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Abstract

Genome-wide association studies (GWAS) have demonstrated the ability to identify the strongest causal common variants
in complex human diseases. However, to date, the massive data generated from GWAS have not been maximally explored
to identify true associations that fail to meet the stringent level of association required to achieve genome-wide
significance. Genetics of gene expression (GGE) studies have shown promise towards identifying DNA variations associated
with disease and providing a path to functionally characterize findings from GWAS. Here, we present the first empiric study
to systematically characterize the set of single nucleotide polymorphisms associated with expression (eSNPs) in liver,
subcutaneous fat, and omental fat tissues, demonstrating these eSNPs are significantly more enriched for SNPs that
associate with type 2 diabetes (T2D) in three large-scale GWAS than a matched set of randomly selected SNPs. This
enrichment for T2D association increases as we restrict to eSNPs that correspond to genes comprising gene networks
constructed from adipose gene expression data isolated from a mouse population segregating a T2D phenotype. Finally, by
restricting to eSNPs corresponding to genes comprising an adipose subnetwork strongly predicted as causal for T2D, we
dramatically increased the enrichment for SNPs associated with T2D and were able to identify a functionally related set of
diabetes susceptibility genes. We identified and validated malic enzyme 1 (Me1) as a key regulator of this T2D subnetwork in
mouse and provided support for the association of this gene to T2D in humans. This integration of eSNPs and networks
provides a novel approach to identify disease susceptibility networks rather than the single SNPs or genes traditionally
identified through GWAS, thereby extracting additional value from the wealth of data currently being generated by GWAS.
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Introduction

Genome-wide association studies (GWAS) have revolutionized

our ability to identify the causal determinants for common

human diseases over the past several years, delivering an

unprecedented number of DNA loci associated with a diversity

of common human diseases like age-related macular degenera-

tion [1,2], Crohn’s disease [3], type 1 diabetes [3,4], coronary

artery disease [3,5], HIV-1 infection [6], and type 2 diabetes

(T2D) [3,7–10]. One interesting characteristic of single nucleotide

polymorphisms (SNPs) identified as associated with disease in

these studies is that the great majority do not affect the coding

sequence of genes, most often falling in introns or intergenic

regions [11]. As a result, GWAS do not necessarily lead directly

to the gene or genes in a given locus associated with disease, they

do not typically inform the broader context in which the disease

genes operate, and even in cases where the susceptibility gene is

identified, GWAS do not usually indicate whether you would

knock the gene down or activate it in order to treat the

corresponding disease. Therefore, GWAS on their own provide

limited insights into the mechanisms driving disease [12–14]. In

addition, the amount of genetic variation explained by GWAS for

a given disease is most often significantly less than the

heritabilities estimated for the disease. For example, a number

of studies estimate the genetic heritability for T2D to be as high

as 40%, but the 18 DNA loci identified for T2D to date account

for only ,3% of the variation in T2D [10]. This raises the

question of whether there are many more common DNA variants

with smaller effects that are not being identified in the GWAS

due to lack of power, whether there are many more rare variants
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with stronger effects that explain the missing variation, or some

combination of the two [11,15].

In fact, in the span of just a few short years in which large-scale

GWAS have been carried out, the realization that tractable drug

targets and clinically useful biomarkers of disease are not

immediately falling out of the data, has for some reduced the

enthusiasm for the GWAS approach, intensifying the debate over

whether GWAS are the best strategy to elucidate the causes of

disease [16–18]. Some have attempted to look for enrichments in

pre-defined sets of pathways defined by GO, KEGG or other

pathway sources and found common variants involved in T2D risk

are likely to occur in or near genes in multiple pathways [19]. One

clear and immediate task to provide further insights into GWAS is

to develop an understanding of the genetics of gene expression

(GGE) to facilitate a systems-based understanding of disease.

Recently, detailed GGE studies have provided a way to address

several of these GWAS limitations [13,14,20–22]. By mapping the

genetic architecture of gene expression in human populations,

GGE studies can provide functional support for candidate genes

within a given locus. This has been demonstrated a number of

times, but most recently in identifying SORT1, PSRC1, and

CELSR2 as candidate susceptibility genes for heart disease and

plasma lipid levels [14], and ORMDL3 as an asthma susceptibility

gene [20,23]. More generally, GGE studies provide the necessary

information to infer causal relationships among genes and between

genes and clinical traits, leading to whole gene networks that

provide a broader context within which to elucidate the biological

function of any given gene with respect to diseases of interest

[12–14,24,25].

One way GGE studies can impact interpretation of GWAS is by

providing a way to reduce the dimensionality of the DNA

variation space, limiting focus to those DNA variants that have

been associated with expression traits and testing whether such

SNPs are associated with disease [12]. The set of SNPs associated

with expression (eSNPs) in disease-relevant tissues can be

considered a functionally relevant subset of all SNPs across the

human genome, given they associate with a biologically relevant

event (gene expression). However, the extent to which eSNPs

inform on disease biology has not been comprehensively

characterized for any disease. In this paper, we systematically

examined whether eSNPs are more likely to associate with T2D

compared to SNPs that a priori have no association to biologically

relevant events. We assembled a comprehensive set of eSNPs

identified in two GGE study cohorts representing three tissues

[12]: liver, subcutaneous fat and omental fat tissues. Given the

metabolic relevance of these tissues and the large-scale GWAS

undertaken for T2D [26], we tested whether this set of eSNPs was

more likely to associate with T2D than randomly selected SNPs.

We further constructed a co-expression network from subcutane-

ous adipose tissue isolated from a mouse population segregating

T2D traits and asked whether eSNPs associated with genes

comprising these networks and sub-networks were enriched for

association with T2D (Figure 1). By comparing the relative

enrichments for association to T2D at these increasing levels of

granularity, we sought to identify disease-associated subnetworks

whose member genes might play important roles in T2D

pathogenesis.

Results

eSNPs Are Enriched for Association to T2D
We identified eSNPs from two GGE studies: 1) a liver tissue

cohort comprised of 427 individuals [12], and 2) a cohort

comprised of ,900 individuals from which liver, subcutaneous

and omental adipose tissues were collected from each individual.

The number of eSNPs from each tissue and the corresponding

cohort sample sizes are summarized in Table S1. To test whether

the eSNPs were enriched for association to T2D, we assembled

GWAS results from three previously published T2D studies: 1) the

Wellcome Trust Case Control Cohort (WTCCC) [3], 2) the

Diabetes Genetics Initiative (DGI) [7], and 3) the Diabetes

Genetics Replication And Meta-analysis (DIAGRAM) Consor-

tium [10], which combines the results from WTCCC, DGI, and

Finland–United States Investigation of NIDDM Genetics (FU-

SION) [8].

To assess whether these distributions were enriched for SNPs

associated with T2D, we empirically estimated the null distribu-

tion by randomly sampling 100,000 sets of SNPs from a set of

SNPs genotyped in each study (chosen from the full set of SNPs in

each study) such that the SNP set size, the location distribution of

the SNPs with respect to protein coding genes, and the minor

allele frequency (MAF) distribution were similar to that of the

eSNP set.

