
Protein Dynamics in Individual Human Cells: 
Experiment and Theory

Citation
Cohen, Ariel Aharon, Tomer Kalisky, Avi Mayo, Naama Geva-Zatorsky, Tamar Danon, Irina 
Issaeva, Ronen Benjamine Kopito, Natalie Perzov, Ron Milo, Alex Sigal, and Uri Alon. 2009. 
Protein Dynamics in Individual Human Cells: Experiment and Theory. PLoS ONE 4(4): e4901.

Published Version
doi://10.1371/journal.pone.0004901

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:8347351

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:8347351
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Protein%20Dynamics%20in%20Individual%20Human%20Cells:%20Experiment%20and%20Theory&community=1/4454685&collection=1/4454686&owningCollection1/4454686&harvardAuthors=ac2c8fda437a522530c71b4267447df3&department
https://dash.harvard.edu/pages/accessibility


Protein Dynamics in Individual Human Cells: Experiment
and Theory
Ariel Aharon Cohen1., Tomer Kalisky2., Avi Mayo1., Naama Geva-Zatorsky1, Tamar Danon1, Irina

Issaeva1, Ronen Benjamine Kopito3, Natalie Perzov1, Ron Milo4, Alex Sigal5, Uri Alon1*

1 Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel, 2 Department of Bioengineering, Stanford University and Howard Hughes Medical

Institute, Stanford, California, United States of America, 3 Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel, 4 Department of Systems

Biology, Harvard Medical School, Boston, Massachusetts, United States of America, 5 Division of Biology, California Institute of Technology, Pasadena, California, United

States of America

Abstract

A current challenge in biology is to understand the dynamics of protein circuits in living human cells. Can one define and
test equations for the dynamics and variability of a protein over time? Here, we address this experimentally and
theoretically, by means of accurate time-resolved measurements of endogenously tagged proteins in individual human
cells. As a model system, we choose three stable proteins displaying cell-cycle–dependant dynamics. We find that protein
accumulation with time per cell is quadratic for proteins with long mRNA life times and approximately linear for a protein
with short mRNA lifetime. Both behaviors correspond to a classical model of transcription and translation. A stochastic
model, in which genes slowly switch between ON and OFF states, captures measured cell–cell variability. The data suggests,
in accordance with the model, that switching to the gene ON state is exponentially distributed and that the cell–cell
distribution of protein levels can be approximated by a Gamma distribution throughout the cell cycle. These results suggest
that relatively simple models may describe protein dynamics in individual human cells.
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Introduction

A goal of systems biology is to understand the dynamics of

protein levels, as proteins are produced and degraded. One aims

for a mathematical description of these processes that captures the

essentials and that can be understood intuitively.

Most current models of protein dynamics have been established

and tested in micro-organisms. Proteins in bacterial cells, for

example, are well described by production-degradation equations.

These show that protein mass increases exponentially over time in

growing cells, and that protein concentration approaches steady-

state with exponential decays [1–5]. Such models have been shown

to be useful for describing the measured dynamics of protein circuits

with several interactions, such as feed-forward loop network motifs

[6] and auto-regulatory loops [4,7–9]. Similarly, experiment and

theory has established an understanding of cell-cell variability of

protein levels in bacterial and yeast cells [10–15]. Protein

distributions in micro-organisms have been measured at steady-

state and are well described by Gamma distributions [16,17].

Much less is known about the cell-cell variability of protein

dynamics in human cells [18]. Differences in expression levels

between individual cells of a clonal population were previously

observed [19–22] and related to stochastic processes. More

recently, Raj et al. [23] have followed mRNA and protein to

show bursts of mRNA production. Sigal et al. [24] measured

variability and memory in nuclear proteins, finding that the time it

takes for cells expressing a protein above or below the population

mean to ‘relax’ towards the average is longer than one cell

generation. More work is needed to understand the basic

dynamics and differences of human protein levels and its variation

across the cell cycle in individual cells.

To address this, we experimentally followed the dynamics of

selected human proteins in human cancer cells and test simple

models to describe these dynamics. The experiments were made

possible by recent advances in obtaining dynamics of endoge-

nously expressed proteins in individual human cells at very high

resolution and accuracy [25]. This is based on a library of cell

clones, each expressing a different fluorescently tagged protein

expressed from its natural chromosomal location and under its

native regulation. From this library, we chose three proteins that

accumulate throughout the cell cycle, but are degraded every time

that the cell divides. These proteins show little memory of previous

cell cycles, and thus are a good starting point for testing models

based on current cell properties. In the present study, we

calibrated this assay to provide units of protein concentration.

We find that the proteins are found to follow either an

approximately linear or a quadratic dependence on time. They

also differ in their onset time of production and in their variability

across the cell cycle. We find that these features can be understood

in terms of a single unified model. Approximately linear

accumulation results from short mRNA half-life, and quadratic

accumulation from long mRNA half-life, as suggested by
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transcription inhibition experiments. Cell-cell variability of all

three proteins is consistent with a stochastic model with slow gene

ON- and OFF-transitions suggested by Raser and O’shea [14].

The measured cell-cell distribution of onset time of protein

accumulation supports such slow transitions. We further show

experimentally and theoretically that the protein distribution is

well approximated by a Gamma distribution (described in detail at

the results section) at all time points, even though dynamics are not

in steady-state. Finally, we show that memory of protein levels of

previous cell-cycles is lost due to the early degradation and

variability in onset times of protein production. In summary, the

present study presents a basis for future understanding of more

complex protein circuits in human cells.

