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Abstract

We introduce T-branes, or “triangular branes,” which are novel non-abelian bound
states of branes characterized by the condition that on some loci, their matrix of normal
deformations, or Higgs field, is upper triangular. These configurations refine the notion
of monodromic branes which have recently played a key role in F-theory phenomenology.
We show how localized matter living on complex codimension one subspaces emerge, and
explain how to compute their Yukawa couplings, which are localized in complex codimension
two. Not only do T-branes clarify what is meant by brane monodromy, they also open up
a vast array of new possibilities both for phenomenological constructions and for purely
theoretical applications. We show that for a general T-brane, the eigenvalues of the Higgs
field can fail to capture the spectrum of localized modes. In particular, this provides a
method for evading some constraints on F-theory GUTs which have assumed that the
spectral equation for the Higgs field completely determines a local model.
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1 Introduction

One of the most intriguing facts to emerge in the post-duality era is that gauge fields and

matter can be trapped on branes and their intersections. This idea of localization opened

up the possibility that perhaps the observed particles in our universe may have their origin

in a small region of an internal space, leading to a potentially dramatic simplification in

the search for our corner of the vast string landscape. Combined with a few key features, in

particular the assumption of a supersymmetric grand unification of forces, this has naturally

led to F-theory as a promising corner of the string landscape [1–4].1 In these models seven-

branes trap the gauge fields and their intersections lead to matter localized on complex

curves in the internal space. At points where these matter curves meet, one finds a Yukawa

coupling among the localized modes.

The physics of these systems is captured by a topologically twisted eight-dimensional

gauge theory which describes a stack of space-filling seven-branes wrapping a compact

four-cycle S. This leads to a 4D N = 1 supersymmetric gauge theory whose low energy

dynamics are governed by a generalization of Hitchin’s equations [2, 7]. The explicit field

theory description enables many properties of intricate configurations of intersecting seven-

branes to be computed with relative ease. The key fact is that the eight-dimensional

gauge theory supports an adjoint Higgs field Φ whose expectation value parameterizes

normal motion of the seven-brane stack. Configurations of supersymmetric intersecting

seven-branes are then obtained by studying solutions to the equations of motion where

Φ has a holomorphically varying vacuum expectation value. Matter fields are described

by fluctuations around a background 〈Φ〉 and Yukawa couplings measure the obstruction

to extending these solutions beyond linear order. A simple class of backgrounds which

exhibit this general structure is to take 〈Φ〉 to reside in the Cartan subalgebra. Along

codimension one loci the background 〈Φ〉 degenerates and the local effective gauge group is

partially unHiggsed. This enhancement of the symmetry group leads to matter curves. On

codimension two loci where the local symmetry group enhances further one finds trilinear

Yukawa couplings.

Localization of the particle physics degrees of freedom, especially the interaction terms,

appears to be a promising framework for string based phenomenology. The real world ex-

hibits Yukawa couplings which display striking patterns and hierarchies. In our current

understanding of nature these couplings are mysterious parameters and one task of be-

yond the standard model physics is to explain them. In the seven-brane gauge theory the

Yukawa term is a superpotential interaction and as such is a holomorphic object, invariant

under the complexified group of gauge transformations and insensitive to the metric on the

seven-brane worldvolume.2 When three seven-branes intersect, the fields living at the three

1See [5, 6] for recent reviews.
2Of course the physical Yukawa coupling does in addition depend on the metric coming from the D-term
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Figure 1: A configuration of intersecting branes can be studied as a background in a theory
of coincident branes. In (A) we have a stack of three branes supporting a U(3) gauge
group. In (B), the Higgs field Φ develops a vev and describes three intersecting branes
with gauge group U(1)3. At the intersection of branes are trapped charged fields. At triple
intersections a Yukawa coupling is generated.

matter curves are paired together to form a coupling. From the geometry it is clear that this

interaction is concentrated at the triple intersection of branes and by making full use of the

symmetries of the superpotential one can make this exact: the contribution to the superpo-

tential from a triple intersection of branes is localized to an arbitrarily tiny neighborhood

of the triple intersection. This coupling is therefore a universal object. It depends only on

the dynamics of the theory in a small patch containing the triple intersection and hence

is independent of the four-cycle S. Yukawa couplings in seven-brane gauge theories are

thus incredibly robust physical quantities and this gives us hope that perhaps seven-branes

provide an avenue for string theory to make contact with the theory of flavor [8–11].

An important observation by [12] was that to achieve exactly one heavy generation of

up type quarks in these models, the phenomenon of seven-brane monodromy is required.

Subsequent works [9,13,14] showed that seven-brane monodromy is a helpful ingredient for

other aspects of F-theory models as well. The notion of a monodromic brane was originally

interpreted as field configurations 〈Φ〉 which are valued in the Cartan but have branch cuts

and undergo monodromy by elements of the Weyl group. This characterization in terms

of just the eigenvalues of Φ turns out to be physically inadequate in many situations. For

example it was found in [15,16] that a three-brane probing a configuration of “monodromic

branes” is sensitive to far more than just the eigenvalues of Φ. In this paper we show

that the correct picture of monodromy is that the background Higgs field can be described

globally without branch cuts, but that there are loci where 〈Φ〉 cannot be gauge rotated to

normalizations.
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lie in the Cartan. Away from such loci one can view the Higgs field as lying in the Cartan,

but then in principle it is only single valued up to the action of the Weyl group. Thus

a well defined, single-valued Higgs field can lead to a monodromic brane. For example in

the case of a U(N) gauge group, there can be loci where 〈Φ〉 is upper triangular, and thus

non-diagonalizable. We call such configurations of seven-branes “T-branes.”

T-branes can be viewed as certain non-abelian bound states of branes, whose description

is not completely captured by the position-dependent eigenvalues of the Higgs field. The

most dramatic possibility is to contrast a nilpotent non-zero 〈Φ〉 with the zero matrix.

Both of these have vanishing eigenvalues but lead to strikingly different physics in the

worldvolume gauge theory. The map between T-branes and monodromic branes is many to

one, and for a given choice of brane monodromy group there are many choices of T-branes

with the same monodromy action. In this way we can view T-brane configurations as a

refinement and clarification of the idea of a monodromic brane. This fills a conceptual gap

in the current literature, for although many papers have explored (in a different language)

some examples of monodromic branes, a systematic and general analysis of these systems

has been lacking.

A general method for studying such Higgs fields involves the technology of spectral

covers, reviewed for example in [17]. Here it is important to draw a distinction between

a general spectral cover, which is specified by a choice of a matrix 〈Φ〉, and the spectral

equation, which is specified by the characteristic polynomial for 〈Φ〉. It was found in [12,18]

that the spectral equation for Φ can be interpreted as defining some aspects of a local

elliptically fibered Calabi-Yau fourfold, and thus in F-theory language, as capturing some

aspects of a configuration of seven-branes. Unfortunately, in the physics literature it has

been often assumed that the spectral equation carries complete information about a local F-

theory compactification. Our aim in this paper will be to determine when such assumptions

are warranted, when they are not, and in all cases, how to analyze the corresponding T-

brane configurations using 〈Φ〉.
In section 2 we begin with a review of the case where the Higgs field is valued in the

Cartan. For concreteness we specialize to the case of U(N) gauge theory and consider

position dependent eigenvalues of 〈Φ〉. This is the gauge theory description of intersecting

branes. The unbroken gauge group is a product of U(ki)’s and the system is governed by a

diagonal background Higgs field 〈Φ〉. Here we also review the residue calculus which enables

one to compute exactly and explicitly the localized contributions to the superpotential.

Much of this material is known from [2, 11] and we review it here as we will need it when

we generalize the discussion to T-branes.

Following this preliminary analysis original results begin in earnest. We generalize sec-

tion 2 by turning to the more interesting case with fundamentally non-abelian T-brane

solutions where 〈Φ〉 is non-diagonalizable. Our first task in section 3 is to describe in detail
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examples of such triangular backgrounds and the associated spectrum of massless fluctua-

tions. In contrast to the abelian intersecting brane solutions of section 2 the equations of

motion are now non-linear and obtaining exact solutions is already a non-trivial task. As

evidence of this fact we find that in the course of studying the simplest possible examples

the famous differential equations of Liouville and Painlevé make a surprise appearance.

Next, we develop the study of the spectrum of massless matter in these backgrounds from a

number of points of view. Of particular importance is our description of the general notion

of a matter curve where a fluctuation is trapped. In contrast to the abelian case there is

now no simple geometric picture like figure 1 which makes the existence of localized matter

obvious. Nevertheless, we find that non-diagonalizable Higgs backgrounds frequently sup-

port trapped charged matter, and that matter curves are again characterized by loci where

the complexified gauge group is partially unHiggsed.

With some examples under our belt, in section 4 we turn to an abstract description of

the localized spectrum and their superpotential couplings. The goal we accomplish there

is to develop a holomorphic formalism where the full symmetries of the superpotential are

manifest and where exact answers are available for the universal localized Yukawa couplings

which occur when matter curves in T-brane backgrounds intersect. This section forms the

technical core of the paper. The most significant conceptual point that we address is to

understand the precise match between the 8D fields of the seven-brane gauge theory which

describe a localized mode and the actual 6D field which resides on a matter curve. Once

this correspondence is developed, it is straightforward to generalize the residue calculus of

intersecting branes in section 2 to a wide class of background Higgs fields.

The remaining sections of the paper apply the holomorphic formalism of section 4. Sec-

tion 5 explains in some detail how some T-brane backgrounds have a simple interpretation

in terms of brane recombination. We match the massless spectra in both the original and

recombined frame and determine the conditions under which such an alternative picture is

applicable. One particularly useful result of this analysis is the determination of exactly

when a background Higgs field can be reconstructed from its eigenvalues.

Section 6 is devoted to a more detailed analysis of the monodromy group. We explain

when the notion of a T-brane collapses to that of a monodromic brane and explain how,

under appropriate assumptions, the monodromy group provides a useful picture of the

spectrum of localized charged matter and various selection rules in the superpotential.

In section 7 we compute a number of simple examples of superpotentials including the

phenomenologically interesting Yukawas generated at E6, E7, and E8 points conjectured to

be responsible for the mass of the top quark. In this section we also discuss a wide variety

of novel physical properties which cannot be seen from the eigenvalues of 〈Φ〉. Of significant

practical importance for F-theory phenomenology, we present examples which show that

the spectral equation for the Higgs field does not in general determine the spectrum of
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massless charged matter. These counterexamples provide a general way to bypass various

constraints on the matter content of F-theory GUTs found in [14,19], which assumed that

the spectral equation provides complete information on the localized matter content. Let

us repeat: to specify the physical theory, one must in general indicate an explicit choice of

〈Φ〉.
Finally, section 8 contains our conclusions and possible directions for further investiga-

tion. Some additional technical material is collected in the Appendices.

2 The Field Theory of Intersecting Seven-Branes

In this section we review how intersecting branes are described by background field configu-

rations in a fixed field theory. Much of this material can be found throughout the literature,

and we shall follow in particular the discussion in [2,11,20]. We consider seven-branes which

fill a four-dimensional Minkowski spacetime and wrap a compact four-manifold S inside our

compactification. To preserve supersymmetry S should be a complex and Kähler manifold,

with Kähler form ω. For applications to type IIB string theory it is natural to consider a

unitary gauge group U(n) with n the number of seven-branes. However our considerations

have a wider application to the non-perturbative case of F-theory. There one may consider

a seven-brane which supports an arbitrary compact Lie group G as the gauge group, and

for now we will frame the discussion in this more general setting.

On a flat brane worldvolume, the field content and Lagrangian of this gauge theory

is simply that of minimal 8D N = 1 super-Yang-Mills. The bosonic fields are then a

gauge field A and a complex adjoint scalar Φ. As usual with brane field theories, the

adjoint scalar describes normal fluctuations of the brane worldvolume in the ambient space

of the compactification. When we wrap the branes on the curved background R3,1 × S,

supersymmetry demands that the field theory be topologically twisted in such a way that

Φ is now a (2,0) form on S, and when this is so the resulting effective 4D theory in Minkowski

space has an unbroken N = 1 supersymmetry [2, 21, 22]. Our interest is in studying field

configurations in this theory which preserve the SO(3, 1) Lorentz group, thus we take the

expectation values of the connection A in the Minkowski directions to vanish. Requiring

N = 1 supersymmetry in four-dimensions then enforces the following BPS equations of
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motion on the fields [2, 7]3

F 0,2
A = 0, (2.1)

∂̄AΦ = 0, (2.2)

ω ∧ FA +
i

2
[Φ†,Φ] = 0. (2.3)

The first two of these equations are determined by F-flatness conditions. The relation (2.1)

is an integrability requirement which tells us that the gauge field A is a connection on

a holomorphic bundle. Equation (2.2) then states that, with respect to the holomorphic

structure defined by A, the Higgs field Φ is holomorphic. One can obtain these two equations

by minimizing the superpotential [1, 2]:

W8D =

∫
S

Tr
(
F 0,2
A ∧ Φ

)
. (2.4)

An important property of this superpotential is that it is insensitive to any Kähler data.

By virtue of the topological twist, the superpotential density is naturally a (2,2) form and

can be integrated over S without reference to the metric. As a consequence of this the

two F-term equations (2.1) and (2.2) are invariant under the complexified group of gauge

transformations, and throughout this work we will make heavy use of this fact. Finally,

the third constraint (2.3) is the D-flatness condition for this gauge theory. It is explicitly

sensitive to the Kähler form ω and as in similar gauge systems it plays the role of a stability

condition. These three equations are well-known [7] and constitute the basic tool which we

shall use to study general configurations of seven-branes. They define a rich moduli space

of field configurations on S which one should think of as a generalization to two complex

dimensions of the celebrated Hitchin system [23].

Our basic paradigm in this paper will be to study seven-brane gauge theories in the

presence of a BPS background (〈Φ〉, 〈A〉). The massless matter content of such a configu-

ration can then be deduced by studying small fluctuations around the given solution. We

define first order quantities ϕ and a by

Φ = 〈Φ〉+ ϕ, (2.5)

A0,1 = 〈A0,1〉+ a. (2.6)

From now on, the total quantum fields Φ and A will not appear and for simplicity of

notation we will denote the background value 〈Φ〉 by Φ and 〈A〉 by A. We linearize the

3A word on conventions. We define a matrix X to be in the Lie algebra if eX is in the gauge group.
Thus for example, if our gauge group is SU(n) then the Lie algebra consists of traceless antihermitian
matrices. Also one should be aware that in comparison with the notation used elsewhere in the literature
Φthere ≡ −Φ†here.
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BPS equations to find the equations satisfied by the fluctuation fields (ϕ, a)

∂̄Aa = 0, (2.7)

∂̄Aϕ+ [a,Φ] = 0, (2.8)

ω ∧
(
∂Aa− ∂̄Aa†

)
+
i

2

(
[Φ†, ϕ] + [ϕ†,Φ]

)
= 0. (2.9)

To get a correct count of the physically distinct modes, we must quotient the space of

solutions to the above by the action of the linearized group of gauge transformations. As

one readily checks, the effect of a gauge transformation with small parameter χ is to change

the fields as

a → a+ ∂̄Aχ, (2.10)

ϕ → ϕ+ [Φ, χ]. (2.11)

To deduce the spectrum of the theory we must then determine the space of solutions to the

fluctuation equations (2.7) − (2.9) modulo the linearized gauge transformations (2.10) −
(2.11).

Once we have determined the matter spectrum we can move on to study their F-term

interactions. These are dictated by the 8D superpotential (2.4). Since the fluctuation

fields solve the linearized BPS equations, at leading order the superpotential gives a cubic

coupling. We expand the fields about their vacuum expectation values and use the equations

of motion satisfied by the background to find

WY =

∫
S

Tr (a ∧ a ∧ ϕ) . (2.12)

This is a trilinear Yukawa coupling, and one primary aim in the remainder of this work is to

elucidate its structure both abstractly and explicitly in a variety of examples. One can see

directly that this coupling is gauge invariant under the linearized gauge transformations

(2.10)-(2.11). If χ is the gauge parameter, then the F-term equations of motion for the

fluctuations imply that the first order change in WY is given by

δWY =

∫
S

∂̄A Tr (a ∧ [ϕ, χ]) (2.13)

Since the change in the superpotential is ∂̄A exact, by virtue of the fact that the surface S

is compact we conclude that δWY vanishes.

The problem of extracting the low energy behavior of a given seven-brane configuration

is now reduced to the study of the solutions to the fluctuation equations and their renor-

malizable superpotential couplings as computed by (2.12). In general the physics depends
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in an intricate way on the background fields, and it useful to organize the study of solutions

by the complexity of the Higgs field Φ. The simplest class of widely studied backgrounds

are the intersecting brane solutions. We define these by the condition that

[Φ,Φ†] = 0. (2.14)

In such a situation the Higgs field Φ can be brought to a gauge where it is valued in

the Cartan subalgebra. In the simplest case of a U(n) gauge group this means that Φ is

diagonal. For simplicity, it is also common to assume that no background gauge field flux

has been switched on. In this case, the physics is totally dictated by the behavior of the

eigenvalues of Φ with each eigenvalue controlling the position of one of the branes. For the

remainder of this section we present a detailed review of these intersecting brane solutions.

Following this, in section 3 we undertake the study of seven-branes where the simplifying

assumption (2.14) is dropped.

2.1 Matter

2.1.1 Unitary Gauge

Although realistic applications of seven-brane gauge theory require that the complex surface

S should be compact, much of the intuition for solutions can be seen in the non-compact

limit where we study the equations on a small flat patch C2 ⊂ S with complex coordinates

(x, y). We work in the simplest case of an intersecting brane solution with a unitary gauge

group U(n). As usual, the overall U(1) center of mass decouples and allows us to restrict

our attention to SU(n) field theory. Here we further simplify the discussion by taking the

background gauge field A to vanish. The only non-trivial constraint on the background is

then

∂̄Φ = 0. (2.15)

The simplest class of solutions consists of a diagonal Higgs field Φ with constant eigenval-

ues λi. Since the Higgs field parameterizes deformations of the brane stack, its eigenvalues

control the relative positions of each of the branes and this vacuum has the familiar inter-

pretation of moving the branes off of each other. If all the eigenvalues are distinct then the

gauge group is Higgsed from SU(n) to U(1)n−1.

Still focusing on a small patch C2, we can obtain a more interesting solution by taking

the eigenvalues of Φ to be holomorphic functions, λi → λi(x, y). A basic fact is that this

background now describes a configuration of supersymmetric intersecting seven-branes.

Along the loci where pairs of eigenvalues coincide the relative separation of a pair of branes

shrinks to zero and the seven-branes collide. It is exactly in this situation that one expects

to find massless charged matter at the intersection given by open strings stretched between

9



the two branes, and one of the virtues of the gauge theory description is that these states

are easily visible.

Following [2,20] and especially [11], let us now study this phenomenon concretely in the

simplest possible example of an SU(2) gauge theory with background Higgs field

Φ =

(
x
2

0

0 −x
2

)
dx ∧ dy. (2.16)

This background breaks the gauge symmetry from SU(2) to U(1). Away from the complex

line x = 0 the eigenvalues of Φ are distinct and this field describes a pair of separated

branes. Along x = 0 these branes intersect.

To find the spectrum of massless matter, we study the spectrum of small fluctuations

around the background (2.16). Since A = 0, all covariant derivatives become ordinary

derivatives, and the F-term equations read

∂̄a = 0 (2.17)

∂̄ϕ = [Φ, a]. (2.18)

We can solve these equations by noting that since we are working locally on a patch C2 ⊂ S,

the ∂̄ operator is exact. Thus any differential form which, like a, is ∂̄ closed is also ∂̄ exact.

So we can solve (2.17) by introducing an sl(2,C) matrix ξ with

∂̄ξ = a. (2.19)

Since a transforms as a (0, 1) form on C2, ξ transforms as a scalar. The next step in solving

the linearized equations is to integrate (2.18)

ϕ = [Φ, ξ] + h, (2.20)

with h is an arbitrary holomorphic adjoint (2, 0) form. Given the data (ξ, h) the final

D-term equation gives us a second order differential equation relating them.

ω ∧ (∂a− ∂̄a†) +
i

2

(
[Φ†, ϕ] + [ϕ†,Φ]

)
= 0 (2.21)

To study this equation it is natural to decompose ξ into eigenvectors under commutation

with the background Higgs field Φ. The possible sl(2,C) eigenmatrices and their eigenvalues

are listed below.
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• A diagonal ξ which commutes with Φ:

ξ =

(
ξ0 0

0 −ξ0

)
. (2.22)

• An off-diagonal ξ with eigenvalues ±x:

ξ =

(
0 ξ+

0 0

)
eigenvalue x, ξ =

(
0 0

ξ− 0

)
eigenvalue − x. (2.23)

Focusing now on the first possibility of a diagonal ξ, a short calculation shows that we can

reach a unique gauge where the holomorphic matrix h is simultaneously diagonal and the

non-vanishing matrix entries ±ξ0 are real. The linearized D-term equation then reduces to

the fact that ξ0 is harmonic. Thus the solution is specified by

a =

(
∂̄ξ0 0

0 −∂̄ξ0

)
, ϕ =

(
h0 0

0 −h0

)
dx ∧ dy, ∆ξ0 = ∂̄h0 = 0 (2.24)

where ∆ denotes the usual Laplacian. These modes are nothing but the gauge multiplet

of the unbroken U(1) gauge group that remains in the presence of our SU(2) background

(2.16). Geometrically, the perturbation a encodes the freedom to turn on a flat connection,

while the ϕ mode further deforms the brane configuration.

More interesting solutions are found by choosing ξ to be off-diagonal corresponding to

the generators of the gauge group which are broken by the background Higgs field. As a

representative example take

ξ =

(
0 ξ+

0 0

)
, h =

(
0 h+

0 0

)
dx ∧ dy. (2.25)

And let us further equip our brane worldvolume with a flat Kähler form which is, up to a

scale `, just the flat metric on C2.

ω =
i`2

2
(dx ∧ dx̄+ dy ∧ dȳ) . (2.26)

The linearized D-flatness condition (2.9) then amounts to(
∆− |x|

2

`2

)
ξ+ =

x̄

`2
h+. (2.27)

This equation admits solutions where the holomorphic function h+ depends only on y, the

11



complex coordinate on the brane intersection. Explicitly we find that

a =

(
0 −h+(y)

`
e−|x|

2/`

0 0

)
dx̄, ϕ =

(
0 h+(y)e−|x|

2/`

0 0

)
dx ∧ dy. (2.28)

These modes are the massless strings stretched between intersecting branes. From the

solution we can see that these modes are sharply concentrated at x = 0, the matter curve,

where the branes intersect and the classical length of the string shrinks to zero. The fact

that the solution depends on an arbitrary holomorphic function h+(y) is a signal that in the

effective U(1) theory in the presence of the background (2.16) these light strings comprise

the degrees of freedom of a 6D quantum field which lives at the intersection of the two

seven-branes. The solution (2.28) of charge +1, together with the linearly independent

transposed solution of charge −1 comprise the bosonic fields of a hypermultiplet.

Based on this example one can easily deduce the spectrum of charged trapped matter

for an arbitrary intersecting brane background. To avoid writing many matrices, it is useful

to introduce some notation for the sl(n,C) Lie algebra. We set conventions such that Hi

denotes an n × n diagonal matrix with a one in the i-th slot and zeros elsewhere. The

Cartan subalgebra, h, is given by matrices of the form

h =

{
c1H1 + c2H2 + · · · cnHn|

∑
i

ci = 0

}
. (2.29)

The roots vectors of the algebra will be denoted Rij. They are elementary matrices with

a one in the i-th row and j-th column and zeros elsewhere, and have definite eigenvalues

under commutation with a Cartan element

[
∑
k

ckHk, Rij] = (ci − cj)Rij. (2.30)

The roots of the algebra are the associated eigenvalues; for Rij the root is ci − cj.
Now in the case of a general diagonal background we have

Φ = λ1H1 + · · ·+ λnHn

∑
k

λk = 0. (2.31)

If all the holomorphic eigenvalues λi are distinct then the gauge group is Higgsed to U(1)n−1.

Along complex curves in the brane worldvolume pairs of eigenvalues become equal and the

branes intersect. These are the matter curves. We see that in general they are given by

roots of the algebra. We consider a matter fields (ϕ, a) which are the generalization of the

off-diagonal modes of our example (2.16), whose form in matrix space is given by a root

12



Rij. The F-term equations are then integrated exactly as above

a = ∂̄ξ, ϕ = (λi − λj)ξ + h. (2.32)

Solving the D-term equations as before we then obtain a solution where h depends only on

the coordinate along the matter curve, and the modes vanish exponentially fast away from

λi = λj.

2.1.2 Holomorphic Gauge

Section 2.1.1 provides a complete calculation of the spectrum an SU(n) gauge theory in an

intersecting brane background. We have linearized the equations of motion and obtained the

solutions to the F- and D-flatness conditions in a physical unitary gauge. As is frequently

the case in supersymmetric theories, the analysis can be simplified by working with the

complexified group of gauge transformations. The F-term equations are invariant under this

larger group, and by a standard argument the full system of F- and D-flatness conditions

modulo unitary gauge transformations has the same space of solutions as the F-flatness

conditions modulo complexified gauge transformations.4 In the example of the spectrum

on a small patch C2 ⊂ S this is a major simplification.

Working with the complexified gauge group, we can obtain a clear picture of the theory

by passing to what is known as holomorphic gauge. This gauge is characterized by the fact

that the (0, 1) part of the connection vanishes so that in a holomorphic gauge

∂̄A = ∂̄ + A0,1 = ∂̄. (2.33)

The integrability condition for this equation is simply F 0,2
A = 0 and thus our ability to reach

a holomorphic gauge is guaranteed by one of the basic BPS equations (2.1). In a physical

unitary gauge, one must also keep track of the (1, 1) component of the field strength as well

as the Kähler form, which may in general be non-trivial. However when we work with the

complexified gauge group we get to neglect this data, and indeed the entire D-term equation

(2.3). The price we pay for this simplification is that in holomorphic gauge, we will not

be able to obtain the detailed profile of the perturbations. Nevertheless for intrinsically

holomorphic questions, such as superpotential calculations, the wave function profile as

determined by the D-term data is irrelevant.

Now, to study the spectrum of small fluctuations about a given background in holomor-

phic gauge we note that it is still true that we can take A0,1, and hence the perturbation a

to vanish. This fact can be easily seen directly. In a holomorphic gauge for the background,

4Stability conditions, which add important subtleties to this statement, will not play a role in our
discussion.
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the general F-term fluctuation equations are

∂̄a = 0 (2.34)

∂̄ϕ = [Φ, a], (2.35)

and our analysis in the previous section implies that these have as a general solution

a = ∂̄ξ ϕ = [Φ, ξ] + h (2.36)

To obtain a correct count of the degrees of freedom we must now quotient this space of

solutions to the F-term equations by the complexified group of gauge transformations.