The distribution of T2D eSNP association p values from the

GWAS (referred to here as PT2D) differed significantly from the

null distribution in that the eSNP PT2D values were skewed

towards the significance end of the PT2D spectrum. For example,

in the DGI study, 6.2% of the eSNPs (241 out of 3,888 total) had

PT2D,0.05, compared to a mean of 5.2% (202 out of 3,888; 95%

confidence interval (CI): 4.6% to 5.8%) over the 100,000

randomly generated matched sets (Z = 3.16; p = 8.0061024,

Table 1, Figure 2), representing a 1.19 fold enrichment for SNPs

in the eSNP set over the random sets. In addition to testing for

enrichments of eSNPs with PT2D,0.05, we compared the overall

average PT2D of the eSNP set to randomly selected SNP sets

matched to the eSNP set with respect to location and MAF. The

results were similar to the enrichment observed for eSNPs with

PT2D,0.05 (Figure S1).

Because different SNP panels were used in the different GGE

and GWA studies, many of the eSNPs were not genotyped in any

of the T2D GWAS. Therefore, we recomputed the PT2D

distributions based on all SNPs in strong linkage disequilibrium

Author Summary

Genome-wide association studies (GWAS) seek to identify
loci in which changes in DNA are correlated with disease.
However, GWAS do not necessarily lead directly to genes
associated with disease, and they do not typically inform
the broader context in which disease genes operate,
thereby providing limited insights into the mechanisms
driving disease. One critical task to providing further
insights into GWAS is developing an understanding of the
genetics of gene expression (GGE). We present the first
empiric study demonstrating that SNPs in human cohorts
that associate with gene expression in liver and adipose
tissues are enriched for associating with Type 2 Diabetes
(T2D) in humans. By filtering ‘‘eSNPs’’ based on causal
gene networks defined in an experimental cross popula-
tion segregating T2D traits, we demonstrate a dramatically
increased enrichment of T2D SNPs that enhance our ability
to assess T2D risk. We demonstrate the utility of this
approach by identifying malic enzyme 1 (ME1) as a novel
T2D susceptibility gene in humans and then functionally
validating the causal connection between ME1 and T2D in
a mouse knockout model for Me1. This approach provides
a path to identifying disease susceptibility networks rather
than single SNPs or genes traditionally identified through
GWAS.

Networks of eSNPs

PLoS Genetics | www.plosgenetics.org 2 May 2010 | Volume 6 | Issue 5 | e1000932



(LD) with the eSNPs. A SNP was considered in strong LD with an

eSNP if the correlation between the two SNPs was .0.89. These

SNPs were considered to be representative of our eSNPs and were

included in the analysis set (referred to here as the expanded eSNP

set) in order to extract the most information from the GWAS data.

We again tested whether this expanded eSNP set was enriched for

SNPs associated with T2D by empirically estimating the null

distribution. For example, in the DGI study, 1,516 SNPs in the

expanded eSNP set of 24,220 SNPs (6.3%) had PT2D,0.05,

compared to an average of 1,279 SNPs (5.3%; [95% CI: 4.9% to

5.7%]) in the random sets (Z = 5.05; p = 2.1961027), representing

a 1.19-fold enrichment for SNPs in the expanded set over the

random sets. Similar enrichments were observed in the DGI and

WTCCC studies (Table 1, Figure 2).

Adipose Gene Network Enhances eSNP Association with
T2D

While the eSNP PT2D enrichments in liver, omental and

subcutaneous tissue were statistically significant, the enrichment

was modest (1.19 fold enrichment for the expanded eSNP set).

One explanation for this could be that these enrichments were

calculated using an eSNP set spanning three distinct tissues

without considering how the expression traits relate to networks

associated with disease. Therefore, even though the eSNPs

considered herein were derived from metabolically active tissues,

we considered the possibility that restricting attention to eSNPs

corresponding to expression traits in T2D-relevant tissues that are

most variable in populations segregating T2D traits may enhance

the enrichment for eSNPs associated with T2D.

Towards this end, we tested whether eSNPs corresponding to

genes comprising an adipose tissue gene network constructed from

an F2 intercross between C57BL/6 ob/ob and BTBR ob/ob mice

(referred to here as the B66BTBR cross) were enriched for

association with T2D. The B66BTBR cross has been previously

established as a model population for T2D [27]. While the

C57BL/6 ob/ob strain becomes obese and develops moderate

hyperglycemia, it is compensated by hyperinsulinemia, preventing

beta-cell failure and the development of a T2D phenotype. In

contrast, the BTBR ob/ob strain develops obesity, accompanied by

severe hyperglycemia and insulin resistance, ultimately resulting in

beta-cell failure and a severe T2D phenotype. Therefore, the gene

networks in T2D-relevant tissues in the B66BTBR mice have the

potential to provide insight into pathways and regulatory networks

in obesity-induced diabetes [28,29]. In this setting, we define a

gene network as a graphical model comprised of nodes and edges,

where the nodes represent gene expression traits or clinical traits,

and the edges represent significant, weighted correlations between

the corresponding two nodes (expression traits) [30]. Because gene

expression, DNA variations and T2D traits were all scored in

B66BTBR cross, there is the potential to identify tissue-specific

subnetworks that are causally associated with T2D traits, given

DNA variations can be treated as a perturbation on the gene

expression and clinical traits, thereby enabling the edges in the

Figure 1. Diagram depicting the process of filtering SNPs using eSNPs and disease associated networks.
doi:10.1371/journal.pgen.1000932.g001

Networks of eSNPs
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network to be directed [12,24,31–33]. Of the 39,600 genes

represented on the microarray used in this study, the upper 25

percent of the most differentially expressed genes were used as

input to construct the coexpression network [30]. We then

restricted our eSNP set to those omental adipose eSNPs

corresponding to genes in the adipose network that mapped to

human orthologs (referred to as the adipose eSNP set) and found

the expanded eSNP set significantly more enriched for T2D

Table 1. eSNP Set Enrichment Summary for the DIAGRAM, DGI and WTCCC GWAS.

DIAGRAM DGI WTCCC

Number Genotyped 16,801 3,888 4,047

All eSNPs % PT2D,0.05 (%) 6.63 6.20 6.72

% PT2D,0.05 from random set (95% CI) 5.70 (5.40, 6.00) 5.19 (4.56, 5.82) 5.94 (5.27, 6.60)

% PT2D,0.05 Fold Increase over random SNP sets(p) 1.16 (2.0561029) 1.19 (8.0061024) 1.13 (1.0961022)

Number Genotyped 144,660 24,220 25,591

All expanded eSNPs % PT2D,0.05 (%) 7.34 6.26 7.50

% PT2D,0.05 from random set (95% CI) 6.12 (5.72, 6.52) 5.28 (4.90, 5.66) 6.43 (5.99, 6.87)

% PT2D,0.05 Fold Increase over random expanded SNP sets (p) 1.20 (1.3361029) 1.19 (2.1961027) 1.17 (1.2261026)