Results

Dynamics of PRC1, ANLN, and YB1 in individual cells
We used an approach for dynamic proteomics to measure the

protein levels of PRC1 (protein regulator of cytokinesis 1,

NM_003981), ANLN (anillin, NM_018685) and YB1 (Y-box

binding protein-1, NM_004559) in individual living human cancer

cells over several cell cycles. Cell clones were used in which these

genes are tagged at their endogenous chromosomal locus with

yellow fluorescent protein (EYFP) as an internal exon. The

proteins are expressed as full length proteins tagged with

fluorescent YFP (Figure S1). In each of the clones only one allele

is tagged. The clonal cell lines in which PRC1, ANLN and YB1

are tagged originate from the same parental cell (H1299 non small

cell lung cancer cell line).

The cells were followed using time-lapse fluorescence microscopy

in incubated conditions controlled for temperature, humidity and

CO2. This resulted in time-lapse movies over days of growth,

showing about 10–20 cells per frame at a 20 minute temporal

resolution. Movies were analyzed using automated image analysis

software [26]. Cell segmentation was achieved by means of a second,

red fluorescent labeling in these cells (see methods) that allowed

automated detection of the boundaries of the cell and of its nucleus.

The three proteins showed cell-cycle dependent dynamics

(Figure 1A for PRC1 and YB1 and Figure S7 and Figure S8 for

ANLN). The qualitative temporal and spatial dynamics observed

for all three tagged proteins agree with previous studies of the

native proteins [27–30] and are summarized below. PRC1

functions to organize microtubules during cell division. Newly

made PRC1 accumulates in the nucleus. Then, at mitosis it

localizes to the spindle poles and then, during cytokinesis, it

localizes to the cell midbody. Following cell division, the protein

concentrated at this spot is shuttled to one or both daughter cells

(for example, see Movies S1, S2, S3). Finally, the protein is

degraded in the first hours following cell division [27] (Figure 1B

and Figure S2A and S2C).

The second protein studied here, YB1, is a transcription and

translational regulator related to cell cycle events and other processes

[31]. It also shows cell-cycle dependent dynamics [32]. YB1

accumulates in the nucleus, and has a relatively constant level in

the cytoplasm (Figure S2B and S2D, Movies S4, S5, S6). Like PRC1,

it is degraded in the first hours following cell division (Figure 1C).

The third protein ANLN, is an actin bundling protein crucial for

abscission at the final stage of the cytokinesis and is involved in

coordinating the contractile activity of myosin [29,30]. It too is

degraded after cell division but accumulation over the cell cycle

occurs both in the nucleus and in the cytoplasm (Figure S7A, S8A

and S8B, Movies S7, S8, S9). For the sake of clarity we will focus from

here on on two proteins PRC1 and YB1. Data for ANLN, whose

behavior is similar to PRC1, appear in Figure S7 and Figure S8.

The degradation of these proteins in the early phase of the cell

cycle is useful for the present study because it minimizes the effects

of proteins carried over from previous generations. In practice, for

PRC1 there was no correlation across cell cycles (R = 0.0760.09

where R is the average Pearson correlation coefficient of

accumulated protein levels at equal time points at two consecutive

cell cycles of individual cells ), while YB1 showed weak correlation

between daughter and mother cells (R = 0.3860.18). See also

Figure S3A and S3B for correlations across cell cycles of total

protein levels and Text S1, part 1, for correlations of other

parameters across the cell cycle.

Calibration of fluorescence units in terms of protein levels
We calibrated the YFP fluorescence from the movies in terms of

number of tagged protein concentrations and total number per

cell. Calibration of concentrations was achieved using fluorescence

correlation spectroscopy inside the cell’s cytoplasm [33] (detailed

in Methods). To estimate total protein in a cell, we used a nominal

cell volume of 46103 mm3 (estimated based on the measured area

of a cell ranging between 300–1500 m2 and an estimated height

ranging between 2–8 m). We find that PRC1 reaches estimated

maximal levels of about 250,000 molecules per cell on average,

and YB1 reaches levels of 500,000 molecules per cell. Quantita-

tively similar calibration results were also obtained by comparing

fluorescence of cells to that of purified GFP (see Methods). The

calibration factor (proteins per fluorescence units) was within a

factor of two for the different tagged proteins in this study.

Average protein accumulation increases with time
linearly for YB1 and quadratically for PRC1

Image analysis of the time-lapse movies allowed accurate

quantitation of the total protein level in each cell, defined as the

total YFP fluorescence within the cell boundaries. Cells were

synchronized in silico, by noting the time of each division event

[24,26]. Thus, cells could be aligned according to the time that has

elapsed since the last cell division (Figure 1B and 1C). Relative

error of the average fluorescence measurements between day-day

repeats is about 10%.

We first consider the average protein accumulation over the cell

population, and then, in the next sections, the variability between

cells. Protein accumulation was considered for each cell as the

increase of fluorescence above the basal fluorescence at the end of

the degradation event that occurs after division (see methods). The

protein accumulation onset was defined for each cell as the time at

which protein levels reached their minimum level. Each cell was

then synchronized to the protein accumulation onset time and

initial fluorescence levels were subtracted.

We find that the mean protein level increases over the cell cycle.

PRC1 showed a quadratic increase with time, P~a:t2, to good

accuracy (R2 = 0.99, relative error = 2%) (Figure 2A). In contrast,

YB1 showed an approximately linear increase with time, P~b:t,
to good accuracy (R2 = 0.99, relative error = 1%) (Figure 2B and

Figure S5).

Model suggests that linear accumulation results from
unstable mRNA and quadratic accumulation from stable
mRNA

To understand the different accumulation profiles, we used a

classical model of transcription and translation [34,35] (Figure 2C).