According to (2.10) an infinitesimal gauge transformation with parameter χ has the effect

of shifting ξ

ξ −→ ξ + χ. (2.37)

ξ is valued in the complexified Lie algebra gC and therefore if we work with the unitary

form of the gauge group, the gauge parameter χ has only half as many degrees of freedom

as ξ. However, if we work with complexified gauge transformations then ξ and χ are valued

in the same space and there is no loss in generality in setting χ = −ξ and thereby gauging

a to zero.

Once we go to holomorphic gauge, the F-term equation for the Higgs field perturbation

ϕ implies that ϕ = h is simply a holomorphic (2,0) form. Keeping a gauged to zero,

we still have the freedom to make complexified gauge transformations with a holomorphic

infinitesimal parameter χ. Under such a transformation the field ϕ shifts by the commutator

of χ with the background Higgs field

ϕ −→ ϕ+ [Φ, χ]. (2.38)

Thus in a holomorphic gauge the calculation of the spectrum is reduced to a completely al-

gebraic problem. The space of gauge inequivalent modes is given by all possible holomorphic

matrices modulo those matrices which are commutators with the background Φ.

Let us see what this means in the context of the simple example (2.16). In a holomorphic

gauge we have

ϕ =

(
h0(x, y) h+(x, y)

h−(x, y) −h0(x, y)

)
dx ∧ dy. ∂̄hα = 0. (2.39)

Now we quotient by the remaining holomorphic gauge transformations. Using this freedom

we can reach a gauge where the off-diagonal elements of ϕ depend only on y, the complex

14



coordinate along the brane intersection

ϕ =

(
h0(x, y) h+(y)

h−(y) −h0(x, y)

)
dx ∧ dy. ∂̄hα = 0. (2.40)

In this form of the solution the fact that the off-diagonal elements of ϕ depend only on y

is the holomorphic description of the fact that the light strings which they represent are

confined to the matter curve x = 0. Meanwhile the diagonal mode h0(x, y) depends on

both coordinates and is a bulk field.

Now that we understand this simple example, the general case of an SU(n) gauge

theory broken to U(1)n−1 by a diagonal Higgs field (2.31) has more indices but is no more

complicated. In a holomorphic gauge a mode ϕ given by a root Rij shifts under a gauge

transformation as

ϕ −→ ϕ+ (λi − λj)α (2.41)

with α an arbitrary holomorphic function. The space of gauge inequivalent perturbations

can then be described abstractly by introducing O the ring of holomorphic functions in two

complex variables (x, y). In a holomorphic gauge ϕ ∈ O and according to equation (2.41)

this description is redundant up to an arbitrary multiple of the root (λi−λj). If we denote

by Iij the ideal generated by the root, then we see that the space of gauge inequivalent

perturbations in the matrix direction Rij is exactly the quotient space

O/Iij. (2.42)

The above has an intuitive meaning. The matter curve is defined by setting all functions

in the ideal Iij to zero and all gauge invariant data in the perturbation ϕ is contained in

its behavior on this curve. One should contrast this with the corresponding statement for

a bulk mode. If we consider a diagonal perturbation ϕ, then since ϕ and Φ commute one

cannot change ϕ by a gauge transformation and the behavior of the mode over the entire

worldvolume carries physical information.

As explained in [11], a second important use of complexified gauge transformations is

that they allow us to make precise the notion that a mode is confined to curve. We consider

matter fields (a, ϕ) whose form in matrix space is given by a root vector Rij. Then the

solution ϕ is a smooth (2, 0) form which satisfies the linearized BPS equation:

∂̄ϕ = (λi − λj)a. (2.43)

An absolutely key fact is that we can find a representative for ϕ which is in the same

complexified gauge group orbit and which has arbitrarily narrow support near the matter

curve λi = λj. The proof of this statement is purely formal. We simply let Tε be a small
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tube of radius ε around the matter curve. Then we can define a new smooth (2, 0) form ϕ′

with the properties:

ϕ′ =

{
ϕ inside Tε/2
0 outside Tε

. (2.44)

We can then define a smooth gauge parameter χ by:

χ =
ϕ′ − ϕ
λi − λj

. (2.45)

By construction a complexified gauge transformation with parameter χ takes the mode

ϕ to ϕ′. Notice that as a consequence of equation (2.43) if ϕ vanishes, then so does the

associated gauge field perturbation a. Thus we have succeeded in constructing a localized

gauge where the matter modes (a, ϕ) are non-vanishing only inside a parametrically small

tube Tε around the matter curve.

Thus the holomorphic and localized gauges differ in the way that one chooses the com-

pletely arbitrary gauge field perturbation a. For holomorphic gauge we simplify our lives

by taking a to vanish leaving only the holomorphic ϕ. Meanwhile in the localized gauge we

choose a non-zero a in such a way that the solution vanishes away from the matter curve.

Conceptually, the equivalence between these two perspectives follows from the fact that the

only gauge invariant data in the mode is the behavior of ϕ at the matter curve, and there

the localized gauge and the holomorphic gauge agree. For the purposes of computations of

holomorphic quantities like the superpotential, we may freely use whichever gauge is most

convenient.

2.1.3 Matter Curve Actions

The previous two sections give us useful perspectives on the 6D defect quantum fields

localized on the intersection of seven-branes. The modes we have studied are fluctuation

fields which solve the linearized BPS equations. These are the on-shell 6D fields. For many

questions it is often useful to have a notion of off-shell fields and thus an action principle.

Since the fields in question are localized on curves we desire an action which is written as

an integral along the matter curve and whose minimization enforces the BPS equations of

motion. As noted for example in [1, 2], if we work holomorphically, that is with only the

F-terms modulo the complexified gauge group, this action is completely determined by the

8D superpotential (2.4)

W8D =

∫
S

Tr
(
F 0,2
A ∧ Φ

)
. (2.46)

To obtain the 6D action W6D for the modes starting from the above, we simply expand
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W8D above to quadratic order in the fluctuation fields and evaluate

W6D =

∫
S

Tr
(
∂̄a ∧ ϕ+ a ∧ a ∧ Φ

)
. (2.47)

Since the fluctuation fields solve the linearized equations, by definition W6D = 0 on-shell.

To produce a suitable off-shell coupling we thus put the matter fields only half on-shell. We

envision a situation where the matter is localized on a curve Σ ⊂ S. We take the F-term

fluctuation equations and we separate variables into a coordinate parallel and normal to Σ.

We solve the equations in the transverse direction, but we leave the modes off-shell in the

parallel direction. Plugging into W8D and evaluating the integral then gives the 6D action.5

To illustrate this procedure we consider the general case of a diagonal background (2.31)

on C2 and a matter curve defined by x = 0. Such a situation is described by a 6D field

theory and thus the matter that we find must be in a representation of the 6D superalgebra.

This means that matter must come in the form of 6D hypermultiplets and hence for each

matter field (a, ϕ) there is a conjugate mode (ac, ϕc) of opposite charge under the unbroken

gauge group. It is easy to see this explicitly. If x = 0 defines a matter curve for the root

Rij then it also defines a matter curve for the transposed root Rji which thus supports

the conjugate mode. These fields are localized on the same matter curve and are naturally

paired by the quadratic superpotential (2.47).

To evaluate W6D we first separate variables. In components, the F-term equations are

∂̄x̄ϕ = xax̄ (2.48)

∂̄ȳϕ = xaȳ (2.49)

∂̄x̄ϕ
c = −xacx̄ (2.50)

∂̄ȳϕ
c = −xacȳ (2.51)

We now put the modes half on-shell by solving equations (2.48) and (2.50) correspond-

ing to the transverse directions of the matter curve, while we do not enforce the parallel

equations (2.49) and (2.51). Our method of computation is to make use of the localized

gauge constructed in the previous section. Although these modes are not fully on-shell, one

can easily see that we can still reach a gauge where (ax̄, ϕ) and (acx̄, ϕ
c) vanish outside a

parametrically small tube Tε around the matter curve. In contrast to the full solutions of

the previous section however, nothing can be said about the localization properties of the

components aȳ and acȳ.

5Though this type of analysis is implicit in [1, 2, 11], we are not aware of an explicit derivation of this
fact in the literature.
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Let us activate the perturbation:

ϕ = ϕ+ ϕc a = a+ ac (2.52)

which is a solution to the transverse BPS equations. We plug into (2.47) and obtain

W6D =

∫
C2

(
∂̄a ∧ ϕc + ∂̄ac ∧ ϕ+ xa ∧ ac ∧ dx ∧ dy

)
. (2.53)

Our goal is to reduce this quantity to an integral along the matter curve x = 0. The first

step is to observe that by localization we can take the ϕ modes to vanish outside a tube of

radius ε around the matter curve, and hence restrict the domain of integration to C2 ∩ Tε.
Since the gauge field perturbations are regular at the matter curve the third term in (2.53)

vanishes in the localized limit and can be dropped. Next integrate the remaining terms by

parts:

W6D =

∫
C2∩Tε

(
a ∧ ∂̄ϕc + ac ∧ ∂̄ϕ

)
. (2.54)

Expand in components and make use of the transverse BPS equations to obtain:

W6D =

∫
Cy
dy ∧ dȳ

(∫
|x|≤ε

∂̄x̄ϕ∂̄ȳϕ
c − ∂̄x̄ϕc∂̄ȳϕ
x

dx̄ ∧ dx+ · · ·
)
. (2.55)

In the above, the remaining contribution “· · ·” involves terms proportional to aȳ and acȳ.

Since this is not localized near the matter curve, these pieces vanish as we take the local-

ization parameter ε→ 0. Now observe that

∂̄x̄(ϕ∂̄ȳϕ
c) = ∂̄x̄ϕ∂̄ȳϕ

c + ϕ∂̄ȳ∂̄x̄ϕ
c (2.56)

= ∂̄x̄ϕ∂̄ȳϕ
c − xϕ∂̄ȳacx̄. (2.57)

The second term in the last line of the above vanishes in the localized limit so we may freely

replace our expression (2.55) by

W6D =

∫
Cy
dy ∧ dȳ

(∫
|x|≤ε

∂̄x̄
(
ϕ∂̄ȳϕ

c
)
− ∂̄x̄

(
ϕc∂̄ȳϕ

)
x

dx̄ ∧ dx

)
. (2.58)

Finally we may we note that since ϕ and ϕc vanish outside Tε we have

0 =

∮
|x|=ε

(
ϕ∂̄ȳϕ

c − ϕc∂̄ȳϕ
x

)
dx. (2.59)

Add (2.59) to (2.58) and make use of the Cauchy integral formula. Up to an overall constant
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which we ignore the quantity above can be simplified as

W =

∫
Cy

(
ϕ∂̄ȳϕ

c − ϕc∂̄ȳϕ
)
|x=0 dy ∧ dȳ. (2.60)

Equation (2.60) is our final expression. It has the desired form of a pairing between ϕ

and ϕc written as an integral over the matter curve which is the complex y plane, Cy. As

expected this action takes the standard form of a free-chiral Dirac Lagrangian for fermions

propagating on the matter curve. As a consistency check on this result, note that if we

minimize the superpotential (2.60) we find the equations of motion:

∂̄ȳϕ|x=0 = ∂̄ȳϕ
c|x=00 (2.61)

and these are exactly the unenforced F-term BPS equations (2.49) and (2.51) restricted to

the matter curve.

The structure of the 6D superpotential conceptually clarifies the meaning of off-shell

modes. An off-shell 8D field which describes a mode on a matter curve is one which satisfies

the transverse BPS equations. The off-shell 6D fields are given by restricting ϕ and ϕc to the

matter curve. Since these do not minimize (2.60) these fields are simply general functions

of the matter curve coordinates (y, ȳ). Extremizing the 6D superpotential and putting the

fields on-shell then amounts to enforcing holomorphy on the 6D fields.

2.2 Interactions

In section 2.1 we have given an overview of exactly how matter at a pair of intersecting

branes can be seen directly from field theory. In the gauge theory description these modes

are described by the fluctuations (ϕ, a) and couplings between them can be computed by

simply evaluating the superpotential integral. After putting all modes on-shell at leading

order the superpotential gives the cubic Yukawa coupling (2.12).

WY =

∫
S

Tr (a ∧ a ∧ ϕ) . (2.62)

The superpotential is a holomorphic object and is invariant under the complexified gauge

group. It follows that when evaluating the Yukawa coupling we can work either in unitary

or holomorphic gauge and in the following we will study WY from both perspectives.

2.2.1 Unitary Gauge

Following [11], let us study the simplest possible background with a non-zero superpo-

tential. The presence of the trace in the coupling tells us that to obtain a non-vanishing
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contribution involving three 6D hypermultiplets we must start with an SU(3) gauge theory.

We envision a situation, like Figure 1 of the Introduction, where we have three seven-branes

meeting pairwise transversally and having a triple intersection at exactly one point in the

compactification. The first and most intuitive way to evaluate the coupling is to recall from

our example in section (2.1) that the physical unitary solutions to the fluctuation equations

are concentrated along the matter curve. Since the branes meet pairwise transversally, this

means that the superpotential density which is integrated in (2.62) is peaked near the region

of triple intersection. It is thus reasonable to approximate WY as an integral over only a

small patch C2 ⊂ S centered at the triple intersection. This is quite a useful step since now

we can use our local analysis of the fluctuation equations to compute the superpotential.

We can begin as before with a diagonal holomorphic background Higgs field

Φ =
1

3

 −2x+ y 0 0

0 x+ y 0

0 0 x− 2y

 dx ∧ dy (2.63)

=

(
(−2x+ y)H1 + (x+ y)H2 + (x− 2y)H3

)
dx ∧ dy

3
.

This background breaks SU(3) to U(1)×U(1). The branes intersect at the loci where pairs

of eigenvalues become equal, that is the x and y axes and the curve x = y. The triple

intersection of the branes where all these curves meet and the coupling is concentrated is

the origin (x, y) = (0, 0). In the conventions of subsection 2.1.2 we can write the localized

modes as

ϕ12 =
(
h12(y)e−|x|

2/`dx ∧ dy
)
R12,

ϕ23 =
(
h23(x)e−|y|

2/`dx ∧ dy
)
R23, (2.64)

ϕ31 =
(
h31(x+ y)e−|x−y|

2/
√

2`dx ∧ dy
)
R31,

together with the corresponding gauge field perturbation modes

a12 =

(
h12(y)

`
e−|x|

2/`dx̄

)
R12,

a23 =

(
−h23(x)

`
e−|y|

2/`dȳ

)
R23, (2.65)

a31 =

(
−h31(x+ y)√

2`
e−|x−y|

2/
√

2`(dȳ − dx̄)

)
R31.
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Plugging into the superpotential (2.62) we find that up to an overall non-zero constant6

WY =
1

`2

∫
C2

(
h12(y)h23(x)h31(x+ y)e−

1
`
(|x|2+|y|2+|x−y|2/

√
2)
)
dx ∧ dy ∧ dx̄ ∧ dȳ. (2.66)

The resulting coupling depends on the local holomorphic behavior hij of the matter fields

along the brane intersections. These are the wavefunctions in the internal space of the four-

dimensional quantum fields. In any given four-dimensional model the compactness of the

cycle S will imply that there are a finite number of hij which are realized, and armed with

this data we can plug into the above formula and evaluate the Yukawa. In our case since we

are studying the behavior on a small patch C2 ⊂ S we should consider arbitrary behavior

of hij. In this sense by focusing our attention on a small patch of the gauge theory we also

reduce to studying germs of wavefunctions. Possible local behaviors for these germs are

given by any possible holomorphic power series depending on the single complex variable

along each matter curve. Thus a convenient basis is given by pure powers

h12(y) ∈ Span{1, y, y2, · · · }
h23(x) ∈ Span{1, x, x2, · · · } (2.67)

h31(x+ y) ∈ Span{1, (x+ y), (x+ y)2, · · · }.

A complete local understanding of the superpotential in this example is then equivalent to

computing the value of the integral (2.66) for any combination of the monomials above.

Luckily these integrals are trivial. We find

WY =
1

`2

∫
C2

(
ymxn(x+ y)ke−

1
`
(|x|2+|y|2+|x−y|2/

√
2)
)
dx∧dy∧dx̄∧dȳ =

{
1 m = n = k = 0

0 else
.

(2.68)

Notice that the Kähler scale ` has dropped out of the final answer as expected. The result

shows that in this simple example, the only non-zero couplings involve those wavefunctions

which do not vanish at the point of triple intersection of the branes. In section 2.2.3 we

will see that this fact has a simple geometric interpretation.

2.2.2 Holomorphic Gauge: Residue Theory

The fact that the effective 4D N = 1 superpotential is a holomorphic object requires that

the Yukawa couplings be insensitive to all non-holomorphic data of the background, in

particular the Kähler form ω and the gauge flux FA. The physical unitary gauge employed

6In general in the rest of this paper when we write WY we will mean up to an overall non-zero pure
number. This coefficient can be kept track of but is somewhat uninteresting: when one passes from the
holomorphic couplings to the physical unitary ones, the coefficient is rescaled anyway upon canonically
normalizing the Kähler potential.
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in the previous section obscures this fact. We can introduce a set-up manifestly independent

of ω and FA by making use of the full power of the invariance of the superpotential under

complexified gauge transformations. As in section 2.1.2 we consider an SU(n) gauge bundle

which is reducible to a direct sum of line bundles and a background Higgs field Φ which is

purely diagonal:

Φ = λ1H1 + · · ·+ λnHn

∑
i

λi = 0. (2.69)

We assume that the λi are all distinct so that this describes a breaking of SU(n) to U(1)n−1.

Triple intersections of branes occur at the points in S where for some choice of three indices

i, j, k

λi = λj = λk. (2.70)

At such a point the modes for Rij, Rjk, and Rjk can form a coupling [2]. Without loss of

generality let us take i = 1, j = 2, k = 3 and study the associated interaction. For simplicity

we assume that there is one point of triple intersection in S, but the generalization to the

case of an arbitrary finite number of such points will be clear.

The superpotential coupling involving the three roots is computed by activating the

perturbations

ϕ = ϕ12 + ϕ23 + ϕ31, a = a12 + a23 + a31, (2.71)

and plugging into the Yukawa integral

WY =

∫
S

Tr(a12 ∧ a23 ∧ ϕ31 + a23 ∧ a31 ∧ ϕ12 + a31 ∧ a12 ∧ ϕ23). (2.72)

We know that WY is invariant under the complexified group of gauge transformations.

Hence to evaluate the superpotential we can go to the localized gauge of section 2.1.2 where

the perturbations vanish outside a tiny neighborhood of the matter curves. It follows then

that integrand in the superpotential simply vanishes outside a small neighborhood of the

triple intersection. Letting C2 ⊂ S be a small neighborhood of the triple intersection we

thus have

WY =

∫
C2

Tr(a12 ∧ a23 ∧ ϕ31 + a23 ∧ a31 ∧ ϕ12 + a31 ∧ a12 ∧ ϕ23). (2.73)

It is worthwhile to remark on the meaning of this equation. In general the computation

(2.13) shows that gauge invariance of the superpotential requires a compact brane S. In any

given patch of S we can reach a holomorphic gauge where the gauge field perturbations a can

be set to zero, and hence there is no definite meaning to the superpotential contribution in

that patch. What is significant about (2.73) is that it shows that there is one particular class
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of gauges, the localized gauges, where the superpotential density simply vanishes outside

a tiny neighborhood of the Yukawa point. Thus if we restrict to gauge transformations

which preserve the localization condition the value of a in this neighborhood indeed carries

physical information.

The upshot of equation (2.73) is that now that we have reduced the computation to the

case where S = C2 our local analysis of the solutions to the equations of motion again takes

over.7 As in section 2.1.2 we introduce ξij a ∂̄ antiderivative to aij so that the solution for

the pair (aij, ϕij) is given by:

aij = ∂̄ξij, (2.74)

ϕij = Rij(Φ)ξij + hij = (λi − λj)ξij + hij.

Now we know that when we work modulo complexified gauge transformations the function

ξij carries no gauge independent information. Thus the evaluation of the coupling must

yield a result which depends only on the holomorphic wavefunction hij. This is indeed the

case. In Appendix C we prove a general theorem which implies that the Yukawa coupling

is computed by a multidimensional residue [11]

WY = Res(0,0)

[
h12h23h31

(λ1 − λ2)(λ2 − λ3)

]
. (2.75)

Where in the above we have introduced a standard notation for a multidimensional residue

integral

Res(0,0)

[
α

βγ

]
≡ 1

(2πi)2

∫
|β|=ε1,|γ|=ε2

(
α

βγ

)
dx ∧ dy. (2.76)

This is the final result for the holomorphic calculation of the Yukawa. One can see that

it yields the same result as the local calculation in unitary gauge, by considering the case

where λ1 − λ2 = x and λ2 − λ3 = y. The full structure of this formula has a number of

features which deserve comment:

• The final answer depends only on the local holomorphic data in the problem: the

roots λi − λj and the holomorphic wavefunctions hij which specify the profile of the

matter fields along matter curves. In particular no Kähler data whatsoever is needed

to formulate the result.

• Since the denominator only involves two roots, the coupling appears to privilege one

of the matter fields as compared to the other two. This is an illusion. The residue

depends only on the ideal generated by the holomorphic functions in the denominator,

and every pair of two roots generates the same ideal.

7Since we work locally we will freely identify (2,0) forms with scalars by “dividing” by dx ∧ dy.
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• A standard property of residue integrals is that they vanish whenever the numerator

is in the ideal generated by the factors in the denominator. Thus for example the

coupling (2.75) vanishes if h12 is divisible by the root λ1 − λ2. In our case this

has a natural interpretation in terms of the invariance of the superpotential under

complexified gauge transformations. Indeed recall from section 2.1.2 that the space

of gauge inequivalent perturbations for a root Rij is the quotient space O/Iij. In

particular all modes in the ideal Iij are gauge equivalent to zero and consistency

demands that couplings involving these modes all vanish.

Thus a formal summary of our results is that the Yukawa coupling as computed by the

residue (2.75) yields a trilinear pairing on the space of matter fields

O/I12 ⊗O/I23 ⊗O/I31 → C. (2.77)

Mathematically this pairing is the local form of the Yoneda pairing of Ext groups studied

in [18]. The advantage of expressing it in this way is that while Ext groups can often be

unwieldy, the local residue integral is comparatively easy to compute explicitly.

2.2.3 Rank Theory and Deformations of Superpotentials

An important feature of the Yukawa is that it varies continuously with parameters specifying

the holomorphic background field Φ. In particular, any integer valued invariants that we

can form out of this pairing can be viewed as a topological property of the background Φ

which is constant under small perturbations. In our case there are three such quantities

which are the ranks of this pairing. We view the Yukawa as defining three maps:

O/Iij ⊗O/Ijk → (O/Iki)∗ , (2.78)

and we ask for their ranks. In the case at hand all of these ranks are the same and the local

duality theory of residues [24] implies they are equal to the topological intersection number

of any pair of the matter curves. This is a natural result: the structure of the superpotential,

localized at a triple intersection of seven-branes, reflects a topological invariant of the

intersection. Notice also that this explains the result of the unitary gauge computation

(2.68). In that case we found the the only non-zero couplings involved wavefunctions which

were non-vanishing at the Yukawa point enforcing the fact that the pairing is rank one and

reflecting the brane geometry of a transverse triple intersection.

It is illuminating to see the invariance of the rank of the superpotential worked out in

a specific example. Consider the one-parameter family of background fields Φε given by

Φε =

[(
y − x(x− ε)

3

)
H1 −

x(x− ε)
3

H2 +

(
2x(x− ε)

3
− y
)
H3

]
dx ∧ dy. (2.79)
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As in our previous examples, matter is localized on the curves defined by the roots of Φε.

Thus the matter curves are

y = 0, y = x(x− ε), y =
1

2
x(x− ε). (2.80)

As illustrated in Figure 2, for ε 6= 0 the matter curves have a pair of generic intersections,

while for ε = 0, these intersections collide yielding a non-transverse intersection with in-

tersection number two. We let WY (ε) denote the superpotential as a function of the the

deformation parameter ε.

In this background, the possible holomorphic wavefunctions are given by

h12 ∈
O
〈y〉

h23 ∈
O

〈y − x(x− ε)〉
h31 ∈

O
〈2y − x(x− ε)〉

. (2.81)

Thus a convenient basis of gauge inequivalent states is given by monomials in the x coor-

dinate

hij ∈ Span{1, x, x2, · · · }. (2.82)

According to our residue formula of section 2.2.2 the Yukawa coupling is rank two and

computed by the residue integral

WY (0) = Res(0,0)

[
h12h23h31

(y)(x2)

]
. (2.83)

For purposes of illustration we fix the wavefunction h12 to be the constant mode h12 = 1.

We can then view the superpotential as a matrix whose rows and columns label increasing

powers of x for the wavefunctions h23 and h31

WY (0)(h12 = 1, h23 = xk, h31 = xj) =


0 1 0 · · ·
1 0

0
. . .

...

 (2.84)

As expected this matrix is rank two.

Now consider the situation when ε 6= 0. The non-transverse intersection is then deformed

into two transverse intersections, each of which gives a contribution to the superpotential.

Applying our basic result, we then have

WY (ε) = Res(0,0)

[
h12h23h31

(y)(x(x− ε))

]
+ Res(ε,0)

[
h12h23h31

(y)(x(x− ε))

]
. (2.85)
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Figure 2: The Yukawa behaves continuously with respect to deformations of the background
parameters. On the left we have three matter curves, illustrated by the colored lines,
meeting transversally at two points leading to a rank two superpotential. On the right a
parameter ε→ 0 and the Yukawa points collide leading to a rank two contribution from a
single intersection.

And hence in the notation of (2.84):

WY (ε)(h12 = 1, h23 = xk, h31 = xj) = −


1
ε

0 0 · · ·
0 0

0
. . .

...


︸ ︷︷ ︸

contribution from (0,0)

+


1
ε

1 ε · · ·
1 ε

ε
. . .

...


︸ ︷︷ ︸

contribution from (ε,0)

(2.86)

Each point gives a Yukawa matrix which is rank one. As can be checked, the sum of the

contributions from the two points yields an overall rank two coupling. Clearly when ε→ 0

the above converges to the result (2.84) demonstrating the continuity of the coupling in

this particular case. The basic point illustrated by this example is that in order to keep the

rank constant under deformations, the two matrices have correlated entries. Naively one

might have expected that in the ε → 0 limit the two contributions to the superpotential

would align and give a single larger coupling for the (1, 1) matrix element of W and zeros

elsewhere. In fact, however, the (1, 1) entry vanishes for arbitrary ε and the superpotential

is always rank two. The rank of the superpotential is thus a kind of topological invariant of

the theory and this makes it possible to determine it in terms of the topological properties

of the brane worldvolume S [25, 26].

3 T-Branes: Basic Examples

In this section we will expand the class of background fields under consideration. In section 2

we studied Higgs fields which admit a simple interpretation in terms of intersecting branes.

Such configurations are abelian in nature, being governed by a diagonal matrix. Here

we begin our analysis of non-diagonalizable Higgs fields which probe the full non-abelian

structure of the theory. The basic extra ingredient in these solutions is that there are
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loci in the seven-brane worldvolume where the Higgs field becomes non-zero and nilpotent.

