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We calculate the normal state Nernst signal in the cuprates resulting from a reconstruction of the
Fermi surface due to spin density wave order. An order parameter consistent with the reconstruction
of the Fermi surface detected in electron-doped materials is shown to sharply enhance the Nernst
signal close to optimal doping. Within a semiclassical treatment, the obtained magnitude and
position of the enhanced Nernst signal agrees with Nernst measurements in electron-doped cuprates.
Our result is mainly caused by the role of Fermi surface geometry under influence of a spin density
wave gap. We discuss also possible roles of short-ranged magnetic order in the normal state Nernst
effect and the Fermi surface reconstruction observed by photoemission spectroscopy.

I. INTRODUCTION

The Nernst effect has emerged as one of the key probes
of the enigmatic underdoped phase of the cuprate high
temperature superconductors. In the hole-doped case,
observations1 of a strongly enhanced Nernst signal at
temperatures (T ) well above the superconducting Tc have
been interpreted1,2 using a picture of a liquid of vortices
in the superconducting order. However, there have also
been suggestions3 that spin/charge density wave correla-
tions of the vortex liquid are important. In particular, a
model of fluctuations associated with the quantum phase
transition (QPT) to the ordered stripe state at hole dop-
ing δ = 1/8 has been argued4 to have a Nernst response
qualitatively similar to the observations.

In this paper, we focus on the electron-doped cuprates,
where the situation appears simpler. The only observed
order (apart from superconductivity) is a spin density
wave (SDW) which remains commensurate at the (π, π)
wavevector (in the Brillouin zone of a square lattice of
unit lattice spacing). The Nernst effect, being unmea-
surable small in nearly all metals, has also been found to
be anomalously large near optimal doping in the normal
state of electron-doped cuprates5,6. We will show here
that this large Nernst signal can be understood in a the-
ory of Fermi surface reconstruction associated with the
QPT involving onset of SDW order.

The large normal state Nernst signals found in
Pr2−xCexCuO4−δ (PCCO)5 upon Ce doping, and in
Nd2−xCexCuO4−δ (NCCO) upon oxygen doping,6 have
been attributed to the existence of two types of carriers,
which avoid the Sondheimer cancellation of the Nernst
signal expected in single carrier systems. Indeed, angle
resolved photoemission spectroscopy (ARPES) experi-
ments on NCCO found both electron- and hole-like Fermi
pockets near optimal doping7. In the underdoped region,
only small electron-like pockets remain, while in the over-
doped region, only a large hole-like pocket centered at
(π, π) was found8. These features are believed to arise
from the commensurate (π, π) SDW order over a wide
range of electron doping, as has been detected by various
techniques9,10,11. A possible critical doping for the SDW

quantum critical point (QCP) has been inferred from
transport measurements in the normal state, which show
rapidly changing transport properties at xc = 0.16512.
The assumption of a Fermi surface reconstruction caused
by SDW order has led to a qualitative consistent descrip-
tion of Hall effect measurements on PCCO over a wide
range of doping13.

It is important to note that there remain ambiguities
about the critical value of doping where long-range mag-
netic order sets in. Elastic neutron scattering measure-
ments on NCCO show that long-range magnetic order is
preempted by short ranged antiferromagnetism for dop-
ings between x = 0.134 and x = 0.15414. It has still to be
clarified whether short-ranged antiferromagnetism below
optimal doping applies also to other electron-doped ma-
terials and is confirmed also by other techniques. We will
argue that the main features of Fermi surface reconstruc-
tion observed in electron doped cuprates are induced by
a true SDW gap. Especially in PCCO, there is no ex-
perimental evidence that magnetic order is short-ranged
below optimal doping.

Our main result is that the related Nernst effect mea-
surements on PCCO and NCCO can be explained by
the emergence of hole-like carriers near optimal doping.
These aspects will be quantified within a simple semi-
classical Boltzmann approach.

II. MODEL

We consider electrons moving on a square lattice with
dispersion

εk = − 2t1(cos kx + cos ky) + 4t2 cos kx cos ky
− 2t3(cos 2kx + cos 2ky) (1)

and parameters t1 = 0.38 eV, t2 = 0.32t1 and t3 =
0.5t215, chosen to reproduce the Fermi surface measured
in photoemission experiments7,8. We will focus on a car-
rier density corresponding to the electron-doped case,
with a two-dimensional density n = 1 + x > 1 per
unit cell. Below critical doping xc = 0.165, we assume
commensurate SDW order at wavevector Q = (π, π)
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FIG. 1: Evolution of the Fermi surface upon decreasing elec-
tron doping x. To distinguish holes from electrons, electrons
from the upper band E+

k are dark shaded, light shading con-
tains all electrons from both bands. At x = xc = 0.165, a gap
opens at the points where the dispersion crosses its transla-
tion by the wavevector (π, π), see a). A hole pocket centered
at (π/2, π/2) is present for x1 < x < xc (with x1 = 0.145),
as shown in b) for x = 0.15. For x < x1, only electron-like
pockets remain, as shown in c) for x = 0.12.