Here mRNA, r, is produced at rate kr and degraded at rate ar, so

that
dr

dt
~kr{ar

:r. Protein is produced from the mRNA at rate

kp
:r and degraded at rate ap, so that

dp

dt
~kp

:r{ap
:p. This model

Protein Dynamics in Human Cell
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makes several predictions. First, the only way to fit the non-

saturating curves of both PRC1 and YB1 is to assume that protein

degradation is negligible (ap%1). In other words, protein life-time

exceeds the cell cycle, ,20 h in the present experiment. Second,

the model predicts that the quadratic accumulation of PRC1

corresponds to very long life-time of its mRNA, so that ar is

negligible. In this case r~kr
:t, and protein increases quadratically

with time p~ 1
2
:kr
:kp
:t2.

In contrast to this quadratic accumulation, the approximately

linear accumulation of YB1 is predicted to mainly result from a

high degradation rate of its mRNA. In this case the mRNA

concentration reaches a steady-state concentration, and as a result

protein level increases linearly with time, p~
kr
:kp

ar

:t.

Experiments indicate that PRC1 mRNA is stable and YB1
mRNA is short-lived, and that both proteins are stable

To test the model predictions, we inhibited transcription by

adding a-amanitin, a commonly used transcription inhibitor [36].

This drug (at 100 mg/ml) completely shuts down the action of

RNA polymerase 2 in the cells, approximately 2 hours after

addition [37].

We found that after adding a-amanitin, PRC1 protein levels

began to accumulate linearly with time, as compared to the

quadratic accumulation without the drug (Figure 3A). In the case

of YB1, after a transient period of about 2 h after adding the drug,

protein levels stopped accumulating and remained at a constant

level (Figure 3B).

Fitting the differential equations describing mRNA and protein

levels to measured protein levels of YB1 following addition of a-

amanitin (detailed in Text S1 part 2) suggest an mRNA half life of

0.7760.2 hr21. Using this mRNA life-time in equations describing

behavior in un-perturbed cells, we find that mRNA levels reach 90%

of steady state in 3 hrs and 99% in 6 hrs. These results agree with the

model predictions, suggesting stable mRNA for PRC1, short-lived

mRNA for YB1. That both proteins are highly stable is evidenced by

the fact that their levels do not decrease following inhibitor addition.

In summary, this experiment supports the simple model predictions.

Experiments suggest that PRC1 (and ANLN) mRNA
degrades shortly after cell division

In–silico synchronization of trajectories of individual cells,

following addition of the transcription inhibitor a-amanitin, allows

Figure 1. Cell cycle–dependent behavior of PRC1 and YB1. (A) Each image is an overlay of the fluorescence of the tagged protein on the
corresponding phase-contrast image. One cell for each tagged protein is shown. Images are ordered according to the fraction of the time elapsed
between two division events. The cells are automatically centered and neighboring cells are removed for clarity. The percentage of elapsed cell cycle
is indicated at the bottom. Bar denotes 10 mm. Note the asymmetric partition of fluorescently tagged PRC1 between the two daughter cells following
cell division. (B,C) For each protein, PRC1 and YB1, tracks of 150 cells are plotted. Each line denotes the total cell fluorescence level as measured
during the cell cycle of a single cell. Cells are in-silico synchronized to beginning of their cell cycle. Each cell has different cell cycle length (PRC1:
m= 21.662 hr, YB1: 17.262 hr). Both proteins are degraded following cell division.
doi:10.1371/journal.pone.0004901.g001

Protein Dynamics in Human Cell

PLoS ONE | www.plosone.org 3 April 2009 | Volume 4 | Issue 4 | e4901



Figure 2. Protein accumulation profile of PRC1 is quadratic and for YB1 is linear. (A) PRC1 total cell protein accumulation exhibits an
approximately quadratic profile while (B) YB1 accumulation profile is approximately linear. Each grey line denotes accumulation dynamics of an
individual cell. Protein accumulation onset time was defined for all cells as the time at which protein levels reached their minimum level. Black circles
denote the mean total fluorescence. Red line is the fit calculated according to a simple model of transcription and translation as schematically shown
in (C).
doi:10.1371/journal.pone.0004901.g002

Figure 3. Transcription inhibitor reveals different mRNA stability for PRC1 and YB1. (A) Mean of total fluorescence of tagged PRC1 with
(dashed line) and without (solid line) transcription inhibitor added at time 0 hrs. Following addition of transcription inhibitor protein levels continue
to rise, though linearly instead of quadratically. This suggests that PRC1 is translated from stable mRNA. (B) Mean of total fluorescence of tagged YB1
with (dashed line) and without (solid line) transcription inhibitor added at time 0 hrs. Following addition of transcription inhibitor protein levels cease
to rise, suggesting YB1 is translated from unstable mRNA. Best fit of simple differential equations regarding mRNA and protein levels suggest that the
inhibitor starts taking affect at time t~2:3+0:3 hrs and aR~0:77+0:2 hr{1 .
doi:10.1371/journal.pone.0004901.g003

Protein Dynamics in Human Cell
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studying effects of cell-cycle phase on the dynamics of the mRNA.

For each cell, we determined the time that elapsed between its

previous division and the time at which the drug was added. In the

case of PRC1 and ANLN, we found that cells, for which

transcription was blocked shortly after division, showed no protein

accumulation. In contrast, cells in which transcription was blocked

several hours after cell division showed significant accumulation of

protein that rose linearly with time (Figure 4A and 4B and Figure

S4 for PRC1 and Figure S8C for ANLN).

This indicates that mRNA is degraded after cell division. This

agrees with previous micro array experiments on synchronized

HeLa cell populations that show a sharp drop in PRC1 and ANLN

mRNA levels after cell division [38]. These findings support the use

of zero initial mRNA levels following cell division in the theoretical

models. In the case of YB1, no protein accumulation was observed

following addition of transcription inhibitor at any stage of the cell

cycle suggesting short mRNA half life.