We refer to such brane bound states as T-branes to indicate this triangular structure in

the Higgs field. This section explores such backgrounds by way of the simplest possible

examples in SU(n) gauge theory. Guided by the considerations of the previous section,

from now on we will exclusively study the BPS equations of motion locally on C2 and omit

factors of dx ∧ dy when writing (2, 0) forms.

3.1 Beyond Eigenvalues

One way to phrase the simplifying assumptions of our previous examples is in terms of

the eigenvalues of the Higgs field. These are encoded in a fundamental gauge invariant

observable of the background given by the spectral polynomial of Φ

PΦ(z) = det (z − Φ) . (3.1)

Since the spectral polynomial is manifestly invariant under complexified gauge transforma-

tions it is a holomorphic invariant of the background. To evaluate PΦ(z) we can freely go to

a holomorphic gauge where the BPS equation ∂̄AΦ = 0 tells us that the spectral polynomial

is a holomorphic function of (x, y, z).8 In the simple abelian examples of section 2 we have

PΦ(z) =
∏
i

(z − λi) , (3.2)

with λi(x, y) the holomorphic eigenvalues of Φ. The spectral variable z then has a ge-

ometrical interpretation as a local normal coordinate to the seven-brane stack, and the

equation

PΦ(z) = 0 (3.3)

gives the positions of seven-branes in the three-dimensional (x, y, z) space. This is the

basic correspondence which has been at the heart of our analysis in section 2: via the

spectral polynomial, configurations of intersecting branes can be viewed as backgrounds in

our original gauge theory.

Once we consider non-diagonalizable Higgs fields, the spectral equation is still an im-

portant invariant of a background, but in general it ceases to have such a simple geometric

interpretation in terms of intersecting branes. What is more, while in the diagonal case

the whole system was determined by the eigenvalues, for a non-diagonal background the

physics knows about much more than just PΦ(z).

8In the case of a compact brane S, the topological twist implies that PΦ is a section of K⊗nS .
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3.1.1 A Nilpotent Higgs Field

An extreme case illustrating the above remarks is a Higgs field which is nilpotent and

hence has vanishing eigenvalues and a trivial spectral equation.9 We can construct a simple

example with this property in SU(2) gauge theory following an example due to Hitchin [23].

Begin in a holomorphic gauge with the desired background Higgs field

Φ =

(
0 1

0 0

)
. (3.4)

In the holomorphic gauge A0,1 vanishes and the (0, 1) part of the covariant derivative is

simply ∂̄. Since the Higgs field (3.4) is manifestly holomorphic we have solved the F-term

equations

F 0,2
A = 0, (3.5)

∂̄AΦ = 0.

To complete the solution it remains to solve the D-term equation

ω ∧ FA +
i

2
[Φ†,Φ] = 0. (3.6)

To this end we must pass from a holomorphic gauge to a unitary gauge. The procedure we

employ is well known: we consider an arbitrary complexified gauge transformation of the

Higgs field (3.4), and we treat the parameters of this gauge transformation as variables to

be determined by solving the D-term. General arguments then imply that somewhere in

the complexified gauge orbit of our field configuration there exists a complete solution to

the full system of equations of motion which is unique up to unitary gauge transformations.

In the case at hand we take our complexified gauge transformation to be of the form

g =

(
ef/2 0

0 e−f/2

)
. (3.7)

Using the unitary freedom, we can take the function f above to be real. On performing

the complexified gauge transformation we find that the resulting unitary frame Higgs field

and connection are

Φ =

(
0 ef

0 0

)
, A0,1 = g∂̄g−1 =

1

2

(
−∂̄f 0

0 ∂̄f

)
. (3.8)

9See [27] for additional discussion of nilpotent Higgs fields.
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If we again we equip the surface C2 with a flat Kähler form

ω =
i

2
(dx ∧ dx̄+ dy ∧ dȳ) , (3.9)

then by evaluating (3.6) we see that the D-term is satisfied provided that

∆f = e2f . (3.10)

This is a generalization to the case of two complex variables of the Liouville equation for

the conformal factor of a hermitian metric with uniform negative curvature. However, since

f is not the conformal factor for the metric on C2, its interpretation is somewhat different.

Rather, the data of the gauge transformation g specifies a metric on the SU(2) gauge bundle

V . As is clear from the diagonal form of the the connection, the solution above has V split

as a direct sum of two line bundles, V ∼= L⊕ L−1 and in a holomorphic frame the norm of

the basis vector for L, (1 0)T is ef/2. Our technique of construction for the unitary solution

is thus quite parallel to the theory of harmonic metrics familiar from the study of Hitchin

systems [28].

This simple example has an obvious extension to the case of SU(n) gauge theory. Pos-

sible nilpotent structures of a constant Higgs field are given by a choice of Jordan block

decomposition of Φ. For the case of a maximal Jordan block, the transformation to uni-

tary gauge is specified by a positive diagonal matrix. The D-term equation (3.10) is then

replaced by the SU(n) Toda equation in two complex variables:

∆fa = Cabe
fb ,

∑
a

fa = 0, (3.11)

with Cab the Cartan matrix of SU(n). For more general Jordan block structures one still

finds Toda-like equations. See [29] for more details.

Returning to our simple SU(2) example, we can see that once we have arrived in unitary

gauge the resulting curvature of the gauge bundle is

FA = (∂̄∂f)(H1 −H2). (3.12)

Thus the nilpotent Higgs field, in contrast to the diagonal backgrounds studied in section

(2), depends for its very existence on a non-vanishing gauge field curvature. In the case

of diagonal backgrounds the commutator [Φ†,Φ] vanishes and the D-term equation (3.6)

simplifies to

ω ∧ FA = 0 (3.13)

which along with the conditions F 2,0
A = F 0,2

A = 0 are the defining equations of an instanton.

The gauge field degrees of freedom are thus largely decoupled from those of the Higgs field

29



and the system reduces to intersecting seven-branes, characterized by the eigenvalues of

Φ, and dissolved three-branes, characterized by gauge instantons. By contrast, for non-

diagonalable Higgs fields [Φ†,Φ] is not zero and one cannot disentangle the Higgs field from

the gauge flux. In this sense, solutions with non-diagonalizable Φ describe non-abelian

bound states of branes. For the basic example of the SU(2) nilpotent Higgs field discussed

above, we know that solutions to the Liouville equation are spread over their entire domain

of definition, and hence the required flux (3.12) permeates the entire brane worldvolume.

Once we have the solution in unitary frame, it is straightforward to compute the physical

spectrum by solving the linearized BPS equations of motion as in section 2.1. If we are

just interested in determining the number of fields and their localization properties, we can

simplify the computation by proceeding instead in a holomorphic gauge. As in section 2.1.2

the space of gauge inequivalent states is again given by holomorphic matrices modulo those

matrices which are commutators with Φ. For the nilpotent background in question we can

reach a unique gauge where any such state is written as(
0 0

h(x, y) 0

)
(3.14)

with h(x, y) is an arbitrary holomorphic function. Since h depends on both complex coordi-

nates it describes a bulk quantum field which propagates across the whole brane. Thus this

background does not support any localized matter, a fact which should not be surprising

given its spatially uniform character in holomorphic gauge.

One feature of the physics for which the unitary gauge solution is essential is in deter-

mining the unbroken gauge symmetry. The relevant terms in the 4D effective Lagrangian

are schematically

L4D =

∫
C2

|Fµj|2 + |DµΦ|2, (3.15)

where in the above µ denotes a Minkowski space index, and j an internal index on C2.

In the presence of a background field configuration (A,Φ) these terms will give mass to

various gauge bosons. Since both terms are positive, it is clear that to remain unbroken

a generator in the Lie algebra must commute with the Higgs field Φ everywhere in the

internal C2. Applying the Jacobi identity to the D-term equation (3.6) then shows that

any generator which commutes with Φ commutes with the gauge field as well.10 Thus the

unbroken gauge symmetry is specified by the commutant of Φ in a unitary gauge. In the

case at hand it is clear that the unitary frame Higgs field (3.8) does not commute with

10We are assuming that the only gauge field we have turned on is the one necessary to satisfy the D-
term constraint ω ∧ F 1,1

A + i
2 [Φ†,Φ] = 0. In additional to this can in principle also consider switching

on additional primitive fluxes satisfying ω ∧ F 1,1 extra
A = 0 associated with a background instanton, or

contributions from a flat connection, as would be associated with Wilson lines. As discussed for example
in [1–4] such contributions will in general induce further symmetry breaking effects.
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any of the SU(2) generators and hence the nilpotent Higgs field completely breaks the

gauge symmetry. In four dimensions, the fluctuations (3.14) are the wavefunctions of chiral

multiplets uncharged under any gauge symmetry. It is interesting to notice that this Higgs

mechanism is invisible to both the spectral equation and the curvature. FA is valued in the

U(1) Cartan subalgebra of SU(2) and does not itself completely break the symmetry. This

serves to reinforce the basic point of this example: only with a complete knowledge of the

BPS solution, that is both the gauge field A and the full matrix valued Higgs field Φ can

one completely investigate the physics of any given background.

3.2 Monodromy Basics

While somewhat novel, the nilpotent Higgs field of the previous section is physically boring.

The background supports no unbroken gauge group, no localized matter fields, and there

is no hope of generalizing the results of section 2. These deficiencies can be remedied. The

nilpotent Higgs has no localized matter in holomorphic gauge, Φ is completely uniform over

the brane. To find examples with trapped fluctuations that go beyond the abelian cases

studied in section 2 we can look for special places in the brane worldvolume by studying

the spectral equation

PΦ(z) = zn + σ2z
n−2 − σ3z

n−3 + · · ·+ (−1)n−1σn−1z + (−1)nσn. (3.16)

In the above equation the integer n indicates that we are now considering an SU(n) gauge

theory. Each coefficient σi is a gauge invariant function of the background Φ and is the i-th

elementary symmetric polynomial in the eigenvalues of Φ.11 These symmetric functions are

holormorphic functions on the seven-brane and the loci where they vanish are distinguished

complex submanifolds where we might expect some physical quantity to reside.

In the case of an abelian background the spectral equation is factorized as in (3.2) and

the data of the symmetric functions σi can be replaced by the more elementary data of the

eigenvalues of the Higgs field. In general, however, the spectral equation is not factorized

and the symmetric functions themselves are the more fundamental gauge invariant data.

This is the basic idea behind the notion of monodromy which has already played an impor-

tant role in many applications of seven-brane gauge theories. In this context monodromy

refers to the behavior of the roots of the spectral polynomial PΦ(z) thought of as a poly-

nomial in the spectral variable z as one traverses the brane worldvolume. For example,

consider the following spectral equation for an SU(2) Higgs field:

PΦ(z) = z2 − xm. (3.17)

11In our case σ1 vanishes since the Higgs field is traceless.
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For m even the above is factorized into a product of two linear polynomials in z and thus

could be associated to a diagonal Φ with eigenvalues ±xm/2. By contrast, when m is odd,

the eigenvalues of Φ are branched. As one circles the y axis they exchange and one says

that there is a Z2 monodromy. Clearly there is no diagonal holomorphic Higgs field which

gives rise to such spectral behavior. With m = 1 the best we can do is to express Φ in a

holomorphic gauge as

Φ =

(
0 1

x 0

)
. (3.18)

This Higgs field is something of an intermediate case between the diagonal background of

section 2.1 and the nilpotent solution of section 3.1.1. For x 6= 0, Φ has distinct eigenvalues

and can be brought to diagonal form by a change of basis. For x = 0, however, the Higgs

field becomes nilpotent.

In general for an n×n Higgs field Φ the spectral function PΦ(z) is a polynomial of degree

n in z, and the monodromy group is defined to be the subgroup of the permutation group

on n letters which acts on the roots as we navigate the brane worldvolume. In terms of pure

mathematics, the monodromy group is the Galois group of the spectral polynomial viewed

as a polynomial in z with coefficients in functions on the worldvolume C2. As our 2 × 2

example illustrates, the monodromy group in general acts as an obstruction to diagonalizing

the Higgs field, with larger monodromy an indication of more non-abelian behavior.

3.2.1 The Z2 Background

The most basic case of monodromy to study, and one which suffices for almost all of

our applications, is the Higgs field of (3.18). We would like to completely understand

this background. We start, as in our study of the nilpotent background by passing from

holomorphic to unitary frame. This time we parameterize our gauge transformation as

g =

(
r1/4ef/2 0

0 r−1/4e−f/2

)
. (3.19)

Where in the above we have introduced polar coordinates x = reiθ. Since the gauge

transformation g must be everywhere non-singular we seek a real solution f which has a

logarithmic singularity at r = 0. We take as an ansatz that f is independent of y and θ. In

that case the same steps that we applied above to the nilpotent Higgs lead to the following

D-term equation for f (
d2

ds2
+

1

s

d

ds

)
f =

1

2
sinh(2f), (3.20)
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with s = 8
3
r3/2. Equation (3.20) is a special instance of the Painlevé III differential equa-

tion.12 A detailed study of its solutions and their boundary behavior can be found in [31].

Its solutions have asymptotic behavior specified by an arbitrary constant κ. Near s = 0

one has a logarithmic singularity

f(s)→ −κ log(s) +O(1). (3.21)

While for large s the solution decays exponentially as

f(s)→
√

2

πs
sin
(πκ

2

)
e−s. (3.22)

In our case we seek a solution for which the resulting gauge transformation g is non-singular

at x = 0 and thus we must take κ = 1
3
. The resulting flux in the unitary gauge is:

FA = −2r sinh(2f)(H1 −H2)dx ∧ dx̄ −→


−38/3

γ2 (H1 −H2)dx ∧ dx̄ r << 1

−
√

3
π
r1/4e−

8
3
r3/2

(H1 −H2)dx ∧ dx̄ r >> 1

.

(3.23)

Where in the above γ denotes the Euler-Mascheroni constant.

The form of the flux allows us to make precise our previous remark that the Z2 mon-

odromy background we are studying is an intermediate case between the nilpotent Higgs

of section 3.1.1 and the diagonalizable intersecting brane system of section 2.1. Like the

nilpotent case, as x → 0, the flux approaches a non-zero constant matrix valued in the

Cartan U(1) ⊂ SU(2). Meanwhile, for large r the flux decays rapidly; the branch loci of

the spectral equation are observable as localized tubes of gauge flux. However we also see

how misleading it would be to try to think of this background purely in terms of a pair in-

tersecting branes: the flux is always non-zero. Only at strictly r =∞ does this background

really approach the simple solutions of section 2.

To complete our analysis of the Z2 monodromy background (3.18) it remains to study

fluctuations.13 From the form of the unitary solution we can again see that this background

completely breaks the SU(2) gauge symmetry and hence the fluctuations in question are

uncharged under any gauge group. The basic question is whether or not there exists any

12The same equation and boundary condition have previously been studied both in the context of tt∗

metrics for 2D Landau-Ginzburg models [29], and 4D wall-crossing [30].
13In [12] an analysis of matter fields around a similar background was considered. There, however, it

was assumed that one could work in terms of a non-analytic and diagonal Higgs field with explicit branch
cuts. There are various subtleties connected with this singular “branched gauge” choice. It is therefore
important to revisit this example. Indeed, in contrast to what was found in [12], we find that there is no
massless 6D localized mode.
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excitation of this solution which is trapped at x = 0. As usual we can immediately answer

this question by looking in the holomorphic gauge. The space of modes is given by holo-

morphic matrices modulo commutators with the background Φ. If we write a holomorphic

matrix as: (
h0 h+

h− −h0

)
(3.24)

then under a holomorphic gauge transformation, i.e. a shift by a commutator with the

holomorphic gauge Φ, we have:

h0 → h0 + α (3.25)

h+ → h+ + β

h− → h− − βx

with α, β arbitrary holomorphic functions. Via such a gauge transformation we can set the

diagonal term h0 to zero. Meanwhile for the off-diagonal perturbations, gauge transfor-

mations shift both components simultaneously. Again using O to denote the local ring of

holomorphic functions, we can write the space of equivalence classes as a doublet

[h+, h−] ∈ O ⊕O
〈(1,−x)〉

. (3.26)

To investigate the issue of localized matter we can use our gauge freedom to set h+ to zero.

The holomorphic fluctuation is then specified by the arbitrary function h−(x, y) and since

this depends on two complex coordinates we reach the conclusion that the only excitations

are bulk fields spread over the entire C2 worldvolume, and there is no massless fluctuation

trapped at x = 0.

To further bolster our conclusion that there is no massless 6D mode, we now recover

the same result in the physical unitary frame. We start in holomorphic gauge with a

perturbation matrix of the form (
0 0

h 0

)
(3.27)

and we ask for the unitary gauge wavefunction of this mode. As a representative example

let us study the case where the holomorphic perturbation h is a real constant, independent

of both complex coordinates (x, y). In that case we simply note that the addition of (3.27)

to the original Higgs field background (3.18) can be interpreted as a change of coordinates

x→ x+h. Thus our construction of the background itself suffices to determine the resulting

perturbation, and we need only perform a Taylor expansion. If we denote by ϕ the resulting
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Higgs field perturbation in the physical, unitary gauge then a short calculation reveals that

ϕ = h cos(θ)

(
1

2r
+
df

dr

)(
0

√
ref

−
√
re−f+iθ 0

)
+ h

(
0 0
e−f√
r

0

)
. (3.28)

One can see that these are indeed bulk modes by examining their asymptotic behavior for

large r. If we neglect terms that vanish exponentially fast then we find that

ϕ→ h

2
√
r

(
0 cos(θ)

2− eiθ cos(θ) 0

)
. (3.29)

In contrast to the unitary gauge modes on matter curves of section 2.1.1 these fields decay

as a power law for large r. This is the basic difference between bulk fields and localized

fields. A mode localized on a curve has a finite norm per unit-length along the curve; if

the matter curve is compact then the field is normalizable independent of the compactness

of the transverse direction. Meanwhile, the wavefunction of a bulk field is spread over the

whole worldvolume, its normalizability is only possible if S is compact. For the fluctuation

(3.29) we can see that for large r:

||ϕ||2 = Tr
(
ϕϕ†

)
∼ 1

r
(3.30)

and thus the mode is not normalizable in the x-plane: it is a bulk mode. This does not

mean that the physical wavefunction is completely uniform over the brane. In fact one can

see that the wavefunction of this mode does decay for large r, and in this sense is a unique

element of the spectrum of bulk modes. The norm of a unitary wavefunction of a general

perturbation h which is not-necessarily constant in x behaves at large radius like |h|
2

r
and

hence aside from the case studied above of constant h all such modes grow at infinity. For

these bulk fields one then expects the local picture developed here to be quite inaccurate

as in general their wavefunctions are mostly supported outside the patch we have focused

on. By contrast, in the case where h is constant the local picture still captures the relevant

behavior.

Finally, let us note that although there are no localized massless 6D fields, there will

still be massive modes which are “quasi-localized” around x = 0. In this sense, there may

still be an effective notion of a “matter curve” visible at high-energies. In the Kaluza-Klein

Majorana neutrino scenario considered in [9], similar quasi-localized modes were identified

with right-handed Majorana neutrinos. It would be interesting to undertake a detailed

study of Kaluza-Klein modes in this backgrounds and determine the precise correspondence

with the ideas presented in [9].
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Figure 3: Contour plots of the distorted bulk mode ϕ in the background (3.18) with non-
trivial Z2 monodromy. The images show the profile of the zero modes in the complex x
plane centered on the branch locus. The complex coordinate y is suppressed. Figure (A)
shows the upper-right entry of ϕ while (B) and (C) illustrate the real and imaginary parts
of the lower-left entry of ϕ.

3.2.2 Charged Matter

If the stated goal of section 3.2 was to generalize the study of localized modes and couplings

to the case of non-diagonal backgrounds then clearly section 3.2 has ended in failure. We

started with the simplest possible spectral equation exhibiting monodromy, PΦ(z) = z2−x,

and we found that although the branch locus x = 0 supports a concentrated gauge flux

tube, it does not trap any modes. This example is typical of backgrounds which break

all of the gauge symmetry. Referring back to the form of the spectral equation (3.16), at

what appear to be be special places in the geometry, the symmetric functions σi defining

PΦ will vanish, and the Higgs field in general will approach a non-zero nilpotent matrix

with associated flux but no trapped perturbations. The situation is more interesting for

backgrounds that leave unbroken a subgroup of the gauge symmetry. In this case we will

indeed find localized matter, and in this section we analyze an example of this phenomenon.

3.2.3 Holomorphic Gauge

The basic example to study is a breaking from SU(3)→ U(1) described by the holomorphic

Higgs field

Φ =

 0 1 0

x 0 0

0 0 0

 =

 Ψ
0

0

0 0 0

 . (3.31)
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Where Ψ denotes the 2 × 2 non-trivial block studied in the previous section. This is a

situation with both an unbroken gauge group and monodromy. If we look at perturbations

around this background, the new feature is the existence of bifundamental modes charged

under both the unbroken U(1) and the broken SU(2) subgroup. Embedded in the adjoint

of SU(3) these modes are  0 0 h+

0 0 h−
0 0 0

 (3.32)

together with the associated transpose degrees of freedom which have opposite U(1) charge.

Following the usual method we find that the space of gauge inequivalent perturbations

is

[h+, h−] ∈ O ⊕O
〈(1, 0), (0, x)〉

. (3.33)

We can use this gauge freedom to eliminate h+ and if we do so then we find that the

remaining perturbation h− is valued in

h− ∈
O
〈x〉

. (3.34)

The bifundamental modes can thus be thought of as residing on the matter curve x = 0.

It is exactly in this situation that we expect to find localized perturbations concentrated

sharply around this curve. As usual, it is instructive to study the solutions to the equations

of motion both from the holomorphic and unitary perspective. In the holomorphic setting

our goal is to construct the non-abelian version of a localized gauge where the perturbation

vanishes outside of a tiny tube around the matter curve. In the unitary frame our goal is

to explicitly solve the equations of motion and determine the behavior of fluctuations both

near the matter curve and at asymptotically long distances.

In the holomorphic gauge all information is encoded in Φ and we seek to solve the

linearized F-term equations:

∂̄a = 0 (3.35)

∂̄ϕ = [Φ, a]. (3.36)

We take the matrix polarizations of a, ϕ to be identical to (3.32) so that the commutator

in the above is simply Ψ acting on the doublet a in the fundamental representation. The

formal solution to these equations proceeds exactly as in section 2.1.2. We introduce a
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doublet ξ which is a ∂̄ anti-derivative to a together with a holomorphic doublet h and write

a = ∂̄ξ (3.37)

ϕ = Ψξ + h. (3.38)

The key observation is to consider the spectral equation for the 2 × 2 background Ψ.

According to the Cayley-Hamilton theorem of linear algebra the matrix Ψ satisfies its own

spectral equation. In other words

Ψ2 = x12, (3.39)

with 12 the 2×2 identity matrix. Thus although the matrix Ψ has a non-diagonal action on

the doublets, the matrix Ψ2 acts trivially by multiplication by x. This allows us to invert

the formal solution (3.38) to write

ξ =
Ψ(ϕ− h)

x
. (3.40)

Now we can easily deduce the correct notion of localization; the important quantity is

not the behavior of ϕ near the matter curve, but rather Ψϕ. In particular given any tube

Tε centered on the matter curve x = 0 and any doublet solution ϕ we can define another

smooth (2, 0) form ϕ′ with the property

Ψϕ′ =

{
Ψϕ inside Tε
0 outside T2ε

. (3.41)

By construction then a complexified gauge transformation with parameter

χ =
Ψ(ϕ′ − ϕ)

x
(3.42)

shows that the two solutions ϕ and ϕ′ are gauge equivalent. In particular we see that given

any solution, we can find a localized gauge where Ψϕ vanishes outside an arbitrarily small

neighborhood of the matter curve. If we explicitly write out the doublet mode then we find

that at the matter curve

Ψϕ→ Ψh→
(
h−(0, y)

0

)
. (3.43)

This is exactly what we expect from the characterization of the excitations as the set of

holomorphic matrices modulo commutators with the background. There we saw that all

the data of the doublet perturbation should be encoded in the single holomorphic function

h− along the matter curve x = 0, and here we recover this fact from the localized gauge

construction.
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3.2.4 Unitary Gauge

An alternative perspective on the doublet fluctuations is to solve the equations of motion

directly in a unitary gauge. Since we have already studied the nontrivial SU(2) background

Ψ in the previous section, this is a calculation which we are prepared to undertake. The

complexified gauge transformation which takes the full SU(3) background Higgs field from

holomorphic to unitary gauge is simply

g =

 r1/4ef/2 0 0

0 r−1/4e−f/2 0

0 0 1

 . (3.44)

Where f denotes the Painlevé transcendent introduced in (3.20). Since the F-term equations

are invariant under complexified gauge transformations solving them in unitary frame is

trivial; we simply perform a gauge transformation by g on the solution (3.37) − (3.38).

Further we know from our analysis in holomorphic gauge that we should be able to find

solutions with h+ = 0 and then the equations of motion fix ξ− = 0. Hence in unitary gauge

we can write:

a =

(
r1/4ef/2∂̄ξ

0

)
ϕ =

(
0

r−1/4e−f/2(xξ + h)

)
. (3.45)

Now we need to solve the D-term

ω ∧ ∂Aa+
i

2
Ψ†ϕ = 0. (3.46)

This implies a single remaining equation[
∆ +

(
1

4x
+ ∂xf

)
∂̄x̄ − |x|e−2f

]
ξ =
|x|
x
e−2fh. (3.47)

We can assume that the holomorphic function h depends only on the coordinate y along the

matter curve and that ξ is independent of ȳ. To solve this equation we proceed as follows.

First observe that the differential operator in brackets above conserves angular momentum

in the x plane. Thus it is natural to make the substitution:

ξ =
ρ(r)− h

x
(3.48)

39



and to solve a radial equation for ρ. One can see that in terms of the original doublets a

and ϕ

a =
1

2

(
r−3/4ef/2 dρ

dr

0

)
, ϕ =

(
0

r−1/4e−f/2ρ(r)

)
, (3.49)

and thus we expect to find a solution ρ(r) which is localized near the origin. On substituting

(3.48) into (3.47) we find[
d2

dr2
+

(
df

dr
− 1

2r

)
d

dr
− 4re−2f

]
ρ(r) = 0. (3.50)

Since the function f is so complicated we do not expect that this equation can be solved

analytically. However we can construct an approximate solution by solving the equation

for small and large r where f simplifies and then matching the solutions at an intermediate

radius, and this technique suffices for seeing the existence of a localized mode.