with scattering amplitude ∆11,12. Microscopically, this
order can be understood as a consequence of electron-
electron interactions16, which are minimally described by
the Hubbard interaction

Hel−el =
U

N

∑
k,k′,q,σ

c†k,σck+q,σc
†
k′,−σck′−q,−σ . (2)

The spin density wave instability is described by the com-
plex order parameter

∆eiφ =
U

N

1
V

∑
k

〈c†k↑ck+Q,↑〉 =
U

N

1
V

∑
k

〈c†k↓ck+Q,↓〉 ,

(3)
which can be determined self-consistently by em-
ploying the Hartree-Fock decoupling c†k,σck+q,σ →
〈c†kσck+Q,σ〉δQ,q in Eq. (2)17.

In the doubled unit cell and at mean field level, this
changes the dispersion to

E±k =
1
2

(
εk + εk+Q ±

√
(εk − εk+Q)2 + 4∆2

)
, (4)

where now the reduced antiferromagnetic Brillouin zone
has to be considered. The quasiparticles resulting from
the reconstructed bands have the velocities

v±k =
1
~
∇kE

±
k /~ , (5)

where we will omit an explicit band label from the veloc-
ities in the following in order to compactify our notation.
Consistent with the Hartree-Fock treatment of the ef-
fective Hamiltonian, we chose a mean field dependence
∆(x)[eV ] = 0.7

√
1− x/0.165 . The gap opens rapidly on

depleting the carrier concentration below xc = 0.165 and
the Fermi surface reconstructs in qualitative agreement
with ARPES data7,8, see Fig. 1.

A gap of ∆ = 0.7 eV yields also consistent results for
the Hall coefficient13. Our results are not sensitive to
precise parameter choices, and slight variations of pa-
rameters lead only to minor modifications of our re-
sults. We will show that the opening of a hole pocket

will strongly influence the Nernst effect. Moreover, our
modeling agrees with Hall measurements by Onose et
al.19, which indicate that the hole pockets are present for
x1 < x < xc Ce doping with x1 = 0.1.

III. SEMICLASSICAL APPROACH

Several parameter scales have to be set to justify our
Boltzmann approach. Backscattering of the SDW am-
plitude sets a momentum scale p∆ = ∆/vF (vF is the
Fermi velocity), while the inverse mean free path l−1

defines another momentum scale. To neglect interfer-
ence effects between scattering events, the momentum
scale p0 set by the size of the Brillouin zone has to fulfill
p0 � p∆, l

−1 13. At low T , we assume that impurity
scattering dominates the relaxation time τ . In general,
cuprate materials show a normal state quasiparticle scat-
tering rate which is linear in temperature, with a small
part of the antinodal region where there is no temper-
ature dependence observed20. We will neglect effects of
anisotropy and temperature on the scattering rate by as-
suming pure s-wave impurity scattering, as is appropriate
for randomly distributed impurities with weak and short-
ranged scattering potential. Lateron, we will return to
possible modifictations due to scattering anisotropy and
thermal fluctuations.

Disorder is expected to modify the SDW backscatter-
ing if the mean free path l drops below the characteristic
scattering length on the SDW order parameter. This sit-
uation is expected to occur if p∆l ∼ 1, and we will con-
sider only ∆ > vF /l. Finally, weak magnetic fields make
it possible to expand transport coefficients in magnetic
field strength, so that off-diagonal transport coefficients
become linear in B, while the diagonal coefficients are
independent of B. The applicability of this expansion
is related to the momentum scale set by a = πlB/φ0

with the flux quantum φ0 = hc/2e, which defines the
weak-field regime a < p∆

13, where the Zener-Jones ex-
pansion is applicable. Magnetic fields also have to be
weak enough to neglect magnetic breakdown. Neglecting
modifications of magnetic field on the band structure,
magnetic breakdown is analogous to Zener breakdown
and has a transmission amplitude21

α = exp(−π
2

∆2

e~B|vxvy|
) (6)

with the Fermi velocities vx, vy ≈ vF of the linearized
dispersion at its crossing point obtained by setting ∆ = 0.
Therefore, magnetic breakdown can be neglected as long
as p∆ > pB , where the inverse magnetic length pB =
2π(πB/Φ0)−1/2 appears.