Protein accumulation varies from cell to cell
So far we have discussed the average behavior of the cell

population observed in the movies. We now turn to analyze the

variability between different individual cells within the same clone.

We find that cells show a spread of trajectories around the mean

(Gray lines in Figure 2A and 2B). The individual-cell trajectories of

PRC1 are typically quadratic with time to a good approximation

(best fit of y~azb:tx to individual cell data is for x~1:8+0:2).

The individual-cell trajectories of YB1 have an approximately

linear dependence on time (best fit of y~azb:tx to individual cell

data is for x~1:35+0:2) (Figure S6). Thus, each cell follows the

mean behavior, but with somewhat different slope and (in the case

of PRC1), curvature.

We quantified this variation between cells using the noise

strength, defined by ratio of the variance to the mean. Thus, noise

strength, is NS = variance/mean. We note that a second common

measure, the coefficient of variation CV = std/mean was more

susceptible to noise in the present data. We find that the NS

increased over time for PRC1, and appeared to saturate with time

for YB1 (Figure 5A, circles). Thus, noise has different dynamics for

the two proteins.

We also found that different cells began to significantly

accumulate the proteins at different times after cell division. In

particular, there appeared to be a large cell-cell variation of such

‘onset times’ for PRC1 (Figure 5B). Some cells showed protein

accumulation after an hour and others after five or more hours.

We measured the distribution of the time at which protein levels

first begin to rise in each cell. We find that this distribution has an

exponential tail, with a decay time of 1.0260.36 hrs. For YB1, we

also find an exponential tail but with a shorter decay time

0.3760.09 hrs. This indicates that timing is less variable between

cells for YB1 (Figure 1C). For more details, see Text S1, part 7.

A model based on slow gene switching captures the
variability

To understand the present data on cell-cell variability, we

employed models for stochasticity in protein expression. The

observed exponential distribution of times for the onset of protein

accumulation is consistent with a slow process that turns

expression ON with a timescale of hours. This corresponds to a

picture, suggested in previous studies [11,14,20], and observed in

other studies [23,39], in which genes switch slowly from ON to

OFF states, and transcription occurs from the ON state alone

(Figure 5C). We find that such a stochastic model captures the

present data on noise strength (Figure 5A, solid lines), with

parameter sets shown in Figure 5D.

We also compared the data to a model with no gene switching.

This model is a straightforward stochastic version of the model of

Figure 2C where each rate is interpreted as a probability per unit

time. We found that such a model can only explain the extent of

the observed variability when one uses parameters that give very

low mRNA levels: only a few mRNA/cell leading to high

variability due to small-number fluctuations. Given our estimates

of several hundred thousand proteins per cell, this leads to a very

Figure 4. Transcription inhibitor reveals PRC1 mRNA degrades
shortly after cell division. (A) Cells are classed into three groups
based on the time of their division relative to the time of administration
of a-amanitin, a transcription inhibitor (time = 0 hrs). Top group –
division before inhibitor addition, middle group – division during
inhibitor addition and bottom group – division after inhibitor addition.
Right panel – 2 ml medium was exchanged with 2 ml fresh medium
containing 100 mg/ml a-amanitin (at t = 0 hrs), Left panel – 2 ml
medium was exchanged with 2 ml fresh medium (at t = 0 hrs. mock
control),. Each grey line denotes measurements of a single cell, black
line is a selected cell for eye guidance. (B) Cells dividing at later stages,
relative to the time the transcription inhibitor was added, show reduced
protein production (Pearson correlation R = 20.73 p,0.01). Circles and
squares denote rates of protein production with and without a
transcription inhibitor, respectively. Gray lines denote best linear fit to
each of the data sets.
doi:10.1371/journal.pone.0004901.g004
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high translation rate in the model, in order to provide the observed

number of proteins/mRNA. Such a rate is at the limit of physical

limitations of the cell (maximal ribosomal packing along the

transcript, in Text S1 part 8).

In summary, the slow-switching model in which genes switch

from OFF to ON on the timescale of hours seems to generate the

large observed variability naturally, because of the long times

between opening and closing events, resulting in relatively rare

bursts of mRNA production [15,17,23,39,40]. Both models are

detailed in Text S1 parts 3 and 4

Cell–cell protein distributions match theoretical
prediction of Gamma distributions

Theoretical studies [10,17,40] have noted that the stochastic

model employed in our study should result in a cell-cell

distribution of protein levels that follows a Gamma distribution

(or, for very small protein numbers a related distribution known as

the negative binomial distribution [16]). Gamma distributions are

single-peaked distributions. They have a sharp peak and an

exponential tail at low average protein numbers, and have a bell-

shaped distribution at high average protein numbers. The formula

for the probability of having n proteins has two parameters, a and

b, and is:

G nð Þ~ na{1e{n=b

baC að Þ

where a = m2/s2 and b =s2/m (m and s denote mean and

standard deviation respectively). These theoretical results were

obtained for steady-state processes. Here, we extended this

theoretical analysis also to the case of dynamics that are not in

steady-state. The present system is out of steady state, because the

Figure 5. Variability of protein levels and accumulation onset times differs between PRC1 and YB1. (A) Noise strength (std2/mean) of
PRC1 rises linearly (blue circles) and of YB1 saturates (red circles). Both 2-step and 3-step stochastic models reproduce these profiles of noise strength
(blue solid line for PRC1 and red solid line for YB1). (B) Time interval between end of degradation to beginning of accumulation for PRC1 in blue and
YB1 in red. The time of accumulation has an exponential tail (decay rate of 0.6860.24 hr21 for PRC1 and of 1.8860.44 hr21 for YB1). (C) Schematic of
three stage model, with slow transitions between open and closed DNA. (D) Parameter estimation based on the slow switching model. As explained
in the text, several parameters are estimated directly from the data, for PRC1; kon = 0.6860.24, ar = 0 and ap = 0. For YB1; kon = 1.8860.44,
ar = 0.7760.2 and ap = 0. For the rest of the parameters, the model was fit to data (mean and noise strength) and kp and kr were determined for a
range of koff. Red and blue circles denote YB1 and PRC1 respectively. Values of average mRNA levels over the cell cycle and koff are shown for several
parameters sets (filled circles).
doi:10.1371/journal.pone.0004901.g005
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average protein level rises with time. We used a moment analysis

to determine the distribution at different time points (See Text S1

part 5). We found that after a short transient time, the predicted

cell-cell distributions at each time point are close to a Gamma

distribution, with parameters that vary over time.