For r very small we use the asymptotic behavior (3.21) to simplify equation (3.50):[
d2

dr2
− 1

r

d

dr
− 4r2

]
ρ(r) = 0. (3.51)

The solution to this is

ρ(r) = Ber
2

+ Ce−r
2

. (3.52)

Meanwhile according to (3.22) for large r the Painlevé transcendent f vanishes exponentially

fast and hence (3.50) simplifies to[
d2

dr2
− 1

2r

d

dr
− 4r

]
ρ(r) = 0. (3.53)

The general solution to this is:

ρ(r) = De
4
3
r3/2

+ Ee−
4
3
r3/2

. (3.54)

In the solutions (3.52) and (3.54) (B,C,D,E) denote holomorphic functions of y which

must be determined by boundary conditions. They are fixed as follows:

• Regularity of ξ at r = 0 fixes B + C = h.

• Normalizability for large r fixes D = 0.

• Matching the zeroth and first derivatives of the near and far solution.

One can see that independent of where the matching takes place, the constant B must

be very nearly zero. Thus the solution is peaked at r = 0 with an amplitude fixed by h,
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and for small r it decays as a Gaussian. Meanwhile for large r the decay changes from

the standard Gaussian to e−
4
3
r3/2

characteristic of solutions to Painlevé III. Glueing these

behaviors together, we obtain a single normalizable charged 6D field localized on the matter

curve x = 0.

4 Localized Modes and Their Couplings

The previous section illustrates some of the most primitive examples of T-branes and their

associated intricate physics of symmetry breaking, flux tubes, and localized charged matter.

In general an arbitrary Higgs background can exhibit a wide variety of exotic and novel

phenomena and it is beyond the scope of this work to classify completely all such behavior.

Nevertheless we can introduce a setup which extends the holomorphic intersecting brane

techniques of section 2 and allows us to study any given example. We generalize our theory

to the case of an arbitrary gauge group with Lie algebra g and we write adΦ(M) to denote

the adjoint action of Φ on a matrix M ∈ g.

As the examples of the previous section should make clear, keeping track of all of

the D-term data of such configurations is quite cumbersome. However we have seen that

for intrinsically holomorphic questions, such as the spectrum of localized modes and their

superpotential couplings, this D-term data is also unnecessary. For this reason from now on

we work exclusively with the complexified gauge group and neglect the D-term equation of

motion (2.3). The basic equations in a holomorphic gauge for the background are identical

to those given in subsection 2.1.2. Namely, the gauge field satisfies

∂̄A = ∂̄ + A0,1 = ∂̄ (4.1)

and the matter field fluctuations satisfy:

a = ∂̄ξ, ϕ = adΦ(ξ) + h, (4.2)

with ξ an arbitrary complex matrix in g.

The analysis of the Yukawa proceeds much as for diagonalizable backgrounds. Starting

from the bulk integral:

WY =

∫
S

Tr(a ∧ a ∧ ϕ) (4.3)

we reduce this to a residue integral by noting that the a modes satisfy a = ∂̄ξ and so can

be integrated to boundary terms, and evaluated as a residue. To compute the coupling, it

is therefore enough to track the boundary behavior of ξ. In practice, this involves formally

solving for ξ in equation (4.2):

ξ = ad−1
Φ (ϕ− h) (4.4)
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where here, “ad−1
Φ ” denotes a formal inversion of the adjoint map adΦ(·). Roughly speaking

we expect that “ad−1
Φ ” is invertible away from some loci defining the matter curves f = 0.

In this case we may write

ξ = ad−1
Φ (ϕ− h) ≡ η

f
(4.5)

Assuming ϕ falls off rapidly at the boundary, the computation of the residue depends only

on h. The residue integral then becomes:

WY = Res(0,0)

[
Tr ([η1, η2]ϕ3)

f1f2

+
Tr ([η2, η3]ϕ1)

f2f3

+
Tr ([η3, η1]ϕ2)

f3f1

]
. (4.6)

Though the above description provides a rough guide to matter fields and their couplings,

making sense of the intuitive formal manipulations presented above requires being more

careful with our notions of “localized modes” and wave function overlap integrals. In this

section we develop in more precise terms the necessary ingredients to treat a general class

of localized modes and their superpotential couplings.

The rest of this section is organized as follows. First we clarify the precise meaning

of a localized mode, and describe explicitly how a localized solution to the 8D fluctuation

equations (2.7) − (2.9) gives rise to a 6D field living on a matter curve. Following this

identification, we write the general explicit form of the superpotential interactions of such

modes, both for their 6D kinetic superpotential and their 4D localized Yukawa couplings.

Additional technical details for the diligent reader are given in the Appendices.

4.1 Localized 6D Fields

We will continue to denote the ring of holomorphic power series in two complex variables

by O. We work in a holomorphic gauge so that A0,1 = a = 0. Then all information of the

background is contained in the Higgs field

Φ ∈ g⊗O. (4.7)

It is easy to characterize the space of physically distinct modes in the given background.

Working holomorphically, a perturbation ϕ is gauge equivalent to zero if there exists a

holomorphic χ such that

ϕ = adΦ(χ). (4.8)

Thus in the presence of the background Φ the space of physically distinct modes is given

by the quotient space
g⊗O

adΦ (g⊗O)
. (4.9)
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This abstract expression for the space of modes already illustrates one of the primary ad-

vantages of working in a holomorphic gauge: we have translated the problem of solving the

fluctuation equations (2.7)−(2.9), a priori one which involves solving differential equations,

to a purely algebraic problem of determining the quotient space (4.9).

Now, the space of modes is populated by both bulk fields, whose unitary wavefunctions

permeate the entire brane, and localized modes, whose unitary wavefunctions are concen-

trated along matter curves. Our primary interest in this section is in the latter and we seek

to extract these from the general quotient space (4.9). Let Σ ⊂ C2 be any matter curve.

Locally this curve is defined by the vanishing a single holomorphic function f .14 The basic

observation is that if ϕ is a localized mode on Σ then all the gauge invariant data of this

mode should be contained inside an arbitrarily small neighborhood of Σ. It follows that

if we consider the restriction of the mode to the complement of the matter curve then a

localized mode ϕ is gauge equivalent to zero. This means that there exists a holomorphic

η ∈ g⊗O and a positive integer m such that

ϕ = adΦ

(
η

fm

)
. (4.10)

The function f has is zero on Σ and thus while ϕ is gauge equivalent to zero off the matter

curve, η/fm cannot be extended over all of C2 and hence ϕ is not globally trivial.

This definition of localized modes has a natural mathematical interpretation in terms

of sheaf theory. We are studying the space of modes (4.9) which is a coherent sheaf on

the brane worldvolume C2, and the mode ϕ is a holomorphic section of this sheaf. The

prescription (4.10) says that the localized modes are exactly those sections for which there

exists a holomorphic function f with

fmϕ = 0 ∈ g⊗O
adΦ (g⊗O)

. (4.11)

These are the torsion elements of the sheaf. In the mathematical language, the function

fm is the annihilator of ϕ.

From a physical perspective we can motivate our definition of localized modes by con-

sidering the potential induced for the adjoint scalars in the presence of a background Higgs

field Φ. If we write g for the complexified gauge transformation which takes us from holo-

morphic to unitary gauge, then the physical potential takes the form

V (η) =
∣∣∣∣g(adΦ(η))g−1

∣∣∣∣2 (4.12)

For a general η this potential is a non-zero mass term and lifts these matrices from the low-

14We make the assumption that this matter curve is irreducible so that f does not factor.

43



energy spectrum. Meanwhile for those matrices which commute with Φ along the entire

brane, the induced mass is zero and such η give rise to bulk modes. Finally there are the

localized modes. According to the definition (4.10) these are given by η’s which commute

with the background only along the matter curve Σ. On this curve the mass induced by

the potential V vanishes and this has the effect of confining the mode to the curve.

We can obtain further intuition about localized modes by thinking about them in terms

of partial symmetry restoration or unHiggsing. The bulk fields are given by the commutant

of Φ. Along matter curves, new matrices commute with Φ and give rise to localized modes.

In this way matter curves can be seen as the loci where a symmetry is restored. This

point of view also sheds light on the basic difference between a diagonal intersecting brane

background and a T-brane. Since seven-branes are complex codimension one objects, the

Higgs field Φ is complex and thus so are the fluctuations η. At each point p in the brane the

relevant space where possible η’s are valued is the complexified Lie algebra gC. Now let us

consider labeling points p by the locally restored symmetry algebra given by the commutant

of Φ(p). In the case of a diagonal background, Φ is valued in the Cartan subalgebra and the

local commutant at each p is determined by setting to zero some number of roots. It follows

from this that the local commutant will always be the complexification of a semi-simple Lie

algebra. Thus we can label points by an associated real semi-simple Lie algebra and think

of this real Lie algebra as a local gauge group which has been unHiggsed at the given point.

This terminology permeates much of the current F-theory literature: seven-branes, matter

curves, and Yukawa points are typically denoted by compact real Lie groups. From this

perspective the interesting feature of T-brane backgrounds is then that the local symmetry

algebra need not be the complexification of a semi-simple Lie algebra. Since the Higgs

field is now a general non-diagonal matrix, the local commutants are general complex Lie

subalgebras of gC. If one wanted to continue to phrase the discussion in terms of local

Higgsing and unHiggsing, then the relevant “gauge group” to consider is the complexified

one with Lie algebra gC. Localized matter occurs exactly when this complexified gauge

group is partially unHiggsed.

Having identified the localized modes as torsion elements in the space of modes, we now

assert that the correspondence between an 8D field ϕ which represents a localized mode and

satisfies (4.10), and the on-shell 6D representative which naturally resides at the matter

curve is given by passing from ϕ to the η restricted to the curve. More precisely, any η

satisfying (4.10) is ambiguous up to an element in the kernel of the adjoint map adΦ(·).
Thus the space of possible η’s is naturally

g⊗O
ker(adΦ)

. (4.13)

Then the map from 8D fields ϕ to 6D fields is given by choosing any representative η which
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solves (4.10) and taking the residue class of η in O/〈fm〉.

ϕ 7→ [η] ∈ g⊗O/〈fm〉
ker(adΦ)

(4.14)

We make several comments justifying and explaining this identification:

• The assignment (4.14) is gauge invariant. If we modify ϕ by a gauge transformation:

ϕ −→ ϕ+ adΦ(χ) (4.15)

then we have

η −→ η + fmχ (4.16)

and hence the residue class [η] is unchanged.

• All the gauge invariant data of an 8D localized field ϕ is contained in the class [η]. If

ϕ and ϕ′ are two solutions with associated η and η′ and [η] = [η′], then we can define

a holomorphic gauge parameter

χ =
η − η′

fm
. (4.17)

A gauge transformation with parameter χ shows that ϕ and ϕ′ are holomorphically

equivalent.

• The correspondence (4.14) makes precise our intuition that a localized field should be

one whose wavefunction in holomorphic gauge depends only on the coordinate along

the matter curve. The gauge invariant class [η] is a matrix with entries valued O/〈fm〉
and f vanishes along the curve.

• The identification (4.14) allows us to construct a localized gauge. Given an 8D field ϕ

with associated residue class [η] we define a new non-holomorphic (smooth) function

η′ which agrees with η in an epsilon neighborhood of the matter curve and which

vanishes outside a slightly larger neighborhood. Then since all physical information

is contained in the behavior of η′ near the matter curve we may as well replace η with

η′ and hence ϕ with the pair (a′, ϕ′)

ϕ′ = adΦ

(
η′

fm

)
and a′ = ∂

(
η′

fm

)
(4.18)

which vanishes outside an arbitrarily small tube surrounding Σ.

These definitions can be made more concrete by seeing explicitly how they work in the two

cases of localized matter we have studied thus far. In the first case of a diagonal background
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in SU(2) gauge theory

Φ =

(
x/2 0

0 −x/2

)
, (4.19)

and we have a localized mode corresponding to the root R12

x

(
0 1

0 0

)
= adΦ

(
0 1

0 0

)
. (4.20)

This takes the form of our general expression (4.10) with annihilator f = x and

ϕ = η =

(
0 1

0 0

)
. (4.21)

Meanwhile in the more interesting case of the background with monodromy and localized

charged matter of section 3.2.3 we have

Φ =

 0 1 0

x 0 0

0 0 0

 (4.22)

The localized doublet mode satisfies the equation

x

(
ϕ+

ϕ−

)
= adΦ ·

(
ϕ−
xϕ+

)
(4.23)

Again this is of the general form (4.10) with annihilator f = x but now with a non-trivial

relationship between the 8D field ϕ and the 6D field η. In particular the gauge invariant

residue class [η] in this case is given by

[η] = η|x=0 =

(
ϕ−(y)

0

)
, (4.24)

exactly as we found in section 3.2.3. From these two examples one can see that part of the

interesting structure that distinguishes diagonal backgrounds from more general T-brane

configurations is that in the latter case the map between 8D and 6D fields can be non-

trivial. One of the most important features of our general formalism is that it exhibits the

precise relationship between these fields.
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4.2 Superpotentials

4.2.1 The Matter Curve Action

Now that we have identified the on-shell 6D fields it is straightforward to compute the

general formulas governing their superpotential couplings. The first step is to extend our

notion of 6D fields off-shell. To do this we proceed as in the diagonal examples of section

2. An off-shell 8D field is one which satisfies the equations of motion only in the transverse

direction to the matter curve, but not in the parallel direction. If we use the map to

6D this implies that an off-shell 6D field is given by an η with the property that η|Σ is

not necessarily holomorphic. Putting the 6D modes on-shell then simply corresponds to

enforcing the holomorphy constraint.

The assertions of the previous paragraph can be rigorously derived by evaluating the

8D quadratic superpotential on the off-shell 6D fields. We consider a smooth matter curve

Σ which we may as well approximate by the y-axis, so that Σ is defined by x = 0. On this

matter curve propagate k distinct 6D hypermultiplets ηi. These fields are related to the

holomorphic 8D fluctuation fields ϕi by the basic equation torsion condition for a localized

mode (4.10)

xmiϕi = adΦ(ηi). (4.25)

The off-shell extension of these modes is achieved by relaxing holomorphy in the directions

along the matter curve. Thus off-shell fields are holomorphic functions of x but arbitrary

smooth functions of the matter curve coordinates (y, ȳ).

Next we want to evaluate the 8D superpotential on these 6D off-shell fields. The same

steps and localization techniques of section 2.1.3 immediately lead us to the form

W6D =
∑
i,j

∫
Σ

dy ∧ dȳ

[
1

2πi

∮
|x|=ε

Tr
(
ηi ∂̄ȳϕj

)
xmi

dx

]
(4.26)

The expression in brackets above has the desired form of a pairing between the distinct 6D

fields. The residue integral extracts the behavior of the product Tr(ηi∂̄ȳϕj) along the matter

curve x = 0. This makes gauge invariance obvious: a change of gauge on ϕ or change in

representative of the residue class [η] has the effect of shifting the product Tr(ηi∂̄ȳϕj) by

a quantity which does not contribute to the residue and hence leaves the superpotential

invariant. Notice also that as a consequence the basic equation (4.10) we can alternatively

write W6D as

W6D =
∑
i,j

∫
Σ

dy ∧ dȳ

[
1

2πi

∮
|x|=ε

Tr
(
ηi adΦ(∂̄ȳηj)

)
xmi+mj

dx

]
. (4.27)
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In particular we see from this that the contribution to the integral over the complex y plane

from any pair of indices (i, j) is symmetric under the exchange i↔ j.

Now we come to the main point. The 8D on-shell fields are holomorphic even on the

matter curve and hence so are their on-shell 6D representatives. This means that the

minimization of the 6D superpotential (4.26) must enforce the BPS equations of motion

∂̄ȳηi = 0. (4.28)

We would like to see this directly from W6D. Varying (4.26) with respect to ϕj one sees

that this will be so provided that the skew-symmetric matrix Ωij defined via

Ωij ηi ∂̄ȳ ηj =
∑
i,j

∮
|x|=ε

Tr
(
ηi adΦ(∂̄ȳηj)

)
xmi+mj

dx, (4.29)

is non-degenerate. The general techniques required to prove the non-degeneracy of this

pairing, while interesting, are somewhat orthogonal to the main thrust of our work and

are confined to Appendix B. There we develop the local structure of modes on curves in

more detail and use this to prove that the 6D superpotential is extremized when all 6D

fields are holomorphic. As in section 2, one can view this result as a reflection of the fact

that six-dimensional matter must come in hypermultiplets. The non-degeneracy result then

shows that given any field η there exists a conjugate field ηc which lives on the same matter

curve and pairs canonically with η in the 6D superpotential.

It is illuminating to see the 6D superpotential worked out for the simplest non-trivial

example of localized matter in a T-brane background. We again take Φ to be of the form

(4.22). This background supports two localized charged fields on the matter curve x = 0.

Up to gauge transformations we may write the off-shell fields as in equation (4.23)

ϕ(x, y, ȳ) =

 0 0 0

0 0 ϕ1(x, y, ȳ)

ϕ2(x, y, ȳ) 0 0

 , (4.30)

η(x, y, ȳ) =

 0 0 ϕ1(x, y, ȳ)

0 0 0

0 −ϕ2(x, y, ȳ) 0

 . (4.31)

According to the general result (4.26) the 6D superpotential is

W6D =

∫
Σ

dy ∧ dȳ
(

1

2πi

∮
|x|=ε

Tr(η ∂ ȳϕ)

x
dx

)
(4.32)

=

∫
Σ

dy ∧ dȳ
(
εijϕi(0, y, ȳ)∂ ȳϕj(0, y, ȳ)

)
. (4.33)
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This illustrates the symplectic pairing at work. The modes η and ϕ pair up to form a

canonical quadratic action for the 6D fields.

4.2.2 Yukawa Couplings

The final piece of formalism we must develop is a general expression for the localized

Yukawa coupling for fields on matter curves. We will confine the general derivation to

Appendix C. Armed with the general notion of 6D matter and localized gauges its proof

is a straightforward application of multidimensional residue theory. The final result can be

phrased elegantly in terms of the 6D fields ηi which reside on a matter curve. We consider

three localized modes

fiϕi = adΦ(ηi), i = 1, 2, 3. (4.34)

We assume that these matter curves have an isolated intersection at the origin

f1(x, y) = f2(x, y) = f3(x, y) = 0 =⇒ (x, y) = (0, 0). (4.35)

Then the universal localized Yukawa for the three modes is given by

WY = Res(0,0)

[
Tr ([η1, η2]ϕ3)

f1f2

+
Tr ([η2, η3]ϕ1)

f2f3

+
Tr ([η3, η1]ϕ2)

f3f1

]
. (4.36)

There are four important consistency checks on this coupling.

• It is gauge invariant. Because the coupling is written as a residue it is sensitive only

to the gauge invariant residue classes [ηi]. Further, as a consequence of the basic

definition (4.10) of a localized mode it is unchanged under any change of gauge on

the modes ϕi.

• The formula can be phrased entirely in terms of holomorphic quantities and hence it

is manifestly independent of Kähler and flux data.

• The residue formula is manifestly symmetric in the indices 1, 2, 3 of the localized

modes.15

• This coupling can readily be seen to reduce to the Yukawa derived in section 2 for

the case of intersecting branes: in that case ηi = ϕi reduces to the holomorphic

wavefunction h and we recover our previous result.

15 Recall that the residue carries a sign arising from the orientation of C2. The three terms in the right-
hand-side of equation (4.36) are meant to be defined with respect to the orientations df1 ∧ df2, df2 ∧ df3,
and df3 ∧ df1, respectively.
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This completes the technological developments of this section for the case of trivial world-

volume S = C2. In sections 5-7 of this paper we will apply these results to compute the

localized matter spectrum and interactions in a variety of examples. As explained in detail

in section 2 the restriction to trivial worldvolumes is appropriate when one studies the uni-

versal localized contributions to the superpotential for localized matter fields. By contrast,

the study of bulk modes, in particular their existence or lack thereof can only be deduced

once a compact brane worldvolume is specified. In Appendix D we briefly indicate what

is required to generalize the results of this section to an arbitrary brane worldvolume S,

gauge bundle ad(P ), and matter curve Σ. Aside from this appendix, all remaining analysis

will be carried out locally on S = C2.

5 Brane Recombination

The techniques of the previous section provide tools to analyze the holomorphic sector

of any given background Higgs field. In this section we apply these ideas to reinterpret

the spectrum of a wide class of backgrounds in terms of brane recombination. The basic

intuitive picture is that if one starts with a pair of intersecting branes and allows the

localized charged field at the intersection to condense then recombination occurs. On

the other hand, from our study of intersecting branes in section 2, we know that the

localized modes correspond to off-diagonal perturbations of Φ. Thus condensation of the

bifundamental matter field results in a new non-diagonal backgroud. This suggests that

some T-branes have a simple interpretation in terms of recombined branes. This gives an

alternative method for calculating the spectrum in such examples: work in the recombined

frame. Comparing this recombined picture with our general formalism then gives an elegant

and successful check on our techniques.

5.1 Reconstructible Higgs Fields

As we have repeatedly stressed, a T-brane configuration is specified by Φ rather than its

spectral equation. In this section we study a special class of examples where the spectral

equation is enough to determine Φ. For simplicity, we restrict our analysis to a unitary

gauge group U(n). Up to an overall change in the decoupled U(1) center of mass, we

can always assume that the background Higgs field Φ is traceless. The backgrounds we

consider are those which are non-singular in a suitable sense. We say that a Higgs field is

“reconstructible” when its defining spectral surface

PΦ(x, y, z) = zn + σ2(x, y)zn−2 − σ3(x, y)zn−3 + · · ·+ (−1)nσn(x, y) = 0 (5.1)
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is non-singular in the three dimensional (x, y, z) space. Since we are studying the problem

locally, the only singularities we are concerned with reside at the origin (x, y, z) = (0, 0, 0).

The case of maximal interest is when all the eigenvalues of the Higgs field vanish at the

origin and from now on we assume this is the case. Then non-singularity of the spectral

surface is determined completely in terms of

σn(x, y) = det(Φ). (5.2)

A reconstructible Higgs field is one for which det(Φ) vanishes to exactly first order at the

origin. As we will see momentarily the terminology “reconstructible” is motivated by the

fact that such a background is completely determined by its spectral equation, and hence

the matrix valued Higgs field can be reconstructed just from the behavior of the eigenvalues.

In terms of the examples we have studied thus far, the intersecting brane configurations

of section 2 are not reconstructible. Their spectral polynomials are factorized as in equation

(3.2) and hence are singular when the branes intersect. Meanwhile the basic example of

monodromy studied in section 3.2 is reconstructible: its spectral polynomial is z2 − x

and this cuts out a smooth surface. One significant consequence of this definition is that a

reconstructible Higgs field must break all of the gauge symmetry except the overall center of

mass U(1) ⊂ U(n) which we have thus far ignored. Any larger unbroken gauge group would

imply a non-trivial commutant of the background Φ, and thus as in sections 2 and 3.2.2 the

background could be written in a block diagonal form. The spectral surface then factorizes

and hence is singular when the two components collide. The fact that reconstructible Higgs

fields preserve such a small symmetry group is one of the principle reasons we are able to

give a complete picture of their physics.

5.1.1 Total Recombination

The basic fact that we want to prove in this section is that a U(n) seven-brane gauge theory

deformed by a reconstructible Higgs field is just a U(1) brane in disguise. Geometrically this

statement is easy to understand. The correspondence we have used to describe intersecting

branes in section 2 is that a background Higgs field deforms the stack of n seven-branes

from the (x, y) plane to the spectral surface

zn = 0 −→ PΦ(z) = 0. (5.3)

This fact continues to be true for non-diagonal backgrounds. Our procedure in the previous

sections of this paper has been to view the resulting gauge theory after deformation from

the point of view the original gauge theory on the z = 0 plane. Of course absolutely nothing

forces us to do this. After turning on the background it may be more convenient to describe

the physics from the point of view of the resulting branes. At the level of equations this
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means that we may change coordinates from (x, y, z) to some new more suitable variables.

Now we come to the key observation: for a reconstructible Higgs field the spectral

surface is non-singular. Therefore up to a change of variables on the z = 0 plane, we may

as well assume that

det(Φ) = ±x. (5.4)

To describe the resulting branes after deformation we introduce a new system of coordinates

where x has been eliminated

(x̃, ỹ, z̃) = (z, y, PΦ(z)). (5.5)

If we view the ambient space C3 as being described by the tilded coordinates then the

result of deformation by a reconstructible Higgs field is that the brane is now described by

z̃ = 0 with worldvolume coordinates (x̃, ỹ). In these coordinates the resulting brane can

be identified with an ordinary D7 brane. This gives a very concrete physical meaning to

our non-singularity condition on Higgs fields. A reconstructible background is one which

causes our original brane stack to totally recombine into a single smooth seven-brane.

At the abstract level of the previous paragraphs the claim that a reconstructible Higgs

field describes a U(1) gauge theory is obvious. However from the point of view of the gauge

theory it is a remarkable statement. We have seen in section 3.2 that even the simplest

example of monodromy

Φ =

(
0 1

x 0

)
, (5.6)

involves an intricate flux tube determined by the highly non-trivial Painlevé III differential

equation, and we are asserting that this solution is simply a complicated perspective for

a D7 brane. We can see a simple check of this claim by looking at the massless spectrum

of both theories. A U(1) gauge theory has only the bulk massless fluctuations of the free

abelian gauge multiplet. Meanwhile the Z2 monodromy background naively has two bulk

fields given by the overall trace and the bulk fluctuation studied in detail in section 3.2.

Written in holomorphic gauge as perturbations of Φ these are(
α(x,y)

2
0

0 α(x,y)
2

)
and

(
0 0

β(x, y) 0

)
. (5.7)

The astute reader might claim that the massless spectra of the two theories in question,

an ordinary U(1) D7 brane, and an U(2) seven-brane gauge theory deformed by the mon-

odromy background (3.18), are different and hence these theories cannot possibly be the

same. In fact however, when properly interpreted the two fields (5.7) are simply two pieces

of a single field in the recombined theory. To see this, we start in the U(2) gauge theory

and we consider the geometric result of activating the first order perturbations (5.7). The
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spectral equation is deformed as

z2 − x −→ (z − 1

2
α(x, y))2 − (x+ β(x, y)). (5.8)

To determine the effect of the deformation from the point of view of the recombined brane

we must now change variables to the tilded coordinates. We want to view the perturbation

fields α, β as functions on the new brane worldvolume z̃ = 0. The spectral equation then

becomes, at leading order

z̃ − (x̃α(x̃2, ỹ) + β(x̃2, ỹ)) = 0. (5.9)

Thus on the new brane worldvolume the two perturbations α and β are simply the even

and odd parts of a single function of x̃. They combine to one bulk field which is identified

with the U(1) bulk center of mass field of a D7 brane.

One can make the match between the U(2) monodromy background and the D7 recom-

bined picture sharper still. In section 3.2 we found that in unitary gauge there was a single

bulk field whose wavefunction decayed far from the branch locus. How do we explain such a

mode in the recombined picture? The answer is that although holomorphically the recom-

bined brane is described by the simple equation z̃ = 0, if we keep track of the additional

real data then there is more to the story. Locally we approximated the U(2) brane as flat

with canonical Kähler form. If we further approximate the normal direction as flat then it

follows that on the recombined brane the metric is specified by the Kähler form:

ω =
i

2

(
(1 + 4|x̃|2)dx̃ ∧ d¯̃x+ dỹ ∧ d¯̃y

)
. (5.10)

The recombined brane, illustrated schematically in Figure 4, is therefore curved. The

unitary wavefunctions are explicitly sensitive to this curvature and by solving the wave

equation on the recombined brane we recover a mode localized on its worldvolume.

