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Abstract
Background: Huntington's disease (HD) is a neurodegenerative disorder predominantly affecting
the cerebral cortex and striatum. Transgenic mice (R6/1 line), expressing a CAG repeat encoding
an expanded polyglutamine tract in the N-terminus of the huntingtin protein, closely model HD.
We have previously shown that environmental enrichment of these HD mice delays the onset of
motor deficits. Furthermore, wheel running initiated in adulthood ameliorates the rear-paw
clasping motor sign, but not an accelerating rotarod deficit.

Results: We have now examined the effects of enhanced physical activity via wheel running,
commenced at a juvenile age (4 weeks), with respect to the onset of various behavioral deficits and
their neuropathological correlates in R6/1 HD mice. HD mice housed post-weaning with running
wheels only, to enhance voluntary physical exercise, have delayed onset of a motor co-ordination
deficit on the static horizontal rod, as well as rear-paw clasping, although the accelerating rotarod
deficit remains unaffected. Both wheel running and environmental enrichment rescued HD-induced
abnormal habituation of locomotor activity and exploratory behavior in the open field. We have
found that neither environment enrichment nor wheel running ameliorates the shrinkage of the
striatum and anterior cingulate cortex (ACC) in HD mice, nor the overall decrease in brain weight,
measured at 9 months of age. At this age, the density of ubiquitinated protein aggregates in the
striatum and ACC is also not significantly ameliorated by environmental enrichment or wheel
running.

Conclusion: These results indicate that enhanced voluntary physical activity, commenced at an
early presymptomatic stage, contributes to the positive effects of environmental enrichment.
However, sensory and cognitive stimulation, as well as motor stimulation not associated with
running, may constitute major components of the therapeutic benefits associated with enrichment.
Comparison of different environmental manipulations, performed in specific time windows, can
identify critical periods for the induction of neuroprotective 'brain reserve' in animal models of HD
and related neurodegenerative diseases.
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Background
Huntington's disease (HD) is a devastating autosomal
dominant disorder in which neurological deterioration
progresses for 10–20 years after onset, inevitably leading
to death. The clinical picture is of a movement disorder,
including the writhing movements known as Hunting-
ton's chorea, together with cognitive and affective impair-
ment [1]. The pathogenic mechanism whereby the
expanded CAG repeat, expressed as an extended poly-
glutamine tract in the huntingtin protein, induces neuro-
nal dysfunction in the striatum and cerebral cortex is not
yet understood. The normal range is 6–35 CAG repeats:
HD patients have up to 250 repeats, with an inverse corre-
lation between repeat length and age of onset of symp-
toms [2]. The majority of HD patients exhibit adult onset
of symptoms, although juvenile-onset HD constitutes
approximately 5% of cases. The availability of genetic test-
ing means that at-risk relatives of patients can be identi-
fied prior to the onset of symptoms.

Insertion into the mouse genome of a human HD trans-
gene, with an expanded CAG repeat, has produced several
convincing disease models [3]. R6/1 mice, used in the
present study, develop cognitive then motor symptoms
around 3–4 months of age, becoming progressively more
severe over the following months, and also model other
cellular and molecular neuropathologies in HD [3-9].

We have previously demonstrated that environmental
enrichment delays the onset of disease in these HD mice.
Environmental enrichment, involving exposure to novel,
complex objects not present in standard housing condi-
tions, can enhance levels of sensory, cognitive and motor
stimulation [10]. Environmental enrichment of the home
cage delays onset of motor symptoms, judged by the
appearance of the characteristic rear-paw clasping motor
sign and by tests of the capacity to balance on a static hor-
izontal rod, in R6/1 [6] and R6/2 [11] HD mice. The static
horizontal rod appears to be a highly sensitive indicator of
early motor onset, which was found to be dramatically
delayed by environmental enrichment of these mice from
a juvenile age (4 weeks) onwards [6]. Histological quanti-
fication demonstrated that environmental enrichment
delays the degenerative loss of volume of cerebral cortex
surrounding the striatum in R6/1 HD mice measured at 5
months, suggesting that changes in the cerebral cortex
play a role in disease pathogenesis and in processes by
which the disease is ameliorated [6]. Indeed, the anterior
cingulate cortex (ACC) and the striatum are the first
regions of the brain to undergo neurodegeneration in the
R6 lines of HD mice [12], reflecting clinical neuropathol-
ogy. Furthermore, early unilateral replacement of the ACC
of R6/1 HD mice with healthy cortical tissue leads to
amelioration of motor impairment [13].

