ImP 0 − ReP 0

) 1
3−

−3

8

(
ReP 0 + ImP 0

) 1
3
(
ImP 0 − ReP 0

) 2
3 ,

ImX0 =
1

4
ImP 0−1

4

√
9
(
ImP 0

)2 − 8
(
ReP 0

)2 − 8Re
(
X0
)
Re
(
P 0
)

+ 16
(
ReX0

)2
.

(5.20)

We can use these solutions and study a system of kD0 and ND4 branes on the

diagonal T 6. This corresponds to the charge vector of the form (k, 0, N, 0). In this case

the discriminant D = −(3p2q2 + 4p3u+ 4q3v + 6pquv − u2v2) reduces to D = −4kN3, so

that the system is supersymmetric when kN > 0 and non-supersymmetric when kN < 0.

Complexified magnetic charges are given by

P 0 =
i

π
ϕ, P 1 = N +

i

π
φ, (5.21)

and the black hole degeneracy (5.9) in this case reads

Ω
(0)
extrm(k,N) =

∫
dφdϕekϕ

(
e−πImG(0)

susy( i
π

ϕ,N+ i
π

φ) + e−πImG
(0)
n−susy

( i
π

ϕ,N+ i
π

φ)
)
. (5.22)

Let us now compute expressions for G(0)-functions entering into (5.22). Using (5.19),

we find from (5.6)

−πImG(0)
susy

( i
π
ϕ,N +

i

π
φ
)

=
N3π2 − 3Nφ2

ϕ
. (5.23)

8 Corresponding solution for X1 is obtained by plugging this expression into (5.17).
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The non-supersymmetric solution (5.20) in the case (5.21) reads

X0 = − i

2π
ϕ

X1 =
1

2

(
N − i

2π
φ
)
.

(5.24)

Therefore, from (5.6) we obtain the following expression

−πImGn−susy

( i
π
ϕ,N +

i

π
φ
)

= −N
3π2 − 3Nφ2

ϕ
. (5.25)

The integral over φ in (5.22) is quadratic, and (ignoring the convergence issue) in the

semiclassical approximation φ = 0 . The critical points in the ϕ direction are given by

∂ϕ(kϕ− πImGsusy) = 0 ⇒ ϕsusy = π

√
N3

k
(5.26)

for supersymmetric term, and

∂ϕ(kϕ− πImGn−susy) = 0 ⇒ ϕn−susy = π

√
−N

3

k
(5.27)

for the non-supersymmetric term. Since we are integrating over the real axis, the leading

contribution to (5.22) comes only from one of the two terms, depending on the sign of the

ratio N
k . This gives:

Ω
(0)
extrm(k,N) ≈ exp

(
2π
√
|N3k|

)
, (5.28)

which is a correct expression for extremal black hole degeneracy, valid both in the super-

symmetric and non-supersymmetric cases. Using the same method, it is also easy to obtain

an expression Ω
(0)
extrm(N0, N6) ≈ exp

(
π|N0N6|

)
for the degeneracy of D0 −D6 system on

diagonal T 6, which agrees with [72].

It is instructive to compare this prediction of (5.9) with the original OSV formula [4]

Ω(pI , qI) =

∫
dφIeqIφI+F(pI ,φI). (5.29)

Because of our choice of the non-canonical D3-brane intersection matrix (see Appendix A)

on T 6, we have qIφ
I = −uφ0 − 3qφ. Also,

F(pI , φI) = −πIm

(
(p+ i

πφ)3

v + i
πφ

0

)
. (5.30)
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In the semiclassical approximation, the leading contribution to ln Ω(u, q, p, v) can be com-

puted by extremizing the exponent in (5.29). This gives

2q = −(p+ i
π
φ)2

v + i
πφ

0
− (p− i

π
φ)2

v − i
πφ

0
,

2u =
(p+ i

πφ)3

(v + i
π
φ0)2

− (p− i
πφ)3

(v − i
π
φ0)2

.

(5.31)

which essentially are the supersymmetric attractor equations (3.16). The general solution

to (5.31) is easy to write:

φ0 = ±π 2p3 + 2pqv − uv2

√
−D ,

φ = ∓π 2p2q + 2q2v + puv√
−D ,

(5.32)

where the discriminant D = −
(
3p2q2 + 4p3u+ 4q3v + 6pquv − u2v2). The sign ambiguity

in (5.32) can be fixed by imposing physically natural condition

Imτ = Im
p+ i

πφ

v + i
π
φ0

> 0. (5.33)

Notice that the potentials (5.32) become pure imaginary when D > 0. Therefore, if one is

allowed to do the analytical continuation when computing the integral (5.29), the answer

for the microcanonical entropy reads

ln Ω(u, q, p, v) ≈ π
√

3p2q2 + 4p3u+ 4q3v + 6pquv − u2v2. (5.34)

This expression, of course, becomes pure imaginary on the non-supersymmetric side D > 0

of the discriminant hypersurface D = 0, which is meaningless. This thus illustrates the

shortcoming of OSV formalism in the context of non-BPS black holes.

6. Including Higher Derivative Corrections: The Entropy Function Approach

The Wald’s formula provides a convenient tool for computing the macroscopic black

hole entropy in the presence of higher derivative terms. It can be written as

SBH = 2π

∫

H

d2x
√
h ǫµνǫλρ

δL
δRµνλρ

, (6.1)

where L is the Lagrangian density and the integral is computed over the black hole horizon.

Sen [47,48] showed that in the case of a spherically symmetric extremal black holes with

23



AdS2 × S2 near horizon geometry Wald’s formula simplifies drastically. This gives an

effective method for computing a macroscopic entropy of a spherically symmetric extremal

black holes in a theory of gravity coupled to gauge and scalar fields, called the entropy

function formalism.