Number Genotyped 19,853 3,342 3,539

Adipose network expanded eSNPs % PT2D,0.05 (%) 9.21 9.07 8.20

% PT2D,0.05 from random expanded eSNP set (95% CI) 7.30 (6.93, 7.65) 6.13 (5.31, 6.95) 7.40 (6.53, 8.26)

% PT2D,0.05 Fold Increase over random expanded eSNP sets (p) 1.26 (,10216) 1.48 (1.10610212) 1.11 (3.4961021)

Number Genotyped 628 101 111

Adipose purple subnetwork
expanded eSNPs

% PT2D,0.05 (%) 13.22 36.63 10.81

% PT2D,0.05 from random adipose network expanded eSNP
set (95% CI)

9.21 (6.94, 11.50) 9.04 (3.44, 14.63) 8.20 (3.08, 13.29)

% PT2D,0.05 Fold Increase over random adipose network
expanded eSNP sets (p)

1.44 (2.9761024) 4.05 (,10216) 1.32 (1.5761021)

doi:10.1371/journal.pgen.1000932.t001

Figure 2. eSNP sets enriched for T2D associated SNPs in three GWAS. The Y axis shows the proportion of SNPs with PT2D, = 0.05. The PT2D

are from DIAGRAM, WTCCC, and DGI from left to right. In each GWAS cohort, from left to right, the 1st bar shows the observed proportion of
all studied SNPs; the 2nd bar shows the proportion of all eSNPs, the 3rd bar shows the proportion of the expanded eSNPs; the 4th bar shows the
proportion of the expanded adipose network eSNPs; and the 5th bar shows the proportion of the expanded T2D adipose causal subnetwork eSNPs. In
DIAGRAM study, the second bar is significantly higher than the first (p = 2.0561029), the third bar is higher than the second (p = 1.3361029), the
fourth is higher than the third (p,10216), and the fifth is higher than the fourth (p = 2.9761024). In WTCCC, the second bar is higher than the first
(p = 1.0961022), the third is higher than the second (p = 1.2261026), but the fourth and fifth bars are not significantly higher than the third (p = 0.35)
or fourth (p = 0.15), respectively. In the DGI study, the second bar is higher than the first (p = 8.061024), the third is higher than the second,
(p = 2.1961027), the fourth is higher than the third (p = 1.10610212), and the fifth is higher than the fourth (p,10216).
doi:10.1371/journal.pgen.1000932.g002

Networks of eSNPs
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associated SNPs compared to randomly selected eSNPs in the

DIAGRAM and DGI studies. In the DGI study, of the 3,342

expanded eSNPs from the adipose set considered, 303 (9.07%)

were associated with T2D at the 0.05 significance level, compared

to a mean of 6.2% [95% CI: 5.31% to 6.95%] in random

expanded eSNP sets (Z = 7.02; p = 1.10610212). In the DIA-

GRAM study, 9.2% were associated with T2D at the 0.05

significance level, compared to a mean of 7.3% [95% CI: 6.93% to

7.65%] in random expanded eSNP sets (Z = 10.40; p,10216).

However, the adipose eSNP set was not significantly more

enriched with small PT2D in the WTCCC study (p = 0.35;

Figure 2; Table 1). The lack of significance in the WTCCC

cohort was of interest, and given DIAGRAM contains both the

DGI and WTCCC cohorts, the intermediate enrichment of

DIAGRAM with respect to WTCCC and DGI reflects the strong

significance in DGI and lack of significance in WTCCC. It is of

particular note that one critical difference between the DGI and

WTCCC studies was the matching of DGI cases and controls for

BMI, whereas no such matching was done in the WTCCC study.

As the adipose network was derived from a mouse cross whose

parental strains are both on an ob/ob background, the BMI

matching in DGI may confer more biological similarities to the

cross design and hence better overlap. In addition, while the BMI

matching in DGI may enhance power to identify beta-cell loci,

rather than loci whose effect on T2D risk was mediated by obesity

[34], the BMI matching would not fully account for waist

circumference, where those individuals with increased waist

circumference compared to individuals with a similar BMI are

at increased risk of T2D, where omental adipose tissue is thought

to play a role [35].

Subnetwork Supported as Causal for T2D Further
Enhances eSNP Association with T2D

The genes comprising the adipose and islet co-expression

networks are not expected to uniformly affect T2D traits [12,13].

Figure 3A depicts the most highly connected expression traits in

the adipose network as a topological overlap map [30]. The

adipose network is composed of distinct subnetworks or modules

that emerge among the highly interconnected expression traits

[36]. Such co-expression subnetworks often contain genes of

related biological function [37]. For example, the purple

subnetwork in the adipose network was found to be the

subnetwork most significantly associated with T2D traits. The

genes comprising this subnetwork were enriched for the Panther

biological process lipid, fatty acid and steroid metabolism

(p = 4.4961028, Table 2). The first principal component of the

gene expression traits making up this subnetwork explained 45.6%

of the expression variation of the subnetwork and was strongly

Figure 3. Adipose T2D causal subnetwork and human supporting evidence. A) The adipose coexpression network is comprised of 9,900
gene expression traits. The purple subnetwork comprised of 159 genes is highlighted as the subnetwork most enriched for genes supported as causal
for T2D. B) LOD score plots for plasma insulin (solid black), Me1 adipose expression (solid red), Anxa2 adipose expression (solid blue), Bcl2l10 adipose
expression (solid cyan), 2310046806Rik adipose expression (solid black), Car12 adipose expression (solid green), Paqr9 adipose expression (solid
magenta), C730029A08Rik adipose expression (dashed red), Poclce2 adipose expression (dashed blue), and adipose expression traits linking to this
region in trans (grey), all measured in the B66BTBR cross. C) The T2D adipose causal subnetwork is enriched for genes supported as having a causal
relationship with plasma insulin levels in the B66BTBR cross (blue nodes). The white nodes represent genes in the T2D adipose causal subnetwork
not supported as causal for insulin traits in the B66BTBR cross. D) OGTT curves for Me12/2 (Male n = 19; Female n = 14) and wild-type control (Male
n = 25; Female n = 16) mice (p = 3.1661024 for male OGTT AUC and p = 1.8461023 for female OGTT AUC; overall sex adjusted difference
p = 7.3061028). E) The T2D adipose causal subnetwork is enriched for genes in the Me12/2 adipose gene expression signature (orange nodes). The
white nodes represent genes in the purple subnetwork not in the Me12/2 adipose gene signature.
doi:10.1371/journal.pgen.1000932.g003

Networks of eSNPs
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positively correlated with several T2D clinical traits measured in

the B66BTBR mice: number of islets (R = 0.52, p,1610270),

plasma insulin levels (R = 0.70, p,1610270), and plasma glucose

levels (R = 20.57, p,3.9610241).

