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Abstract

Many specific models have been proposed to study evolutionary game dynamics

in structured populations, but most analytical results so far describe the competition

of only two strategies. Here we derive a general result that holds for any number of

strategies, for a large class of population structures under weak selection. We show

that for the purpose of strategy selection any evolutionary process can be characterized

by two key parameters that are coefficients in a linear inequality containing the payoff

values. These structural coefficients, σ1 and σ2, depend on the particular process that

is being studied, but not on the number of strategies, n, nor on the payoff matrix.

For calculating these structural coefficients one has to investigate games with three

strategies, but more are not needed. Therefore, n = 3 is the general case. Our main

result has a geometric interpretation: strategy selection is determined by the sum

of two terms, the first one describing competition on the edges of the simplex, the

second one in the center. Our formula includes all known weak selection criteria of

evolutionary games as special cases. As a specific example we calculate games on sets

and explore the synergistic interaction between direct reciprocity and spatial selection.

We show that for certain parameter values both repetition and space are needed to

promote evolution of cooperation.

Evolutionary games arise whenever the fitness of individuals is not constant, but depends on

the relative abundance of strategies in the population [1-7]. Evolutionary game theory is a general
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theoretical framework that can be used to study many biological problems including host-parasite

interactions, ecosystems, animal behavior, social evolution and human language [8-18]. The tra-

ditional approach of evolutionary game theory uses deterministic dynamics describing infinitely

large, well-mixed populations. More recently the framework was expanded to deal with stochastic

dynamics, finite population size and structured populations [19-32].

Here we consider a mutation-selection process acting in a population of finite size. The pop-

ulation structure determines who interacts with whom to accumulate payoff and who competes

with whom for reproduction. Individuals adopt one of n strategies. The payoff for an interaction

between any two strategies is given by the n× n payoff matrix A = [aij ]. The rate of reproduction

is proportional to payoff: individuals that accumulate higher payoff are more likely to reproduce.

Reproduction is subject to symmetric mutation: with probability 1 − u the offspring inherits the

strategy of the parent, but with probability u a random strategy is chosen. Our process leads to

a stationary distribution characterizing the mutation-selection equilibrium. Important questions

are: what is the average frequency of a strategy in the stationary distribution? which strategies

are more abundant than others?

In order to make progress, we consider the limit of weak selection. One way to obtain this

limit is as follows: the rate of reproduction of each individual is proportional to 1 +wPayoff, where

w is a constant that measures the intensity of selection; the limit of weak selection is then given

by w → 0. Weak selection is not an unnatural situation; it can arise in different ways: (i) payoff

differences are small; (ii) strategies are similar; (iii) individuals are confused about payoffs when

updating their strategies; in such situations, the particular game makes only a small contribution

to the overall reproductive success of an individual.

For weak selection, all strategies have roughly the same average frequency, 1/n, in the station-

ary distribution. A strategy is favored by selection, if its average frequency is greater than 1/n.

Otherwise it is opposed by selection. Our main result is the following: given some mild assumptions

(specified in the Supporting Information, SI) strategy k is favored by selection if

(σ1akk + āk∗ − ā∗k − σ1ā∗∗) + σ2(āk∗ − ā) > 0 (1)

Here ā∗∗ = (1/n)
∑n

i=1 aii is the average payoff when both individuals use the same strategy;

āk∗ = (1/n)
∑n

i=1 aki is the average payoff of strategy k; ā∗k = (1/n)
∑n

i=1 aik is the average
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payoff when playing against strategy k; and ā = (1/n2)
∑n

i=1

∑n
j=1 aij is the average payoff in the

population. The parameters σ1 and σ2 are structural coefficients which need to be calculated for

the specific evolutionary process that is investigated. These parameters depend on the population

structure, the update rule, the mutation rate, but they do not depend on the number of strategies

nor on the entries of the payoff matrix.

How can we interpret this result? Let xi denote the frequency of strategy i. The configuration

of the population (just in terms of frequencies of strategies) is given by a point in the simplex Sn,

which is defined by
∑n

i=1 xi = 1. The vertices of the simplex correspond to population states where

only one strategy is present. The edges of the simplex correspond to states where two strategies

are present. In the interior of the simplex all strategies are present. Inequality (1) is the sum of

two terms, both of which are linear in the payoff values. The first term, σ1akk + āk∗ − ā∗k − σ1ā∗∗,

describes competition on the edges of the simplex that include strategy k (see Fig 1a). In particular,

it is an average over all pairwise comparisons between strategy k and each other strategy, weighted

by the structural coefficient, σ1. The second term, σ2(āk∗ − ā), evaluates the competition between

strategy k and all other strategies in the center of the simplex, where all strategies have the same

frequency, 1/n (see Fig 1b).