Thus the recombined picture offers an a posteriori explanation of the results of section

3.2. There are no localized modes in the monodromic background (5.6) because there are

no localized modes for an isolated D7 brane. Meanwhile the Painlevé flux trapped at the

branch locus which gives rise to the decaying bulk field is captured in the recombined picture

by a non-trivial worldvolume curvature.

The argument above that reconstructible Higgs fields result in total brane recombination

can be extended to the case of U(n) gauge theory. To prove this the most significant point

we need to address is the following. Holomorphically, a U(1) gauge theory on a smooth

isolated D7 brane is a completely unique theory. To fix the configuration one simply chooses

a location in space for the brane, modeled in the gauge theory by a background for the Higgs

field in the free U(1) gauge multiplet. Meanwhile the U(n) gauge theory on C2 has a huge
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Figure 4: A schematic cartoon of brane recombination. In (A) we have an SU(2) gauge
theory in the presence of the Z2 monodromy background (5.6). Along the branch locus of
the spectral equation, x = 0, this solution has a concentrated gauge flux tube illustrated in
red. In (B) the same system is described from the perspective of a single recombined brane
whose worldvolume is a double cover of the original brane stack. The data of the brane
flux in the original SU(2) theory is carried in the recombined picture by a concentrated
worldvolume curvature at the branch locus of the cover.

moduli space of backgrounds described by choosing an arbitrary n×n holomorphic matrix

Φ up to holomorphic gauge transformations. Given any such background Φ we know that

the spectral polynomial PΦ(z) is one piece of gauge invariant data but in general it does not

carry complete information. The nilpotent background of section 3.1.1 serves to illustrate

this point. Nevertheless, in the correspondence between U(n) seven-brane gauge theories

in a generic background Φ we are asserting that PΦ(z) = 0 describes the new position of an

isolated D7 brane. Since the holomorphic sector of the latter theory is now completely fixed

it must be that for a reconstructible Higgs field the spectral polynomial yields complete

information. Thus we are led to a sharp mathematical consequence of our claim. Any two

reconstructible Higgs fields with the same spectral polynomial are gauge equivalent. In other

words, the terminology “reconstructible” is justified: such Higgs fields can be extracted

from the behavior of their eigenvalues.

In Appendix A of this paper we prove this claim directly. The result is that if Φ is a

reconstructible SU(n) Higgs field and has spectral polynomial

PΦ(z) = zn + σ2z
n−2 − σ3z

n−3 + · · ·+ (−1)nσn (5.11)
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then we may reach a gauge where

Φ =


0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 1

(−1)n−1σn (−1)n−2σn−1 (−1)n−3σn−2 · · · −σ2 0

 . (5.12)

A further consequence of the theorem proved in the Appendix is that the spectrum in

the background (5.12) is given by n − 1 bulk fields which are fluctuations in the spectral

coefficients σi as well as the overall U(1) trace. In particular there are no localized fields. To

calculate the bulk spectrum and match to the D7 theory we now follow the same argument

as above for the simple 2× 2 monodromy background. The recombined brane defined by

zn + σ2z
n−2 − σ3z

n−3 + · · ·+ (−1)nσn = 0 (5.13)

is a smooth n-sheeted cover of the original seven-brane stack at z = 0. Since the Higgs field

on the recombined brane is a generic holomorphic function this means that we require n

holomorphic functions on the original brane stack z = 0 to reproduce the single Higgs field

on the recombined brane. The bulk fields discussed above are exactly these modes.

Thus at the level of the massless spectrum we have explicitly demonstrated that U(n)

seven-brane gauge theory deformed by a generic Higgs field results in complete brane re-

combination into a single smooth isolated D7 brane. For such backgrounds there are no

matter curves or localized fields because there are none for the D7. For comparison with

previous results studied in the literature, what we have derived is essentially the conditions

under which the spectral equation technology used in references [12,18] is applicable.16 The

method used there is based on the idea that for reconstructible Higgs fields the spectral

equation gives complete information and hence the physics of the gauge theory can be

extracted from the geometry of the smooth spectral surface cut out by

PΦ(z) = 0. (5.14)

By contrast when the spectral equation is singular, one needs to know the actual Higgs

field. Again the most basic example of this is the nilpotent background of section 3.1.1.

The spectral surface is cut out by PΦ(z) = z2 = 0 and this is manifestly singular. In

this case the theory is not uniquely determined by the spectral polynomial and the set of

physically meaningful ways of resolving the singularity is given by possible Higgs fields with

the given PΦ.

16Let us stress that in abstract terms, the spectral cover, as opposed to the spectral equation, contains
more information than just the eigenvalues of Φ.
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Given that the non-reconstructible backgrounds are in a sense singular, one might won-

der if we can simplify our lives and ignore these cases. Even at the level of phenomenological

applications this is decidedly not so. Indeed, the case of maximal interest for various model

building applications in F-theory GUTs occurs precisely when the spectral surface is sin-

gular! In such cases one should not expect to be able to fully specify a model with just the

eigenvalues of Φ. One major conceptual point of our work is that although in such cases

the spectral equation does not completely characterize the background, one can utilize the

gauge theory techniques of section 4 to directly analyze the physics of any given example.

5.2 Intersecting Recombined Branes

Having classified reconstructible backgrounds we can now study a simple restricted class of

backgrounds which involve both brane recombination and intersecting branes. We consider

a Higgsing process SU(k1+k2+· · · kj+n) broken to U(1)j×SU(n) described in holomorphic

gauge by a block diagonal Higgs field

Φ =


Ψ1 0 · · · 0 0

0 Ψ2 · · · 0 0
...

...
. . .

...
...

0 0 · · · Ψj 0

0 0 · · · 0 0

 . (5.15)

This background has a factorized spectral polynomial and thus is not reconstructible. To

constrain the problem, we restrict ourselves to the case where each block Ψi is itself a

reconstructible ki× ki Higgs field and we assume that PΨi(z) 6= PΨj(z) for i 6= j. Given the

discussion of the previous section one expects that this background can be interpreted as a

stack of n D7 branes which support the non-abelian SU(n) gauge group and which intersect

with j distinct smooth D7 branes. Each of these smooth D7 branes has a worldvolume

given by the vanishing locus of the spectral equation of Ψi. These meet the z = 0 plane

along the determinant loci

det(Ψi) = 0, (5.16)

and hence we expect that these are the matter curves. For simplicity we will assume that

all of these determinant curves have generic intersections, so this should describe the basic

example of transversally intersecting branes studied in detail in section 2. In this section

we will provide evidence that this is the case by comparing the massless spectra of these

theories.

For simplicity we confine our attention to the localized spectrum charged under the

non-abelian part of the unbroken gauge group SU(n). The modes are then grouped into
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2j groups Bi and Bc
i for i = 1, · · · , j embedded in the adjoint of SU(k1 + k2 + · · · kj + n)

in the block diagonal notation of equation (5.15) as
0 0 · · · 0 B1

0 0 · · · 0 B2

...
...

. . .
...

...

0 0 · · · 0 Bj

Bc
1 Bc

2 · · · Bc
j 0

 . (5.17)

To study the existence of localized modes in the block Bi we follow the general procedure

of section 4 and consider the torsion equation (4.10) for a localized mode

fiϕi = adΦ(ηi) = Ψiηi. (5.18)

To solve this we observe that the matrix Ψi is reconstructible and hence invertible away

from the curve defined by the vanishing of its determinant. Thus the only possible matter

curve in the block Bi has

fi = det(Ψi). (5.19)

Let Ai denote the adjugate matrix to Ψi. If the spectral equation for Ψi is

PΨi(z) = zki − σ1z
ki−1 + · · ·+ (−1)kiσki , (5.20)

Then the adjugate is given by

Ai = (−1)ki+1
(
Ψki−1
i − σ1Ψki−2 + · · ·+ (−1)ki−1σki−1

)
(5.21)

According to the Cayley-Hamilton theorem of linear algebra the matrix Ψi satisfies its own

spectral equation and this implies the matrix equation

AiΨi = ΨiAi = det(Ψi)1. (5.22)

Thus up to a factor the determinant, the adjugate Ai is just the inverse Ψ−1
i . However

unlike the inverse, which ceases to exist along the curve det(Ψi) = 0, the adjugate exists

everywhere. Now act with the adjugate on ϕi to obtain

Aiϕi = ηi. (5.23)

Thus the adjugate matrix allows us to pass from the 8D fields to their 6D representatives.

To determine how many localized modes exist in the block Bi we must now deduce how

many distinct residue classes [η] exist i.e. we must calculate the dimension of the space of
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solutions to (5.23) once we restrict to the matter curve locus defined by det(Ψi) = 0. This

is an elementary problem in linear algebra. The reconstructible matrix Ψi can be written in

the general form (5.12), and hence where det(Ψi) = 0, the matrix Ψi has rank one less than

maximal, namely ki−1. From the matrix relation (5.22) we then deduce that on the matter

curve the kernel of Ai has dimension at least ki−1. On the other hand, the adjugate matrix

Ai does not vanish on the matter curve. By Cramer’s rule the matrix entries of Ai are given

by minors of Ψi and at least one such minor, the one corresponding to the maximal Jordan

block, never vanishes. It follows that the kernel of Ai has dimension exactly ki − 1 on the

matter curve and by the rank nullity theorem the image of Ai is dimension 1 on the matter

curve. This implies that the block Bi supports exactly one localized field. This mode is

a bifundamental transforming with charge +1 under the U(1)i and as an antifundamental

under SU(n). That there is one such mode is exactly what we expect from the picture of

the spectrum in terms of intersecting recombined branes.

5.2.1 Yukawa Couplings for Intersecting Recombined Branes

To complete our analysis of brane recombination we want to match the Yukawa couplings

of section 2 with the more general abstract formulas of section (4.2.2) in the examples of

the previous section. For the block diagonal Higgs backgrounds which describe recombining

branes the basic structure for studying a Yukawa is a 3 × 3 block matrix. Thus without

loss of generality we take

Φ =

 Ψ1 0 0

0 Ψ2 0

0 0 0

 . (5.24)

As in the previous section we take the Ψi to be reconstructible ki × ki matrices. The

vanishing lower-right block of the background implies an unbroken SU(n) gauge symmetry.

The localized matter in this background is naturally decomposed into blocks as

ϕ =

 0 ϕ12 0

0 0 ϕ23

ϕ31 0 0

 . (5.25)

Clearly a gauge invariant superpotential is possible between these modes and we aim to

compute it. For the modes ϕ23 and ϕ31 which are charged under the non-abelian gauge

group we write the localized 6D fields as in the previous section. The matter curves are

the determinant loci for the matrices Ψi, and upon introducing the adjugate matrices Ai
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we have

A2ϕ23 = η23, (5.26)

−ϕ31A1 = η31. (5.27)

Meanwhile for the modes ϕ12 the localization equation takes the general form (4.10) for a

matter curve defined by f = 0

fϕ12 = adΦ(η12) = Ψ1η12 − η12Ψ2. (5.28)

In principle one can introduce an adjugate for the combined action of Ψ1 and Ψ2 on η12

which appears on the right-hand-side of the above equation. Using this adjugate one could

then solve for the matter curve f and the localized field η12. However, our interest is in

computing a Yukawa coupling and all that is required for this is the general structure of

(5.28).

Now according to our results from section 4.2.2, for the holomorphic interactions of

localized fields, the Yukawa coupling takes the form

WY = Res(0,0)

[
Tr (η12η23ϕ31)

f det(Ψ2)
+

Tr (η31η12ϕ23)

det(Ψ1)f
+

Tr (η23η31ϕ12)

det(Ψ2) det(Ψ1)

]
(5.29)

Again in principle, one might think that to evaluate the above requires knowledge of η12

and f , but this is not so. Elementary manipulations using only equations (5.26)-(5.28)

imply that the residue contributions of the first two terms in brackets above cancel. The

final answer, expressed in terms of the ϕij fields takes the form

WY = Res(0,0)

[
Tr (ϕ31A1ϕ12A2ϕ23)

det(Ψ1) det(Ψ2)

]
. (5.30)

As a simple consistency check on our interpretation in terms of intersecting branes, we note

that since the matrices Ψi are reconstructible and distinct, the two matter curves which

appear in the denominator of the residue formula meet transversally at the origin. The

local duality theory of residues [24] then implies that the rank of this Yukawa coupling

is one. This is in agreement with our general picture of block reconstructible T-brane

configurations describing transversally intersecting recombined branes.

59



5.2.2 An Example: Zk1 × Zk2 Monodromy

As a simple sample application of the techniques of this section let us conclude with an

explicit example. We consider a block diagonal Higgs field of the form (5.24) with

Ψ1 =


0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

x 0 0 · · · 0

 , Ψ2 =


0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

y 0 0 · · · 0

 . (5.31)

Ψi is a ki × ki reconstructible matrix and hence this example fits into the paradigm of

intersecting recombined branes. The spectral polynomials of these matrices are

PΨ1(z) = zk1 − x, PΨ2(z) = zk2 − y. (5.32)

Thus the roots of the spectral equation for Ψ1 are exactly the k1-th roots of x and hence

this block realizes a cyclic Zk1 monodromy group. Similarly, the block Ψ2 realizes a Zk2

monodromy group so that the full Φ background has a product Zk1×Zk2 monodromy group.

Now we know from our previous analysis that the matter curves for the blocks ϕ13 and

ϕ23 are given by the determinant loci of the Ψi that is respectively x = 0 and y = 0. The

adjugate matrices along these loci take the very simple form

A1|x=0 =


0 0 · · · (−1)k1−1

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 , A2|y=0 =


0 0 · · · (−1)k2−1

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 . (5.33)

If we represent ϕ23 as a column vector with k2 rows each of which is an n under the unbroken

SU(n), Then we can write the gauge invariant residue classes as in (5.26)-(5.27)

ϕ23(x, y) =


α1(x, y)

α2(x, y)
...

αk2(x, y)

 =⇒ [η23] = A2|y=0 (ϕ23(x, 0)) =


(−1)k2−1αk2(x, 0)

0
...

0

 (5.34)

Similarly writing ϕ31 as a row vector with entries βi each of which transforms as an n under

SU(n) we have

[η31] = − (ϕ31(0, y))A1|x=0 =
(

0 · · · 0 (−1)k1β1(0, y)
)

(5.35)
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Finally, we can express the k1 × k2 block ϕ12(x, y) as a matrix with entries ρij(x, y). Then

combining the ingredients (5.34), (5.35), and the general result (4.36), we arrive at the

Yukawa

WY = Res(0,0)

[
(β1 · αk2)ρk11

(x)(y)

]
. (5.36)

6 The Monodromy Group

There is a useful and interesting alternative way to formulate the results of section 5. To

motivate this, observe that the reconstructible backgrounds, and their modestly more com-

plicated block diagonal cousins have a simple interpretation in terms of intersecting branes.

This means that these backgrounds, like those of section 2 are in fact characterized com-

pletely by the eigenvalues of the spectral polynomial. In this section we will push this point

of view to its logical conclusion. This involves developing the study of the spectral equation,

in particular the branch structure of the eigenvalues as controlled by the monodromy group.

We will develop the relation of the monodromy group to the general results of section 4 for

the localized matter and their superpotential couplings. This approach also makes contact

with the way that T-branes have been previously encountered in the literature. Armed

with our general techniques, we will be able to derive the rules for computing in back-

grounds with monodromy that have previously been postulated in [9, 12–14]. Further, we

will explain when these rules will break down and in this way clarify how T-branes provide

a significant generalization of the notion of monodromic branes. Finally, in section 6.3 we

briefly consider how a three-brane probe explores a T-brane. This provides an alternative

perspective on how T-branes extend the notion of monodromic branes.

6.1 Matter Counting

The basic idea we pursue is to try to force a comparison between our T-brane backgrounds

with monodromy, and the basic abelian intersecting brane backgrounds studied in section

2. We begin our analysis with an example given by a U(3) gauge theory deformed by the

holomorphic background of section 3.2.3

Φ =

 0 1 0

x 0 0

0 0 0

 . (6.1)
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Away from x = 0 this Higgs field is diagonalizable by conjugation by the matrix

g =


√
x 1 0

−
√
x 1 0

0 0 1

 . (6.2)

At x = 0 itself this Higgs field becomes nilpotent and is therefore not diagonalizable. In

spite of this fact we throw caution to the wind and declare that the Higgs field in branched

gauge is given by its diagonal form

gΦg−1 =


√
x 0 0

0 −
√
x 0

0 0 0

 . (6.3)

As it stands, the meaning of this expression is unclear. The “gauge transformation” g

required to put Φ in branched gauge is both multivalued and singular. Nevertheless one

can expect that if we can make sense of the spectrum in branched gauge then since the

Higgs field is now diagonalized we should be able to phrase our analysis in a language

closely parallel to the abelian case.

To begin, notice that the singularities in the gauge transformation g are confined to the

2 × 2 non-trivial block of the background field. This tells us two things. First, branched

gauge is completely unsuitable for studying the fields which descend from the adjoint of the

SU(2) where Φ is non-vanishing. This is just as well since in section 3.2 we learned that the

adjoint of SU(2) does not give rise to any localized fields. Second and more importantly,

since no singularities occur outside this block we can expect that for the study of localized

charged fields, passing to branched gauge is simply a peculiar change of basis. Acting on

the charged doublet of section 3.2.3 we have

ϕ→ g

 0 0 ϕ+

0 0 ϕ−
0 0 0

 g−1 =

 0 0
√
xϕ+ + ϕ−

0 0 −
√
xϕ+ + ϕ−

0 0 0

 . (6.4)

The available doublet gauge parameters χ in branched gauge are similarly obtained by

conjugation by g and thus have identical branch structure to the above. It follows that we

can reach a gauge where ϕ+ = 0 and ϕ− depends only on y and we see that there is a single

localized matter field confined to the matter curve x = 0. Of course this fact is merely a

tautology obtained by conjugating our previous answer by the matrix g.

How is this change of basis useful? The answer is that we can obtain a simple group

theoretic explanation of the spectrum. In branched gauge the background Higgs field is not

single-valued. Rather as we circle the origin in the complex x plane the two eigenvalues
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±
√
x interchange. If we introduce the matrix:

W =

 0 1 0

1 0 0

0 0 1

 (6.5)

then the branch structure of the eigenvalues is encoded in the following equation:

Φ(e2πix, y) =WΦ(x, y)W−1. (6.6)

The above has an intuitive interpretation. The matrixW is an element of the Weyl group of

U(3). Equation (6.6) states that as one circles the branch locus the Higgs field is conjugated

byW . This means that the invariant data in the Higgs field is not the eigenvalues themselves

but rather the Weyl invariant functions of the eigenvalues, i.e the symmetric functions σi.

This is exactly what one should expect in a gauge theory. Even after diagonalizing the

Higgs field there is a residual gauge symmetry given by the permutation of the eigenvalues,

and these permutations are carried out by the Weyl group. The novelty here is that our

Higgs field varies over the brane worldvolume and thus as we go around the vanishing locus

of the symmetric functions the Weyl group can, and does act.

Branched gauge therefore provides a perspective on T-brane backgrounds where the

concept of monodromy really shows its use. Thus far the monodromy group has simply been

a crude invariant of the background Higgs field. We have seen that a non-zero monodromy

group implies that the Higgs field cannot be globally diagonalized, but we have not yet seen

how the fact that the monodromy is a group really matters for anything. Now, however,

we see that in branched gauge the monodromy group, in this case Z2, acts on the data

of the problem via its embedding in the Weyl group. The charged perturbations, being

perturbations of Φ must similarly obey the twisting condition (6.6). Hence for the doublet:

ϕ(e2πix, y) =

(
0 1

1 0

)
ϕ(x, y). (6.7)

This explains the pattern of branch cuts found in equation (6.4). Since W squares to the

identity, a rotation of 4π around x = 0 leaves the doublet invariant. It follows that each

entry of ϕ admits an expansion in
√
x. Compatibility with equation (6.7) then shows that

any allowed mode takes the form

ϕ =

( √
xϕ+ + ϕ−

−
√
xϕ+ + ϕ−

)
(6.8)

with ϕ± single valued exactly as in (6.4). In fact, even the terminology “doublet” that
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we have been using to refer to this mode can be explained by this analysis: the mode in

question is a doublet under the permutation action of the Z2 monodromy group.

One can now see how the monodromy group provides a useful organizing principle for

calculating charged matter fields. We start with the roots of the U(3) group being Higgsed

and we restrict our attention to those roots charged under the unbroken gauge group. Thus

we are interested in perturbations of the background Φ in the R13 and R23 directions as

well as the transposed degrees of freedom. Since these modes have definite charge under

commutation with Φ in branched gauge if we were to proceed as in section 2.1 we would

declare that the perturbation in the direction R13 is localized on the “curve”
√
x = 0 while

the perturbation in R23 resides at −
√
x = 0. This is almost correct except that now we

must take into account the action of the Weyl group. As we have seen these two modes

form a Z2 Weyl doublet and the effect of the twisting condition (6.7) is to identify the two

roots into a single, globally well-defined, charged degree of freedom, localized at x = 0.

The line of reasoning given in the previous paragraph is in fact the way that monodromy

has been previously studied in the literature. For example, in [12] it was postulated that

the localized matter content of a monodromic background was specified by a diagonal Higgs

field with branch cuts. Here we have clarified the sense in which this procedure actually

works. It is simply to taking an honestly non-diagonalizable Higgs field and forcing a

comparison with abelian configurations by going to the singular branched gauge. However,

this analysis also exposes the fact that the monodromy group in general does not completely

characterize a given T-brane. If we relax the assumption that Φ is reconstructible then a

given spectral polynomial can have multiple realizations as physically distinct Higgs fields.

As a simple example we can study 2× 2 backgrounds with spectral polynomial

PΦ(z) = z2 − x3. (6.9)

There are two essentially different T-brane configurations which give rise to this spectral

data

Φ1 =

(
0 x

x2 0

)
, Φ2 =

(
0 1

x3 0

)
. (6.10)

Away from x = 0 these Higgs fields are physically identical. However at the special locus

x = 0 they are fundamentally different. For Φ1, x = 0 is a locus of symmetry enhancement,

and consistent with this one finds localized matter in this background. Meanwhile for Φ2

things are much the same as the Z2 background of section 3.2, x = 0 supports a flux

tube, but no trapped matter. Thus the notion of a T-brane greatly refines the notion

of a monodromic brane. In general, to completely deduce the physics one must use the

techniques of section 4 as opposed to the monodromy group alone.

Though the spectral equation is not always enough to characterize the localized matter,

it is nevertheless true that for the intersecting recombined brane backgrounds of section 5
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everything can be captured in terms of the eigenvalues and the action of the monodromy

group. We can immediately generalize the analysis of the example (6.1) to this broader

setting. We again consider a block diagonal background of the form (5.15)

Φ =


Ψ1 0 · · · 0 0

0 Ψ2 · · · 0 0
...

...
. . .

...
...

0 0 · · · Ψj 0

0 0 · · · 0 0

 (6.11)

with each Ψi a generic ki × ki Higgs field. In the previous section we found that each

block Bi defined in (5.17) gives rise to exactly one localized mode and now we would like

to recover this analysis by making use of the monodromy group. In branched gauge the

background above is diagonal with eigenvalues which exhibit a very general and intricate

branch structure. However, from the form of the background, it is clear that the monodromy

group is factorized according to the block diagonal structure of Φ

Gmono = G1 ×G2 × · · · ×Gj. (6.12)

Each Gi is the subgroup of Ski which acts via Weyl permutations on the ki × ki block

Ψi. The fact that each block Ψi is itself a generic Higgs field means that the associated

monodromy group Gi is a transitive subgroup of Gi. Indeed if it were non-transitive then

the spectral polynomial of Ψi would factorize and thus the spectral surface for Ψi would be

singular.

Now consider the perturbation Bi. It is a ki×nmatrix and hence in the case of a diagonal

background of section 2 it would have given rise to exactly ki × n distinct localized fields.

In branched gauge the Weyl group acts to identify these degrees of freedom. The matrix

Bi is in the permutation representation of Gi with Gi acting on the rows. To determine the

number of modes in the general background we need only to count the number of linear

combinations of modes in branched gauge which are Weyl invariant, or equivalently the

number of distinct orbits of the matrix entries of Bi. Since we know that each group acts

transitively we then deduce that there is exactly one n vector orbit and hence exactly one

n localized mode for each Bi.

Thus the non-abelian charged matter in intersecting recombined brane backgrounds can

be completely characterized in terms of the action via the monodromy group. Conversely

given any finite group Gmono we can engineer a background with this monodromy group by

solving the inverse Galois problem17 for Gmono and writing a block diagonal Higgs field as

17Unlike the inverse Galois problem over Q, the inverse Galois problem over the field C (x, y) is completely
solved [32].
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above. This method is quite useful when one generalizes to consider breaking patterns for

non-unitary gauge groups. For an example of wide phenomenological interest consider a

seven-brane gauge theory with gauge group E8 broken to SU(5)GUT by a Higgs field valued

in the SU(5)⊥ factor of SU(5)GUT × SU(5)⊥ ⊂ E8. Even if the Higgs background is block

reconstructible as an SU(5)⊥ field, there is no simple brane recombination picture for an

E8 brane. One approach to study such configurations is then to fall back on the general

monodromy techniques discussed here and widely applied for example in [9,13,14,19,33,34].

However our analysis also shows that this approach only describes a limited class of Higgs

backgrounds and that to a large extent the phenomenological possibilities of T-branes are

unexplored. There is physically no reason whatsoever to restrict one’s attention to Higgs

fields which are expressed as block diagonal reconstructible pieces. These are merely the

simplest possibility. Once one exits this paradigm, the monodromy group and the spectral

equation, fail to completely capture the physics, and one must make use of the techniques

of section 4. Exploring the applications of this additional freedom for model building is an

interesting question for further research.

6.2 Yukawas From Monodromy

The notion of monodromy can also be used to give a heuristic derivation of the general

result (5.30) for the Yukawa couplings of block reconstructible backgrounds. In branched

gauge, the matter fields are defined by orbits under the action of the monodromy group, and

a natural guess for the Yukawa coupling is to to the sum over all trilinear invariants made

from such orbits [9]. To motivate this, let us take seriously the branched gauge picture and

attempt to “guess” the Yukawa coupling. In branched gauge a block diagonal background

of the form

Φ =

 Ψ1 0 0

0 Ψ2 0

0 0 0

 , (6.13)

becomes diagonal

Ψ1 −→


λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λk1

 , Ψ2 −→


δ1 0 · · · 0

0 δ2 · · · 0
...

...
. . .

...

0 0 · · · δk2

 . (6.14)

The eigenvalues λi and δj are branched and the spectrum is quotiented by the associated

action of the monodromy group Gmono = G1 ×G2.