In mean-field approximation, the transport processes
are determined by the current operator

j = −e
∑
σ

∫
RBZ

d2k
(2π)2

ψ†k,σ

(
∇kE

+
k /~ vinterk

vinterk ∇kE
−
k /~

)
ψk,σ ,

(7)
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where the spinor ψk,σ contains the two quasiparticle
modes. The current therefore includes also scattering
events between bands mediated by the off-diagonal ele-
ments

vinterk = −1
~

[∇kεk −∇kεk+Q]∆√
(εk − εk+Q)2 + 4∆2

(8)

However, if the energy gap to the second band is larger
than kBT and ~/τ , interband contributions to transport
can be neglected. We will neglegt a small doping range
very close to the QCP, where p∆ might be small enough
to allow for magnetic breakdown or modifications due
to disorder. For magnetic fields of order a few Tesla
and scattering times of O(10−14s), this doping range is
expected to be difficult to detect in experiment. Ac-
cording to formula (6), magnetic breakdown is of impor-
tance in the doping range ∆x ≈ e~v2

FB/(0.7eV )2xc ≈
7.1× 10−5Bxc, where we used the universal Fermi veloc-
ity vF = 2.3 × 107cm/s22. Interband transitions medi-
ated by impurity scattering are estimated to occur in the
doping range

∆x ≈
(

~
τ

)2
xc

(0.7eV )2
≈ 8.6× 10−3

(
10−14s

τ

)2

xc , (9)

which is negligible for relaxation times of O(10−14s).
From experimental data at optimal doping, the relax-
ation time can be estimated to be somewhat larger than
10−14s, see below. Assuming an ordering temperature
TSDW = T0

√
1− x/xc with T0 ≈ 250K23, thermal

excitations destroy the SDW gap in a range of width
∆x ≈ xc(T/T0)2 below doping xc. Keeping this in mind,
we assume that all mentioned considerations are valid for
the parameter regimes discussed below.

We define the thermoelectric response in the absence
of an electrical current as

E = −ϑ̂~∇T , (10)

from which the Nernst signal eN = ϑyx and the thermo-
electric power Q = ϑxx are obtained. For square lattice
geometry, the diagonal entries of all transport tensors are
isotropic. Both coefficients can be expressed as

ϑyx =
αxyσxx − αxxσxy

σ2
xx + σ2

xy

ϑxx =
αxx
σxx

, (11)

where the usual definitions of the electrical and thermo-
electrical conductivities enter24. To calculate the quasi-
particle Nernst signal, we restrict us to the weak-field
regime defined above. From the linearized Boltzmann

equation, we obtain the transport coefficients24

αxx =
2e
T

∑
k,α=±

∂f0
k

∂Eαk
(Eαk − µ)τk(vxk)2

αxy =
2e2B

T~c
∑
k,±

∂f0
k

∂Eαk
(Eαk − µ)τ2

kv
x
k

[
vyk
∂vyk
∂kx
− vxk

∂vyk
∂ky

]

σxx = −2e2
∑
k,±

∂f0
k

∂Eαk
τk(vxk)2

σxy = −2
e3B

~c
∑
k,±

∂f0
k

∂Eαk
τ2
kv

x
k

[
vyk
∂vyk
∂kx
− vxk

∂vyk
∂ky

]
, (12)

where α = ± denotes summation over the quasiparticle
bands of Eq. (4). For brevity, we have droped the band
index from the quasiparticle velocities, which have been
properly defined in Eq. (5). It will be of interest to study
Eq. (12) in dependence of electron doping in order to an-
alyze the influences of Fermi surface changes on transport
properties. At low T , the thermoelectric conductivities
αij are related to the electrical conducticities σij by the
Mott relation

αij = −π
2

3
k2
BT

e

∂σij
∂µ

∣∣∣∣
EF

. (13)

As long as the relaxation time depends on energy, the

expression ∂σij

∂µ

∣∣∣∣
EF

contains a contribution

∂τ
∂µ |EF

τ
(2− δij)σij . (14)

A. Comparison with experiment

Due to Eq. (13), the energy dependence ∂τ/∂µ enters
thermoelectric quantities. We rule these contributions
out by using a constant τ , in order to focus on the role of
Fermi surface geometry in the Nernst effect. Usually, the
energy dependence of τ is expected to behave as τ ∝ Ep,
with p ∈ [−1/2, 3/2]25. In the low temperature regime,
according to Fermi’s golden rule τ ∝ 1/N(ε), with p = 0
for the two dimensional Fermi gas. Phonon contributions
become only of importance for T ' ΘD, for which p=3/2.
Thus, phonons lead to a positive contribution in Eq. (14).
In two dimensions, energy dependence of the relaxation
time due to impurities yields corrections to the Nernst
signal which vanish in the free electron case, making them
sensitively dependent on details of the band structure.