The mechanism by which the beneficial effect of environ-
mental enrichment occurs is unknown but the characteri-
sation of this phenomenon might provide insight into the
pathogenesis of HD. Key questions include the relative
importance of mental and physical exercise, and whether
there are critical periods for the initiation of environmen-
tal interventions. It has recently been demonstrated that
wheel running from an adult age (10 weeks), immediately
prior to motor onset, does not alter progression of the
accelerating rotarod motor deficit from 15–20 weeks [14].
In the present study we compare R6/1 HD mice housed
from a juvenile age (4 weeks) in either standard cages,
environmentally enriched cages and cages with running
wheels only, thus facilitating a specific enhancement of
voluntary physical exercise. The age at which mice were
exposed to running wheels was substantially earlier than
the recent study [14] and a more extensive motor battery
was performed (including the open field and static hori-
zontal rod tests), allowing conclusions to be drawn about
environmental interventions in gene-positive presympto-
matic mice. We have differentiated the extent to which
environmental enrichment and wheel running impact on
behavioral deficits in HD mice and have examined cellu-
lar correlates of pathogenesis.

Results
Effects of wheel running on motor deficits in HD mice
By approximately 5 months of age, all non-enriched
(standard-housed) HD mice fail the static horizontal rod
test of motor co-ordination (Fig. 1A). Environmental
enrichment dramatically delays the onset of these deficits
as previously demonstrated [6]. Wheel running alone also
induces a delay in onset of this motor deficit on the static
horizontal rod (Fig. 1A, P < 0.05; Chi2 Test). Furthermore,
wheel running from 4 weeks also delays onset of rear-paw
clasping (Fig. 1B, P < 0.05; Chi2 Test), a reflexive motor
sign in HD mice [3,6].

The accelerating rotarod test is another indicator of motor
co-ordination and function. We found that environmen-
tal enrichment substantially improves performance on
the rotarod for both wild-type and HD mice at 5 months
of age (data not shown, enrichment: F [1, 28] = 32.93, P <
0.001; 2-way ANOVA), consistent with our previous
observation [8].

At 3 months of age, neither the HD mutation nor wheel
running had a significant effect on accelerating rotarod
performance (Fig. 2A). Despite the fact that exercise on a
running wheel is superficially similar to the testing para-
digm of the accelerating rotarod, mice engaged in this
form of exercise from a juvenile age did not improve per-
formance on the rotarod in either wild-type or HD mice at
5 months of age (Fig. 2B; wheel running: F [1, 25] = 0.40,
P = 0.72; 2-way ANOVA). At 5 months, an effect of the HD
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mutation on performance was observed (Fig. 2B; HD: F[1,
28] = 8.58, P < 0.01; 2-way ANOVA). These results are
consistent with, and extend, the recent finding that wheel
running starting at an adult age has no effect on progres-

sion of rotarod deficits measured from 15–20 weeks of
age [14].

Effects of wheel running in delaying the onset of motor defi-cits, measured by tests of performance on the horizontal rod and rear-paw claspingFigure 1
Effects of wheel running in delaying the onset of 
motor deficits, measured by tests of performance on 
the horizontal rod and rear-paw clasping. The cumula-
tive percentage of mice consistently failing each test is plot-
ted as a function of age. A) Wheel running from 4 weeks of 
age delays the onset of motor deficits revealed by the hori-
zontal rod (P < 0.05). Wild-type mice, regardless of housing 
condition, always pass the horizontal rod test. B) Wheel run-
ning also delays onset of the rear-paw clasping motor deficit 
(P < 0.05). Triangles: non-enriched HD mice. Squares: wheel 
running HD mice. Circles: wild-type (WT) mice (enriched 
and non-enriched groups pooled: no failures).
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Wheel running does not delay the onset of a motor co-ordi-nation deficit measured on the accelerating rotarod testFigure 2
Wheel running does not delay the onset of a motor 
co-ordination deficit measured on the accelerating 
rotarod test. A) On the accelerating rotarod, neither the 
HD mutation nor wheel running (P = 0.68) had any affect on 
motor performance of HD mice at 3 months of age. B) The 
motor deficits which had developed in HD mice at 5 months 
of age were not affected by wheel running (P = 0.72). NE: 
non-enriched; RW: running wheel; WT: wild-type; HD: 
Huntington's disease.
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Effects of environmental enrichment and wheel running on 
abnormal habituation of locomotor activity and 
exploratory behavior in the open field
In a test of exploratory behavior in the open field, carried
out at 5 months of age, there was a non-significant trend
for HD mice to be less active than wild-type littermates
(Fig. 3A) (HD: F [1, 38] = 3.71, P < 0.10, 2-way ANOVA).
Although in some groups of mice exploratory activity was
reduced on the second day of testing (2nd blocks in Fig.
3A), this reduction was highly significant only for non-
enriched HD mice (HD: F[1,38] = 22.29, P < 0.001; 2-way
ANOVA). This demonstrates that the abnormal habitua-
tion of locomotor activity in HD mice was rescued by
both environmental enrichment and wheel running.