In this section we briefly describe, following [20], a formulation of N = 2 supergravity

coupled to nV abelian gauge fields, in the presence of higher-derivative corrections. Then

we review recent computations of the extremal black hole entropy in this setup [50,51,57],

performed in the framework of the entropy function formalism.

6.1. d = 4, N = 2 Supergravity with F -term R2 corrections

The Lagrangian density of N = 2 Poincare supergravity coupled to nV vector mul-

tiplets can be conveniently formulated using the off-shell description [63]. The idea is to

start with an N = 2 conformal supergravity and then reduce it to Poincare supergravity

by gauge fixing and adding appropriate compensating fields. The advantage of working

with N = 2 superconformal approach is that it provides many powerful tools, such as

superconformal tensor calculus and a general density formula for the Lagrangian.

One introduces the Weil and matter chiral superfields

Wµν(x, θ) = T−
µν − 1

2
R−

µνλρǫαβθ
ασλρθβ + . . .

ΦI(x, θ) = XI +
1

2
F−I

µν ǫαβθ
ασµνθβ + . . .

(6.2)

where T−
µν is an auxiliary antiself-dual tensor field9, and F−I

µν and R−
µνλρ denote the anti-

selfdual parts the field-strength and curvature tensors correspondingly. The conventions

are ∗Tµν = 1
2
ǫµνρσT

ρσ and T±
µν = 1

2
(Tµν ± i ∗ Tµν), so that T−

µν = T+
µν for Minkovski

signature. The superconformally covariant field strength

FI
µν = FI

µν −
(1
4
XIT−

µν + ǫijψ
i
[µγν]Ω

jI + ǫijX
Iψi

µψ
j
ν + h.c.

)
(6.3)

enters into the bosonic part of the Lagrangian through the combination F+I
µν − 1

4
XIT+

µν .

The F -terms can be reproduced from the generalized prepotential

F (XI ,W ) =
∑

g

F (g)(XI)W 2g, (6.4)

9 At tree-level this field is identified with the graviphoton by the equations of motion.
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where F (g) can be computed from the topological string amplitudes [22,73]. In particular,

the topological string free energy is given by

Ftop(XI , gtop) =
∑

g

(gtop)
2g−2F (g)(XI). (6.5)

The function F (g) is homogeneous of degree 2 − 2g, so that

F (λXI , λW ) = λ2F (XI ,W ). (6.6)

This homogeneity relation for the generalized prepotential (6.4) can also be written as

XI∂IF +W∂WF = 2F. (6.7)

Notice that another notation

Â ≡W 2, F (XI , Â) ≡ F (XI ,W ) (6.8)

is sometimes used in the supergravity literature.

The coupling of the vector fields to the gravity is governed by the generalized prepo-

tential (6.4) as follows

8πSvect = 8πStree
vect +

∫
d4xd4θ

∞∑

g=1

Fg(Φ
I)
(
WµνW

µν
)g

+ h.c. =

= 8πStree
vect +

∫
d4x

∞∑

g=1

Fg(X
I)
(
R2

−T
2g−2
− + . . .

)
+ h.c.

(6.9)

The terms in the Lagrangian density, relevant for the computation of the entropy are [20]

8πL=− i

2

[1
2

(
F+I

µν − 1

4
XIT+

µν

)(
F+Jµν− 1

4
XJT+µν

)
F IJ +

T+µν

4

(
F+I

µν − 1

4
XIT+

µν

)
F I +

Â

16
F−

−XIFIR− F
Â
Ĉ − h.c.

]
+ . . .

(6.10)

Here
Ĉ =64R−

νµρσR−νµρσ + 16T−µνfρ
µT

+
ρν + . . .

fν
µ = − 1

2
Rν

µ +
1

32
T−

µρT
+νρ + . . .

F =F (XI , Â), F
Â
≡ ∂

Â
F,

(6.11)

and . . . in (6.10)-(6.11) denotes the terms (auxiliary fields, fermions, etc.) that will vanish

or cancel out on the black hole ansatz.
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6.2. Review of the entropy function computation

We are interested in a spherically symmetric extremal black hole solutions arising

in the supergravity theory defined by the Lagrangian (6.10). Consider the most general

SO(2, 1)× SO(3) ansatz [50] for a field configurations consistent with the AdS2 × S2 near

horizon geometry of the black hole

ds2 = v1

(
− r2dt2 +

dr2

r2

)
+ v2(dθ

2 + sin2 θdϕ2),

XI = xI , FI
rt = −φ

I

π
, FI

θϕ = pI sin θ, T−
rt = v1w,

(6.12)

and all other fields presents in (6.10) are set to zero10. The entropy function [47] is defined

as

E = qIφ
I − 2π

∫

H

dθdϕ
√
−detgL

)
. (6.13)

This function depends on free parameters (xI , v1, v2, w, φ
I) of the SO(2, 1) × SO(3)

ansatz (6.12). The entropy of an extremal black hole is obtained as an entropy of a

non-extremal black hole in the extremal limit, when the function (6.13) is extremized with

respect to a free parameters

∂E
∂xI

= 0,
∂E
∂v1

= 0,
∂E
∂v2

= 0,
∂E
∂w

= 0,
∂E
∂φI

= 0. (6.14)

The black hole entropy (6.1) is given by the value of E at the extremum

SBH = E|∂E=0. (6.15)

The result of computation [50] reads

E = qIφ
I − iπv1v2

[1
4

(
− φI

πv1
+ i

pI

v2
− 1

2
xIw

)(
− φJ

πv1
+ i

pJ

v2
− 1

2
xJw

)
F IJ+

+
w

4

(
− φI

πv1
+ i

pI

v2
− 1

2
xJw

)
F I +

w2

8
F−

−
( 1

v1
− 1

v2

)
xIFI +

(
|w|4 − 8|w|2

( 1

v1
+

1

v2

)
+ 64

( 1

v1
− 1

v2

)2)
F

Â
− c.c.