We estimated these effects numerically by setting τ ′ ≡
(∂τ/∂µ)EF

= τ/EF , which yields a negligible correc-
tion to the peak signal, see Fig. 2. On the other
hand, if ∂τ/∂µ would contribute considerably to the
Nernst signal, employing Eq. (13) in Eq. (11) shows
that ϑyx = O(ϑxx tan(ΘH)) with tan(ΘH) = σxy/σxx.
However, Nernst measurements on PCCO clearly show
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ϑxx tan(ΘH) � ϑyx for all Ce concentrations x > 0.055,
and we can thus neglect ∂τ/∂µ.

We solved Eq. (12) numerically in the regime where ϑyx
and ϑxx depend linearly on T , as shown in Fig. 2. The
experimental peak height near optimal doping is repro-
duced in order of magnitude by the experimental value
τ = 3.30×10−14s−1 at optimal doping, which is obtained
from the residual ab-plane resistivity ρ = 57µΩ cm12 and
the plasma frequency ωp = 13000 cm−1 26. In a range
above optimal doping, the peak structure of the experi-
mental signal is comparable with our theory. The exper-
imental Nernst signal seems to be shifted by ∆x ≈ 0.02
on the doping axis, suggesting that the carrier concen-
tration of the sample differs from nominal doping by the
same amount. A deviation of 2% carrier concentration
is quantitatively also found in a comparison of the Fermi
volume found from ARPES and the Fermi volume cal-
culated from Eq. (1)27. In addition, a calculation of the
Hall coefficient in dependence of electron doping using
the dispersion of Eq. (1) shows also a shift of about 2%
carrier concentration with respect to experimental results
in the underdoped regime, which also fail to reproduce
the expected RH ∝ 1/x behavior if x is set equal to the
Ce concentration13. The deviation could be caused by
high T oxygen annealing, which leads to doping inhomo-
geneity/uncertainty in large crystals28.

We therefore interpret the peak in the Nernst measure-
ments near optimal doping as a result of an emerging hole
pocket. A related enhancement of the Nernst signal near
van Hove singularities has been described by Livanov29.
The Nernst signal further away from optimal doping is
not accurately reproduced by our model; anisotropy of
the scattering rate20 is a possible origin of the sizable
signal, and scattering off order parameter fluctuations
should also be considered13.

The relaxation time approximation (RTA) is a doubt-
ful method to reproduce the influence of antiferromag-
netic fluctuations on transport properties. In RTA, the
quasiparticle current is given by Jk = τkvk, thereby ne-
glecting current vertex corrections ∆Jk caused by the
interaction-induced drag of surrounding quasiparticles.
These corrections are important to maintain a conserving
approximation in the sense of Kadanoff and Baym30. The
influence of antiferromagnetic fluctuations on the Nernst
signal is more accurately treated within the FLEX+t-
matrix approximation31, which is beyond the scope of
this paper. We will analyze corrections due to antiferro-
magnetic fluctuations at low temperatures more detailed
in section IV.

B. Nernst effect near singular doping

The behavior of the Nernst coefficient near the sin-
gular dopings in Fig. 2 can be obtained from analyti-
cal considerations. First, we consider the singularity at
doping x1, where hole like carriers emerge in the Fermi
volume, see Fig. 1. The hole pocket corresponds to a

FIG. 2: Dependence of the Nernst coefficient on electron
doping in the limit T → 0. With decreasing x, the coefficient
has an onset near x = xc, where SDW order sets in; The
discontinuity at x = x1 is due to the opening of hole pockets
(blue curve). The magnitude of our estimate of contributions
due to energy dependence of the relaxation time has negligi-
ble size in the peak region (dashed line), as compared to the
experimental values (black curve). Experimental data points
from Ref. 5 correspond to the small circles, the line is a guide
to the eye. The inset shows the quantum critical contribution
to ϑyx, which becomes large already at small gap energies ∆.
Numerical data points in the inset correspond to the crosses,
which asymptotically behave as a linear function of gap am-
plitude, as given by the black line.

local minimum of the dispersions Eq. (4), whose dis-
tance from the chemical potential can be expanded as
∆E = (dµ/dx)x1(x− x1) +O(x− x1)2, as we confirmed
numerically. Analogous to the discussion in the context
of the SDW gap, the gap energy ∆E has to be large
enough in order to neglect magnetic breakdown and ther-
mal excitations across the gap. These effects tend to
smear out the discontinuity in the Nernst signal over a
finite range of doping, while the order of magnitude in
change in the signal is not expected to change consider-
ably.