We next applied a previously described method for inferring

causal relationships between the expression traits and T2D traits

with respect to genetic loci controlling for the islet count

phenotype and plasma glucose and insulin levels [24]. We have

previously shown that subnetworks under the control of genetic

loci that are also associated with disease traits can be enriched for

genes predicted to cause disease trait variation [38]. The purple

subnetwork was supported as the most strongly causal subnetwork

for the T2D traits in the adipose coexpression network in the

B6xBTBR cross (referred to here as the T2D adipose causal

subnetwork), with 36% (Fisher Exact Test p = 5.26610268), 27%

(Fisher Exact Test p = 1.40610250) and 29% (Fisher Exact Test

p = 1.55610244) of the genes in this subnetwork supported as

causal for plasma insulin levels, plasma glucose levels, and number

of islets, respectively (Figure 3C, Table 2, Table S2). Therefore,

while there are many subnetworks identified in the adipose

network, they are not all associated with T2D traits, and in the

context of the B6xBTBR cross there is a single subnetwork in

adipose that is very significantly enriched for genes causally

associated with T2D.

Given the strong causal relationship inferred between the T2D

adipose causal subnetwork and T2D in the BTBRxB6 cross, we

tested whether omental adipose eSNPs corresponding to genes in

this subnetwork were more significantly enriched for association to

human T2D compared to the adipose network filtered eSNP sets.

Astonishingly, of the 101 SNPs in the expanded eSNP set that

were associated with the expression of genes in the T2D adipose

causal subnetwork, 37 (37%) corresponded to PT2D,0.05 in the

DGI study, compared to an average of 9.0% SNPs ([95% CI:

3.44% to 14.63%]) in the matched random SNP sets sampled

from the adipose network expanded eSNPs (p,10216), further

supporting that this subnetwork is an important network for

human T2D, and further supporting that the this causal

subnetwork may reflect important molecular states associated

with increased omental fat mass and the link of this increased fat

mass to T2D. Similar enrichments were observed in the

DIAGRAM study, although as in the case of the adipose network,

the WTCCC enrichment was not significant (Table 1, Figure 2).

Tissue Specific eSNP Set Enrichment
In addition to the dramatic enrichments observed in restricting

attention to those human omental eSNPs corresponding to genes

in the B6xBTBR T2D adipose causal subnetwork, the eSNPs

generated from the other tissues and from all tissues combined

were also enriched for lower PT2D values. The increasing

enrichment trend was consistently observed from all tissue-GWAS

combinations (Figure S2). While the enrichment magnitude and

significance levels were somewhat tissue dependent, there were no

profound differences among liver, omental fat and subcutaneous

fat tissue eSNPs, possibly reflecting that all three tissues are

metabolically active and important in obesity and diabetes.

When comparing eSNPs identified in independent tissues from

the same cohort, 72% of the cis eSNPs identified in liver, 79% of

those found in omental adipose, and 81% from subcutaneous

adipose were also found in the other two tissues: 2,189, 2,286 and

1,999 tissue specific eSNPs were identified in liver, omental

adipose, and subcutaneous adipose, respectively. This is consistent

with previous findings on tissue-specific effects [13,39]. Because

there is reduced numbers of eSNPs represented in the tissue

specific sets, there is reduced power overall to detect enrichments.

We note that in cases where the WTCCC enrichments were not

significant in restricting attention to omental eSNPs, the

enrichments were significant when focusing on eSNPs over all

tissues combined. By pooling eSNPs from liver and adipose tissue,

our main aim was to increase power to detect enrichments by

increasing the number of eSNPs. While pooling of eSNPs from the

three tissues was a first step in our analysis, restricting attention to

the most disease relevant tissue in this case resulted in the most

dramatic enrichment, highlighting the importance of the mouse

cross in identifying the most causal subnetworks for disease in the

most disease relevant tissue corresponding to the disease relevant

tissues we had available in the human cohort.

eSNP Filtering Methods Lead to the Identification of ME1
as a T2D Susceptibility Gene

While the enrichment of eSNPs associated with genes in the

T2D adipose causal subnetwork was encouraging (37% of the

eSNPs in this subnetwork associated with T2D at the nominal 0.05

significance level), the effect sizes were all small, providing for very

little power to prioritize the list for direct experimental validation

based on the human association data alone. Given the number of

Table 2. Gene sets significantly over-represented in the mouse and human T2D adipose causal subnetwork.

Gene set type Gene set description Mouse subnetwork (N = 159)

Gene set counta
overlap (Enrichment p valuec,
fold enrichmentb)

Panther biological process Lipid, fatty acid and steroid metabolism 729 27 (4.95610210, 4.1)d

Causal gene sets Genes supported as causal for plasma insulin 432 57 (5.26610268, 29.3)f

Genes supported as causal for plasma glucose 357 44 (1.40610250, 27.4)f

Genes supported as causal for number of islets 605 47 (1.55610244, 17.3)f

Single gene perturbation experiments Me12/2 versus wild-type signature 2958 32 (9.2561027, 2.4)f

aThe number of genes represented on the mouse array that mapped to orthologs in human.
bThe overlap count is computed by counting the number of transcripts in the intersection between the indicated gene set and the subnetwork. The fold enrichment is

computed as the observed overlap count divided by the expected overlap count, estimated by multiplying the subnetwork gene count by the fraction ‘gene set count
divided by total gene count’.

cNominal p values represent the significance of the Fisher Exact Test statistic under the null hypothesis that the frequency of the indicated gene set is the same between
a reference set of all genes represented on the array and the set of genes comprising the subnetwork.

dTotal gene count is 17,413.
fTotal gene count is 35,345 transcripts on the array.
doi:10.1371/journal.pgen.1000932.t002
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putative causal genes represented in this module, we could not

carry out experimental validation on all of them. Therefore, we

integrated the mouse and human data to prioritize the list of T2D

susceptibility genes for validation. To identify susceptibility genes

for validation, we identified genes in the T2D adipose causal

subnetwork that harbored DNA variations in mouse and human

that associated with its expression levels and that were supported

as causal for T2D [24]. This is a natural filter to apply, given DNA

variations that directly affect the activity of a gene in multiple

species, and that in turn are supported as causing variations in

disease traits [24], strongly implicate such genes as affecting

disease susceptibility [14]. Specifically, for validation purposes, we

focused on genes meeting the following three criteria: 1) adipose

expression levels in the B6xBTBR cross were associated with

genotypes for markers proximal to the gene of interest (i.e., genes

that gave rise to cis eQTL); 2) supported as causal for T2D traits

using a previously described statistical procedure to infer causal

relationships between expression and clinical traits [24]; and 3)

gave rise to an adipose cis-eSNP in humans that associated with

T2D in human GWAS. Application of this filter identifies those

expression traits in the B6xBTBR cross and human GGE cohorts

that are perturbed by cis DNA variation, and that in turn associate

with T2D traits, directly supporting the genes as causal for T2D in

the B6xBTBR cross and the human population.

Of the 159 expression traits in the T2D adipose causal

subnetwork, 117 gave rise to cis or trans expression QTL (eQTL)

in a distinct region on chromosome 9 (from 65Mb to 95Mb of the

chromosome). However, only 8 of these genes were identified with

strong adipose cis-eQTLs (i.e., the structural genes were located

within the chromosome 9 linkage region). Further, 5 of these 8

genes (Anxa2, Bcl2l10, C730029A08Rik, Me1, Paqr9) were support-

ed by the mouse data as causal for T2D traits (Figure 3B). Among

these, only human ME1 adipose expression was associated with at

least one cis-eSNP that was also nominally associated with T2D in

the DIAGRAM study (PT2D = 0.002) (Figure S3). Therefore, while

Me1 was supported as causal in the B6xBTBR cross, it was one of

hundreds of genes supported as causal for T2D traits, but then the

only gene of those hundreds whose expression in humans

associated with a SNP that also associated with human T2D.