Therefore, the surprising implication of our main result (1) is that strategy selection (in a

mutation-selection process in a structured population) is simply the sum of two competition terms,

one that is evaluated on the edges of the simplex and the other one in the center of the simplex. The

simplicity of this result is surprising because an evolutionary process in a structured population

has a very large number of possible states; to describe a particular state it is not enough to list the

frequencies of strategies but one also has to specify the population structure.

Further intuition for our main result is provided by the concept of risk-dominance. The classical

notion of risk-dominance for a game with two strategies in a well-mixed population is: strategy i is

risk-dominant over strategy j if aii +aij > aji +ajj . If i and j are engaged in a coordination game,

given by aii > aji and ajj > aij , then the risk-dominant strategy has the bigger basin of attraction.

In a structured population the risk-dominance condition is modified to σaii+aij > aji+σajj , where

σ is the structural coefficient [31]. Therefore, the first term in inequality (1) represents the average

over all pairwise risk-dominance comparisons between strategy k and each other strategy (taking

into account population structure). The second term in inequality (1) measures the risk-dominance
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of strategy k when simultaneously compared to all other strategies in a well-mixed population; it

is the generalization of the concept of risk-dominance to multiple strategies, āk∗ > ā.

In the Supporting Information we show that the structural coefficients, σ1 and σ2, do not

depend on the number of strategies. In order to calculate σ1 and σ2 for any particular evolutionary

process, we need to consider games with n = 3 strategies. More than three strategies are not

needed. Therefore, n = 3 is the general case. An important practical implication of our result

is the following: if we want to calculate the competition of multiple strategies in a structured

population for weak selection but any mutation rate, then all we have to do is to calculate two

parameters, σ1 and σ2. This can be done for a very simple payoff matrix and n = 3 strategies.

Once σ1 and σ2 are known they can be applied to any payoff matrix and any number of strategies.

For n = 2 strategies, inequality (1) leads to (a11 − a22)(2σ1 + σ2) + (a12 − a21)(2 + σ2) > 0. If

2 + σ2 6= 0, we obtain the well known condition σa11 + a12 > a21 + σa22 with σ = (2σ1 + σ2)/(2 +

σ2). Many σ values have been calculated characterizing evolutionary games with two strategies in

structured populations [31].

For a large, well-mixed population we know that σ1 = 1 and σ2 = µ where µ = Nu is the

product of population size and mutation rate [30]. Therefore, if the mutation rate is low, µ → 0,

then the evolutionary success of a strategy is determined by average pair-wise risk dominance,

akk + āk∗ − ā∗k − ā∗∗. If the mutation rate is high, µ→∞, then the evolutionary success depends

on risk dominance, āk∗ − ā.

For any population structure, we can show that low mutation, µ→ 0, implies σ2 → 0. Therefore,

in the limit of low mutation, the condition for strategy k to be selected becomes σ0akk + āk∗ >

ā∗k + σ0ā∗∗ where σ0 is the low mutation limit of the structure coefficient σ = (2σ1 + σ2)/(2 + σ2).

Hence, for low mutation it suffices to study 2-strategy games, and all known σ results [31] carry

over to the multiple strategy case.

In the limit of high mutation, µ→∞, we conjecture (but can not prove) that, for a large class

of processes, σ2 becomes much larger than σ1 and much larger than 1. In that case the selection

condition is simply risk dominance, āk∗ − ā, which is also the high mutation limit for a well-mixed

population. Thus, if the mutation rate is large enough then the effect of population structure on

strategy selection is destroyed.

In the Supporting Information we give a computational formula for how to calculate σ1 and σ2
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for any process with global updating (which means all individuals compete globally for reproduc-

tion).

Let us now study a specific evolutionary process, where the individuals of a population of size

N are distributed over M sets [32]. These sets can be geographic islands, social institutions or

tags [32-35]. At any one time each individual belongs to one set and adopts one of n strategies.

Individuals interact with others in the same set and thereby obtain payoff. Individuals reproduce

proportional to payoff. Offspring inherit their parent’s strategy, subject to a strategy mutation

rate, u, and their parent’s set, subject to a set mutation rate, v. We use rescaled mutation rates

µ = Nu and ν = Nv. In the Supporting Information we calculate σ1 and σ2 for this process and

provide analytic results for large population size, N , but for any number of sets, M , and for any

mutation rates. For large µ we obtain σ1 ≈M(1+ν)/(M+ν) and σ2 ≈ µ. Note that large strategy

mutation rate, µ, destroys the effect of population structure, as expected.

In Figure 2, we show the dependency of σ1 and σ2 on the strategy mutation rate, µ. We choose

M = 100 sets and show panels for different values of the set mutation rate, ν. For ν → 0 and ν →∞

we obtain the same figure, because both cases correspond to a well-mixed population. There exists

a particular strategy mutation rate, µ∗, for which σ1 = σ2. For µ < µ∗ structural effects prevail

over mutation, because σ1 > σ2 . For µ > µ∗ mutation destroys the effect of population structure,

because σ1 < σ2 . For large M , the critical mutation rate is given by µ∗ ≈ 1 + ν.