The asymptotic low temperature limit of the Sommer-
feld expansion is valid as long as kBT � |∆E|, and thus
thermal excitations change the behavior near the hole
pocket in a finite range ∆x ≈ (kBT )/|dµ/dx|x1 of dop-
ing. Considering the numerical value dµ/dx|x1 ≈ 1.52eV ,
∆x < 0.01 at T < 100K. An estimate of the doping
range where magnetic breakdown according to formula
(6) can occur is given by

∆x ≈ vF

|dµdx |x1

√
2~e
π
B ≈ 5× 10−3

√
B , (15)

where the universal Fermi velocity vF = 2.3 × 107cm/s

and the numerical value |dµdx |x1 ≈ 1.52 eV have been used.
For experimentally relevant magnetic field strengths of
B ≈ 10T , the Nernst signal is therefore expected to
become sharply enhanced already for dopings of about
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1− 2% below x1, consistent with the experimental result
shown in Fig. 2.

Near the opening of the hole pocket at x = x1, the hole
dispersion is approximated by εh(k) =

∑
i δk

2
i /mi − µh,

and the T = 0 hole contributions to electrical transport
become

σhxx(µh) =
2
3
µhτh(µh)e2Nh

m̄h

σhxy(µh) =
2
3
µhτ

2
h(µh)

e3B

c

Nh
m̄h

(16)

for µh > 0 and vanish otherwise. In the following, we
formally distinguish electron and hole scattering rates.
The hole DOS Nh and the reduced hole mass m̄h =
(m1m2)/(m1 + m2) are taken to be constant. For weak
dilute disorder, the scattering rate follows 1/τ(µh) ∝ Nh
and is energy independent. According to Eqs (13) and
(16), the Nernst signal and the thermopower have dis-
continuities at µh = 0

∆ϑyx =
[
σexxα

h
xy − σexyαhxx
(σexx)2

]
µh=0+

∆ϑxx =
[
αhxx
σexx

]
µh=0+

. (17)

Expanding the electron dispersion as ε(k) =∑
i δk

2
i /mi − µ, the relative changes are

∆ϑyx
ϑyx|µh=0−

= −Nhm̄eτh
Nem̄hτe

[
τh + τe
τ ′eµe

]
∆ϑxx

ϑxx|µh=0−
= −τhNhm̄e

τeNem̄h
. (18)

Sizable contributions from the discontinuity can there-
fore be expected, and τ ′e < 0 would explain why the
Nernst signal shows no sign change in experiments on
PCCO5. Moreover, a sign change near x = 0.15 has
been found in the thermoelectric power11, as predicted
by Eq. (18). Assuming τhNhm̄e ≈ τeNem̄h, the mag-
nitude of the discontinuity in the thermopower is about
twice the magnitude of the thermoelectric power in the
overdoped region. This relative change in thermopower
is quantitatively equivalent to the change observed from
x = 0.15 to x = 0.16 in the thermopower measurements
from Ref. 11. We briefly extend this analysis to a gen-
eral two-carrier system with carrier types 1 and 2, where
∆ϑyx = (σ(1)

xx α
(2)
xy − σ(1)

xy α
(2)
xx )/(σ(1)

xx )2 right at the emer-
gence of carrier type 2, since Eq. (16) leads to σ̂(2) = 0
at the opening of a carrier pocket. According to Eq. (13)
and considering positive magnetic field strenghts B in
the following, α(2)

xy is always positive and α(2)
xx has always

the sign of σ(2)
xy due to Eq. (13). This means that ∆ϑyx

is always positive if the carriers 1 and 2 have opposite
charge, while ∆ϑyx might both be negative or positive if
carrier type 1 and 2 have the same charge. To decide on
the charges of carriers 1 and 2, in addition the sign of the
second contribution in ∆ϑyx can be determined from a
measurement of ∆ϑxx tan(ΘH).

FIG. 3: To leading order in the gap amplitude ∆, opening
of the SDW gap modifies the Fermi surface only near the
crossing points in momentum space where εp = εp+Q = µ.
As shown in this sketch, a crossing point is coinciding with the
crossing of the dashed lines as long as curvature of the Fermi
surfaces is neglected near the crossing point. The vertical
dashed line is the Fermi line for the normal state which is
parallel to the vector (0, π). The horizontal dashed line is the
normal state Fermi line shifted by Q = (π, π), thus directing
parallel to (π, 0). The reconstructed Fermi surface contains
electron pockets, denoted by +, and hole pockets, denoted by
-.