Consider the perturbations ϕ31 and ϕ23 written in branched gauge as row and column
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vectors respectively

ϕ31 =
(
β1 β2 · · · βk1

)
, ϕT23 =

(
α1 α2 · · · αk2

)
. (6.15)

Each element βi transforms in the n of the unbroken SU(n). The action of G1 permutes

the entries βi resulting in a single orbit and hence a single localized degree of freedom in

the n of SU(n). Similarly, each αi transforms as an n under SU(n) and the column vector

ϕ23 is permuted by G2. Finally we write the k1× k2 matrix ϕ12 as a matrix with entries ρij
with 1 ≤ i ≤ k1 and 1 ≤ j ≤ k2.

Now we want to write down the superpotential coupling WY . Taking branched gauge

seriously means that we should write the answer first by ignoring the monodromy action

and proceeding as in the intersecting brane solutions of section 2 and then passing to

Weyl invariant quantities. For a single set of modes αi, βj, if we ignore the presence of

monodromy, the Yukawa would be computed by the residue

Res(0,0)

[
(αi · βj)ρji

δiλj

]
(6.16)

To take into account the monodromy action, we now follow the prescription given in [9]

and sum over the orbit of the given αi and βj. This motivates the guess for the Yukawa

WY =
∑
ij

Res(0,0)

[
(αi · βj)ρji

δiλj

]
. (6.17)

Of course since the eigenvalues are branched, we do not quite know what to make of the

above residue. We can patch things up by going to a common denominator which is globally

well defined. The obvious choice is

det(Ψ1) det(Ψ2) =

(∏
i

λi

)(∏
j

δj

)
. (6.18)

Then the Yukawa takes the form

WY = Res(0,0)

[∑
i,j(αi · βj)ρji(det(Ψ1)/λj)(det(Ψ2)/δi)

det(Ψ1) det(Ψ2)

]
(6.19)

But now we simply observe that in branched gauge, the adjugate matrices Ai have the
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simple diagonal form

A1 =


det(Ψ1)/λ1 0 · · · 0

0 det(Ψ1)/λ2 · · · 0
...

...
. . .

...

0 0 · · · det(Ψ1)/λk1

 , (6.20)

A2 =


det(Ψ2)/δ1 0 · · · 0

0 det(Ψ2)/δ2 · · · 0
...

...
. . .

...

0 0 · · · det(Ψ2)/δk2

 . (6.21)

Thus equation (6.19) is can be written compactly in matrix notation as

WY = Res(0,0)

[
Tr (ϕ31A1ϕ12A2ϕ23)

det(Ψ1) det(Ψ2)

]
(6.22)

This is exactly the answer (5.30) that we derived rigorously in subsection 5.2.1! Since the

answer is written as a trace it is insensitive to the distinction between the well-behaved

holomorphic gauge, and the singular branched gauge. One can freely compute in whichever

picture one finds more convenient. The method of derivation given here gives an interesting

alternative perspective on the appearances of the adjugate matrices in the Yukawa. In the

formalism of section 4 these factors are needed to pass from the 8D field ϕ to the 6D field

η. Meanwhile, in branched gauge these adjugate factors enforce the sum over Weyl group

orbits and therefore render the result monodromy invariant.

6.3 Probing Monodromy with Three-Branes

We conclude our discussion of monodromy with a brief discussion of D3-branes probing a

T-brane background, studied for example in [15,16]. We will focus on the long wavelength

limit of the resulting physics. In the four-dimensional probe theory this corresponds to

the deep infrared regime, in which all details of the compact geometry of the seven-brane

four cycle S and the internal space are, in a technical sense, irrelevant deformations of the

four-dimensional probe theory. Thus, the probe D3-brane provides a way to track ultra-

local details of seven-brane monodromy and T-branes. We shall focus on those cases where

the D3-brane probe realizes an interacting N = 1 or N = 2 superconformal field theory

(SCFT) in the infrared (IR). As it is the case of primary interest, we consider D3-brane

probes of a Yukawa point, so that the Higgs field Φ is nilpotent at x = y = 0 where the

D3-brane sits.

In many cases of interest the coupling constants of this theory will be an order one
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parameter and no Lagrangian description of the D3-brane will be available. We can never-

theless, analyze some aspects of this theory, and in particular their deformations by various

operators. With terminology as in [35] for example, we will refer to superpotential and

Kähler potential deformations to denote chiral and non-chiral deformations of these possi-

bly non-Lagrangian theories.

Let us first review the main features of the N = 2 and N = 1 probe theories. In the

presence of a probe D3-brane, a stack of parallel seven-branes with gauge group G and Φ = 0

will preserve eight real supercharges. In the three-brane theory the coordinates (x, y, z) of

the internal space become propagating quantum fields (X, Y, Z) whose expectation values

govern the position of the probe. Meanwhile the seven-brane gauge group G becomes a

flavor symmetry of the three-brane theory. The three fields (X, Y, Z) are singlets under

this flavor symmetry algebra. They are accompanied in the probe theory by an operator O

which transforms in the adjoint representation of G, and can be viewed as setting the flux

data of the D3-brane when treated as an instanton of the seven-brane gauge theory.

First consider the N = 2 theories. When G = SO(8) this provides a a realization of

the N = 2 SU(2) gauge theory with four flavors [36], and for G = E6,7,8 the Minahan-

Nemeschansky theories [37, 38]. The N = 2 moduli space of the probe theory is parame-

terized in terms of expectation values of the operators (X, Y, Z) and O. This moduli space

has two branches which intersect at the point 〈Z〉 = 〈O〉 = 0. On the Coulomb branch,

〈O〉 = 0, and 〈Z〉 is non-zero. On the Higgs branch, 〈Z〉 = 0, and the moduli space is

parameterized in terms of 〈O〉. Since the D3 can freely sit anywhere in the seven-brane

worldvolume, the fields X and Y are decoupled hypermultiplets and have canonical scaling

dimension. Meanwhile, the operator O has dimension two, and Z has dimension specified

by G, so that for example if G = E6,7,8 then the dimension of Z is 3, 4, 6.

The N = 1 probe theories are realized by activating a non-trivial vev for Φ. The F-

term coupling of the D3-brane probe to the seven-brane can be determined by passing to

holomorphic gauge [15]. In this gauge, Φ is a holomorphic function of the quantum fields

X and Y valued in the complexified Lie algebra gC of the seven-brane gauge group. The

resulting superpotential deformation δWD3 is [15]:

δWD3 = Tr(Φ(X, Y ) ·O) (6.23)

This type of deformation breaks the original flavor symmetry group G to the commutant

subalgebra of Φ(X, Y ) in G. Assuming that this N = 1 deformation realizes another

SCFT, one can determine the infrared scaling dimensions for the chiral operators of the

theory [16]. In the UV N = 2 theory, the operators O transform in the adjoint of G, and

so the entire adjoint has scaling dimension two. In the IR, the symmetry G is broken, and

different elements of the original adjoint multiplet of O’s will now have different scaling

dimensions [16].
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One significant feature of the superpotential deformation (6.23) is that it shows that

the physical operators O of the three-brane theory couple directly to the seven-brane Higgs

field Φ. Different T-brane configurations are specified by distinct choices of Φ and according

to (6.23) the IR physics of the three-brane probe will detect the subtle differences between

various T-branes. This also reinforces a basic point of the previous sections, that the mon-

odromy group, while a useful tool, is not the fundamental feature of a T-brane background.

In branched gauge Φ(X, Y ) is a multivalued function of the quantum fields (X, Y ). From

the probe viewpoint this is physically unnatural. There is no sense in which the operators of

the probe theory are “quotiented by a monodromy group.” Rather the operators O source

directly the globally well-defined, but non-diagonalizable Higgs field.

The D3-brane also detects the elliptic fibration data of an F-theory compactification.

Moving the D3-branes away from the locations of the T-branes corresponds to moving to a

generic point of the geometry. The low energy theory of the D3-brane is then given by an

N = 1 U(1) gauge theory. The value of the holomorphic coupling constant τD3 physically

corresponds to the IIB holomorphic coupling:

τD3 = τIIB. (6.24)

In general, τD3 will be a non-trivial function of its position in the compactification. As

explained for example in [39] and used in [16], electric-magnetic duality of this theory

implies that we can identify τD3 with the complex structure modulus of an elliptic curve.

Moreover, it can only depend on Φ through holomorphic gauge invariant singlets. These

singlets correspond to the Casimirs found in the spectral equation for Φ. Translating this

spectral equation back to information about the elliptic fibration, we see that the notion

of the “discriminant locus” as dictated by the spectral equation survives even for T-brane

configurations. Note, however, that this provides only incomplete information about the

theory of the D3-brane, and thus more generally, the F-theory compactification.

Our aim in the remainder of this section will be to use the theory of a D3-brane probing a

Yukawa point as a way to elucidate further details of seven-brane monodromy and T-branes.

To this end, we first clarify the sense in which gauge transformations of the seven-brane

gauge theory extend to the probe theory. Next, we study how the probe theory detects

fluctuations ϕ around the background value of Φ(X, Y ). Finally, we introduce a physical

notion of a coarse-grained T-brane background based on which contributions to Φ(X, Y )

correspond to relevant and marginal deformations of the probe D3-brane theory.

6.3.1 Holomorphic Gauge and the Chiral Ring

We now discuss how gauge transformations of the seven-brane descend to the probe theory.

Clearly, a remnant of the seven-brane gauge group descends to the physical D3-brane probe
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theory because the coupling of line (6.23) is invariant under flavor rotations of the form

Φ(X, Y )→ g · Φ(X, Y ) · g−1 (6.25)

O → g ·O · g−1 (6.26)

for g a constant element of the compact realization of G. We have seen throughout this

paper that at the level of holomorphic data, it is often helpful to pass to complexified gauge

transformations valued in GC, and in particular to work in holomorphic gauge. At the

level of the superpotential deformations of equation (6.23), we see that this term is indeed

invariant under these complexified flavor rotations.

Even though the superpotential is invariant, such complexified transformations will

induce non-chiral D-term deformations of the probe theory. This is in accord with the fact

that although holomorphic gauge accurately captures the F-term data, D-term data will

in general be sensitive to the distinction between holomorphic and non-holomorphic field

redefinitions. Note, however, that since finite D-term deformations do not correspond to

relevant deformations of a CFT, it is natural to expect that the IR behavior of the D3-brane

theory will be insensitive to these distinctions. Thus if we study the IR behavior of the

theory we can freely complexify the flavor symmetry.

The idea of the previous paragraph can be extended to include the far broader class of

seven-brane gauge transformations of Φ(X, Y ) and O of the form

Φ(X, Y )→ g(X, Y ) · Φ(X, Y ) · g(X, Y )−1 ≡ Φ(g)(X, Y ) (6.27)

O → g(X, Y ) ·O · g(X, Y )−1 ≡ O(g) (6.28)

where g(X, Y ) = expχ(X, Y ), with χ(X, Y ) a holomorphic function of X and Y valued

in gC. Performing a power series expansion in X and Y , we see that Φ(g)(X, Y ) will also

be a holomorphic function of X and Y . Since the D3-brane can be viewed as a point-like

instanton of the seven-brane gauge theory, it is natural to expect the O’s parameterizing

the Higgs branch to also transform. In the worldvolume theory of the seven-brane the

above transformations are clearly symmetries of the action. However, from the perspective

of the three-brane, this type of gauge transformation leads to a highly non-trivial field

redefinition. For example, in the N = 2 and N = 1 probe theories considered in [16], the

weight of an operator under the adjoint representation determines its scaling dimension [16].

Note, however, that under the gauge transformation of line (6.28), the operators O(g) will be

linear combinations of operators with different scaling dimensions. Nevertheless, because

chiral ring relations are, by definition, covariant under this more general class of complexified

gauge transformations, it follows that these gauge transformations also descend to the chiral

sector of the D3-brane probe theory.

Thus Φ deformations of the probe theory which differ by a complexified gauge trans-
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formation induce the same IR dynamics of the D3-brane probe. This allows us to bring to

bear the full power of holomorphic gauge studied in the previous sections of this paper to

constrain and classify the possible SCFTs of D3-branes probing T-branes.

6.3.2 Coupling To Matter

Our discussion in the previous section focussed on the chiral couplings of the D3-brane

probe to the background field Φ(X, Y ). Let us now turn to fluctuations ϕ around this

background. In holomorphic gauge, these fluctuations couple to the operators O via [15]

W3−7 = Tr(ϕ ·O). (6.29)

The matter field fluctuations ϕ are characterized in terms of the quotient space (4.9), and

hence an individual element ϕ has meaning only up to infinitesimal gauge transformation

i.e. a shift of the form adΦ(χ). Thus the 3− 7 superpotential is only well-defined provided

that

ϕ and ϕ+ adΦ(χ) (6.30)

result in the same superpotential coupling for any holomorphic χ. In the IR this is a

consequence of the fact that the complexified seven-brane gauge group extends to the

three-brane theory. The two matter fields (6.30) differ by an infinitesimal complexified

gauge transformation, and thus we expect that up to a field redefinition on the O’s these

result in the same IR CFT.

To see this invariance directly in the probe theory we consider the superpotential for

the gauge transformed ϕ

W3−7 = Tr ((ϕ+ adΦ(χ)) ·O) (6.31)

Performing a gauge transformation as in line (6.28), the above superpotential can be recast

as

W3−7 = Tr(ϕ ·O(g)), (6.32)

for appropriate g(X, Y ). However, it is easy to see that the deformations ϕ ·O and ϕ ·O(g)

induce a flow to the same theory in the IR. Indeed, performing a power series expansion in

X and Y , we have

O(g) = O + ... (6.33)

where the “...” signify terms linear in O and of order one or higher in X or Y . Now in the

4D probe theory the matter field ϕ describes a propagating quantum field and hence has

dimension at least one. Since O has dimension two, it follows that the additional terms in

the superpotential induced by “...” of equation (6.33) result in changes of the theory by

irrelevant operators. Since we are concerned only with the IR dynamics these additional

pieces can be ignored.
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This shows explicitly that the IR dynamics defined by the coupling W3−7 is well-defined.

Note also that by similar reasoning, an expansion of the mode ϕ in terms of the coordinates

X and Y is also irrelevant: The only candidate relevant or marginal coupling in the IR is

given by the constant contribution to ϕ.

6.3.3 Coarse-Grained T-Branes

The previous subsection indicates an interesting feature of the way that a D3 brane couples

to a given T-brane configuration. Keeping track of the IR behavior of the probe theory,

this motivates a definition of a coarse-grained T-brane where we keep track of only those

terms in the Higgs field which the D3-brane CFT detects. In [16] the effects of different Φ

deformations were studied, where it was found that most of these terms drop out. Indeed,

since the position coordinates (x, y) of the seven-brane worldvolume are now quantum

fields in the probe theory, it follows that in a power series expansion in X, Y most terms in

the background Higgs field Φ(X, Y ) are irrelevant deformations of the probe theory. More

precisely, the flow to the IR is dominated by the operators of the deformation Tr(Φ(X, Y )·O)

with the lowest scaling dimension and determining the allowed coarse-grained Φ’s means

determining the anomalous dimensions of the components of O in the IR. After we have

determined which components of O have the smallest dimension, we then expand Φ in X

and Y and retain only those operators which are marginal in the IR.

Let us consider in more detail the coarse-grained form of Φ(X, Y ) which is probed by

a D3-brane. Our discussion follows that given in [16]. For simplicity, we focus on the case

where Φ takes values in an sl(m,C) subalgebra of the complexified Lie algebra gC. We

consider the case where Φ(0, 0) is nilpotent, so that the D3-brane probes a G-type Yukawa

point. Up to a complexified flavor rotation, we can decompose Φ into the direct sum of

nilpotent Jordan blocks:

Φ(0, 0) = ⊕
n
N (n) (6.34)

where N (n) denotes an n × n nilpotent Jordan block. Distinct choices of Jordan decom-

position give rise to different anomalous dimensions for O and hence to different class of

coarse-grained T-branes detected by the probe [16].

For each nilpotent block of length n, there is a canonical sl(2,C) subalgebra of gC, with

Cartan generator

J
(n)
3 = diag(jn, jn − 1, ..., 1− jn,−jn), jn ≡

n− 1

2
. (6.35)

Introducing the diagonal generator

J3 = ⊕
n
J

(n)
3 , (6.36)
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we can organize all of the operators O according to their J3 charge. Given an operator Os

of J3 charge +s, its IR scaling dimension is [16]:18

∆IR(Os) = 3− 3

2
(s+ 1)× t (6.37)

where t > 0 is a parameter which is fixed by a-maximization. Now we consider the three-

brane superpotential deformation

δWD3 = Tr(Φ(X, Y ) ·O) (6.38)

Although in the UV, X and Y are decoupled hypermultiplets, in the IR they can have

in principle distinct scaling dimensions. Allowing for this possibility it follows that if we

perform a power series expansion of Φ(X, Y ) in X, Y the contributions to δWD3 with the

lowest scaling dimension are those in which Os has the highest (and possibly second highest)

value of s.

We now consider some examples of coarse-grained Φ(X, Y ) backgrounds. Since we know

that the complexified gauge symmetry of the seven-brane extends to the IR of the three-

brane limit we can further restrict our attention using this symmetry. For a 2 × 2 Higgs

field with a single nilpotent Jordan block, we have

Φ(X, Y ) =

(
0 1

X 0

)
(6.39)

up to coordinate redefinitions. Similarly, for Φ a 3× 3 matrix with constant contribution a

single large nilpotent Jordan block, the generic form is

Φ(X, Y ) =

 0 1 0

0 0 1

X Y 0

 . (6.40)

More generally, the generic form of Φ given by an n× n matrix with constant contribution

a single large nilpotent Jordan block is of the form:

Φ(X, Y ) =


0 1 0 · · · 0

0 0 1 ... 0
...

...
...

. . .
...

0 0 0 · · · 1

X Y 0 · · · 0

 (6.41)

18As in [16] we assume that there are no emergent U(1) symmetries in the IR of the N = 1 deformed
theory.
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up to coordinate redefinitions. In all cases, we observe that over the field of meromorphic

functions in C(X, Y ), the Galois group of the characteristic polynomial for Φ(X, Y ) is Sn,

the symmetric group on n letters. Comparing to our previous notion of a reconstructible

background, we see that for a single large Jordan block, a coarse-grained Higgs field is re-

constructible of a very special form. It has Sn monodromy group and all spectral coefficients

save two vanish.

Though this provides a characterization in the case of a single nilpotent Jordan block,

the case of multiple Jordan blocks is richer. Rather than provide a full characterization,

let us discuss the case where Φ contains two 2 × 2 nilpotent Jordan blocks. Using our

previous notion of coarse-graining, we have that the IR behavior for Φ(X, Y ) is dictated by

the entries

Φ(X, Y ) =


0 1 0 0

X 0 γX + δY 0

0 0 0 1

αX + βY 0 Y 0

 .. (6.42)

In this case, the characteristic polynomial of Φ is:

PΦ(z) = z4 − (X + Y )z2 − f(X, Y ) = 0 (6.43)

where f(X, Y ) is a polynomial quadratic in X and Y . The corresponding Galois group

is then Dih4 ' Z2 n Z4, the symmetry group of the square. This illustrates that for an

appropriate Jordan block structure, the notion of a coarse-grained monodromy group can

differ from Sn.

7 Further Examples and Novelties

Our techniques can be extended in a number of ways to produce a plethora of interesting

examples. Our aim in this final section of the paper is not to be exhaustive but to indicate

some of the directions for further exploration. Following the general paradigm outlined

in section 4 in all of our examples we focus on the localized spectra and their couplings.

It is for these that the restriction to trivial brane worldvolumes is really justified. Thus

throughout we will not discuss bulk modes, whose existence or lack there of can only be

determined once a compact worldvolume is specified.

In 7.1 we compute some basic examples of superpotentials involving the Higgsing of

phenomenologically interesting groups such as E6, E7 and E8. Finally in 7.2 we present

some examples illustrating that when singular, the spectral equation provides incomplete

information about the localized matter content of a T-brane configuration. We show that

there can be matter present even when there is no indication from the spectral equation.
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Conversely, we also show that even if the spectral equation suggests the presence of a

localized mode, none may be present. We then combine some these themes, showing that

depending on the representation type of the matter field, the spectral equation may or may

not correctly indicate the presence of a localized mode. This latter point is quite significant

for model building in F-theory GUTs because various papers have claimed constraints on

the spectra of such models using information derived from the spectral equations. We

conclude the paper with an exciting example of pointlike localized matter.

7.1 Examples of Superpotentials

7.1.1 An E6 Yukawa

For phenomenological purposes, an important ingredient in an SU(5) F-theory GUT is the

coupling 5× 10× 10. In terms of SU(5) group theory the 5 is the fundamental while the

10 is the antisymmetric tensor. The gauge invariant coupling is then given by the totally

antisymmetric contraction with an epsilon tensor

εijklm5i10jk10lm. (7.1)

From the perspective of the gauge theory, this coupling is generated by an appropriate

breaking pattern of E6 to SU(5) and is localized at a point in the geometry. The Higgs

field in this example preserves an unbroken SU(5) gauge symmetry and hence takes values

in the sl(2,C)× u(1,C) subalgebra of sl(5,C)× sl(2,C)× u(1,C) ⊂ e6

Φ =

(
0 1

x 0

)
⊕ (y/3) . (7.2)

For physical applications, the 5 field describes the up-type Higgs field, while the 10 contains

various quarks and leptons. After GUT breaking SU(5)→ SU(3)× SU(2)× U(1) the 10

can be seen to contain the up-type quarks. When the standard model Higgs field develops a

vev and breaks electroweak symmetry the Yukawa coupling 5×10×10 is then responsible

for the mass of the top quark. Thus this Yukawa coupling is a key feature of an SU(5)

GUT.

To compute the couplings in this example, our first task is to determine the matter

curves. To this end, we first determine the charge of each irreducible representation un-

der the adjoint action of Φ. The adjoint representation of e6 decomposes into irreducible

representations of sl(5,C)× sl(2,C)× u(1,C) as

e6 ⊃ sl(5,C)× sl(2,C)× u(1,C), (7.3)

78→ (1,1)0 ⊕ (1,3)0 ⊕ (24,1)0 ⊕ (10,2)−3 ⊕ (5,1)+6 ⊕ (10,2)3 ⊕ (5,1)−6 (7.4)
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Where in the above the subscript refers to the u(1,C) charge. Denote by ϕ5 and ϕ10

the matter field fluctuations transforming in the indicated representations of the unbroken

gauge group sl(5,C). For now, we will suppress the GUT group indices of the modes and

focus on their transformation properties under the subgroup sl(2,C) × u(1,C) where the

background Φ is non-trivial.

For the modes in the 5 things are simple. These modes are singlets under the non-

diagonal sl(2,C) and hence are not sensitive to the Z2 monodromy of the background.

Under the adjoint action of Φ they transform simply by multiplication by 2y. Thus in the

language of section 4 they solve the torsion equation (4.10) with matter curve y = 0 and

η5 =
1

2
ϕ5. (7.5)

Meanwhile for the modes in the 10 things are more interesting. These modes are charged

under the non-trivial sl(2,C) piece of Φ. If we write the field ϕ10 as a doublet

ϕ10 =

(
ϕ10+

ϕ10−

)
(7.6)

then under gauge transformation with a doublet parameter χ we find that

δϕ10 =

(
−y 1

x −y

)
χ. (7.7)

Using this gauge freedom we may freely set to zero the upper entry 10+ of ϕ10. To find

the localized modes we then study the torsion condition (4.10) for a matter curve defined

by f = 0

fϕ10 =

(
−y 1

x −y

)
η10. (7.8)

To solve this we proceed as in section 5 and our study of brane recombination. The matrix

appearing on the right-hand side of (7.8) is invertible away from its determinant locus, and

hence this defines the matter curve

f = y2 − x. (7.9)

Then (7.8) is solved by acting on both sides with the adjugate matrix yielding

η10 =

(
−y −1

−x −y

)
ϕ10 = −

(
ϕ10−

yϕ10−

)
. (7.10)

77



The residue class of this doublet

[η10] ∈ e6 ⊗O/〈y2 − x〉 (7.11)

is then the 6D gauge invariant localized field which describes the 10’s in this geometry.

Having determined the profile of the holomorphic zero modes, we now compute the

Yukawa. The general results of section 4 indicate that the coupling is computed by the

following residue

W5×10×10 = Res(0,0)

[
Tr ([η5, η10]ϕ10)

(y)(y2 − x)

]
. (7.12)

To evaluate the above we need one final piece of E6 group theory. The decomposition (7.3)

specifies a decomposition of e6 generators. Let tM10ij and t5k denote the generators of e6

transforming in the 10 and 5 of sl(5,C) respectively. We write i, j, k for sl(5,C) indices

and M,N for sl(2,C) indices. Then the result we need is that the trace in the adjoint of

e6 is given as

Tr
(
[t5i, t

M
10jk]t

N
10lm

)
∝ εijklmε

MN . (7.13)

Thus the e6 trace provides the necessary sl(5,C) epsilon tensor to form the coupling (7.1).

To evaluate the residue then we need only contract the sl(2,C) with the two index tensor

εMN . Plugging into (7.12), restoring the sl(5,C) indices, and simplifying the result residue

yields the final answer

W5×10×10 = Res(0,0)

[
εijklmϕ

i
5ϕ

jk
10−ϕ

lm
10−

(x)(y)

]
. (7.14)

Notice that as compared to our examples in the previous sections of the paper, this result is

novel in that the coupling involves one field ϕ10− participating twice in the trilinear Yukawa.

Indeed, the local geometry of this T-brane configuration has only two intersecting matter

curves. One of these curves supports the 5 and the other supports the 10. As indicated

by the denominator factor in the residue these two curves meet transversally and hence the

rank of the associated coupling in the space of 10’s is exactly equal to one. In the real world

to leading order the top quark is massive and the other generations of up-type quarks are

massless. Thus the rank one e6 Yukawa computed (7.14) in is a reasonable starting point

for modeling this feature of our universe.

For comparison it is interesting to observe that this configuration of matter curves and

their coupling is somewhat different from the one obtained from Higgsing E6 to SU(5) by

a diagonal Higgs field valued in the Cartan. Indeed, in that case we can essentially repeat
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the same analysis with background Higgs field

Φ =

(
+x 0

0 −x

)
⊕ (y/3) . (7.15)

The corresponding 5 curve is again y = 0, but there are now two distinct 10 curves, given

by x+ y = 0 and x− y = 0, which we denote by 10 and 10′. Now the three matter curves

all meet at the origin and the Yukawa coupling involves modes from all three curves

W5×10×10 = Res(0,0)

[
εijklmϕ

i
5ϕ

jk
10′ϕ

lm
10

(x)(y)

]
. (7.16)

As noted in [3], if one views the above coupling as a matrix in the space of 10 zero modes

then this leads to a rank two Yukawa matrix, and hence indicates more than one generation

of heavy up-type quarks.