We found that Gamma distributions describe the observed

experimental data well at all times. Gamma distributions seem to

describe the data better than other empirically suggested

distributions, such as Gaussian or log-normal distributions

(Figure 6A and 6B). The two parameters that define the Gamma

distribution (a and b), corresponding to the mean protein level and

the noise strength, vary over time (Figure 6C). We found that these

parameters vary in a different way for PRC1 and YB1, changing

in almost an orthogonal manner. These two parameters were

interpreted by Friedman et al [17,40] to represent burst size

(average number of protein molecules per burst) and burst

frequency (average frequency of expression bursts per cell cycle)

respectively.

Cellular mixing occurs at early stages of the cell cycle and
is independent of protein accumulation patterns

Tracking changes of protein levels at the individual cell level

over time allows following the mixing of protein level ranking

between cells over time.. Cellular mixing occurs when a cell

lineage, given enough time, reaches the different states found in a

snapshot of a cell population. Mixing was measured using two

approaches (detailed by Sigal et al. [24] and in methods). The first

uses the auto-correlation function A(t) of the protein levels. The

second, an ergodic metric, ranked the cells according to tagged

protein fluorescence at the beginning of the movie, and followed

the fraction of the total ranks that each cell traversed as a function

of time (see Methods).

We measured mixing across the entire cell cycle and during the

shorter period of protein accumulation. While cells exhibit faster

mixing for PRC1 at the beginning of the cell cycle compared to

YB1 (Figure 7A), similar mixing was observed for both proteins in

the protein accumulation phase (Figure 7B), despite their different

accumulation rates (approximately constant for YB1 and linear for

PRC1). Loss of cellular memory of previous protein levels seems to

occur at early stages of the cell cycle due to degradation and

varying onset times of accumulation. Mixing occurs to a much

lesser extent in the accumulation phase of newly synthesized

proteins (Figure 7C and 7D).

Discussion

This study presented an experimental and theoretical analysis of

the detailed dynamics and variability of selected proteins in human

cells. This analysis was made possible by an experimental advance

that allows highly accurate, time-resolved measurement of proteins

expressed from their native chromosomal position, and under their

natural regulation, in individual cells. We chose proteins that are

degraded upon cell division and that accumulate throughout the

cell cycle, and which do not significantly carry memory of their

levels in the previous cell cycle.

We find either a linear accumulation with time or a quadratic

accumulation with time. Linear accumulation is found to

correspond to short mRNA life-time, and quadratic accumulation

to long mRNA life-time, in accord with simple transcription-

translation equations. The theoretical predictions were tested by

using a transcription inhibitor, which showed how quadratic

profiles turn to linear, and linear profiles turn to constant protein

levels, as predicted.

Note that linear and quadratic accumulation of total protein/

cell are quite different from the typical patterns found in bacteria,

in which total protein levels typically rise exponentially (or nearly

exponentially) across the cell cycle.

We also studied the cell-cell variability in the protein levels. A

model with slow transitions between ON and OFF gene states

captures the observed variability, including the exponential distribu-

tion of onset times and the Gamma-shaped cell-cell distribution of

protein levels. The extent of the noise seems to be too large to be

explained by stochastic models that lack slow ON-OFF transitions.

In addition to single-time point statistics, we also considered the

rate at which protein levels mix so that cells higher or lower than

average return to average. Except for a short period after cell

division, in which memory of previous levels is rapidly lost, the

protein levels seem to show a small extent of mixing, with

accumulation trajectories that are similarly shaped and roughly

parallel for different cells in the population. Thus, the proteins

display distinct cell-cell individuality over the cell cycle.

One may ask whether the different accumulation profile shapes

we observed for YB1 and PRC1 correspond to their biological

function. PRC1 is essential for the final stage of the cell cycle

[41,42], where it acts to control the spatiotemporal formation of the

midzone during cytokinesis. In contrast, YB1 is involved in

processes throughout the cell cycle [31], such as transcriptional

regulation, translational regulation, DNA repair, stress response and

cell proliferation. A quadratic accumulation as in PRC1 prepares

most of the protein in the last stage of the cell cycle. A linear

accumulation profile as in YB1 may be better suited for proteins that

need to serve the gradually growing cell content across the cell cycle.

This study raises the hope that relatively simple models might

accurately capture the behavior of protein dynamics. Future work

can explore whether such models can be used as building blocks to

understand more complex protein circuitry. It would be important

to further test this approach by measurements of additional

proteins. For this purpose, the present experimental approach may

be of use, especially in conjunction with a comprehensive library of

tagged human proteins [25], to characterize the mean and

individual cell behavior under diverse conditions.

Methods

YFP CD-tagging of endogenous proteins
PRC1 and YB1 were chosen from a library of tagged proteins in

the H1299 non-small cell lung carcinoma cell line. This library

was constructed as described in Sigal et al. [26]. Briefly, the

enhanced yellow fluorescent protein coding region (EYFP), flanked

with splice acceptor and donor sequences, was placed on a

retroviral vector (pBabeAE) and integrated into the genome.