C. Behavior near quantum critical point

We now analyze the onset of the Nernst signal at the
x = xc QCP where ∆ first becomes non-zero with de-
creasing x. A calculation analogous to Refs 13,32 can be
employed to calculate the change δϑ = ϑ(∆)− ϑ(∆ = 0)
to linear order in the gap ∆. The changes of the disper-
sion to leading order in ∆ occur around momenta p with
εp+Q = εp = µ, which are given by the crossing points
in Fig. 1a and their symmetry related counterparts. It is
useful to parametrize p by εp and εp+Q, what is possi-
ble in the vicinity of any crossing point p?. This can be
achieved by expanding the dispersions

εp − µ = v? · δp +
mij

2
δpiδpj

+
yijk

6
δpiδpjδpk +O(δp4)

εp+Q − µ = v?Q · δp +
nij
2
δpiδpj

+
zijk

6
δpiδpjδpk +O(δp4) , (19)
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where

δp = p− p?

v? = v(p?), v?Q = v(p? + Q)

mij = (∂2εp/∂pi∂pj)|p?

nij = (∂2εp/∂pi∂pj)|p?+Q

yijk = (∂3εp/∂pi∂pj∂pk)|p?

zijk = (∂3εp/∂pi∂pj∂pk)|p?+Q . (20)

Equation (19) can be inverted to yield

δp = u1εp + u2εp+Q = (u1 +
∆2

ε2
p

u2)εp (21)

with

u1 =
v?Q × [v? × v?Q]

(v? × v?Q)2

u2 =
v? × [v?Q × v?]

(v? × v?Q)2
. (22)

Differentiating Eq. (19), substituting Eq. (21) into it and
using the result in Eq. (12) for the electrical conduc-
tivities, we obtain the linearized T = 0 change in the
electrical conductivity tensor δσ̂ = σ̂(∆) − σ̂(∆ = 0) in
multiples of the conductance quantum σQ = e2/~ as

δσxy = σQτ
2B∆

Φ0
ẑ · [ηp1 + ηsp2 +3ηp2 + 3ηsp1 ]× (v?Q − v?)

δσxx = −σQ
τ

π

(v? − v?Q)2

|v?Q × v?Q|
∆ .

(23)

Here, the vectors

ηp1 = (m11u1x +m12u1y)x̂ + (m21u1x +m22u1y)ŷ
ηp2 = (m11u2x +m12u2y)x̂ + (m21u1x +m22u2y)ŷ

ηp+Q
1 = (n11u1x + n12u1y)x̂ + (n21u1x + n22u1y)ŷ

ηp+Q
2 = (n11u2x + n12u2y)x̂ + (n21u1x + n22u2y)ŷ

(24)

have been defined. Parenthetically, we note that the lin-
earized change δσxx in the electrical conductivity has
been treated in great detail previously for the three di-
mensional SDW transition in Cr, with essentially the
same result32. Via Eq. (13), changes in the thermoelec-
tric conductivities are obtained from dδσij

dµ . These deriva-
tives of Eq. (23) are obtained from the relations

dv?i
dµ

=
∑
j

mij(u
j
1 + uj2)

dmij

dµ
=
∑
k

vijk(uk1 + uk2) , (25)

FIG. 4: Sketch of the normal state Nernst signal dependence
on temperature. The linear temperature dependence at lowest
T turns over in a maximum at temperatures below the spin
density wave ordering temperature. At optimal doping, the
position of this maximum is roughly 50K. Above the peak
temperature, the signal vanishes proportional to temperature.

Linearizing Eq. (11) in ∆ in this way yields δϑxx and
δϑyx to linear order in ∆. From a numerical calculation
of ϑxx and ϑyx, we obtain the values δϑxx/ϑxx = 47.4∆
and δϑyx/ϑyx = −39.8∆, see also Fig. 2. Very close to
xc = 0.165 it might be difficult to measure the quantum
critical contributions δϑyx and δϑxx experimentally due
to other contributions to the signal which we could not
specify.

D. Finite temperatures

At finite temperatures the Fermi surface as well as
the quasiparticle scattering rate is expected to change.
These effects will influence the temperature dependence
of the Nernst signal which is sketched in Fig. 4. First
of all, in cuprate materials it has to be considered that
the quasiparticle scattering rate is linear in temperature
in most parts of the Brillouin zone20. Important changes
in the Fermi surface have to be considered at temper-
atures above TSDW . Below this temperature, fluctua-
tions of the SDW order parameter remain gapped and
can be neglected. Once the SDW gap closes, the Fermi
surface reconstructs and fluctuations of the SDW order
parameter provide an important scattering mechanism.
In the far underdoped region of electron doped cuprates,
TSDW is of order the Debye temperature and scattering
off phonons has to be considered as well.