We now use these results to study a particular game on sets. Our game has three strategies,

always cooperate (AllC), always defect (AllD) and tit-for-tat (TFT), and is meant to describe

the essential problem of evolution of cooperation under direct reciprocity. We assume there are

repeated interactions between any two players subject to a certain continuation probability; the

average number of rounds is given by m. In any one round, cooperation has a cost, c, and yields

benefit, b, for the other player, where b > c > 0. Defection has no cost and yields no benefit. We

use average payoff per round to denote the entries of the payoff matrix:


AllC AllD TFT

AllC b− c −c b− c

AllD b 0 b/m

TFT b− c −c/m b− c

 (2)
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AllD is the only strict Nash equilibrium. If b − c ≥ b/m then TFT is a Nash equilibrium, but

not an evolutionarily stable strategy.

We are interested in calculating the condition for natural selection to oppose AllD, which means

that its frequency is less than 1/3 in the stationary distribution. We observe that selection opposes

AllD for small strategy mutation rates and intermediate set mutation rates (Fig 3). For high

strategy mutation rate and for low or high set mutation rate the structure behaves like a well-

mixed population, which is detrimental to cooperation. There is an optimum set mutation rate

which maximally supports evolution of cooperation [32].

Next we study how the condition for selecting against AllD depends on repetition and structure

(Fig 4). We make the following observations. For b/c < 3, even if the game is infinitely repeated,

m → ∞, we still need population structure to oppose AllD. In this parameter region repetition

alone is not enough. For b/c < 1+(ν+3)/(ν(ν+2)), even if there are infinitely many sets (M →∞),

we still need repetition to oppose AllD. Hence, for certain parameter choices both repetition and

spatial structure must work together to promote evolution of cooperation [36,37]. This example

demonstrates the need for synergistic interactions between various mechanisms for the evolution of

cooperation [38]. In particular it is of interest that unless the benefit-to-cost ratio is substantial,

b/c > 3, repetition alone does not provide enough selection pressure to oppose AllD.

In summary, we have derived a simple, general condition which characterizes strategy selection,

if multiple strategies compete in a structured population under weak selection. The condition is

linear in the payoff values and includes two structural coefficients, σ1 and σ2, which depend on the

population structure, update rule, mutation rates, but do not depend on the number of strategies

nor on the entries of the payoff matrix. The condition is a simple sum of two terms: one describes

competition on the edges of the simplex and the other one in the center. Future research directions

suggested by this result include: (i) a classification of population structures and update rules based

on the two structural parameters; (ii) numerical and analytic explorations of how the weak selection

result carries over to stronger selection intensities in specific cases; (iii) extending our theory from

pairwise interactions to multi-player games. Finally our general result can be used to guide the

exploration of many specific evolutionary processes.
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Figure legends

Figure 1. Our main result has a simple geometric interpretation, which is illustrated here for the

case of n = 3 strategies. (a) The first term of inequality (1) describes competition on the edges

of the simplex. (b) The second term of inequality (1) describes competition in the center of the

simplex. In general, the selective criterion for strategy 1 is the sum of the two terms.

Figure 2. The dependency of σ1 and σ2 on the strategy mutation rate, µ. We choose M = 100 sets

and show panels for different values of the set mutation rate: (a) ν = 0; (b) ν = 3; (c) ν = 10; (d)

ν = 100; (e) ν = 1000. We observe that σ2 ≈ µ. For ν → 0 and ν →∞ we obtain the same figure,

because both cases correspond to a well-mixed population. For a particular strategy mutation rate,

µ∗, we have σ1 = σ2. For µ < µ∗ structural effects prevail over mutation, because σ1 > σ2 . For

µ > µ∗ mutation destroys the effect of population structure, because σ1 < σ2 .

Figure 3. The effect of strategy and set mutations on the condition to select against AllD.

Selection opposes AllD for small strategy mutation rates and intermediate set mutation rates. For

high strategy mutation rate and for low and high set mutation rate the structure behaves like a

well-mixed population. There is an optimum set mutation rate. Parameters: b = 2, c = 1, m = 7,

M = 8.
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Figure 4. The synergistic interaction of direct reciprocity and spatial selection. For certain

parameter choices neither repetition nor structure alone can select against AllD. (a) c = 1, b = 3,

µ = 0, ν = 0.5. Either repetition or structure are sufficient. (b) c = 1, b = 2, µ = 0, ν = 5. A

minimum number of sets is needed. (c) c = 1, b = 3, µ = 0, ν = 0.05. A minimum number of

rounds is needed. (d) c = 1, b = 2, µ = 0, ν = 0.5. Both a minimum number of rounds and a

minimum number of sets are needed to select against AllD.
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