]
,

(6.16)

where

Â = −4w2. (6.17)

10 The dilaton is set to 1/3R, so that the combination D − 1/3R vanishes.
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Note that the entropy function (6.16) is invariant under the following rescaling

xI → λxI , w → λw, v1,2 → 1

λλ
v1,2, φI → φI , qI → qI , pI → pI , (6.18)

since the Lagrangian (6.10) was derived from a superconformally invariant expression.

This means that there is a linear relation between the extremum equations (6.14). One

can switch to inhomogeneous variables to fix this symmetry.

The above form of the entropy function does not take into account all the relevant

higher derivative corrections needed for the non-supersymmetric black hole, as has been

observed in [50]. For example at least an R2 term is needed in certain cases. We will come

back to this point in the next section when we propose our conjecture.

To further motivate our conjecture, let us analyze the structure of the entropy func-

tion (6.16). First of all, compared to the topological string partition function, it depends

on one more parameter. Indeed, using the scaling invariance of the entropy function (in-

herited from the formulation in terms of the superconformal action) we can gauge away w,

and identify (XI ,W 2) ∼ (xI , Â). However, after that the entropy function still depends

on the relative magnitude of the variables v1 and v2, describing correspondingly the radii

squared of AdS2 and S2 factors in the black hole near horizon geometry, and there is no

such parameters in (5.3). Therefore, in order to match with the macroscopic computations

on the supergravity side we need a modification of the topological string depending on an

additional parameter. Moreover because of the observations of [50,54] this extension of

topological string should be computing additional higher derivative corrections, including

extra R2 terms. These observations naturally lead to our conjecture in the next section.

7. A Conjecture

In the last section we saw that we need a one parameter extension of topological

string which captures non-antiself-dual 4d geometries, for higher derivative corrections for

non-supersymmetric black holes. In fact on the topological string side there is a natural

candidate that can be used for this purpose: a one parameter extension of the topological

string that appeared in the works of Nekrasov [61,74,75,76,77,78] on instanton counting in

Seiberg-Witten theory. There, a function F (XI , ǫ1, ǫ2) was introduced. In the special limit

−ǫ2 = ǫ1 = gtop this function reduces to the ordinary topological string free energy (6.5)

according to

F (XI , ǫ1, ǫ2)
∣∣
ǫ1+ǫ2=0

= Ftop(XI , gtop), g2
top = −ǫ1ǫ2, (7.1)
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In order to make a connection with the supergravity ansatz (6.12) we will need to identify

the parameters as

ǫ1 =
16

|w|2v1
, ǫ2 = − 16

|w|2v2
. (7.2)

This is consistent with the fact that the field theory limit ǫ1,2 → 0 in the Nekrasov’s

approach corresponds to the flat space approximation in the ansatz (6.12).

Since the Nekrasov’s extension of the topological string may not be familiar, we will

first review the necessary background from [61,77,79]. Then we will be able to make a

proposal about the corresponding generalization of the OSV formula.

7.1. Review of the Nekrasov’s extension of the topological string

The instanton corrections to the prepotential of N = 2 gauge theory can be com-

puted by a powerful application of localization technique introduced by Nekrasov [61].

This localization, in the physical context gets interpreted as turning on non-antiself-dual

graviphoton background,

T = ǫ1dx
1 ∧ dx2 + ǫ2dx

3 ∧ dx4. (7.3)

This reproduces the N = 2 prepotential by considering the most singular term as ǫi → 0,

which scales as F (0)/ǫ1ǫ2. However there is more information in the localization compu-

tation of Nekrasov: One can also look at the subleading terms and identify their physical

significance. For the case of ǫ1 = −ǫ2 there is a natural answer, as this gets mapped

to the N = 2 F -terms which capture (anti)-selfdual graviphoton corrections, of the type

studied in [22,73]. In fact the two can get identified using geometric engineering of N = 2

gauge theories [80,81] by considering, in the type IIA setup, a local Calabi-Yau given by

ALE fibrations over some base space (e.g. IP1). Thus Nekrasov’s gauge theory computation

leads, indirectly, to a computation of topological string amplitudes, upon the specialization

ǫ1 = −ǫ2 = gtop:

lim
ǫ2→−ǫ1

F (XI , ǫ1, ǫ2) =

∞∑

g=0

(gtop)
2g−2F (g)(XI), gtop = ǫ1. (7.4)

It has been checked [82,83,84,85] using the topological vertex formalism [86,87] that this

indeed agrees with the direct computation of topological string amplitudes in such back-

grounds, see also [88,89,90].
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However, it is clear that there is still more to the story: Nekrasov’s computation has

more information than the topological string in such backgrounds as it depends on an extra

parameter, which is visible when ǫ1 + ǫ2 6= 0. In fact Nekrasov’s extension F (XI , ǫ1, ǫ2)

satisfies the homogeneity condition

[
ǫ1

∂

∂ǫ1
+ ǫ2

∂

∂ǫ2
+XI ∂

∂XI

]
F (XI , ǫ1, ǫ2) = 0. (7.5)

which means that it does depend on one extra parameter compared to the topological

strings. Below we will use a shorthand notation

F (X, ǫ) ≡ F (XI , ǫ1, ǫ2). (7.6)

Even though the exact effective field theory terms that F (X, ǫ) computes has not been

worked out, it is clear from the derivation that it has to do with constant, non-antiself-dual

configurations of graviphoton and Riemann curvature. The origin of first such correction

has been identified in [79] which we will now review. In general one can expand F (X, ǫ)

as follows [77,78,79]

F =
1

ǫ1ǫ2
F (0) +

ǫ1 + ǫ2
ǫ1ǫ2

H 1
2

+
(ǫ1 + ǫ2)

2

ǫ1ǫ2
G1 + F (1) + O(ǫ1, ǫ2). (7.7)

Let us discuss a geometrical meaning of the genus one terms in (7.7). Recall a general

relations
1

32π2

∫

X

TrR∧ ∗R = χ,
i

32π2

∫

X

TrR∧R =
3

2
σ, (7.8)

where χ is the Euler characteristic of a Euclidean 4-manifold X and σ is the signature.