In a range of temperatures above TSDW , a sizable
Nernst effect is still observed in experiment5. Our present
mean-field theory for Fermi surface reconstruction cannot
account for the size of the signals. However, there is no
good theory for transport in this fluctuation regime. It
would be interesting to examine the behavior in a recent
theory of thermal fluctuations in the orientation of the
SDW order39. The experimental observations at finite
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temperatures are not in contrast with our assumptions,
which are only valid at temperatures below TSDW , where
fluctuations of the SDW order parameter are negligible.
In fact, it was shown that antiferromagnetic fluctuations
enhance the Nernst signal at finite temperatures above
the magnetic ordering temperature TSDW and reproduce
the peak structure in the normal state Nernst signal ob-
served in experiment31. The relaxation time approxi-
mation (RTA) certainly fails to reproduce this effect, be-
cause it would predict a small Nernst signal above TSDW .
Above this temperature, the normal state quasiparticles
are gapless and form a single carrier system. Within the
relaxation time approximation, the Nernst signal is thus
diminished by the Sondheimer cancellation33, in contrast
to experimental results.

IV. ANTIFERROMAGNETIC FLUCTUATIONS

Within our assumptions, the SDW gap vanishes at a
quantum critical point upon doping with electron carri-
ers. There has been substantial disagreement over the
position of this quantum critical point. Elastic neu-
tron scattering measurements on NCCO suggest short
ranged antiferromagnetic order between x = 0.145 and
x = 0.15414, and it has been proposed that short ranged
order might even occur at x = 0.13434. Transport
measurements on PCCO show rapidly changing trans-
port properties at dopings below x = 0.165, suggesting
that Fermi surface properties change drastically already
slightly above optimal doping. Part of the confusion
might originate from the uncertainty about the oxygen
content of the samples, which makes it difficult to com-
pare the effective carrier concentration of different sam-
ples.

Experimental results show a strong doping dependence
of Hall and Nernst effect way above optimal doping5,12,
where clearly no spin density wave gap exists. This sug-
gests that the band structure parameters change upon
electron doping. One way to understand this behavior is
to analyze self-energy corrections originating from anti-
ferromagnetic spin-fluctuations. This analysis also helps
to clarify whether short-ranged magnetic order can ac-
count for the observed Fermi surface reconstruction and
enhancement of the normal state Nernst signal for elec-
tron dopings below x ≈ 0.16.

The effect of spin fluctuations on the Fermi surface can
be obtained from the real part of the electronic self en-
ergy. We neglect the imaginary part of the self energy
by assuming again that impurity scattering dominates
transport at lowest temperatures. As discussed in sec-
tion III, scattering on spin flucuations would be beyond
the scope of our approach due to the failure of the relax-
ation time approximation to treat this effect. The leading
approximation to the electronic self energy due to spin

fluctuations is

Σ(k, iω) = −g2T

∫
d2q

∑
iΩn

G(k + q, iω+iΩn)D(q, iΩn) ,

(26)
where G and D are electron and spin fluctuation Mat-
subara Green’s functions, respectively. We will use:
G(p, iω) = (iω−ζp)−1 and D(q, iΩn) = −(Γq + |Ωn|)−1,
with ζp = εp − µ and Γq = Γ(r + ξ2(q − Q)2), where
Γ is the energy scale characteristic of spin fluctuations
and ξ the correlation length of magnetic order. The dis-
tance to the SDW quantum critical point is controlled
by the parameter r, and the ordering wavevector is again
Q = (π, π).

As has been discussed in Ref. 13, the self energy at
T = 0 and iω = 0 can be integrated as

Σ(k, iω = 0) = 0.5λζk+Q ln(r2 + (ζk+Q/E0)4) , (27)

where r and ζk+Q/E0 are assumed to be small. The
energy scale E0 is a cutoff of order the normal state band
width and λ is a dimensionless coupling constant. The
new electronic dispersion is

εp + Σ(p, iω = 0) . (28)

Using this new dispersion in Eqs (4) and (12), the resul-
tant Nernst signal (not shown) is enhanced but negative
for the renormalized Fermi surfaces shown in Fig. 5. We
obtained a negative Nernst signal for a wide range of
parameters r ∈ [0.001, 0.1] and λ ∈ [0.1, 0.4], including
a regime of very weak spin fluctuation effects where we
believe Eq. (28) is an accurate approximation.