The role of Me1 in obesity [40–42], energy homeostasis [43]

and diabetes [44] has been well documented in the literature.

Encoding a cytosolic NADP(+)-dependent enzyme involved in the

formation of pyruvate from malate, it produces NADPH to supply

reducing equivalents for lipogenesis, thus siphoning the reducing

equivalents originally derived from glycolysis as NADH to

NADPH for fatty acid synthesis [45]. Me1 is co-regulated together

with fatty acid synthetic enzymes by Chrebp and Srebp-1c and is

therefore described as a lipogenic enzyme. Further, we recently

provided direct experimental support for the involvement of Me1

in obesity-related phenotypic characteristics and in gene networks

associated with obesity using a Me1 knockout (Me12/2) mouse

model [31].

Here, we extended the validation experiment to T2D related

traits. As shown in Table 3, the Me12/2 mice fed a high fat diet

(HFD) demonstrate significantly lower insulin levels compared to

the controls (p = 1.2361029), thus validating our prediction. In

addition, the Me12/2 mice showed lower serum glucose levels

(p = 3.3061026) and an improved glucose tolerance at week 23

(Figure 3D), with a 29.5% decrease in the area under the oral

glucose tolerance test (OGTT) curve (AUC) relative to wild-type

mice (p = 7.3061028). All of these lines of evidence support a

diabetes-resistant phenotype in Me12/2 mice. Furthermore, the

Me12/2 mice also possessed significantly improved lipid profiles

including lower total cholesterol (p = 2.1961023) and triglyceride

(p = 1.4061027) levels. Consistent with the lower body fat

reported earlier [31], the serum leptin levels were also significantly

lower in the Me12/2 mice than in the controls. Therefore, the

Me12/2 mice appeared to be resistant to both diabetes and

obesity development.

In order to explore the mechanisms underlying the observed

phenotypic changes in the context of the subnetworks identified by

the eSNP filtering method, we constructed a single gene

perturbation gene expression signature for Me1, comprised of

2,958 genes, by identifying adipose genes differentially expressed

between wild type and Me12/2 male mice. The molecular

perturbation signature can serve as an important molecular

validation that a putative causal gene underlying a linkage region

associated with disease is in fact one of the genes in the linkage

region explaining the linkage signal [46]. We found that the Me1

perturbation signature was significantly enriched for many

metabolic pathways, including insulin receptor signaling pathway

(p = 2.2761025), fatty acid (p = 5.4961026), amine (p =

8.6761028), lipid (p = 5.4761027), and monocarboxylic acid

metabolic processes (p = 4.7361027; similar to the purple mouse

subnetwork depicted in Figure 3A). The Me1 perturbation

signature was significantly enriched for expression traits in the

T2D adipose causal subnetwork: 32 genes overlapped this network

whereas only 13 would have been expected by chance, a greater

than 2-fold enrichment (Fisher Exact Test p = 2.9561027;

Figure 3E, Table 2). This serves as an important molecular

Table 3. Comparison of metabolic traits between Me12/2 mice and wild-type controls.

Male Female

Trait
Wild typea

(n = 25)
Me12/2
(n = 19)

Percentage
change (%)

Wild type
(n = 16)

Me12/2
(n = 14)

Percentage
change (%)

Difference
p valueb

OGTT AUC (min (mg?ml21)) 424.5(117.4) 299.4(36.9) 229.5 350.2(116.3) 239.8(23.8) 231.5 7.3061028

Glucose (mg?ml21) 2.4(0.6) 1.8(0.2) 224.9 1.9(0.5) 1.6(0.2) 218.1 3.3061026

Insulin (mg?ml21) 10.9(6.1) 2.0(1.6) 281.5 2.9(2.2) 0.6(0.3) 278.9 1.2361029

Leptin (mg?ml21) 11.2(3.3) 6.1(2.6) 245.4 4.6(4.0) 2.4(2.4) 247.8 1.6961026

Cholesterol (mg?ml21) 2.2(0.4) 1.9(0.5) 213.8 1.3(0.3) 1.0(0.1) 222.7 2.1961023

Triglycerides (mg?ml21) 2.3(1.0) 1.2(0.4) 248.6 1.4(0.4) 1.0(0.1) 226.9 1.4061027

aPresented as mean (SD).
bAll p values reported represent the significance of the t statistic under the null hypothesis that the difference in mean, sex-adjusted values between the Me12/2 and

wild-type groups is equal to 0.
doi:10.1371/journal.pgen.1000932.t003
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validation of the eSNP filtering method and confirms the causal

nature of a gene identified through this approach, Me1.

Discussion

GGE studies provide the necessary information to infer causal

relationships among genes and between genes and clinical traits,

leading to the construction of gene networks that underlie diseases

of interest [12–14,24,25]. Three fundamental advances presented

herein significantly extend this earlier work: 1) to our knowledge,

we have demonstrated for the first time that SNPs that associate

with human gene expression traits in metabolically relevant tissues

are enriched for associating with T2D in multiple T2D studies; 2)

the enrichment of eSNPs associating with T2D over randomly

selected SNPs dramatically increased as we restricted attention to

eSNPs corresponding first to genes comprising the co-expression

network from adipose tissue isolated from a mouse population

segregating T2D traits, and then to genes comprising a specific

adipose subnetwork strongly supported as causal for T2D-

associated traits; and 3) we demonstrated directly that causal gene

networks provide a path to functionally informing on genetic loci

found in GWAS to associate with disease. The inability of GWAS

studies to directly elucidate the causal genes and their function

with respect to disease is now widely accepted as a problem in

search of a solution; we provide one possible solution. Our results

taken together support the idea that common forms of disease like

T2D are emergent properties of networks that respond to wide-

spread variation (genetic and environmental), as opposed to the

result of single hits to single genes. The eSNPs for genes in the

T2D adipose causal subnetwork that were enriched for associating

with T2D were too subtly associated with the disease to be

identified in a classic GWAS, due to lack of power. However, the

associations were detectable by reducing the number of SNPs

tested in a GWAS, given the focus was on those SNPs that

associate with the expression of genes in a subnetwork supported

as causal for the disease of interest.

The causal reasoning we have used to identify causal

relationships between genes and disease traits refers to a statistical

inference procedure in which statistical associations between

changes in DNA, changes in expression, and changes in complex

phenotypes like disease are examined for patterns of statistical

dependency among these variables that support directionality

among them, where the directionality then provides the source of

causal information. This stands in contrast to the classic use of

causality in molecular biology or biochemistry, where causality

between two proteins implies that one protein has been

determined experimentally to physically interact with or to induce

processes that directly affect another protein, and that this in turn

leads to a phenotypic change of interest. Therefore, experimental

validation in this setting is critical. Towards that end, ME1 was

identified as a putative driver of a gene subnetwork containing key

regulators of lipogenesis and was then validated in vivo as a gene

capable of modulating multiple T2D traits. The genes whose

adipose expression levels change in response to knocking out Me1

were enriched for genes that 1) fell in this subnetwork, and 2) were

supported as causal for T2D in this mouse T2D population. As we

have previously detailed, this provides direct experimental support

for the gene as a causal regulator of the subnetwork [12,24,46].