The curvature tensor R in (7.8) is viewed as a 2-form Ra
b = Ra

bµνdx
µ ∧ dxν with values

in Lie algebra of SO(4). As is clear from (6.9), the ordinary topological strings compute

contributions to the effective action of the form11

1

16π2

∫

X

F (1)(X)R− ∧R− + higher genus =
1

2
F (1)(X)

(
χ− 3

2
σ
)

+ higher genus. (7.9)

On the other hand, more general couplings to χ and σ can be seen in the Donaldson theory.

As was explained by Witten [91], the low energy effective action of twisted N = 2 super-

symmetric Yang-Mills theory on an arbitrary four-manifold X contains terms proportional

to χ and σ. The Donaldson invariant Dξ in general has three contributions

Dξ = Zu + Z+ + Z−, (7.10)

11 there is of course a similar antiholomorphic contribution starting with F (1)(χ− 3
2
σ).
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where Z± are Seiberg-Witten invariants defined via the moduli space of monopoles, and Zu

is non-zero when b+(X ) = 1 and is given by the u-plane integral [92]

Zu =

∫

u−plane

dadaA(u)χB(u)σepu+S2T Ψ. (7.11)

As shown in [79], the functions A and B are related to genus one terms in (7.7) as

F (1) = lnA− 2

3
lnB, G1 =

1

3
lnB (7.12)

Note that the equivariant integral of the superfield Φ = Φ(0) + Φ(1)θ+ . . .+ Φ(4)θ4 in

the case X = C2 is given by
∫

X

d4x

∫
d4θΦ =

Φ(0)(0)

ǫ1ǫ2
. (7.13)

It is also instructive to write down [79] the equivariant Euler number and signature for C2:

χ(C2) = ǫ1ǫ2, σ(C2) =
ǫ21 + ǫ22

3
. (7.14)

Let us introduce another notation:

F̃ (1) = 4G1 + F (1), G1 =
1

4
(F̃ (1) − F (1)). (7.15)

Then (7.7) can be rewritten as

ǫ1ǫ2F = F (0) + (ǫ1 + ǫ2)H 1
2

+
1

2

(
χ− 3

2
σ
)
F (1) +

1

2

(
χ+

3

2
σ
)
F̃ (1) + ǫ1ǫ2O(ǫ1, ǫ2). (7.16)

The term F̃ (1) = 4G1 + F (1) is not captured by the ordinary topological string!

Extra terms are needed to obtain a correct macroscopic entropy for non-supersym-

metric black holes in addition to the standard terms computed by the topological

strings [50,54]. In fact the particular term needed, which is discussed in [54] reduces,

upon compactification to 4d, to the term of the form t · TrR ∧ R for large t, where t is

the overall Kähler moduli of the CY. Such a correction is indeed captured by the leading

behavior of G1(t) for large t, as follows from (7.12). This gives us further confidence about

the relevance of Nekrasov’s extension of topological strings for a correct accounting of the

non-supersymmetric black hole entropy.

In general, as pointed out in [84] one would expect that implementation of Nekrasov’s

partition function for general Calabi-Yau will mix hypermultiplet and vector multiplets.

The case studied in [61] involved the case where there were no hypermultiplets so the

question of mixing does not arise. In the context of the conjecture in the next section, this

would suggest that higher derivative corrections may also fix the vevs for the hypermultiplet

moduli in the context of non-supersymmetric black holes.

We now turn to a minimal conjecture for extremal black hole entropy which uses

Nekrasov’s extension of topological strings.
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7.2. Minimal ǫ-deformation

Let us start with a semiclassical expression (5.6) for the G(0)-function

G(0) =
1

2
(P I −XI)(P J −XJ)F

(0)

IJ + (P I −XI)F
(0)
I + F (0), (7.17)

where F (0) = F (0)(X) is the Calabi-Yau prepotential, identified with genus zero topological

string free energy, and P I = pI + i
πφ

I . Our goal is to find an ǫ-deformation G(0) → G
of (7.17), such that corresponding extremum equations

∂ImG
∂ǫ1

=
∂ImG
∂ǫ2

=
∂ImG
∂XI

= 0 (7.18)

still admit a supersymmetric attractor solution

ǫ1 = 1, ǫ1 + ǫ2 = 0, XI = P I
ǫ = pI +

i

π
φI , (7.19)

and the extremum value of ImG computed using this solution is such that it describes

correctly corresponding contribution [4] to the supersymmetric black hole entropy

−ImGsusy

(
pI , φI

)
= −ImF

(
pI +

i

π
φI , 256

)
= 2ReFtop

(
pI +

i

π
φI
)
. (7.20)

We will obtain this deformation of G-function in two steps. First, we will use

Nekrasov’s refinement of the topological string to deform the prepotential as

F (0)(X) → F (XI , ǫ1, ǫ2), (7.21)

and at the same time, motivated from [50], deform the complexified magnetic charge as12

P I → P I
ǫ = −ǫ2pI +

i

π
ǫ1φ

I . (7.22)

Second, in order to satisfy conditions (7.18)-(7.20) after the deformation (7.21)-(7.22), we

will need to add some compensating terms to G. As we will see, there is some freedom in

choosing these terms, but there is a minimal choice that does the job.