We conclude that the renormalization of the Fermi
surface due to spin fluctuations (states without long-
range SDW order) fails to reproduce the Nernst signal
observed in experiment. At optimal doping and below,
this means that the observed Fermi surface reconstruc-
tion is more likely to originate from long-range SDW
order. This interpretation is also supported by a com-
parison of the renormalized Fermi surfaces in Fig. 5
with ARPES measurements on NCCO7. At electron
dopings of x = 0.15 and below, photoemission inten-
sity is significantly suppressed near (0.65π, 0.3π) (and
its symmetry related points) at the intersection of the
Fermi surface with the antiferromagnetic Brillouin zone
boundary. This change in photoemission intensity cannot
be explained from Eq. (28), since leading order self en-
ergy corrections are cancelled at any crossing point where
ε(p+Q) = ε(p) = µ. Thus again, the opening of a SDW
gap slightly above optimal doping x = 0.15 seems more
plausible to explain the Fermi surface reconstruction seen
in experiment.

V. CONCLUSIONS

Our results show that SDW order in the electron-doped
cuprates has fundamental implications for the Nernst sig-
nal and the thermopower. As the SDW gap becomes
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FIG. 5: Fermi surface changes due to finite spin correlation
lengths corresponding to electron dopings somewhat above
the SDW quantum critical point. The Fermi surface without
any influences of spin fluctuations is shown as the dotted line.
The dashed line shows a renormalized Fermi surface for a large
coupling to spin fluctuations (λ = 0.4) and a small distance
r = 0.001 to the quantum critical point. Renormalization
effects become weaker for a smaller coupling λ = 0.2 and
r = 0.1 (continuous line). At the crossing points with ε(p +
Q) = ε(p) = µ, the Fermi surface remains unchanged by spin
fluctuations. The cutoff energy is E0 = 0.88 eV .

stronger, the hole-like carriers will eventually vanish and
the Nernst signal will have a large discontinuous change
at the lowest T . This behavior is also obtained for the
thermopower, where the discontinuity in addition should
cause an observable sign change in the signal. At finite
T , the discontinuities will be smeared out by thermally
excited carriers and magnetic breakdown. To obtain our
results, the presence of oppositely charged carriers repre-
sents a necessary, but not a sufficient condition in order
to obtain an enhanced Nernst signal. The fundamental
origin of the maximal Nernst signal within our calcula-
tion is a singularity in the quasiparticle density of states,
while the Nernst signal gets weaker if the Fermi surface
moves away from this singularity, although two types of
carriers are still present in the Fermi surface. We note
that the existence of oppositely charged and current car-
rying quasiparticles is a widespread argument to explain

an enhanced normal state Nernst signal, but our results
require a more subtle physical origin than the require-
ment of two types of carriers would represent.

In this sense, our results are also in contrast with the
analysis of the ambipolar Nernst effect in Ref. 35, which
predicts a maximal Nernst signal when hole and electron-
like carrier densities exactly compensate each other. This
explanation had been used previously to account for the
large normal state Nernst signal in PCCO5. Within our
analysis, the ambipolar signal is instead largest when the
hole pockets just touch the Fermi surface, and decreases
rapidly until the carriers compensate most.

Our findings are also likely of relevance to the hole-
doped cuprates. Recent explanations of a large normal
state Nernst signal in these materials were based on the
proposal of d-density wave order35,36. A large normal
state Nernst signal has recently been reported38 in the
stripe-ordered phase of La1.6−xNd0.4SrxCu4, which van-
ished in the non-ordered state. These findings suggest
that stripe order enhances the normal state Nernst ef-
fect, and it would be interesting to extend our results to
spin/charge density wave orders.

The onset of “stripe” order, and the evolution
from “large” to “small” Fermi surfaces with decreasing
doping37 could lead to a large Nernst signal by the open-
ing/closing of hole or electron pockets. The connection
of such normal state features to those associated with
the superconductor-insulator QPT computed earlier4 re-
mains an important open problem, and some ideas have
appeared in Ref. 39.

In summary, we have presented a theory for the anoma-
lously large normal state Nernst signal in the electron-
doped cuprates. We established a direct relation between
SDW order and the peak of the normal state Nernst sig-
nal at optimal doping. Finally, while the energy depen-
dence of the scattering rate is unlikely to modify our
result, a more detailed understanding of the scattering
mechanism is necessary for a quantitative understanding
of the large Nernst signal in the underdoped and over-
doped regions.
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