The T2D adipose causal subnetwork contains several co-expressed

genes encoding key lipogenic enzymes, such as fatty acid synthase

(Fasn), ATP citrate lyase (Acly), stearoyl-Coenzyme A desaturase 2

(Scd2), lanosterol synthase (Lss), farnesyl diphosphate synthetase

(Fdps), and phospholipase A2, group V (Pla2g5). The abnormal

liporegulation found in obesity has previously been implicated in

the pathogenesis of diabetes [47,48], especially around the

deleterious effects of the elevated levels of triglycerides in

peripheral tissues, referred to as ‘‘lipotoxicity’’. Excess circulating

fatty acids present during obesity can accumulate in skeletal

muscle tissues, contributing to insulin resistance [49,50,51].

Another organ negatively impacted by lipotoxicity is the

pancreatic islets, where elevated fatty acid levels have been shown

to contribute to b-cell apoptosis, a process thought to involve the de

novo formation of ceramide and increased nitric oxide (NO)

production, resulting in impaired glucose-stimulated insulin

secretion [52,53,54].

Due to the key role played by Me1 in fatty acid synthesis, we

hypothesized that a genetic knockout of malic enzyme in mice fed

a high-fat diet would severely perturb this pathway. This would in

turn lead to a decrease in circulating free fatty acids and

triglycerides, a diminished ectopic triglyceride deposition, and

consequently an improved insulin sensitivity profile. Indeed, both

male and female Me12/2 mice exhibited dramatically improved

responses to an OGTT (Figure 3D), as well as significantly lower

plasma triglyceride levels (Table 3; see Text S1 for further

discussion of Me1 and diabetes).

It is important to note that while an adipose subnetwork

strongly supported as causal for diabetes in an experimental mouse

population demonstrated increased T2D eSNP enrichment when

compared to the adipose network as a whole, only moderate

enrichments were observed for all eSNPs and adipose-specific

eSNPs. One possible explanation could be the limited coverage of

eSNPs. For instance, certain GWAS SNPs may not affect gene

expression, rather, they may alter post-transcriptional mechanisms

such as mRNA splicing, or protein function. In other words, eSNP

selection based on the GGE might have missed classes of

important functional GWAS SNPs, and thus caused a loss of

power. Additionally, our GGE cohorts may not have been

appropriately powered to pick up all relevant eSNPs for T2D.

The eSNPs used in this study are primarily from liver and adipose

tissues. Although these are relevant tissues for T2D, other key

tissues such as islet, muscle, and even brain were not available for

eSNP discovery and hence a significant percentage of tissue-

specific eSNPs were missing from our analysis. This emphasizes

the importance of tissue selection for the success of this type of

approach. Since many aspects of disease pathology are confined to

certain tissues, the ability for eSNPs to inform on the biology relies

on having a tissue-appropriate set of eSNPs. Related to this is our

characterization of human gene expression traits in non-T2D

individuals, which may have caused us to miss many relevant T2D

eSNPs. Our first GGE cohort was a population-based random

sample, while the second was an obese cohort, hence neither

represents an appropriately powered T2D-specific cohort. Finally,

the sample sizes of the GGE cohorts were not powered well

enough to pick out the types of modest effects found in large

GWAS studies. In our analysis, we pooled the eSNPs from the two

cohorts in the three tissues as a starting point, mainly to improve

power to observe pathway-specific signals. Many of these caveats

associated with limited coverage of eSNPs are being addressed via

increased funding for very large GGE studies. Therefore, we think

the results realized here provide the beginning lines of evidence

that eSNPs may in fact generally be enriched with disease

associating SNPs.

The set of eSNPs used in our analyses were identified at a false

discovery rate (FDR),10%. The motivation for selecting what

could be considered a high FDR threshold was to increase the

number of eSNPs to enhance the power to detect patterns of

enrichment, as opposed to limiting attention to only the highest

confidence single genes associated with disease. We also consider

Networks of eSNPs
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the possibility that the effective FDR decreases as we apply the

filtering process of restricting attention to eSNPs whose associated

genes are present in co-expression networks and subnetworks

supported as causal for diabetes traits. We therefore suspect that

this filtering process enhances the enrichment for T2D association

primarily by restricting eSNPs to disease susceptibility gene

networks, although a reduced effective FDR may also play a role.

Indeed, while we have singled out a single gene, Me1, as playing

a causal role in this network, the true value of the currently

described eSNP filtering approach is in its ability to identify disease

susceptibility networks rather than single SNPs or genes

traditionally identified through GWAS. In fact, the knockout gene

expression signature for Me1 was significantly enriched for genes in

the T2D adipose causal gene network, providing direct experi-

mental evidence of the high degree of interconnectivity within this

network, where perturbing one gene supported as causal for

disease affects many other genes supported as causal in this

network, as we have previously shown for other disease causal

networks [12,46]. We have shown for the first time that SNPs that

are associated with transcript abundance are more likely to

associate with a complex trait as well. This type of approach

provides a way to reduce the dimensionality of the DNA variation

space and can help us reconsider how to map complex disease

using gene expression traits. This approach can also help prioritize

GWAS findings, for instance, by including the eSNPs correspond-

ing to genes in causal disease networks in testing for epistasis or for

consideration in future genetic association studies.

GWAS will continue to deliver high-confidence correlations

between DNA changes at a given locus and disease-associated

traits of interest. Our understanding of the individual genes at

these loci that alter disease susceptibility and the broader context

in which they operate can be enhanced by leveraging studies that

seek to map the genetics of gene expression. Generating large-scale

molecular profiling data sets in both human and experimental

segregating populations potentially provides additional power to

elucidate not only the genetic basis of disease, but also the impact

the genetic basis of disease has on molecular networks that in turn

drive physiological states associated with disease. Diabetes

pathogenesis involves many pathways operating in different tissues

and distinct physiological processes (blunted insulin signaling and

failure of beta cells to compensate by producing more insulin).

Therefore, the integration of large-scale molecular profiling,

genotypic, clinical, and other biologically relevant data will be

critical if we hope to understand more fully how genetic and

environmental perturbations lead to complex traits like disease.

Integration of a diversity of data in this setting will be key, since no

single data dimension will provide the complete answer.

Methods

eSNP Processing and Analysis
For the liver-specific GGE cohort, more than 39,000 transcripts

were profiled and 782,476 unique SNPs were genotyped in more

than 400 human liver samples [12]. In this cohort, the genetics of

gene expression analysis resulted in the detection of 3,309 unique

eSNPs at an FDR,10% [14]. The eSNP processing and analysis

were carried out as previous described [14]. All expression data

have been deposited in the Gene Expression Omnibus database

under accession number (GSE9588) [14].