7.1.2 An E7 Yukawa

Analogously to our previous example one can also study the Yukawa couplings in SO(10)

GUTs. In these models, the matter of a complete generation of standard model fields,

together with a right-handed neutrino, is contained in a single Weyl spinor 16 of SO(10).

Meanwhile the standard model Higgs field transforms as a vector 10. The most interesting

Yukawa 16 × 16 × 10 is again the one responsible for quark masses, and in this case is

generated group theoretically by contraction with a Γ matrix of the SO(10) Clifford algebra

(CΓi)αβ 16α16β10i. (7.17)

Where in the above α, β are spinor indices, i is a vector index, and C denotes the standard

charge conjugation matrix.

In a seven-brane model this interaction is generated by breaking an E7 gauge group to

SO(10). The background Higgs field Φ is then valued in an sl(2,C)×u(1,C) subalgebra of

so(10,C)× sl(2,C)× u(1,C) ⊂ e7 and is essentially identical to the e6 background studied

in the previous example

Φ =

(
0 1

x 0

)
⊕ (y/3) . (7.18)

The adjoint representation of e7 decomposes as

e7 ⊃ so(10,C)× sl(2,C)× u(1,C), (7.19)

133→ (1,1)0 ⊕ (1,3)0 ⊕ (45,1)0 ⊕ (16,2)−3 ⊕ (10,1)+6 ⊕ (16,2)3 ⊕ (10,1)−6 (7.20)
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Thus up to changing the GUT group from SU(5) to SO(10) this T-brane configuration is

identical to the e6 Higgsing studied in the previous section. The standard model Higgs field

ϕ10 is localized on the curve y = 0, while a doublet ϕ16± of spinor fields is localized on the

curve y2 = x. Proceeding as in the example 7.1.1, we then find that the one component of

the spinor doublet, ϕ16+ is gauge equivalent to zero, so that this background supports only

two matter curves and exactly two 6D fields.

Now we can easily evaluate the Yukawa. According to our general results of section 4

the coupling is computed by the residue

W16×16×10 = Res(0,0)

[
Tr ([η10, η16]ϕ16)

(y)(y2 − x)

]
. (7.21)

To evaluate this, we need to know the analogous result to (7.22) for a trace of e7 generators.

Let tM16,α, and t10,i denote e7 generators transforming under the 16 and 10 of so(10,C)

respectively. As in (7.17), we use α, β for spinor indices of so(10,C), i for a vector index

of so(10,C), and M,N for sl(2,C) indices. Then a trace in the adjoint of e7 produces the

following invariant tensors

Tr
(
[t10,i, t

M
16,α]tN16,β

)
∝ (CΓi)αβ ε

MN . (7.22)

Plugging into the residue and simplifying then yields the result

W16×16×10 = Res(0,0)

[
(CΓi)αβ ϕ

α
16−ϕ

β
16−ϕ

i
10

(x)(y)

]
. (7.23)

Again this coupling involves a single field ϕ16− participating twice in the Yukawa coupling.

Since the matter curves meet transversally the final result (7.23) yields a rank one Yukawa

and hence gives mass to exactly one generation of standard model matter 16’s.

7.1.3 An E8 Yukawa

The previous two examples all involve Yukawas which arise from a rank two enhancement

of the unbroken gauge group. A more dramatic possibility is to have a Yukawa coupling

where the gauge group enhances by more than rank two. Phenomenologically relevant cases

of this idea have been studied in detail in [9, 13]. Thus for our final example we consider

the case of an SU(5) GUT model which is restored at a point all the way to E8. We focus

on an example considered in both [13], and [16] where the seven-brane Higgs field Φ takes
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values in the sl(5,C)⊥ factor of sl(5,C)GUT × sl(5,C)⊥ ⊂ e8

Φ =


λ1 1 0 0 0

x λ1 0 0 0

0 0 −2λ1 − λ2 1 0

0 0 y −2λ1 − λ2 0

0 0 0 0 2(λ1 + λ2)

 . (7.24)

Where in the above the two parameters λi are taken to be linear functions of the coordinates

(x, y)

λi = αix+ βiy, αi, βi ∈ C. (7.25)

The constants αi and βj are local moduli of the configuration. They determine the geometry

of the matter curves near the origin (x, y) = (0, 0). We will assume that our configuration

is at a generic point in αi, βj space so that in particular none of these moduli vanish.

Physically, this type of background field configuration describes a Dirac neutrino sce-

nario with Z2×Z2 monodromy of the type considered in [13]. One of the interesting features

of this type of higher rank structure is that there are now many matter curves all meeting

at the origin. Of interest to us are three 5 curves and one 10 curve. To make contact with

phenomenology we will identify the 10 curve as supporting a matter field ϕ10M and one

of the 5 curves as supporting the ϕ5M
matter field. The remaining two 5 curves will then

support the two Higgs fields of the MSSM GUT, ϕ5H
and ϕ5H . As we will see both of the

required interaction terms

εijklm5iH × 10jkM × 10lmM and 5H,i × 5M,j × 10ijM (7.26)

will be generated at this single E8 point in the geometry.

To see how this comes about in more detail, we decompose the adjoint representation

of e8 into irreducible representations of sl(5,C)GUT × sl(5,C)⊥ as:

e8 ⊃ sl(5,C)GUT × sl(5,C)⊥, (7.27)

248→ (24,1)⊕ (1,24)⊕ (5,10)⊕ (10,5) +⊕(5,10)⊕ (10,5). (7.28)

Hence, the 5’s of the GUT group correspond to 10’s under sl(5,C)⊥, and the 10’s of the

GUT group correspond to 5’s of sl(5,C)⊥. To determine the resulting matter spectrum, it

is helpful to organize these modes according to a weight space decomposition. We introduce

basis vectors e1, ..., e5 which span the fundamental of sl(5,C)⊥. The basis vectors for the

10 of sl(5,C)⊥ are then ei ∧ ej for i 6= j. Labeling the components of the 10 as ei ∧ ej for
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i 6= j, we have that Φ acts on the two representations as

ei → Φ · ei (7.29)

ei ∧ ej → (Φ · ei) ∧ ej + ei ∧ (Φ · ej). (7.30)

To analyze the matter content around the background specified by equation (7.24), we need

to analyze the action of Φ on the 5 and 10 of sl(5,C)⊥. Rather than present the full action

on each representation, we focus on those pieces of particular phenomenological relevance.

Using the identification of matter states performed in [13], the subspaces in the 5 and 10

of sl(5,C)⊥ spanned by the matter fields are

5H :
(
e∗1 ∧ e∗2

)
, 5M :

(
e3 ∧ e5

e4 ∧ e5

)
, 5H :


e1 ∧ e3

e1 ∧ e4

e2 ∧ e3

e2 ∧ e4

 , 10M :

(
e1

e2

)
. (7.31)

For each representation R appearing in (7.31) we represent the associated action of Φ as a

matrix ΦR. We have

Φ5H = 2λ1, (7.32)

Φ5M
=

(
λ2 1

y λ2

)
, (7.33)

Φ5H
=


−(λ1 + λ2) 1 1 0

y −(λ1 + λ2) 0 1

x 0 −(λ1 + λ2) 1

0 x y −(λ1 + λ2)

 , (7.34)

Φ10M =

(
λ1 1

x λ1

)
. (7.35)

As in our previous study of explicit examples it is helpful to introduce the adjugate matrices

AR to ΦR. They are defined by the condition that

ARΦR = ΦRAR = det (ΦR)1. (7.36)

Then the localized 6D fields for each representation is given by

ηR = ARϕR. (7.37)
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Figure 5: The local geometry of the E8 point with Z2 × Z2 monodromy specified by the
background (7.24). The 5H curve, depicted in red, has a cusp singularity at the origin. The
remaining matter curves are smooth and meet transversally.

And the matter curves fR = 0 are defined by the determinant loci of the ΦR

f5H ≡ λ1, (7.38)

f5M ≡ λ2
2 − y, (7.39)

f5H ≡ (λ1 + λ2)4 − 2(λ1 + λ2)2(x+ y) + (x− y)2 (7.40)

f10M ≡ λ2
1 − x. (7.41)

Notice in particular that the local geometry of these curves, illustrated in Figure 5, is quite

intricate. The 5H curve has a singularity at the origin. Nevertheless the gauge theory is

still well-behaved and all physical quantities of interest can be computed using our results

from section 4.

Let us now turn to the evaluation of the Yukawas. First consider the 5H × 10M × 10M
coupling. In this case, we note under the action of the internal Higgs field Φ the 10M fills

out a doublet with components ϕ10M,± , while the 5H corresponds to a singlet. Performing

the analogous computation to that presented in the E6 example of section 7.1.1, we now

have

W5H×10M×10M = Res(0,0)

[
Tr ([η5H , η10M ]ϕ10M )

(f5H )(f10M )

]
. (7.42)

The E8 trace evaluates identically as the E6 trace and produces the required epsilon tensor

for the contraction. Evaluating and simplifying we find

W5H×10M×10M = Res(0,0)

[
εijklmϕ

i
5ϕ

jk
10M,−

ϕlm10M,−
(x)(y)

]
. (7.43)

As in the example 7.1.1 this yields a rank one coupling.
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Finally, we consider the evaluation of the 5H×5M×10M coupling. This case is somewhat

more involved because the ϕ5H
states now fill out a four-component vector. We denote the

components of this vector as ϕ5H,N
with N = 1, · · · 4. Further, denote by ϕ5M,±

and ϕ10M,±

the other modes participating in the Yukawa. Applying our general result we have

W5H×5M×10M =

[
Tr
(
[η5M , η10M ]ϕ5H

)
(f5M )(f10M )

]
. (7.44)

As usual, we need to know how to evaluate a trace of matrices in the adjoint of e8 in terms

of invariant tensors for sl(5,C)GUT × sl(5,C)⊥. Fortunately due to the symmetry between

the internal indices of sl(5,C)⊥ and the GUT indices sl(5,C)GUT our previous work already

tells us the answer. Indeed if we think about this coupling from the point of view of sl(5,C)

then it is again 5× 10× 10 and hence the internal sl(5,C) indices are contracted using a

totally antisymmetric five index tensor as in (7.43). Thus if we continue to use the wedge

product notation introduced above then the trace is

Tr
(
[η5M , η10M ]ϕ5H

)
= η5M i ∧ η

ij
10M
∧ ϕ5Hj

. (7.45)

All that remains is to explicitly make use of the relevant adjugate matrices substitute into

(7.44). In simplifying the residue, it is helpful to note that the two matter curves appearing

in the denominator meet transversally, and hence the only non-zero contributions to the

residue can come from terms which do not vanish at the origin. The result, after a small

bit of algebra is quite simple

W5H×5M×10M = Res(0,0)

[
ϕ5H,4i

ϕ5M,−j
ϕij10M,−

(x)(y)

]
. (7.46)

Again this yields a rank one Yukawa matrix in generation space.

7.2 Bestiary

In this section we turn to a collection of examples illustrating some of the novel phenomena

associated with T-branes, and in particular, some of the ways in which a singular spectral

equation can miss, or incorrectly predict, the presence of localized matter fields. We also

present an example which falsifies some of the assumptions used to claim various constraints

on the spectra of F-theory GUTs.

7.2.1 Nilpotent Matter

This simplest example where the spectral equation misses a localized mode is to take
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Φ =

(
0 x

0 0

)
. (7.47)

This matrix has a non-trivial spatial variation which is completely invisible to the spectral

equation, PΦ(z) = z2. Away from x = 0 this background breaks SU(2). At x = 0 the local

symmetry group is enhanced and one finds localized matter. To compute this explicitly we

proceed as in section 4. A localized perturbation at x = 0 satisfies the torsion condition

xϕ = adΦ(η) (7.48)

This equation admits two solutions

ϕ1 =

(
1 0

0 −1

)
, η1 =

(
0 0

1 0

)
, (7.49)

ϕ2 =

(
0 1

0 0

)
, η2 =

(
−1

2
0

0 1
2

)
. (7.50)

These modes are invisible to the spectral equation. Developing a detailed theory of this

phenomenon of nilpotent T-branes which support localized matter as well as their physical

interpretation is an interesting open question.

7.2.2 Missing Charged Matter

The previous example illustrates that the spectral equation can miss localized matter.

In that example the background (7.47) completely breaks the symmetry and the missing

matter is a neutral localized field. An even more drastic possibility is that the spectral

equation misses a localized charged matter field. An example of this sort is realized by

Φ =

 0 x 0

0 0 0

0 0 0

 . (7.51)

This background preserves an unbroken U(1) gauge symmetry. If we study the charged

doublet perturbation  0 0 ϕ+

0 0 ϕ−
0 0 0

 , (7.52)
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then we will find localized charged matter invisible to the spectral equation. The torsion

condition for the doublet is

x

(
ϕ+

ϕ−

)
=

(
0 x

0 0

)(
η+

η−

)
(7.53)

This is solved by

ϕ =

(
1

0

)
, η =

(
0

1

)
. (7.54)

Thus the spectral equation can miss localized charged matter.

7.2.3 Phantom Curves

The previous example illustrates that the spectral equation can fail to detect a localized

charged matter field. Equally bad, is the fact that the spectral equation can sometimes

indicate a matter curve when in fact no localized mode exists. To demonstrate this let us

consider two possible T-branes which describe a Higgsing from SU(4)→ U(1)

Φ1 =


0 1 0 0

0 0 1 0

0 x 0 0

0 0 0 0

 , Φ2 =


0 1 0 0

x 0 x 0

0 0 0 0

0 0 0 0

 . (7.55)

These two Higgs fields preserve the same unbroken gauge symmetry, and have identical

spectral equation PΦi = z2(z2−x). One can see that they are distinct T-brane configurations

by noting that at x = 0 they have different Jordan decompositions.

Based purely on the spectral equation, one might be tempted to conclude that at x = 0,

where the two factors of PΦ(z) collide one should find localized matter. To investigate this

hypothesis we need only study the torsion equation for localized charged matter in the

triplet 
0 0 0 ϕ1

0 0 0 ϕ2

0 0 0 ϕ3

0 0 0 0

 . (7.56)

Consider first the background Φ1. Using our gauge freedom we can freely set ϕ1 = ϕ2 = 0.

The localization equation then reads

x

 0

0

ϕ3

 =

 0 1 0

0 0 1

0 x 0

 η1

η2

η3

 (7.57)
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Which has no solutions.

On the other hand for the background Φ2 we can reach a gauge where ϕ1 = 0, and the

localization equation reads

x

 0

ϕ2

ϕ3

 =

 0 1 0

x 0 x

0 0 0

 η1

η2

η3

 (7.58)

This is solved by

ϕ =

 0

1

0

 , η =

 1

0

0

 . (7.59)

Thus for the background Φ2 the spectral equation indicates correctly that there is matter,

while for the background Φ1 no matter exists at x = 0. The basic principle behind these

examples is that we have exited the paradigm of reconstructible Higgs fields and the mon-

odromy group is not transitive. This means that at the branch locus x = 0 there are multiple

Jordan structures of the T-brane which are consistent with the spectral polynomial. The

spectral polynomial accurately predicts the localized matter when the Jordan structure is

chosen so that the monodromy group is a transitive subgroup of the non-vanishing Jordan

block.

7.2.4 No Correlation Between Representations

For applications to phenomenology one might also be interested in how the failure of the

spectral equation to detect localized matter is correlated across different matter representa-

tions. For example, in [14] (see also [19]) it was found that if one assumes that the spectral

equation accurately captures all localized matter, then the homology classes of the matter

curves supporting the 5 modes and the 10 modes are correlated. Activating a hypercharge

flux through the Higgs curves to achieve doublet triplet splitting as in [3] we would then

find incomplete GUT multiplets descending from the 10 as well.19

At the very least, the previous examples illustrate that a singular spectral equation

provides only partial information about the localized matter content of a T-brane configu-

ration. Nevertheless, one might still speculate that whenever the spectral equation fails to

detect a localized 10 curve, it also fails to detect a localized 5 curve, so that in any case the

matter curves among different representations are still correlated. To address this latter

19As has been noted in previous works (see e.g. [13]), this result assumes that the entire system can be
described globally over a compact S in terms of a single E8 gauge theory. Moreover, one must also assume
that there are no “accidental factorizations” in the discriminant locus. Neither condition needs to hold in
a general model. Here we show that even in a local patch of S, the assumptions of [14] need not hold.
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possibility, we now present an example in which the spectral equation accurately captures

the localized 5 matter, but falsely predicts the existence of a localized 10 mode.

Consider a breaking pattern of E8 → SU(5)GUT specified by an SU(5)⊥ Higgs field

Φ =


0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 x 0 0

 . (7.60)

Like the example of section 7.2.3 this Higgs field is not reconstructible. It has a non-

transitive Z3 monodromy group, but a Jordan structure that is larger than 3 × 3. As

explained in section 7.1.3 the 10’s of the SU(5)GUT transform as 5’s under SU(5)⊥ while

the 5’s of SU(5)GUT transform as 10’s under SU(5)⊥.

Now the spectral equation of Φ is:

PΦ(z) = z2(z3 − x). (7.61)

Based purely on considerations of the spectral equation, one might then be tempted to

conclude that there are localized 10’s when x = 0 and the two components of the spectral

equation collide.

This is not so. Like the example of section 7.2.3, there is no localized matter for Φ acting

in the fundamental representation and hence for this representation x = 0 is a phantom

matter curve. Meanwhile we can also consider the spectral equation for Φ acting in the

antisymmetric tensor 10 of SU(5)⊥

PΦ∧Φ(z) = z(z3 + x)(z3 − x)2. (7.62)

This is the relevant spectral equation for charged matter in the 5 of SU(5)GUT . Reasoning

based on (7.62) one might guess that there is matter localized on the curve x = 0.

This guess turns out to be correct. Suppressing the SU(5)GUT indices we can write a

perturbation ϕ which transforms in the 10 of SU(5)⊥ as a 5 × 5 antisymmetric matrix.

Under a gauge transformation with parameter χ the change in the perturbation is

δϕ = Φχ+ χΦT . (7.63)

To look for localized matter we again study the torsion condition

xϕ = Φη + ηΦT . (7.64)
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This admits the solution

ϕ =


0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 −1 0 0 0

 , η =


0 0 0 −1 0

0 0 1 0 0

0 −1 0 0 0

1 0 0 0 0

0 0 0 0 0

 . (7.65)

Thus there is localized matter in the 5̄ of SU(5)GUT . This shows that the property of being

a “phantom matter curve” can depend on which representation the Higgs field acts on.

Though this example is clearly not realistic for model building applications, it already

shows that from the spectral equation alone, one cannot deduce the homology class of all

matter curves, and thus, it is not possible to constrain the spectra of F-theory GUTs, at

least using the methods advocated in [14]. To determine whether there are constraints on

the matter spectra, it would seem necessary to extend the discussion presented here to a

compact S. Following [18] one could in principle consider a meromorphic Higgs field, and

study the matter content for compact S. At some level, there must be some correlation

between the matter fields, simply based on various anomaly cancellation considerations in

four dimensions, and possibly inflow from higher dimensions. What is not clear is that such

constraints must take the form of a relation between the homology classes of matter curves.

7.2.5 Pointlike Matter

The previous examples of this subsection are all intrinsically 6D phenomena. They involve

T-brane configurations which depend only on one coordinate x. If we study backgrounds

which are intrinsically 4D then we find a novel kind of pointlike localized matter. The

simplest background which demonstrates this phenomenon is to take

Φ =

(
0 x

y 0

)
. (7.66)

If we proceed naively to study perturbations

ϕ =

(
ϕ0 ϕ+

ϕ− −ϕ0

)
. (7.67)

then we find that under gauge transformation by a holomorphic χ we have

δϕ =

[(
0 x

y 0

)
,

(
χ0 χ+

χ− −χ0

)]
=

(
xχ− − yχ+ −2xχ0

2yχ0 yχ+ − xχ−

)
. (7.68)
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Thus the gauge invariant data in the perturbation mode ϕ0 is naturally valued in O/〈x, y〉.
In other words this is a matter mode concentrated at a point. This is quite interesting and

deserves to pursued in greater detail. Its existence indicates to us that even working in a

small patch, there may still be many strange beasts yet to be discovered.

8 Conclusions

In this paper we have initiated a study of T-branes, which are bound states of branes char-

acterized by the condition that on some loci the matrices of their normal deformations are

upper triangular. We have developed a general formalism for studying the massless matter

localized on curves and their associated superpotential couplings. We have also presented

a number of examples which explicitly demonstrate that in general such configurations

are intrinsically non-abelian and hence are not completely captured by the eigenvalues the

Higgs field. These examples themselves deserve further study both to clarify their physical

interpretation, and perhaps to make contact with other studies of non-abelian brane physics

such as the Myers effect [41].

At a practical level, we have seen why the distinction between the eigenvalues of Φ and

the Higgs field itself is so important. Indeed, using just the data derived from the spectral

equation for Φ, some papers have claimed various constraints on the massless spectra of

F-theory GUTs. In this paper we have seen that there can be matter curves undetected

by the spectral equation, and also no matter curve where the spectral equation would

have otherwise indicated one is present. The spectral equation is by itself an incomplete

characterization of a theory of seven-branes, and must be supplemented by additional data.

It would be quite interesting to consider more realistic models which exploit this additional

flexibility in specifying a T-brane configuration. At the very least, in light of what has been

found here, various model building efforts which have relied on singular spectral equations

may need to be revisited.

Extending the discussion given in [11], in this work we have seen that the localized matter

content and superpotential interactions of T-branes backgrounds can be characterized in

terms of purely holomorphic algebraic data. It would be interesting to consider further

deformations to the superpotential, which can be phrased in terms of a holomorphic non-

commutative deformation of the geometry [11]. Given our algebraic characterization of

matter fields and Yukawa couplings, the extension to this non-commutative case should be

straightforward, and likely applies to other non-commutative backgrounds such as those

considered recently in [42].

Moving beyond particle physics, an important feature of F-theory is that it can be

characterized either in terms of open string variables associated with the local gauge theory

of seven-branes, or in terms of closed string variables by specifying a compactification on
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a possibly singular Calabi-Yau fourfold. In this paper we have focussed on the open string

description of T-branes. Developing an appropriate closed string description would be quite

interesting. For example, this would appear to be a necessary step in coupling such T-brane

configurations to gravity. As we have explained in this paper, a given T-brane fails to be

captured by the spectral equation precisely when the spectral surface and hence the Calabi-

Yau is singular. It is thus tempting to speculate that the additional data of a T-brane is

encoded in the non-abelian structure of a resolution of singularities. This would dovetail

nicely with previous mathematical studies of nilpotent Higgs fields [27].

Though in this paper we have focussed on T-brane configurations associated with seven-

brane gauge theory, the underlying concept and analysis is far more general. The Hitchin-

like equations controlling this system should apply quite broadly to branes wrapping com-

plex surfaces probing an ambient normal direction. Abstractly the dynamics of this gauge

theory are described by a topologically twisted version of N = 4 gauge theory in four real

dimensions considered in [7]. Localized matter on curves is then a kind of topological sur-

face defect, and our discussion is, at its core, a theory of these defects. We expect that the

idea of T-branes could be applied to many other situations encountered in string theory,

and can be extended to different dimensionalities of branes with various amounts of super-

symmetry. We hope that this paper will serve as an appetizer for future exploration and

application of T-branes in string theory.
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A Classification of Reconstructible Higgs Fields

The goal of this section is to prove the theorem quoted in section 5.1 on the uniqueness of

reconstructible Higgs fields with a fixed spectral polynomial. We continue to use the no-

tation O for the ring of holomorphic power series in two variables x and y, and we denote

by m ⊂ O the maximal ideal of functions which vanish at the origin. All matrices and

functions are holomorphic unless otherwise stated.
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Theorem: Let Φ be an n× n matrix with spectral equation:

PΦ(z) = zn + σ2z
n−2 − σ3z

n−3 + · · ·+ (−1)nσn. (A.1)

Assume as in section 5.1 that Φ is reconstructible in the sense that PΦ(z) = 0 is a non-

singular surface in C2. Further, assume that all of the eigenvalues of Φ vanish at the origin.

Then up to conjugation (i.e. holomorphic gauge transformation) we have:

Φ =


0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 1

(−1)n−1σn (−1)n−2σn−1 (−1)n−3σn−2 · · · −σ2 0

 . (A.2)

Proof : We show by induction that for each k ≥ 0 we can put Φ in the desired form

up to terms of order mk. For the case k = 0 we need to show that Φ evaluated at the origin

can be conjugated to the form asserted in the theorem. By standard linear algebra the con-

stant matrix Φ|(0,0) can be put in Jordan normal form. By assumption all the eigenvalues

vanish at the origin so Φ|(0,0) is a pure Jordan block J , its non-vanishing entries are some

number of ones on the superdiagonal. The expansion of Φ near the origin is then

Φ = J + φ1. (A.3)

Where in equation (A.3) the matrix φ1 vanishes at the origin so that φ1 ∈ m. Take

the determinant of equation (A.3). Since the Higgs field is reconstructible we know that

det(Φ) /∈ m2. Thus since each entry of φ1 is in m it must be that the Jordan block J has

maximal length

J =


0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 1

0 0 0 · · · 0 0

 . (A.4)

Thus for k = 0 we are done.

Now we proceed to the inductive step. Assume that we have reached a gauge where the

series expansion of Φ at the origin takes the form:

Φ = J + C + φk. (A.5)
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In the above the matrix C ∈ m has non-vanishing entries only along the bottom row, while

φk ∈ mk is the order k discrepancy from the desired form. To proceed we need the following

lemma:

Lemma: Let φ be any n× n matrix. Then there exists a matrix χ such that [J, χ]− φ is

zero except in the last row.

Proof: Direct computation.

Now we are essentially done. Using the claim we choose χ such that

[J, χ]− φk (A.6)

vanishes outside the bottom row. Notice that since φk ∈ mk and and all the non-vanishing

entries of J are not in m we may take χ ∈ mk. Now perform a gauge transformation by

eχ. We have:

Φ −→ eχΦe−χ = J + C + φk − [J, χ] + · · · (A.7)

= J + C ′ + φk+1 (A.8)

In the above the matrix C ′ denotes a new matrix in m with non-vanishing entries only in

the last row, while the discrepancy φk+1 is now in mk+1. This completes the inductive step

and proves the theorem.

B Non–Degeneracy of the 6D Superpotential

Applying the formulae of section 4.2.1 to a variety of explicit examples, we always find the

quadratic part of the 6D superpotential to have the form of the 2D chiral Dirac theory

coupled to a connection on some vector bundle, that is

W6D quad. =

∫
Σ

Ωij φi ∂Vj φj, (B.1)

where the φi’s are the 6D fields which transform as sections of the vector bundles Vi. In

equation (B.1), Ωij is a non–degenerate symplectic pairing satisfying the selection rule of

equation (D.17).

The non–degeneracy of the pairing Ωij is required if the 6D theory is to define a non-

singular field theory. In a sense, this is physically obvious since our 6D theory is embedded

in a consistent model, namely F-theory. However, it is desirable to have a general mathe-

93



matical proof of this crucial fact as a non–trivial check of the entire circle of ideas. In this

Appendix we prove in full generality the non–degeneracy of Ωij in the vicinity of a ‘good’

point of the matter curve, that is a smooth point in Σ which is away from the intersection

points with other matter curves and point-like defects.