Episodes of rearing (vertical orientation balancing on rear
limbs) were also recorded in the open field test. The gen-
eral paucity of rearing in HD animals compared with
wild-type mice was particularly pronounced on the initial
day of testing (1st blocks in Fig. 3B: F [1, 38] = 63.22, P <
0.001; 2-way ANOVA). As with square-crossing, there was
a dramatic decrease in activity on the second day of testing
(2nd blocks in Fig. 3B) in non-enriched HD mice (F[1,38]
= 38.25, P < 0.001; 2-way ANOVA). Thus environmental
enrichment and wheel running both rescued the abnor-
mal habituation of rearing behavior in HD mice.

Environmental enrichment and wheel running do not 
rescue HD-induced decreases in body weight or brain 
weight at 9 months of age
As expected, expression of the HD transgene resulted in a
significant decrease in body weight by 9 months (HD: F
[1, 28] = 104.76, P < 0.001; 2-way ANOVA). Both environ-
mental enrichment (Table 1) and wheel running (Table 2)
were incapable of abating the weight loss induced by the
transgene (Table 1, environmental enrichment: F [1, 28] =
28.31, P = 0.27; Table 2, wheel running: F [1, 21] = 2.76,
P = 0.11; 2-way ANOVA).

The presence of the HD transgene also significantly
reduced overall brain weight at 9 months (HD: F [1, 36] =
16.01, P < 0.001; 2-way ANOVA). Neither environmental
enrichment (Table 1) nor wheel running (Table 2) miti-
gated this effect (environmental enrichment: F [1, 36] =
0.12, P = 0.73; wheel running: F [1, 12] = 0.11, P = 0.75;
2-way ANOVA).

Environmental enrichment and wheel running do not 
rescue degenerative shrinkage of the striatum and anterior 
cingulate cortex in HD mice at 9 months of age
We analysed serial coronal sections to measure the vol-
ume of the striatum and the anterior cingulate cortex
(ACC) in environmentally enriched (Fig. 4A,B) and wheel
running (Fig. 4C,D) cohorts. Expression of the HD trans-
gene reduced the volumes of both the striatum and the

Effects of the HD mutation and environmental manipulations on the open field testFigure 3
Effects of the HD mutation and environmental 
manipulations on the open field test. Spontaneous 
exploratory behavior was measured in terms of the horizon-
tal activity (A) and vertical (rearing) activity (B) in the 3 min 
period of the open field test at 5 months of age. Interestingly, 
the decrease between the first and second days was highly 
significant for non-enriched HD mice (double asterisk: P < 
0.001) for both the number of squares crossed (A) as well as 
the number of rears (B). This effect was not seen in the envi-
ronmentally enriched or wheel running HD mice. This sug-
gests that the habituation of activity seen during re-testing in 
HD mice is attenuated through environmental enrichment or 
wheel running. NE: non-enriched; EE: environmentally 
enriched; RW: running wheel; WT: wild-type; HD: Hunting-
ton's disease; 1st: first day of testing; 2nd: second day of test-
ing.
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ACC (striatum: F [1, 12] = 39.74, P < 0.001; ACC: F [1, 12]
= 5.24, P < 0.05; 2-way ANOVA).

By 9 months of age, environmental enrichment had no
significant effect on striatal atrophy (Fig. 4A) or ACC atro-
phy (Fig. 4B). Similarly, neither striatal (Fig. 4C) nor ACC
(Fig. 4D) atrophy was significantly affected by wheel run-
ning.

The density of protein aggregates in the striatum and ACC 
at 9 months of age is not significantly altered by 
environmental enrichment or wheel running
Neuronal inclusions, or aggregates, are formed by aggre-
gation of huntingtin (htt) protein fragments containing
the expanded polyglutamine tract, as well as ubiquitin
and other proteins, and are a distinctive feature of HD
brains at post mortem [15]. These aggregates are also seen
in transgenic HD mice, where they were first described
[16], and appear before the onset of explicit disease symp-
toms. However, it is not clear whether they play a causa-
tive role in HD pathogenesis. Aggregates are never seen in
wild-type mice at any age. We previously found that there
is no significant effect of environmental enrichment on
the overall density of ubiquitinated protein aggregates in
the striatum of R6/1 HD mice [6].