At the first step, after substituting (7.21)-(7.22) directly into (7.17), we obtain

G̃ =
1

2

(
P I

ǫ −XI
)(
P J

ǫ −XJ
)
F IJ (X, ǫ) +

(
P I

ǫ −XI
)
FI(X, ǫ) + F (X, ǫ). (7.23)

12 When ǫ2 = −ǫ1, this is just a rescaling of P I , while general deformation with ǫ2 6= −ǫ1

involves a change of the complex structure in H3(M,C).
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This, however, is not the full answer, since the derivatives of ImG̃ with respect to ǫ-

parameters are not zero on the supersymmetric solution (7.19). This can be corrected at

the second step, by adding to G̃ two terms, proportional to ǫ1 + ǫ2, so that the value (7.20)

of the potential is not affected when ǫ1 + ǫ2 = 0. This leads to the following minimal

ǫ-deformation

G =
1

2

(
P I

ǫ −XI
)(
P J

ǫ −XJ
)
F IJ (X, ǫ) +

(
P I

ǫ −XI
)
FI + F (X, ǫ)+

+
1

2
(ǫ1 + ǫ2)X

IFI −
1

2
(ǫ1 + ǫ2)

(
ǫ1∂ǫ1 − ǫ2∂ǫ2

)
F (X, ǫ)

(7.24)

We call (7.24) a minimal ǫ-deformation because we can also add to (7.24) any terms

proportional to (ǫ1 + ǫ2)
2 without affecting conditions (7.18)-(7.20):

G → G + O(ǫ1 + ǫ2)
2. (7.25)

It is straightforward to check, using the homogeneity condition (7.5) and the relations

pI = − 1

2ǫ2
(P I

ǫ + P I
ǫ ), φI = − iπ

2ǫ1
(P I

ǫ − P I
ǫ ), (7.26)

which follow from the definition

P I
ǫ = −ǫ2pI +

i

π
ǫ1φ

I , (7.27)

that the extremum equations (7.18) for (7.24) indeed admit a solution (7.19), which corre-

sponds to a supersymmetric BPS black hole. Moreover, in this case (7.20) is also satisfied.

Expression qIφ
I − πImG should be compared to the entropy function (6.16). Then

our notations are related to those of [50] as follows. We identify

ǫ1 =
16

|w|2v1
, ǫ2 = − 16

|w|2v2
. (7.28)

The supersymmetric attractor equations of [50] read pI = − i
4v2(wx

I −wxI), while in our

conventions the supersummetric case is pI = ReXI . Therefore,

XI = − i

2
wxI , xI =

2i

w
XI . (7.29)

We also set in this case

ww = 16, v1 = v2 = 1. (7.30)
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7.3. Putting it all together

Now we are ready to make a proposal about the extremal black holes entropy. We

want to write down a generalization of the semiclassical expression for the extremal black

hole degeneracy from section 5, that would reduce to the OSV formula (1.2) for the su-

persymmetric charge vector (pI , qI). The expression (7.24) for the deformed black hole

potential provides a natural way to do this, and allows to treat supersymmetric and non-

supersymmetric cases simultaneously.

We introduce a function G = G(p, φ;X, ǫ) defined by

G =
1

2

(
P I

ǫ −XI
)(
P J

ǫ −XJ
)
F IJ (X, ǫ) +

(
P I

ǫ −XI
)
FI(X, ǫ) + F (X, ǫ)+

+
1

2
(ǫ1 + ǫ2)X

IFI(X, ǫ) −
1

2
(ǫ1 + ǫ2)

(
ǫ1∂ǫ1 − ǫ2∂ǫ2

)
F (X, ǫ) + O(ǫ1 + ǫ2)

2,

(7.31)

where O(ǫ1 + ǫ2)
2 denotes an ambiguity that cannot be fixed just by requiring that ImG

gives correct description of the supersymmetric black holes. In the minimal deformation

case we set O(ǫ1 + ǫ2)
2 = 0. In general, there are two types of solutions to the extremum

equations
∂

∂XI
ImG =

∂

∂ǫi
ImG = 0, (7.32)

the supersymmetric one (7.19) XI = pI + i
πφ

I , and non-supersymmetric ones (all other).

Let us denote the functions obtained by substituting these non-supersymmetric solutions

XI = XI(p, φ), ǫ1,2 = ǫ1,2(p, φ) into (7.31) as G(pI , φI). For supersymmetric solution

Gsusy(p
I , φI) = F (pI + i

πφ
I). We conjecture the following relation for the extremal black

hole degeneracy

Ωextrm(pI , qI) =

∫
dφIeqIφI

(∣∣∣e iπ
2 F (pI+ i

π
φI)
∣∣∣
2

+
∑

n−susy

∣∣∣e iπ
2 G(pI ,φI)

∣∣∣
2)
,

(7.33)

which is expected to be valid asymptotically in the limit of large charges. The sum in (7.33)

runs over all non-supersymmetric solutions to the extremum equations (7.32). However, it

is expected that for a given set of charges (pI , qI) only one solution (supersymmetric or non-

supersymmetric, depending on the value of the discriminant) dominates, and contributions

from all other solutions, including the ones with non-positive Hessian, are exponentially

suppressed.

As noted before, it is expected that for general non-toric Calabi-Yau compactifications,

which lead to hypermultiplets, the analog of Nekrasov’s partition function would mix

hypermultiplets with vector multiplets and therefore will fix their values at the horizon.