The second multi-tissue GGE cohort was comprised of patients

who underwent RXY gastric bypass surgery. Liver, subcutaneous

adipose and omental adipose tissues were collected from each

patient at the time of surgery at Massachusetts General Hospital.

Genomic DNA was extracted from liver tissue for each patient,

and total RNA was extracted from liver, subcutaneous adipose and

omental adipose tissues. Each RNA sample was profiled on a

custom 44K Agilent array. RNA processing methods are detailed

in Text S1. Each DNA sample was genotyped on the Illumina

650Y BeadChip array. We successfully genotyped 950 samples.

Identity by state (IBS) analysis was performed to identify related

individuals within this cohort. Eighteen parent-offspring, 6 sibling

and 8 second degree relatives were identified, and 4 of these were

related as trios. Twenty-eight individuals were removed to

eliminate IBS in the dataset, leaving 922 samples for use in the

analysis. Demographic information including age, race, gender,

height, type of surgery and year of surgery were collected for each

patient (Text S1). We required that the minor allele frequency for

a SNP be .5% in order to be considered in the analyses.

Cis and trans acting expression quantitative trait loci (eQTLs)

were identified using a method similar to that previously described

[14]. The cis eQTL for a given expression trait were defined as

those with corresponding SNPs located within 1 megabase (Mb) of

the transcription start or stop of the associated structural gene. All

other associations were considered trans. SNP associations were

identified using the Kruskal-Wallis test. The association p values

were adjusted to control for testing of multiple SNPs and

expression traits using an empirically determined FDR con-

strained to be ,10%. For cis eQTL, we only tested for associations

to SNPs that were within 1 Mb of the annotated start or stop site

of the corresponding structural gene. The empirical FDR

permutations were restricted to SNPs within the cis regions. In

the case of trans eQTL, all SNPs were tested for association to each

of the expression traits. Where SNP associations were identified to

the same trait in high LD with each other, the SNP with the most

significant p value was reported.

When comparing eSNPs identified in independent tissues from

the same cohort, 72% of the cis eSNPs identified in liver, 79% of

those found in omental adipose and 80.5% from subcutaneous

adipose were also found in the other two tissues. Of the eSNPs

detected, 2,189, 2,286 and 1,999 were specific eSNPs to liver,

omental adipose and subcutaneous adipose, respectively. When

compared to the set of liver eSNPs from the first cohort there was a

66% overlap in eSNPs indentified between the two studies. The set

of eSNPs used in the paper is the combined set of eSNPs from the

four sources, comprising 18,785 unique eSNPs in total.

Statistical Analysis
Statistical methods for evaluating eSNP set enrichment.

We used a matched random sampling strategy to assess whether a

given set of eSNPs was more likely to associate with T2D than

randomly selected sets of SNPs with equal size, similar location to

human genes, similar MAF distributions, and similar LD structures.

For cis-eSNPs, we first required that the random SNP pool be

composed of SNPs located within 1MB of human gene regions and

with MAF .5%. We then binned the random SNPs into five groups

according to their MAF: 5–10%, 10–20%, 20–30%, 30–40% and

40–50%. For each cis-eSNP, we randomly selected a genotyped

SNP from the same MAF group in each random sample. A similar

procedure was employed for trans-eSNPs, except that we did not

require the random SNP be within 1MB of a gene region. When

there were multiple eSNPs located in one LD block, we randomly

selected the same number of SNPs (matched according to MAF and

position with respect to gene region) that were in the LD block

corresponding to the matched eSNPs. This process was repeated

100,000 times. For each random SNP set, we counted the

percentage of SNPs with GWAS p,0.05, P1
0:05 . . . P100,000

0:05 , and

from this constructed the null distribution. We then compared the

observed percentage of eSNPs with GWAS p,0.05 to the null

Networks of eSNPs

PLoS Genetics | www.plosgenetics.org 9 May 2010 | Volume 6 | Issue 5 | e1000932



distribution in order to estimate the enrichment p value. An

approximation method, which was used to increase the enrichment

p value resolution, is detailed in Text S1.

Statistical methods for evaluating eSNP expanded set

enrichment. We first used the matched random sampling

strategy described above to get a random set of SNPs that matched

the eSNP set. The eSNP set expanded by including all SNPs in

strong LD with the eSNPs. A SNP was considered in strong LD

with an eSNP if the correlation between the two SNPs was .0.89.

The random SNP set was expanded in a similar fashion by

including SNPs that were correlated with a given SNP (R.0.89).

We required the final size of the expanded random set of SNPs to

be within 610% of the size of the expanded set of eSNPs. This

requirement ensured that the expanded eSNP set would not be

biased relative to the expanded random SNP set by including

more SNPs with a richer LD structure, thereby having a greater

probability of associating with T2D and expression traits, even in

cases where the expression and T2D are completely genetically

independent. By forcing the expanded set sizes to be equal we

removed the potential confounding effect caused by LD structure.

Therefore, the random sampling scheme produced sets of SNPs in

which the LD, set size, and location with respect to protein coding

genes, and MAF distributions matched those of the expanded

eSNP sets. The process was again repeated 100,000 times. The

enrichment p values were then derived as described above.

Statistical methods for evaluating an enrichment increase

when comparing two sets of eSNPs. When assessing if one set

of eSNPs (size = M) was more enriched for small PT2D than a

second eSNP set (size = N, N.M), we compared between the two

classes directly. For each cis (or trans) eSNP in the second set, we

randomly selected a cis (or trans) eSNP from the first set such that

it fell in the same MAF group as the first. When there were

multiple eSNPs located in one LD block in the second set, we

randomly selected the same number of eSNPs from the first set

from the corresponding LD block. For each random sample we

counted the percentage of sampled eSNPs with PT2D,0.05. The

proportion of times this percentage exceeded the observed

percentage of the second eSNP set (with PT2D,0.05) was taken

as the estimate of the p value under the null hypothesis that the

two sets of eSNPs were similarly enriched (vs. the alternative

hypothesis that the second eSNP set was more enriched than the

first. Comparison of two expanded eSNP sets proceeded in a

similar fashion, where again all SNPs that were significantly

correlated (R.0.89) with any of the randomly identified eSNPs in

each random sample were included.

Given the above procedures, when comparing if the adipose

network eSNPs were more enriched for low PT2D than all eSNPs,

we compared the adipose network eSNPs and equal-sized groups

of random eSNPs. When comparing if the T2D adipose causal

subnetwork eSNPs were more enriched for low PT2D than the

adipose network eSNPs, we compared the subnetwork eSNPs and

equal-sized groups of random adipose network eSNPs. This

answered directly whether the SNP filtering process increased

enrichment for small PT2D.

Generation of the B66BTBR Cross F2 Mice
554 F2 mice were generated in a cross between two inbred

strains, both containing the ob mutation at the leptin locus:

C57BL/6 ob/ob and BTBR ob/ob (referred to as the B66BTBR

cross) [27]. All F2 animals were maintained on a chow diet for ten

weeks and were clinically characterized with respect to obesity-

and diabetes-related traits at four, six, eight and ten week time

points. Further details regarding the plasma glucose and insulin

measurements, as well as islet isolation procedures, can be found in

Keller et al. [29]. At the time of necropsy, gonadal white adipose

tissue was collected from 497 mice. RNA was prepared using the

same methods as described previously [29] and hybridized to an

Agilent custom murine gene expression microarray.