Three vectors were used, one with EYFP in each reading frame.

EYFP is expressed when the virus integrates into an intron of an

expressed gene in the right frame and orientation, leading to

incorporation of YFP as a new exon in the spliced mRNA. This

method is known as Central-Dogma tagging (CD-tagging) [24–

26,43,44]. Cells positive for YFP fluorescence were sorted using

flow cytometry into 384-well plates and grown into cell clones.

Tagged protein identities were determined by 39-RACE (rapid

amplification of cDNA ends), using a nested polymerase chain

reaction (PCR) that amplified the section between EYFP and the

polyA tail of the mRNA of the host gene. PCR products were

sequenced directly and aligned to the genome.

Image analysis using a red tag in the parental cell line
The present library has an additional feature which is crucial for

accurate image analysis, and which goes beyond [26] : the parental
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cell was tagged with a second red fluorescent tag, mCherry. This

tag was inserted by two rounds of CD tagging into two genes, one

expressed in the nucleus and the other expressed in the entire

intracellular volume. This tagging was used in the parental cell of

the present library in order to enable computerized segmentation

of the whole cell. Our previous studies used the EYFP tag for

Figure 6. Cell–cell protein distributions match theoretical prediction of Gamma distributions with time-dependant parameters. (A)
Example of cell tracks (each line denotes PRC1-tagged fluorescence measured in a single cell), Distributions of fluorescence levels at 3, 7 and 10 hours
following accumulation onset are shown. Fit to log-normal (red) and Gamma (blue) distributions are overlaid. (B) Ratio between maximum likelihood
estimation (MLE) of log-normal and gamma distributions was computed at a temporal resolution of 20 minutes for PRC1 (blue) and YB1 (red). Cell-cell
distributions fit Gamma distribution better (ratio,1) across the cell cycle. (C) Variation of the effective Gamma distribution parameters a (scale), and b

(shape). These parameters are related to the mean, m, and standard deviation, s, by a~
m2

s2
and b~

s2

m
. Bold blue and red circles denote a,b

measurements for YB1 and PRC1 respectively for the first 12 hours of protein accumulation. Error bars denote standard errors.
doi:10.1371/journal.pone.0004901.g006
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image analysis [24,26] and cell tracking, but was generally limited

to cells with nuclear protein localization. The present red tag

allows automated analysis of cells with arbitrary EFYP protein

localization. There was a need for tagging two proteins with

mCherry for segmentation purposes; the cytoplasmic red tagged

protein enabled segmentation of cells from background, while the

stronger nuclear tag served both as a seed for each cell in the

segmentation process and enabled segmentation of nucleus from

cytoplasm. The library of CD-tagged proteins with a red tag

currently includes over 1300 unique proteins and is detailed at

http://www.dynamicproteomics.net.

Time-lapse microscopy
Time-lapse movies at 206 magnification were obtained as

described [26] with an automated, incubated Leica DMIRE2

inverted fluorescence microscope and an ORCA ER cooled CCD

camera (Hamamatsu Photonics). The system was controlled by

ImagePro5 Plus (Media Cybernetics) software which integrated

time-lapse acquisition, stage movement, and software-based auto-

focus. During the experiment, cells were grown and visualized in

12-well coverslip bottom plates (MatTek) coated with fibronectin

(Sigma). The standard RPMI medium was replaced with RPMI

medium without phenol red (Biological Industries) to decrease

autofluorescence. For each well, time lapse movies were obtained

at four fields of view. Each movie was taken at a time resolution of

20 minutes and was filmed for at least three days (over 200 time

points). Each time point included three images- phase contrast, red

and yellow fluorescence.

Transcription inhibition
a-amanitin (A2263 Sigma), was dissolved in DMSO (hybri-max,

D2650 Sigma) for a stock solution of 1 mg/ml. Cells were grown

and filmed as explained in previous sections. After ,24 hours of

growth in the microscope, growth medium (2 ml) was gently

replaced by growth medium with a-amanitin (100 mg/ml in 2 ml)

under the microscope.

Figure 7. Single-cell tracks reveal different mixing patterns for PRC1 and YB1. Mixing is measured by auto-correlation and an ergodicity
measure. In both measurements, cells are ranked according to tagged protein fluorescence at the beginning of the movie. Ergodicity is defined as the
measure of the fraction of the total ranks that each cell traversed as a function of time. (A) Mixing of cells synchronized to the beginning of cell cycle is
measured by the ergodicity as a function of time (for 12 hours) for PRC1 (blue) and YB1 (red). (B) Mixing of cells synchronized to accumulation onset is
measured as a function of time (for 10 hours) for PRC1 (blue) and YB1 (red). (C, D) Cells were synchronized ‘in-silico’ by aligning the dynamics
between two division events and the fraction of elapsed cell cycle was used as a time base. Auto-correlation matrix for each time point (percentage
of cell cycle) and all following time points is shown for YB1 in (C) and PRC1 in (D).
doi:10.1371/journal.pone.0004901.g007
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Image analysis of time-lapse movies
Custom image analysis software performed cell tracking and

segmentation, and background and bleaching corrections (only

very low levels of bleaching ,3% occur in this experiment).

Segmentation was applied to images after flat-field correction and

background subtraction [26]. A seeded watershed segmentation

algorithm [45–47] was carried out on the red fluorescent images

using the strong fluorescence of the nuclei as seeds. Nuclei were

seperated from cytoplasm using the sharp difference of fluores-

cence between the nucleus and cytoplasm. Tracking of cells was

performed by analysing the movie from end to start and linking

each segmented cell to the cell in the previous image with the

closest centroid. Cell divisions were automatically detected by a

sharp twofold drop in total fluorescence between consecutive

images [26]. Tracking, bleaching and image corrections are

described in detail in [26]

Protein accumulation onset times
Protein accumulation onset was defined for each of the cells as

the time at which protein level reached its minimum level. To

compute the time delay between end of degradation to beginning

of accumulation, the minimum level of each cell was subtracted

from its profile. A threshold chosen to be 1 percent of the

maximum mean protein levels was computed. For each cell the

first and last time points in which the threshold was crossed were

denoted as the end of degradation and beginning of accumulation

phases, respectively. Results are robust to threshold levels between

0.03–3% of the maximum level.