We calculated the densities of ubiquitin-positive aggre-
gates in brains from 9-month-old HD transgenic mice.
The two areas examined were the striatum (Fig. 5A,C) and
the ACC (Fig. 5B,D), key areas of inclusion pathology in
HD [11]. In keeping with findings for environmental
enrichment at 5 months of age [6], neither paradigm sig-
nificantly alters the density of aggregates at 9 months of

age. This was true for both the striatum (Fig. 5A, environ-
mental enrichment: P = 0.81; Fig. 5C, wheel running: P =
0.67; Student's t-test) and the ACC (Fig. 5B, environmen-
tal enrichment: P = 0.60; Fig. 5D, wheel running: P = 0.16;
Student's t-test), although there was a non-significant
trend for wheel running to decrease aggregate density in
the anterior cingulate cortex (Fig. 5D).

Discussion
Although HD has previously been considered to be a dis-
ease that is the epitome of genetic determinism, it is
increasingly recognised that environmental factors can
modulate disease onset and progression [10]. Environ-
mental enrichment is known to have a number of benefi-
cial effects, including delaying onset and slowing
progression of motor deficits in multiple transgenic
mouse models of HD [6,8,11,17], although the relative
contribution of sensory, cognitive and motor stimulation
to these therapeutic effects has not been described.

The present study demonstrates that enhanced physical
exercise via wheel running alone is capable of delaying the
onset of specific motor deficits in HD. Both environmen-
tal enrichment [6] and wheel running delayed the onset of
certain signs of disease, as measured by the horizontal rod
and clasping tests of motor function. However, the bene-
ficial effect of wheel running on disease onset did not
extend to rescuing performance on the accelerating
rotarod, a test of motor co-ordination. Of particular inter-
est was the fact that in the present study wheel running
was commenced at a juvenile age, much earlier than a
recent study in which wheel running was initiated in
adulthood and progression of rotarod deficits at 15–20

Table 1: Environmental enrichment did not ameliorate the effects of the HD mutation on body and brain weight at 9 months of age. 
The HD transgene affected both body weight (P < 0.001) and brain weight (P < 0.001), relative to WT littermates. NE: non-enriched 
(standard housed); EE: environmentally enriched.

WT HD

EE NE EE NE

Body weight (grams) 36.74 ± 1.75 40.02 ± 2.24 20.73 ± 0.56 21.24 ± 0.98
Brain weight (grams) 0.44 ± 0.013 0.45 ± 0.008 0.34 ± 0.013 0.36 ± 0.012

Table 2: Wheel running did not ameliorate the effects of the HD mutation on body and brain weight at 9 months of age. The HD 
transgene affected both body weight (P < 0.001) and brain weight (P < 0.001) at 9 months of age, relative to WT littermates. NE: non-
enriched (standard housed); RW: running-wheel housed.

WT HD

RW NE RW NE

Body weight (grams) 39.70 ± 3.01 32.36 ± 2.57 22.38 ± 1.05 22.54 ± 0.75
Brain weight (grams) 0.54 ± 0.015 0.53 ± 0.008 0.42 ± 0.011 0.42 ± 0.007
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weeks was found to be unaffected by running, despite an
observed delay in rear-paw clasping [14]. The present
results also demonstrated for the first time that wheel run-
ning can delay the onset of motor coordination deficits on
the static horizontal rod, but has no effect on accelerating
rotarod deficits.

The rotarod results were somewhat surprising, given the
superficial similarity of activity involved in both wheel
running and balancing on the accelerating rotarod. How-
ever, the precise patterns of posture and coordination are
substantially different in wheel running and balancing on
the rotarod. Running voluntarily for long periods each
day over several months inside a freely-moving concave

Volumetric measurement of neurodegeneration in the striatum and anterior cingulate cortex (ACC)Figure 4
Volumetric measurement of neurodegeneration in the striatum and anterior cingulate cortex (ACC). The vol-
umes of the striatum and ACC were calculated for non-enriched (NE), environmentally enriched (EE) and wheel running (RW) 
groups of wild-type (WT) and HD mice at 9 months of age for the striatum (A and C) and ACC (B and D). The presence of the 
transgene reduced all these brain volumes, reaching statistical significance for both striatum (P < 0.001) and anterior cingulate 
cortex (P < 0.05). No effect was seen on the striatum or anterior cingulate cortex by either environmental enrichment or 
wheel running.
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The density of ubiquitin-positive protein aggregates in the striatum and anterior cingulate cortex (ACC) of HD miceFigure 5
The density of ubiquitin-positive protein aggregates in the striatum and anterior cingulate cortex (ACC) of 
HD mice. Stereological analysis of ubiquitin immunoreactive protein aggregates was performed for the striatum (A) and ACC 
(B) of environmentally enriched (EE) HD mice at 9 months of age. The same analysis was performed for the striatum (C) and 
ACC (D) of wheel running (RW) HD mice. Neither environmental enrichment nor wheel running affect the density of aggre-
gates in the striatum (A and C) or the anterior cingulate cortex (B and D) of HD mice at 9 months of age. As expected, these 
aggregates were never observed in wild-type mice.
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wheel provides no advantage in learning to maintain bal-
ance on the convex outer surface of the accelerating
motorised rotarod, for either wild-type or HD mice.