Reconstruction of the Adipose Coexpression Network
Of the 39,600 transcribed sequences represented on the

microarray, the top 25 percent rank ordered by degree of

differential expression in the adipose tissue were included in the

reconstruction process [29]. These gene expression traits were

used to construct weighted, co-expression subnetworks comprised

of the most highly connected nodes from each tissue and sex

using previously described methods [30] (Text S1). QTL were

detected for each of the expression and metabolic traits using a

forward stepwise regression procedure [55,56]. QTL with

pleiotropic effects on expression and metabolic traits were

identified using a multivariate likelihood test [24,57]. The

QTL, expression, and metabolic trait data were then integrated

to assess whether each expression trait was supported as having a

causal relationship with each of the metabolic traits, with respect

to QTL detected with pleiotropic effects on the expression and

metabolic traits [24].

Construction and Phenotypic Characterization of
Me12/2 Mice

A naturally occurring mouse mutant deficient in Me1 enzymatic

activity was first reported by Lee et al. in 1980 [58]. The detailed

methods for breeding, genotyping, and characterization of the

Me12/2 mice have been described previously [31,59]. Littermate

male Me12/2 and wild-type mice were challenged with a high fat

diet (HFD) starting at 7–8 weeks of age for 19 weeks. An oral

glucose tolerance test (OGTT) was performed at week 23–24 of

age and terminal blood serum was collected at week 26–27 of age.

For females, HFD was initiated at week 8–10 and continued for 19

weeks. OGTT was performed at week 26–28 of age and terminal

serum samples were collected at week 27–28 of age. Mice were

euthanized at the end of the HFD period. For OGTT, glucose was

administered at 2g/kg of mouse mass via oral gavage, mice were

fasted 18 hours Prior, and glucose levels were measured using a

OneTouch Ultra glucometer (LifeScan, Inc, Milpitas, CA) at 0,

30, 60, 90, and 120 min. Serum was collected from blood using

Becton Dickson (Franklin Lakes, NJ) Microtainer tubes with SST.

Insulin and leptin were measured using Millipore’s (Billerica, MA)

Multiplexed Biomarker Immunoassay for Luminex xMap using a

Bio-Rad’s (Hercules, CA) Bio-Plex machine. The other serum

parameters were measured using a colorimetric assay. Triglycer-

ides were measured at OD 510 nm using reagents from Roche

Diagnostics (Indianapolis, IN). Cholesterol was measured using

reagents from Stanbio (Boerne, TX) at OD 510 nm as well.

Identification of Adipose Expression Signature in
Me12/2 Mice

The gonadal white adipose tissues were collected from 10 male

Me12/2 mice and 10 male littermate wild-type (wt) control mice.

The detailed methods have been described previously [31,59].

The adipose tissues were homogenized and total RNA extracted

using Trizol reagent (Invitrogen, CA). Three micrograms of total

RNA was reverse transcribed and labeled with either Cy3 or Cy5

fluorochrome. Labeled complementary RNA (cRNA) from each

animal was hybridized against a pool of labeled cRNAs

constructed from equal aliquots of RNA from the control animals

using Agilent arrays consisting of 39,556 non-control probes that

represent 37,687 genes. Arrays were quantified on the basis of spot
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intensity relative to background, adjusted for experimental

variation between arrays using average intensity over multiple

channels, and fitted to a previously described error model to

determine significance [60,61]. Gene expression measures are

reported as the ratio of the mean log10 intensity (mlratio). A

Student’s t-test was used to identify genes with significant

differences between Me12/2 animals and the corresponding wt

control mice. These genes were defined as ‘‘signature’’ genes,

representing the perturbed gene expression signature as a result of

single gene modification. The significance level was set to p,0.05.

The false discovery rate, calculated using Q-value [62], at this

significance level was 20%.

Supporting Information

Figure S1 SNP Sets Average log (PT2D) from the three GWAS.

The Y axis shows the average of 2log (PT2D). PT2D are from the

DIAGRAM, WTCCC, and DGI studies, from left to right. In

each GWAS cohort, from left to right, the first bar shows the

average of 2log (PT2D) of all studied SNPs; the second bar shows

the average of 2log (PT2D) of all eSNPs, the third bar shows the

average of 2log (PT2D) of adipose network eSNPs; the fourth bar

shows the average of 2log (PT2D) of T2d adipose causal

subnetwork eSNPs. In DIAGRAM, the second bar is higher than

the first (P = 1.3761029), the third is higher than the second

P = 1.2161024), and the fourth is higher than the third

(P = 1.2261024). In the WTCCC study, the second bar is higher

than the first (P = 1.0161023), the third is not statistically

distinguishable from the second (P = 0.07), and the fourth is

marginally higher than the third (P = 0.04). In the DGI study, the

second bar is higher than the first (P = 5.8361023), the third is

higher than the second (P = 8.4861024), and the fourth is higher

than the third (P = 1.1761027).

Found at: doi:10.1371/journal.pgen.1000932.s001 (0.03 MB

DOC)

Figure S2 Enrichment of tissue-specific eSNP sets for SNPs

associated with T2D in three GWAS. The Y axis shows the

proportion of SNPs with PT2D, = 0.05. From left to right, the

tissues liver tissue from liver-specific cohort, Massachusetts General

Hospital (MGH) liver tissue, MGH omental adipose, and MGH

subqutaneous adipose tissue. For each cluster of bars representing

a specific tissue in a specific GWAS, the first bar shows the

observed proportion of all studied SNPs, the second bar shows the

proportion of all eSNPs, the third bar shows the proportion of

adipose network eSNPs, and the fourth bar shows the proportion

of T2D adipose causal subnetwork eSNPs with PT2D,0.05.

Found at: doi:10.1371/journal.pgen.1000932.s002 (0.19 MB

DOC)

Figure S3 Regional plot of ME1 gene association with T2D in

the DIAGRAM GWAS. For ME1 gene region on chromosome 6,

genotyped and imputed SNPs are plotted with their meta-analysis

PT2D values (as 2log10 values) as a function of genomic position

(NCBI Build 35). SNPs associated with ME1 adipose expression

are shown as red triangles. The estimated recombination rates

(taken from HapMap) are plotted to reflect the local LD structure

around the associated SNPs and their correlated proxies (Y axis on

the right).

Found at: doi:10.1371/journal.pgen.1000932.s003 (0.04 MB

DOC)

Table S1 Tissue-specific eSNP discovery summary.

Found at: doi:10.1371/journal.pgen.1000932.s004 (0.03 MB

DOC)

Table S2 The T2D causal adipose subnetwork (purple module)

gene list, gene-trait correlations and causal genes.

Found at: doi:10.1371/journal.pgen.1000932.s005 (1.82 MB

DOC)

Text S1 Supplementary methods and discussion.

Found at: doi:10.1371/journal.pgen.1000932.s006 (0.18 MB

DOC)
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