This would be interesting to develop further.
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8. Conclusions and Further Issues

We studied the black hole potential describing extremal black hole solutions in N = 2

supergravity and found a new formulation of the semi-classical attractor equations, utiliz-

ing homogeneous coordinates on the Calabi-Yau moduli space. This allowed us to solve

the inverse problem (that is, express the black hole charges in terms of the attractor

Calabi-Yau moduli) completely in the one-modulus Calabi-Yau case. We found three non-

supersymmetric solutions in addition to the supersymmetric one. In the higher dimensional

case we found a bound #n−susy ≤ 2nV +1−1 on the possible number of non-supersymmetric

solutions to the inverse problem.

We then investigated a generalization of the attractor equations and OSV formula

in the case when other corrections are turned on. We conjectured that corresponding

corrected extremal black hole entropy needs an additional ingredient: the Nekrasov’s ex-

tension of the topological string free energy F (XI , ǫ1, ǫ2). We related this to the black

hole entropy using a minimal deformation conjecture given in (7.24),(7.33), that reduces

to Ftop(XI + i
πφ

I) for the choice of the black hole charges that support a supersymmetric

solution. We were unable to fix the O
(
ǫ1 + ǫ2

)2
ambiguity in (7.31), though it could be

that the minimal conjecture is correct.

One important open question is how to test our conjecture. One possible test may

be using the local Calabi-Yau geometry for which Nekrasov’s partition function is known.

Another important question is to find out what is exactly computed by Nekrasov’s partition

function13 and how to extend it to the case where there are both hypermultiplets and vector

multiplets. Clearly there is a long road ahead. We hope to have provided strong evidence

that Nekrasov’s extension of topological string is a key ingredient in a deeper understanding

of non-supersymmetric black holes.

13 for example, in the AdS2 × S2 setup of [50], the ǫ-parameters corresponding to the radii of

AdS2 and S2 factors were real, but from the topological string viewpoints it is natural to consider

a complexification of ǫ1,2. This suggests that there should exist corresponding deformation of the

AdS2 × S2 near horizon geometry.
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Appendix A. The Diagonal Torus Example

Consider the case [26] when M = T 6 is the so-called diagonal torus:

M = Στ × Στ × Στ , (A.1)

where Στ = C/(ZZ+ τZZ) is the elliptic curve with modular parameter τ . Let us introduce

complex coordinates dzi = dxi + τdyi, i = 1, 2, 3 on each Στ . As in [27] can label the

relevant 3-cycles of M according to their mirror branes in IIA picture:

D0 →− dy1dy2dy3

D2 →dy1dy2dx3 + dy1dx2dy3 + dx1dy2dy3

D4 →dx1dx2dy3 + dx1dy2dx3 + dy1dx2dx3

D6 →− dx1dx2dx3

(A.2)

The intersection matrix of these 3-cycles is




0 0 0 −1
0 0 3 0
0 −3 0 0
1 0 0 0


 . (A.3)

We denote the brane charge vector as (D0, D2, D4, D6) = (u, q, p, v). Then

W = u+ 3qτ − 3pτ2 − vτ3. (A.4)

The black hole potential is

VBH = eK
(
|W|2 + gττ |∂W + W∂K|2

)
(A.5)
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where

K ∼ log(Imτ)3, gττ =
3

4(Imτ)2
. (A.6)

Therefore, we have

VBH =
8

(Imτ)3

(∣∣u+3qτ −3pτ2 −vτ3
∣∣2 +3

∣∣2iImτ(q−2pτ −vτ2)−u−3qτ +3pτ2 +vτ3
∣∣2
)
.

(A.7)

A.1. Solution of the inverse problem

Let us decompose τ into the real and imaginary parts

τ = τ1 + iτ2, (A.8)

and introduce new variables α, β, γ that are real linear combination of the charges

α =W
∣∣
τ2=0

= u+ 3qτ1 − 3pτ2
1 − vτ3

1 ,

β =
1

3

∂W
∂τ

∣∣∣
τ2=0

= q − 2pτ1 − vτ2
1 ,

γ = − 1

6

∂2W
∂τ2

∣∣∣
τ2=0

= p+ vτ1.

(A.9)

Using (A.9), we can rewrite the superpotential (A.4) as

W = α+ 3iβτ2 + 3γτ2
2 + ivτ3

2 . (A.10)

Then (4.1) gives

α+ 3γτ2
2 =ω1,

3βτ2 + vτ3
2 =ω2,

(A.11)

where ω = ω1 + iω2. The black hole potential (2.6) in new variables is given by

VBH =
32

τ3
2

(
α2 + 3β2τ2

2 + 3γ2τ4
2 + v2τ6

2

)
(A.12)

The extremum equations ∂VBH

∂τ1
= ∂VBH

∂τ2
= 0 take the form:

αβ − 2βγτ2
2 + vγτ4

2 =0,

−α2 − β2τ2
2 + γ2τ4

2 + v2τ6
2 =0,

(A.13)
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If we express α and v in terms of β and γ using (A.11)

α = ω1 − 3γτ2
2 , v =

ω2 − 3βτ2
τ3
2

, (A.14)

assuming τ2 6= 0, the first equation in (A.13) gives

β =
γω2τ2

8τ2
2γ − ω1

. (A.15)

Here we also assumed that 8τ2
2 γ 6= ω1. We will discuss this special case later. The second

equation in (A.13) then takes the form

(
4τ2

2γ − ω1

)(
128τ6

2γ
3 − 96τ4

2γ
2ω1 + 18τ2

2γω
2
1 − 6τ2

2γω
2
2 + ω1ω

2
2 − ω3

1

)
= 0. (A.16)

We immediately see that γ = ω1

4τ2
2
, and therefore

α =
ω1

4
, β =

ω2

4τ2
, γ =

ω1

4τ2
2

, v =
ω2

4τ3
2

, (A.17)

gives a solution to (A.13). In fact, it describes a supersymmetric branch of the extremum

equations (2.7). The cubic equation for γ in (A.16) has three non-susy solutions that can

be described by the formula:

γ =
2Re(ω) + |ω|

(
|ω|/ω

)1/3
+ |ω|

(
|ω|/ω

)−1/3

8τ2
2

, (A.18)

where one can choose any of three cubic root branches. It is obvious that all solutions

(A.18) are real. Correspondingly, in this case

α =
1

4
Re(ω) − 3

8
|ω|
(
|ω|/ω

)1/3 − 3

8
|ω|
(
|ω|/ω

)−1/3
,

β =
Im(ω)

8τ2
· 2Re(ω) + |ω|

(
|ω|/ω

)1/3
+ |ω|

(
|ω|/ω

)−1/3

Re(ω) + |ω|
(
|ω|/ω

)1/3
+ |ω|

(
|ω|/ω

)−1/3
,

γ =
2Re(ω) + |ω|

(
|ω|/ω

)1/3
+ |ω|

(
|ω|/ω

)−1/3

8τ2
2

,

v =
Im(ω)

8τ3
2

· 2Re(ω) + 5|ω|
(
|ω|/ω

)1/3
+ 5|ω|

(
|ω|/ω

)−1/3

Re(ω) + |ω|
(
|ω|/ω

)1/3
+ |ω|

(
|ω|/ω

)−1/3
.

(A.19)

It is instructive to compute the values of the black hole potential (A.12) at the three non-

supersymmetric extremal points (A.19). Using the second equation in (A.13), we obtain

VBH =
64

τ2

(
β2 + 2γ2τ2

2 + v2τ4
2

)
. (A.20)
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If we apply (A.14), after some algebra we find

β2 + 2γ2τ2
2 + v2τ4

2 =
128τ8

2γ
4−32τ6

2 γ
3ω1 + 2τ4

2γ
2ω2

1 + 26τ4
2γ

2ω2
2 − 10τ2

2γω1ω
2
2 + ω2

1ω
2
2

τ2
2 (8τ2

2γ − ω1)2
=

=
ω2

1 + ω2
2

2τ2
2

+
τ2
2 γ + ω1/2

τ2
2 (8τ2

2γ − ω1)2
(
128τ6

2γ
3 − 96τ4

2γ
2ω1 + 18τ2

2γω
2
1 − 6τ2

2γω
2
2 + ω1ω

2
2 − ω3

1

)
.

(A.21)

The last term in the second line vanishes at the non-supersymmetric extremum point due

to (A.16), and we get a simple formula for the potential

V n−susy
BH = 32

|ω|2
τ3
2

. (A.22)

Notice that the value of the potential is the same for all three points (A.19). At the

supersymmetric extremum point (A.17) we have

V susy
BH = 8

|ω|2
τ3
2

, (A.23)

so that, as in [40]

V n−susy
BH = 4V susy

BH . (A.24)

Note that this relation is written in terms of Calabi-Yau moduli rather then in terms of

the black hole charges.

As we will see in a moment, all three non-supersymmetric extremum points provide

a minimum of the black hole potential. In order to show this, let us look at the Hessian

Hess(VBH) =

(
∂2VBH

∂τ2
1

∂2VBH

∂τ1∂τ2

∂2VBH

∂τ2∂τ1

∂2VBH

∂τ2
2

)
. (A.25)

Straightforward computation gives

Hess(VBH) =
192

τ3
2

(
3β2 − 2αγ + (4γ2 − 2βv)τ2

2 + v2τ4
2 4γτ2(−β + vτ2

2 )
4γτ2(−β + vτ2

2 ) −β2 + 2γ2τ2
2 + 3v2τ4

2

)
.

(A.26)

At the non-supersymmetic extremal point (A.19), using (A.14) and (A.16), we obtain the

following expression

M =
τ3
2

96
Hess(VBH) =

=




96τ4
2 γ2(2ω2

1+ω2
2)−8τ2

2 γω1(6ω2
1+ω2

2)+3ω4
1−ω2

1ω2
2

τ2
2 (8τ2

2 γ−ω1)2
8γ(4τ2

2 γ−ω1)ω2

8τ2
2 γ−ω1

8γ(4τ2
2 γ−ω1)ω2

8τ2
2 γ−ω1

32τ4
2 γ2(2ω2

1+5ω2
2)−8τ2

2 γω1(2ω2
1+7ω2

2)+ω4
1+5ω2

1ω2
2

τ2
2 (8τ2

2 γ−ω1)2




(A.27)
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The eigenvalues h1,2 of the matrix (A.27) are solutions to the equation

0 = det

∥∥∥∥M −
(
h 0
0 h

)∥∥∥∥ = h2 − 4
|ω|2
τ2
2

h+ 3
|ω|4
τ4
2

−

−8ω2
2(4τ2

2γ−ω1)(16τ4
2γ

2+4τ2
2 γω1−ω2

1)

τ4
2 (8τ2

2γ − ω1)4
(
128τ6

2γ
3−96τ4

2γ
2ω1+6τ2

2γ(3ω2
1−ω2

2)+ω1ω
2
2−ω3

1

)

(A.28)

The last line vanishes because of the extremum equation (A.16), and we get

h2 − 4
|ω|2
τ2
2

h+ 3
|ω|4
τ4
2

= 0. (A.29)

Therefore, the eigenvalues of the matrix (A.27)

h1 =
|ω|2
τ2
2

≥ 0

h2 =3
|ω|2
τ2
2

≥ 0

(A.30)

are always non-negative. Since τ2 > 0, this means that the eigenvalues of the Hessian

(A.26) are also positive if ω 6= 0, and thus the non-supersymmetric extremum points

minimize the potential.