Since the argument is a bit technical, let us first explain the underlying idea in plain

English. Let ϕi, i = 1, 2 be adjoint valued holomorphic (2, 0)–forms corresponding to 6D

modes localized on the same smooth curve Σ of (local) equation f = 0, which satisfy

f ϕi = [Φ, ηi] for certain holomorphic sections ηi of ad(P ) ⊗ OS(Σ). We write χi for the

(adjoint valued) (1, 0)–form on the matter curve Σ given by the Poincaré residue

χi = Poincaré Residue of
ϕi
f
. (B.2)

Extending the modes off–shell by replacing the holomorphic section with smooth sections

of the sheaves of A∞–modules generated by the ηi
∣∣
Σ

’s and χi’s, the formulae of section 4.2.1

give for the pairing of the two modes∫
Σ

Tr
(
χ1 ∂V2 η2

)
. (B.3)

The 6D fields ηi and χi are not independent; the χi’s are linear functions of the correspond-

ing ηi’s.

The pairing being non–degenerate means that, given a localized zero–mode ϕ1, inducing

the 6D field χ1, we may find a localized zero–mode ϕ2, which induces a 6D field η2 such

that the pairing in equation (B.3) is not zero. In terms of adjoint representation matrices,

this amounts to Tr(χ1 η2) 6= 0. The obvious strategy to show this is to take a matrix η2

such that Tr(χ1 η2) 6= 0, which always exists, and identify the 8D mode ϕ2 with [Φ, η2/f ].

However such a ϕ2 would be a valid 8D zero–mode only if [Φ, η2/f ] has no pole along the

curve f = 0. For generic η2 satisfying Tr(χ1 η2) 6= 0, we get indeed a pole. So, what one

really has to show is that there is one choice of the matrix η2 such that Tr(χ1 η2) 6= 0 while

the pole in [Φ, η2/f ] cancels. In order to do that, one filters the sheaf adΦ(g⊗OS) according

to the order of zero along the curve f = 0; in this ways one checks that there are enough

holomorphic matrices of the form [Φ, η] which are divisible by fk to pair up all the localized

zero–modes.

Since we aim to prove a local result near a ‘good’ point, we may as well take S = C2

and the trivial gauge bundle ad(P ) ' g⊗O. The (2, 0) forms are then identified with the

scalars. We assume the Higgs background to be such that x = 0 is a matter curve, and

invariant by translation in the y direction. So Φ(x) is a N ×N traceless matrix depending

holomorphically on x. We write M(N,K) for the space of N ×N matrices with coefficients
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in a ring K. Then, from equation (4.9),

zero modes = M(N,O)
/

adΦ M(N,O) ≡ Q. (B.4)

The mode represented by the matrix Υ ∈ M(N,O) is localized on the line x = 0 iff there

is a positive integer ` such that the matrix

x` Υ ∈ adΦ M(N,O). (B.5)

We call the elements of the subspace F` ≡ ker{Q x`−−→ Q} the localized zero–modes (on

x = 0) having weight ≤ `. These are on shell (holomorphic) modes. Replacing O with the

ring R of the functions f(x, y) depending holomorphically on x and smoothly on y we get

the off–shell modes (in the 6D sense).

We have xj Fk ⊂ Fk−j; consequently we define the weight ` primary modes as the

elements of the coset

Fprim
` := F`

/
xF`−1.

As C–spaces, F` =
⊕

r≥0 x
r Fprim

`+r . The elements of the subspaces xr Fprim
`+r with r ≥ 1 are

called descendent modes. Everything is determined just by the primary modes. Indeed, let

χ be a matrix representing a primary weight ` mode. A representative of the full set of its

descendent is given by the matrix

χ(x, y)descendents =
(
φ0(y) + φ1(y)x+ φ2(y)x2 + · · ·+ φ`−1(y)x`−1

)
χ(x, y)primary. (B.6)

where the φk(y) are (scalar) smooth functions, namely the 6D fields.

As a matter of convention, we extend the concept of weight to non–localized modes by

stating that they have weight ∞. Indeed, in these cases, the polynomial in x of degree

` − 1 of equation (B.6) is replaced by an infinite power series. We also extend the notion

of weight to the pure gauge modes by giving them weight zero. Indeed, if χ is pure gauge,

x0 · χ is already zero in the coset Q.

Saying that χ represents a primary weight ` mode is equivalent to the existence of an

element η ∈M(N,R) such that

x` χ =
[
Φ(x), η

]
(B.7)

while for all η′ ∈M(N,R)

x`−1 χ 6=
[
Φ(x), η′

]
. (B.8)

In particular, a primary mode satisfies χ
∣∣
x=0
6≡ 0, since otherwise we may write it as χ =

x · (χ/x), i.e. as a descendent of the (regular) mode χ/x. Thus the map Fprim
` → M(N,C)

given by χ 7→ χ|x=0 is injective. From this observation it follows that we may choose the
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representative matrices of a basis of Fprim
` in such a way that the corresponding χ’s are

x–independent (just replace χ by its image χ
∣∣
x=0

). We call this representative I. Dually,

as discussed in section 4.1, for primaries the map η 7→ η
∣∣
x=0

is also injective, and we may

choose the representatives in such a way that the η’s are x–independent. We call this

representative II. All other representatives differ by terms vanishing as x→ 0.

Given two primary modes with representative matrices χ(1) and χ(2) of weights (respec-

tively) `1 and `2 we introduce an x–independent pairing

〈χ(1) |χ(2)〉 := Tr
[
η

(1)
II χ

(2)
I

]
. (B.9)

where the subscript I or II stand for the two special choices of representatives defined

above.

Lemma. If `1 > `2, 〈χ(1) |χ(2)〉 = 0.

Indeed, by the cyclic property of the trace and the definition of η’s in terms of the χ’s,

Tr
[
η

(1)
II χ

(2)
I

]
= −x`1−`2 Tr

[
η

(2)
I χ

(1)
II

]
= −x`1−`2

(
Tr
[
η

(2)
II χ

(1)
I

]
+O(x)

)
. (B.10)

Since the lhs is independent of x, it is identically zero.

We write convenient representatives20 of the full set of descendent modes of the two

primary χ(1) and χ(2),

η
(1)
desc =

(
φ

(1)
0 (y) + xφ

(1)
1 (y) + · · ·+ x`1−1 φ

(1)
`1−1(y)

)
η

(1)
I (B.11)

χ
(2)
desc =

(
φ

(2)
0 (y) + xφ

(2)
1 (y) + · · ·+ x`2−1 φ

(2)
`2−1(y)

)
χ

(2)
II , (B.12)

where the φ
(a)
k (y)’s are the independent 6D fields.

Consider the 6D kinetic pairing of these modes∫
dy dȳ

∮
Tr
[
η

(1)
desc ∂ȳ χ

(2)
desc

]
x`1

dx (B.13)

It has two properties:

1. it is symmetric under (1) ↔ (2) since it can written (choosing, say, representatives

20 Being an F-term the 6D action pairing is independent of the choice of representatives; this is crucial
for our argument.
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II for both sets of modes) in the manifestly symmetric form∫
dy dȳ

∮
Tr
{
η

(1)
desc · Ad(Φ) · ∂ȳ η(2)

desc

}
x`1 x`2

dx (B.14)

(Ad(Φ) is antisymmetric and holomorphic).

2. It is proportional to the pairing of the corresponding primaries. Indeed choosing

representatives as in eqns.(B.11)(B.12), it is equal to

∫
dy dȳ 〈χ(1) |χ(2)〉

∮ ∑`1−1
k=0 x

k φ
(1)
k ∂ȳ

∑`1−1
j=0 xj φ

(2)
k

x`1
dx. (B.15)

Putting together these two properties and the lemma, we see that, with respect to the

6D kinetic pairing, modes descending from primaries of different weights are orthogonal.

Now we are ready to show that the 6D action pairing is non–degenerate. With our

conventions about the weight of pure gauge modes (` = 0) and non–localized ones (` =∞)

we have a complete direct sum decomposition

M(N,C) =
∞⊕
`=0

X` (B.16)

such that

χI ∈ X` ⇒ χI is a primitive mode of weight `. (B.17)

Likewise, we have a second direct sum decomposition

M(N,C) =

( ⋂
x∈C2

ker ad Φ(x)

)
⊕

(
finite⊕
`=0

H`

)
(B.18)

such that

ηII ∈ H` ⇒ x−` [Φ(x), ηII ] is a primitive mode of weight `. (B.19)

We set

H∞ =
⋂
x∈C2

ker ad Φ(x). (B.20)

Then

# primitive modes of weight ` = dimX` = dimH`, ` = 0, 1, 2, . . . ,∞. (B.21)
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Let Kill be the bilinear form on M(N,C) defined by the trace. It is a non–degenerate

pairing. Let

Kill`1,`2 : H`1 ⊗X`2 → C, (B.22)

be the bilinear form induced by Kill under restriction, which we rewrite as

Kill∨`1,`2 : X`2 → H∗`1 . (B.23)

The Lemma may be rephrased as the statement

Kill∨`1,`2 ≡ 0 if `1 > `2. (B.24)

Consider the map

Kill∨F,∞ : X∞ →

(
∞⊕
m=0

Hm

)F

. (B.25)

Since the Killing form is non–degenerate, this map is an isomorphism on its image. By

(B.24) the image is contained in H∗∞ and then, by comparing dimensions via equation

(B.21), it is H∗∞.

Consider next the Killing map of the filtration at level `

Kill∨F,≥` :

(⊕
k≥`

Xk

)
→

(
∞⊕
m=0

Hm

)F

. (B.26)

Again, it is an isomorphism on its image. By (B.24) the image is contained in⊕
m≥`

H∗m. (B.27)

Comparing dimension with the help of (B.21), we see that the image is equal to the space

(B.27). Thus, comparing the different `’s, we conclude that for all `’s, the map

Kill∨`,` : X` → H∗` , (B.28)

is an isomorphism. This is equivalent to the statement that, in the space of primitive modes

of weight `, the primary pairing

ω
(`)
ab := 〈χ(1) |χ(2)〉, (B.29)

is non–degenerate and hence, by equation (B.10) antisymmetric. For Φ(x) independent of

y, ω
(`)
ab is just a constant symplectic matrix.
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Using equation (B.15) we get the final formula for W6D (quadratic part)∫
Σ

dy dȳ
∑
`

∑
k+j=`−1

ω
(`)
ab φ

(a)
k ∂z̄ φ

(b)
j , (B.30)

which is the formula it was to be shown with the symplectic pairing

Ω =
∑
`

ω(`) ⊗ S`, where (S`)ij = δi,`−j−1. (B.31)

The above argument shows that the pairing is perfect when the gauge Lie algebra

is u(N). The general case is easily reduced to this one: let the gauge algebra be g =

a⊕ s1 ⊕ · · · ⊕ sk with a Abelian and sj simple. In the Abelian part there are no localized

zero–modes, while the localized zero–modes arising from the adjoint of sj pair between

themselves. So it is enough to consider the case g simple. Let R : g → su(N) be any

faithful representation. The traces of the N ×N matrices reproduce (up to normalization)

the Killing form of g which is non–degenerate. Then defining the spaces of N ×N matrices

X` and H` as before, we have the decompositions

g =
⊕
`

(
X` ∩ g

)
=
⊕
`

(
H` ∩ g

)
, (B.32)

while the fact that the Killing form of su(N) restricted to g is non–degenerate implies that

the restricted map

Kill∨`,` : X` ∩ g→
(
H` ∩ g

)∗
, (B.33)

is still an isomorphism. Thus the pairing Ω remains non–degenerate when restricted to the

subspace g.

C The General Residue Formula for the Yukawa

In this Appendix we prove the residue formula (4.36). In reference [11] the residue formula

was proven under two assumptions: i) adΦ is diagonal, and ii) the matter curves meet

transversely. Dropping assumption i) the argument of [11] would still apply, whereas the

generalization to non–transverse crossing requires a bit more work.

Physically one expects that the residue formula for the Yukawa holds whenever it is a

mathematically well-defined expression, namely when the curves meet at an isolated point

p, whatever their local intersection number is. The curves are simply required not to have

components in common. This generalization is relevant since in the presence of monodromy,

typically the matter curves do not meet transversely.
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Our setting is the following: We have three zero–modes of the 8D YM theory on

R3,1 × C2, Υi ≡ (ai, ϕi), i = 1, 2, 3, and the first two modes are assumed to be local-

ized, respectively, on the divisor f1 = 0 and f2 = 0. These divisors are not assumed to

be (necessarily) prime (they may have several irreducible components and/or multiplicities

> 1), but we assume that their set–theoretical intersection

{f1 = 0} ∩ {f2 = 0} ∈ C2

consists of just one point which we identify with the origin 0 ∈ C2. We stress that their

analytic intersection number at 0 may be any (positive) integer, since the intersection is

not assumed to be transverse. We make no assumption on the third mode Υ3.

Following [11], the Yukawa coupling of the three modes is given by the cohomology

invariant

Yuk =

∫
C2

yuk, (C.1)

where the the (2, 2) form yuk has the expression (conventions as in [11])

yuk =
1

2
Tr

(
Υ1 ∧Υ2 ∧Υ3

∣∣∣
(2,2)

+ Υ2 ∧Υ1 ∧Υ3

∣∣∣
(2,2)

)
. (C.2)

Notice that this expression is automatically invariant under permutations of the three zero–

modes.

As discussed in the main body of the paper, we may choose representatives so that the

two localized modes, Υ1 and Υ2, have support in some tiny neighborhood of the respective

curves. Then the products Υ1 ∧Υ2 and Υ2 ∧Υ1 will have support inside some ball B(0, r)

of radius r centered at 0. As illustrated in the paper, we may also take a representative of

the third mode Υ3 of pure type (2, 0) (that is, we work in the gauge a3 = 0)

Υ3 = (0, ϕ3) ϕ3 ∈ Γ(C2, ad(P )⊗ Ω2). (C.3)

With the above choice of representatives,

supp yuk ⊂ B(0, r) (C.4)

where

yuk =
1

2
Tr

{(
Υ1

∣∣∣
(0,1)
∧Υ2

∣∣∣
(0,1)

+ Υ2

∣∣∣
(0,1)
∧Υ1

∣∣∣
(0,1)

)
∧ ϕ3

}
. (C.5)

Since yuk is a (2, 2)–form, by the ∂–Poincaré theorem there exists in C2 a smooth (2, 1)
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form β such that

yuk = ∂ β. (C.6)

Let R > r, and write SR for the sphere of radius R centered at 0. By equation (C.4),

Yuk =

∫
C2

yuk =

∫
B(0,R)

yuk =

∫
SR

β. (C.7)

Let U = C2 \B(0, r). One has SR ⊂ U . Again by equation (C.4), one has

∂ β
∣∣
U

= 0, (C.8)

so β represents a class in H2,1

∂
(U). Consider the trace map H2,1

∂
(U) → C induced by the

sequence of natural maps21

H2,1

∂
(U)→ H3

dR(U) ' H3
dR(SR) ' C, (C.9)

given explicitly by α 7→
∫
SR
α. From equation (C.7), the Yukawa coupling is just the image

of β under this trace map.

The next step is to exploit the Čech–Dolbeault isomorphism

H2,1

∂
(U) ' Ȟ1(U,Ω2). (C.10)

Following reference [24] we introduce the following open cover of U

U = U1 ∪ U2, (C.11)

Ui = {z ∈ U, |fi(z)| ≥ ε}, (C.12)

where ε is chosen small enough (or, alternatively, R big enough) so that (C.11) holds.

Since we have only two open sets in our cover, a Čech one–cochain C1(U,Ω2) is just a

holomorphic (2, 0) form

h ∈ Γ(U1 ∩ U2,Ω
2), (C.13)

which is automatically a cocycle δh = 0.

The isomorphism (C.10) works explicitly as follows. Let γ ≡ {γi ∈ C∞(Ui,Ω
2,0)} be a

0–cochain such that22

h = δγ. (C.14)

One has δ ∂ γ = 0. Hence the local (2, 1)–forms ∂ γi’s glue in a global ∂–closed (2, 1)–form

β which represents the H2,1

∂
(U) class corresponding to the Ȟ1(U,Ω2) class h.

21 Compare reference [24] page 651.
22 γ exists, since C∞ sheaves are fine, i.e they admit partitions of unity.
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One has

yuk
∣∣∣
C2\{fi=0}

= ∂ βi (C.15)

where

β1 =
1

2
%1 Tr

{(
η1

f1

a2 − a2
η1

f1

)
∧ ϕ3

}
(C.16)

β2 =
1

2
%2 Tr

{(
η2

f2

a1 − a1
η2

f2

)
∧ ϕ3

)}
(C.17)

and the ηi are defined as in the main body of the paper (i.e. fi ϕi = [Φ, ηi]). In equation

(C.16), %i is some smooth function which is zero for |fi| < ε/2 and 1 for |fi| > ε. The

difference β1 − β2 is the ∂ of a globally defined form σ which is easy to write explicitly.

One has

β1

∣∣∣
U1

= ∂

(
1

2
%2 ∧ Tr

{[
η1, η2

]
f1 f2

∧ ϕ3

})
(C.18)

β2

∣∣∣
U2

= −∂

(
1

2
%1 ∧ Tr

{[
η1, η2

]
f1 f2

∧ ϕ3

})
(C.19)

and (
β1 − β2

)∣∣∣
U1∩U2

= 0 (C.20)

since ∂ %i
∣∣
Ui

= 0 (in fact %i = 1 in Ui).

Comparing with the explicit form of the Čech–Dolbeault isomorphism illustrated around

equation (C.14), we get the identifications

γ1 =
1

2
%2 ∧ Tr

{[
η1, η2

]
f1 f2

∧ ϕ3

}
∈ C∞(U1,Ω

2,0) (C.21)

γ2 = −1

2
%1 ∧ Tr

{[
η1, η2

]
f1 f2

∧ ϕ3

}
∈ C∞(U2,Ω

2,0) (C.22)

This is the Čech 0–cochain we are looking for. Then the Čech 1–cocycle h, corresponding

to the Dolbeault class β ∈ H2,1

∂
(U) is

h ≡ Tr

{[
η1, η2

]
f1 f2

ϕ3

}
∈ Γ(U1 ∩ U2,Ω

2). (C.23)

Finally, we are in the position to apply the Lemma on page 651 of [24], which in the
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present notations states ∫
SR

β =
1

(2πi)2

∫
Γ

h. (C.24)

The expression in the rhs of this equation is the definition of the residue of the meromor-

phic (2, 0)–form h (as a meromorphic form, the rhs of equation (C.23) is defined in C2).

Therefore, using eqns.(C.7) and (C.23), we get the formula we are after

Yuk = Residue Tr

{[
η1, η2

]
f1 f2

ϕ3

}
. (C.25)

D General Worldvolumes, Gauge Bundles, and Mat-

ter Curves

In this Appendix we briefly indicate how to generalize the definition of localized modes to

the case of an arbitrary worldvolume S, gauge bundle ad(P ), and matter curve Σ. To do

this we make heavy use of the sheaf theoretical interpretation of the localized zero-modes

developed in equations (4.9)− (4.11). In this general setting the background Higgs field is

a holomorphic adjoint valued (2, 0) form

Φ ∈ Γ(S,KS ⊗ ad(P )). (D.1)

We consider the following two Dolbeault complexes of C∞ sheaves of adjoint–valued (p, q)

forms

. . .
∂−−→ Ω0,k(ad(P ))

∂−−→ Ω0,k+1(ad(P ))
∂−−→ · · · (D.2)

. . .
∂−−→ Ω2,k(ad(P ))

∂−−→ Ω2,k+1(ad(P ))
∂−−→ · · · (D.3)

Since Φ is holomorphic, the natural map adΦ : Ω0,∗(ad(P )) → Ω2,∗(ad(P )) commutes with

∂, and hence gives rise to a chain map between the two complexes above. There is a

standard construction in homological algebra, the mapping cone, that is relevant in this

situation. By definition [43], the mapping cone of adΦ is the complex

· · · D−−→M k D−−→M k+1 D−−→ · · · , (D.4)

where

M k = Ω0,k+1(ad(P ))⊕ Ω2,k(ad(P )), (D.5)
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and

D =

(
∂ 0

adΦ −∂

)
. (D.6)

As a consequence of the fact that ∂̄2 = 0 and that Φ is holomorphic, it follows that D
2

= 0

and hence it is meaningful to consider the cohomology of the mapping cone (D.4).23

Let us consider the zeroth D cohomology group of the complex M ∗. An element of M 0

which is D closed is represented by a pair of adjoint-valued forms (a, ϕ) of type, (0, 1) and

(2, 0), respectively which satisfy the equations

∂̄a = 0, (D.7)

∂̄ϕ = adΦ(a). (D.8)

Equations (D.7)-(D.8) are exactly the 8D F-term zero mode equations and justify our choice

of notation [2, 11]. Meanwhile the elements of M 0 which are D exact are such that there

exists a χ ∈M−1 with

a = ∂̄χ (D.9)

ϕ = adΦ(χ) (D.10)

These are exactly the modes that are infinitesimal gauge transformations. It follows that

the zeroth cohomology group of the mapping cone coincides with the space of zero-modes

solutions modulo complexified gauge transformations. Thus we have the basic identification

zero-modes = H0(S,M ). (D.11)

This is the most general definition of the zero-modes for the 8D gauge theory, valid in any

circumstance (in particular, for S compact and non–compact).

Now, the basic properties of the mapping cone give rise to a long exact sequence

· · · −→ H0(S, ad(P ))
adΦ−−→ H0(S,Ω2,0(ad(P )) −→ H0(S,M) −→ H1(S, ad(P )) −→ · · ·

(D.12)

If we make the assumption24 H1(S, ad(P )) = 0, then the above sequence simplifies and we

see that

zero-modes ≡ H0(S,M) = H0(S,KS ⊗ ad(P ))
/

adΦ

(
H0(S, ad(P ))

)
, (D.13)

23By definition the group Ω2,−1(S, ad(P )) is taken to be the zero group.
24In phenomenological applications, this assumption is typically made to kill unwanted exotic bulk modes

and to allow the possibility of a decoupling limit [1–4,25,44]
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which has precisely the same form as equation (4.9) for the local geometries. Thus provided

H1(S, ad(P )) = 0 the passage from our local analysis to the case of a general brane world-

volume and adjoint bundle is completely trivial. One simply takes the local expression (4.9)

and computes global sections over S valued in ad(P ).

Continuing with these assumptions, it is then natural to introduce the sheaf of modes

Q defined as

ad(P )
adΦ−−−→ KS ⊗ ad(P )→ Q→ 0. (D.14)

The space of the zero-modes may be identified with a subspace Z(S) of H0(S,Q). The sim-

plest possibility is that Z(S) ≡ H0(S,Q). This occurs automatically ifH1
(
S, ad(P )/ ker adΦ

)
=

0, for example if S is Stein, as in the local geometries of the previous subsection. Then, the

localized modes correspond to the torsion part of the sheaf of modes Q. To be completely

formal, one introduces a sub-sheaf Loc by the exact sequence [45]

0→ Loc→ Q→ Q∗∗ (D.15)

where Q∗∗ is the double dual. If Q were a vector bundle, then Q would simply equal Q∗∗
and the sheaf Loc would vanish. Thus when Loc is non-trivial, it measures the failure of

Q to be a vector bundle and hence captures the torsion of Q. It follows that in general we

have

localized zero modes = H0(S,Loc) ∩ Z(S)

potential matter curves = irreducible components of supp (Loc).

We can similarly extend our analysis of the 6D superpotential W6D to the setting of a

general matter curve Σ and gauge bundle ad(P ). In complete generality, the 6D action takes

the form of a non-degenerate 2D chiral Dirac Lagrangian coupled to suitable connections

on holomorphic vector bundles Vi → Σ,

W6D =

∫
Σ

Ωij ηi ∂Vjηj, (D.16)

where the 6D field ηi transforms as a section of Vi. It is easy to see that the symplectic

pairing Ωij satisfies the selection rule

Ωij 6= 0 ⇒ Vi = KΣ ⊗ V ∗j . (D.17)

This implies that the integrand in W6D is gauge invariant and naturally a (1, 1) form on

Σ. In particular, this means that the 6D superpotential is independent from the Kähler

metric. Thus provided we correctly identify the bundles Vi we may count the net number

of localized zero-modes on Σ with standard 2D index theorems.
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To determine the Vi’s, one uses the adjunction formula as in reference [2]. Again we

assume H1(S, ad(P )) = 0. From equation (4.25) we see that from the 8D viewpoint ηi is a

section of some sub-bundle (depending on the specific mode ηi)

Fi ⊗O(Σ)mi ⊂ ad(P )⊗O(Σ)mi , (D.18)

where the matter curve Σ is given locally by f = 0. Analogously, ϕi is a section of some

sub-bundle KS ⊗Ei ⊂ KS ⊗ ad(P ). The bundles Fi, Ei correspond to decomposition of the

adjoint of g into irreducible representations of the unbroken gauge subgroup. In a tubular

neighborhood of Σ we write25 (locally)

ϕi =

(
mi−1∑
s=0

f s χ
(s)
i

)
∧ df (D.19)

ηi =

mi−1∑
s=0

f s ξ
(s)
i (D.20)

where the 6D fields are sections

χ
(s)
i

∣∣∣
Σ
∈ C∞

(
Σ, KΣ ⊗ Ei ⊗O(Σ)−s−1

∣∣∣
Σ

)
(D.21)

ξ
(s)
i

∣∣∣
Σ
∈ C∞

(
Σ,Fi ⊗O(Σ)mi−s

∣∣∣
Σ

)
, (D.22)

(in the first line we used the adjunction formula KS ⊗ O(Σ)
∣∣
Σ

= KΣ). On–shell, smooth

sections over Σ get replaced by holomorphic ones. From equation (B.30) of Appendix B we

have (we omit writing the restriction (·)
∣∣
Σ

which is everywhere implied)

W6D =

∫
Σ

∑
i,j

%(Ei,Fj)
mi−1∑
s=0

ξmi−1−s ∂
V

(s)
j
χ

(s)
j , (D.23)

where %(Ei,Fj) is a group theory factor which vanishes unless the two vector bundles Ei,
Fj are induced by dual representations of the unbroken gauge group. Therefore

V
(s)
j = KΣ ⊗

(
Ej ⊗O(Σ)−s−1

)∣∣
Σ
, (D.24)

and the selection rule (D.17) is verified.

25 Here we are cavalier with a subtlety which has already appeared in the literature about branes with
triangular Higgs backgrounds [27], namely the fact that, while in the C∞ sense a tubular neighborhood of
Σ is diffeomorphic to its normal bundle, this is not true in the complex-analytic sense. The discrepancy is
related to obstructions of moduli, and hence it is expected to be relevant for cubic (and higher) terms in
W6D, which are outside the scope of the present paper.
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