Calibration of YFP fluorescence to protein molecules
Calibration between number of EYFP molecules and measured

fluorescence levels was carried out using Fluorescence Correlation

Spectroscopy (FCS) [48] for the protein YB1. The FCS specific

setup is detailed at Kopito et al. [33]. Cells were grown on standard

1-63-inch microscope slides and prior to measurement were

covered by glass coverslips and sealed immediately with paraffin

wax. Then laser illumination was calibrated to photon counts per

YFP in the YB1 sample.(about 400 photons per molecule within

illumination volume). Once calibrated, measurements were taken

from the cytoplasm of ,20 cells (cytoplasm concentrations are

relatively constant throughout the cell cycle). Mean photon count

in laser illumination volume (0.25 mm3) is 15,000 and equivalent

to about 37 protein molecules. Using mean cell volume to be

20620610 mm and cytoplasm to constitute 2/3 of the cell volume

and that protein amount in the cytoplasm is 1/5 of total protein

level at end of cell cycle (see Figure S2), sums up to ,500,000

molecules in cell at end of cell cycle. Mean total fluorescence at

end of cell cycle is ,400,000 thus leading to ,0.8 fluorescence

counts per molecule.

A second method for calibration used purified protein standards

in the following way: 5 mL of purified GFP solution containing

,1012 molecules of GFP were placed under a slide cover slip with

diameter of 13 mm. Images with linearly increasing exposure

times were taken in order to compute the gain of the mean pixel

level. Number of GFP molecules per pixel was computed (,7700)

and compared to the mean pixel fluorescence (,3000 fluorescence

A.U. per 1000 msec exposure), and summed up to ,0.4

fluorescence counts per molecule.

Estimation of of mRNA life time after cell division
Time-lapse movies were acquired for several hours in 2 ml

RPMI medium. Then the medium was switched to 2 ml of

medium containing 100 nM of a-amanitin and time –lapse movie

acquisition was continued. Cells were manually chosen so that

only cells that were in the accumulation stage and did not divide

for 8 hours following drug adittion were used. To compare to

theory, mean of data was fit to two functions. The first describing

the mean behavior until the inhibitor becomes fully active (,2 hrs)

and the second from that stage allowing mRNA degradation rate

to be obtained (see Text S1, part 2).

Auto-correlation calculation
The auto-correlation function was computed with a robust

estimator A tð Þ~SSXi tð Þ:Xi tztð ÞTtTi

.
SSXi tð Þ2TtTi, where av-

erages over time and over cells are denoted ,.t and ,.i

respectively. We measured the auto-correlation of the ranked total

fluorescence Ri(t), such that Xi tð Þ~Ri tð Þ{SRi tð ÞTi. This method

was less sensitive to outliers in the data than auto-correlation over

the total fluorescence [24,49].

Mixing (ergodic metric) calculation
The ergodic metric E tð Þ~Smax Ri 1ð Þ : Ri tð Þ½ �{min Ri 1ð Þ :½

Ri tð Þ�Ti

�
N where the ranked total fluorescence at time t is denoted

Ri(t), average over cells is denoted ,.i and N is the number of cells

[24]. Thus this metric ranks the cells according to tagged protein

fluorescence at the beginning of the movie, and follows the fraction of

the total ranks that each cell traverses as a function of time.

Supporting Information

Figure S1 Immunoblots of YB1, PRC1, and ANLN with anti-

GFP. Estimated molecular weight of each protein without yellow

fluorescent tag is: YB1 ,36 kDa, PRC1 ,71 kDa and ANLN

,124 kDa. YFP ,27 kDa.

Found at: doi:10.1371/journal.pone.0004901.s001 (1.85 MB TIF)

Figure S2 Protein distribution within cellular compartments

during cell cycle. (A,B) Mean of total fluorescent levels in different

compartments of the cell (cyan - cytoplasm, magenta - nucleus and

black- whole cell) for PRC1 and YB1. (C,D) Mean of mean

fluorescent levels in different compartments of the cell (cyan -

cytoplasm, magenta - nucleus) for PRC1 and YB1. (E) Mean of

total fluorescent levels of 2 proteins tagged with mCherry in the

PRC1 and YB1 clones. The mCherry fluorescence and distribu-

tion is used for cell segmentation and tracking.

Found at: doi:10.1371/journal.pone.0004901.s002 (1.85 MB TIF)

Figure S3 Correlation across consecutive cell cycles. (A,B) cells

were tracked for two consecutive cell cycles. Shown is the

correlation matrix of each time point in first cell cycle and all

time points in the second cell cycle for PRC1 and YB1

respectively. Note that PRC1 doesn’t retain any memory across

cell cycles while YB1 shows relatively high correlation between

fluorescent levels of a mother cell and fluorescent levels in

daughter cell.