A.2. Solution of the direct problem

The black hole potential (A.7) is given by

VBH =
4

τ3
2

(
u2 + 6quτ1 + 9q2τ2

1 − 6puτ2
1 − 18pqτ3

1 − 2uvτ3
1 + 9p2τ4

1−

− 6qvτ4
1 + 6pvτ5

1 + v2τ6
1 + 3q2τ2

2 − 12pqτ1τ
2
2 + 12p2τ2

1 τ
2
2−

− 6qvτ2
1 τ

2
2 + 12pvτ3

1 τ
2
2 + 3v2τ4

1 τ
2
2 + 3p2τ4

2 + 6pvτ1τ
4
2 + 3v2τ2

1 τ
4
2 + v2τ6

2

)
.

(A.31)

Straightforward calculation gives

∂VBH

∂τ1
=

24

τ3
2

(
(q−2pτ1−vτ2

1 )(u+3qτ1−3pτ2
1−vτ3

1 )−2(p+vτ1)(q−2pτ1−vτ2
1 )τ2

2 +(p+vτ1)vτ
4
2

)

(A.32)

and

∂VBH

∂τ2
=

12

τ4
2

(
−(u+3qτ1−3pτ2

1 −vτ3
1 )2−(q−2pτ1−vτ2

1 )2τ2
2 +(p+vτ1)

2τ4
2 +v2τ6

2

)
. (A.33)
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The extremal points are solutions to the equations ∂VBH

∂τ1
= ∂VBH

∂τ2
= 0. From (A.32) we find

that for a generic set of charges (assuming vγ 6= 0)

τ2
2 =

βγ ±
√
βγ(βγ − vα)

vγ
, (A.34)

where
α =u+ 3qτ1 − 3pτ2

1 − vτ3
1 ,

β =q − 2pτ1 − vτ2
1 ,

γ =p+ vτ1.

(A.35)

If we plug (A.34) into (A.33), we obtain

γ
√
βγ − vα

(
β
√
βγ(v2α− 3vβγ − 2γ3) ∓ γ

√
βγ − vα(3vβ2 + vαγ + 2βγ2)

)
= 0. (A.36)

Let us look at the solution βγ − vα = 0 first. Due to (A.35) this is equivalent to

τ1 =
pq − uv

2(p2 + qv)
(A.37)

Then (A.34) gives, assuming τ2 > 0

τ2 =

√
−D

2(p2 + qv)
(A.38)

where

D = −
(
3p2q2 + 4p3u+ 4q3v + 6pquv − u2v2

)
. (A.39)

This is the supersymmetric solution obtained in [26]. Note that there is no such solution

if the discriminant (A.39) is positive: D > 0.

The non-supersymmetric solution will emerge from the second branch:

β
√
βγ(v2α− 3vβγ − 2γ3) = ±γ

√
βγ − vα(3vβ2 + vαγ + 2βγ2) (A.40)

Without loss of generality we can take the square of this equation. Then, after plugging

in (A.35) we find massive cancellations, and obtain the following cubic equation

(
2p6 + 6p4qv + 3p2q2v2 − 4p3uv2 − 2q3v3 − 6pquv3 + u2v4

)
τ3
1−

−3(p5q + 5p3q2v + 3p4uv + 5pq3v2 + 4p2quv2 − q2uv3 − pu2v3
)
τ2
1−

−3
(
p4q2 + 2p5u+ 2p3quv − 2q4v2 − 2pq2uv2 − p2u2v2

)
τ1 +

+
(
2p3q3 + 3p4qu+ 3pq4v + 6p2q2uv + p3u2v + q3uv2

)
= 0.

(A.41)
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The discriminant of this equation is equal to

∆ = 729D3
(
p2 + qv

)6(
2p6 +6p4qv+3p2q2v2 − 4p3uv2 − 2q3v3 − 6pquv3 +u2v4

)2
. (A.42)

Only one solution of this equation can be real, if D > 0, which implies ∆ > 0, but this is

exactly what we are looking for. It is given by

τ1 =
1

(2(p2 + qv)3 + v2D)

(
(p2 + qv)2(pq − uv) − vpD−

− 21/3(p2 + qv)3D
(
v(2p3 + 3pqv − uv2)D2 + (2(p2 + qv)3 + v2D)D

√
D
)1/3

+

+
p2 + qv

21/3

(
v(2p3 + 3pqv − uv2)D2 + (2(p2 + qv)3 + v2D)D

√
D
)1/3

)
.

(A.43)

Corresponding expression for τ2 is obtained by substituting (A.43) into (A.34).

Appendix B. Cubic equation

Consider a general cubic equation of the form

ax3 + 3bx2 − 3cx− d = 0. (B.1)

The discriminant of this equation is

∆ = −(3b2c2 + 4c3a+ 4b3d+ 6abcd− a2d2). (B.2)

The solutions are given by

x1 = − b

a
+

21/3(b2 + ac)

a
(
a2d− 3abc− 2b3 + a

√
∆
)1/3

+

(
a2d− 3abc− 2b3 + a

√
∆
)1/3

21/3a
, (B.3)

x2 = − b

a
− 21/3(1 + i

√
3)(b2 + ac)

2a
(
a2d− 3abc− 2b3 + a

√
∆
)1/3

− (1 − i
√

3)

21/32a

(
a2d− 3abc− 2b3 + a

√
∆
)1/3

,

(B.4)

x3 = − b

a
− 21/3(1 − i

√
3)(b2 − ac)

2a
(
a2d− 3abc− 2b3 + a

√
∆
)1/3

− (1 + i
√

3)

21/32a

(
a2d− 3abc− 2b3 + a

√
∆
)1/3

(B.5)

We are interested in the case ∆ > 0, when there is one real root and a pair of complex

conjugate roots.
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