Found at: doi:10.1371/journal.pone.0004901.s003 (1.73 MB TIF)

Figure S4 Response of single cells expressing tagged PRC1 at

different stages of their cell cycle to transcription inhibitor reveal

mRNA degradation at beginning of cell cycle. (A) Cells were

divided into three groups based on the time of their division

relative to the time of administration of a-aminitin, a transcription

inhibitor (time = 0 hrs). Top group - division before drug addition,

middle group - division during drug addition and bottom group -

division after drug addition. Left panel - 2 ml medium was

exchanged with 2 ml fresh medium (at t = 0 hrs), right panel - 2 ml

medium was exchanged with 2 ml fresh medium containing

100 mg/ml a-aminitin (at t = 0 hrs). Each grey line denotes

measurements of a single cell, black line is a chosen cell for eye
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guidance. Note that as cell divide later in the experiment the slope

of protein levels decreases. (B) all trajectories of right panel

overlaid and color ordered based on time of cell division, early

divisions in blue and late divisions in red.

Found at: doi:10.1371/journal.pone.0004901.s004 (2.21 MB TIF)

Figure S5 Single cell trajectories display linear profiles in the

case of YB1 and quadratic profiles in the case of PRC1. Each

single cell trajectory denoting fluorescent levels measured over the

cell cycle was fit to a polynomial function of first and second

degree. Plotted are the pearson correlation coefficient values (R2)

of the experimental data and the fit for PRC1 (red) and YB1 (blue).

All trajectories of YB1 showed R2.0.9 already in the linear fit,

while PRC1 showed R2.0.9 for all cells only when using a

polynomial of 2nd degree.

Found at: doi:10.1371/journal.pone.0004901.s005 (0.71 MB TIF)

Figure S6 Coefficient of Variance (CV) of PRC1 and YB1. CV

of PRC1 (blue) and YB1 (red) of protein levls across cells

synchronized to the beginning of protein accumulation. Inset

denotes the CV of the first 4 hours.

Found at: doi:10.1371/journal.pone.0004901.s006 (1.35 MB TIF)

Figure S7 Cell cycle dependent behavior of ANLN. (A) Example

of one cell automatically tracked through the cell cycle. Each

image is an overlay of fluorescent tagged protein on phase contrast

image. Images are ordered according to the fraction of the time

elapsed between two division events. The cells are automatically

centered. The percentage of elapsed cell cycle is indicated at the

bottom, Bar, 10 mm. Note asymmetric division of fluorescently

tagged PRC1 between the two daughter cells following cell

division. (B,C) For each protein, PRC1 and YB1 tracks of 150 cells

are plotted. Each line denotes the total fluorescence level as

measured during the cell cycle of a single cell. Cells are

synchronized to beginning of cell cycle. Each cell has different

cell cycle length (PRC1: m= 21.662 hrs, YB1: 17.262 hrs). Both

proteins are degraded following cell division.

Found at: doi:10.1371/journal.pone.0004901.s007 (1.52 MB TIF)

Figure S8 Cell cycle dependent behavior of ANLN. (A) Mean of

total fluorescent levels in different compartments of the cell (cyan -

cytoplasm, magenta - nucleus and black- whole cell). (B) Mean of

mean fluorescent levels in different compartments of the cell (cyan

- cytoplasm, magenta - nucleus). (C) The same as Legend of figure

S5A just for ANLN.

Found at: doi:10.1371/journal.pone.0004901.s008 (0.10 MB TIF)

Text S1

Found at: doi:10.1371/journal.pone.0004901.s009 (0.61 MB

PDF)

Movie S1 Time-lapse movie of transmitted light images of the

clone with YFP CD-tagged PRC1. Movie duration is 46 hours.

(time-lapse: 1 frame per 20 minutes).

Found at: doi:10.1371/journal.pone.0004901.s010 (1.93 MB AVI)

Movie S2 Time-lapse movie of yellow fluorescence images of the

clone with YFP CD-tagged PRC1. Movie duration is 46 hours.

(time-lapse: 1 frame per 20 minutes).

Found at: doi:10.1371/journal.pone.0004901.s011 (2.82 MB AVI)

Movie S3 Time-lapse movie of yellow fluorescence images

overlaid on transmitted light images of the clone with YFP CD-

tagged PRC1. Movie duration is 46 hours. (time-lapse: 1 frame

per 20 minutes).

Found at: doi:10.1371/journal.pone.0004901.s012 (2.03 MB AVI)

Movie S4 Time-lapse movie of transmitted light images of the

clone with YFP CD-tagged YB1. Movie duration is 46 hours.

(time-lapse: 1 frame per 20 minutes).

Found at: doi:10.1371/journal.pone.0004901.s013 (2.25 MB AVI)

Movie S5 Time-lapse movie of yellow fluorescence images of the

clone with YFP CD-tagged YB1. Movie duration is 46 hours.

(time-lapse: 1 frame per 20 minutes).

Found at: doi:10.1371/journal.pone.0004901.s014 (3.61 MB

MPG)

Movie S6 Time-lapse movie of yellow fluorescence images

overlaid on transmitted light images of the clone with YFP CD-

tagged YB1. Movie duration is 46 hours. (time-lapse: 1 frame per

20 minutes).

Found at: doi:10.1371/journal.pone.0004901.s015 (2.39 MB AVI)

Movie S7 Time-lapse movie of transmitted light images of the

clone with YFP CD-tagged ANLN. Movie duration is 46 hours.

(time-lapse: 1 frame per 20 minutes).

Found at: doi:10.1371/journal.pone.0004901.s016 (1.60 MB AVI)

Movie S8 Time-lapse movie of yellow fluorescence images of the

clone with YFP CD-tagged ANLN. Movie duration is 46 hours.

(time-lapse: 1 frame per 20 minutes).

Found at: doi:10.1371/journal.pone.0004901.s017 (1.12 MB AVI)

Movie S9 Time-lapse movie of yellow fluorescence images

overlaid on transmitted light images of the clone with YFP CD-

tagged ANLN. Movie duration is 46 hours. (time-lapse: 1 frame

per 20 minutes).

Found at: doi:10.1371/journal.pone.0004901.s018 (1.76 MB AVI)
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