In the present study we also show that HD-induced
abnormal habituation of locomotor and rearing activity
in response to repeated testing in the open field is rescued
by both environmental enrichment and wheel running.
The habituation seen in standard-housed HD mice, which
was not observed in their wild-type littermates housed in
the same standard conditions, may reflect altered memory
of their previous exposure to the open field. Therefore,
environmental enrichment and wheel running from a
juvenile age may be rescuing a cognitive deficit in this
instance. This is consistent with our recent demonstration
that wheel running initiated during adulthood can rescue
a spatial working memory deficit in HD mice [14]. Fur-
thermore, we have recently demonstrated that environ-
mental enrichment of HD mice delays onset of a spatial
cognitive deficit on the Barnes circular maze [18].

Various mechanisms might account for the effects of envi-
ronmental stimulation in delaying the onset of neurolog-
ical signs in HD mice. We have previously shown that
environmental enrichment does not alter the density of
ubiquitin-positive protein aggregates in the striatum of
R6/1 HD mice at 5 months of age [6]. In the present study,
neither environmental enrichment nor wheel running
had any significant effect on the density of ubiquitinated
aggregates in the striatum or anterior cingulate cortex at 9
months of age. This would imply that these forms of envi-
ronmental stimulation do not exert their beneficial effects
through modulating numbers of protein aggregates.

In the present study we also examined the volume of the
striatum and anterior cingulate cortex at 9 months of age,
and found that neither environmental enrichment nor
wheel running had a significant effect on HD-induced
shrinkage of these brain regions. The striatal data is con-
sistent with our previous study where we found that envi-
ronmental enrichment did not affect striatal shrinkage in
R6/1 HD mice at 5 months of age [6]. However, in these
same brains at 5 months of age, we found that prior
enrichment significantly rescued the HD-induced loss of
'peristriatal cerebral volume', a measure which predomi-
nantly consisted of the neocortex surrounding the stria-
tum [6]. In the present study, we examined a far more
specific cortical region, the anterior cingulate cortex, at 9
months of age, and saw no significant volumetric effect of
environmental enrichment. This could be because we
examined a different brain area, or because we made the
measurements at a later age. Our past and present data
suggests that environmental enrichment delays, but does
not prevent, onset of specific molecular, cellular and

behavioral deficits, and therefore investigations at later
ages may reveal less dramatic effects.

The expression of specific neurotransmitter receptors and
signalling molecules is decreased in the cortex and stria-
tum of R6/1 and R6/2 HD mice prior to cell loss [4,19-
21]. Environmental stimulation might ameliorate excito-
toxicity via reduced transcriptional dysregulation of vari-
ous neurotransmitter receptors and synaptic signal
transduction pathways. For example, downregulation of
cannabinoid CB1 receptors, which is seen in HD patients
at post-mortem [22], occurs in R6/1 HD mice and is res-
cued by prior enrichment [23], presumably leading to
changes in neurotransmission at synapses expressing
these receptors. Brain-derived neurotrophic factor
(BDNF) is a neurotrophin whose deficit has been impli-
cated in HD pathogenesis [8,14,24-29]. We have shown
that environmental enrichment can rescue the deficit of
mature BDNF protein in the striatum of R6/1 HD mice
[8]. However we have recently shown that wheel running
does not rescue deficits of BDNF expression in the R6/1
HD brain [14]

There is now substantial evidence for disrupted synaptic
function, including plasticity, in the corticostriatal system
from a range of different HD models [30]. Abnormal syn-
aptic plasticity, including long-term potentiation (LTP),
in hippocampal slices have been described for R6/1 [31],
R6/2 [32] and other HD mouse models [33,34], and per-
irhinal cortical synaptic plasticity is also disrupted in R6/
1 mice [35]. Early deficits in neocortical plasticity in R6/1
mice have also been described [36,37]. Environmental
enrichment in rats increases the strength of specific corti-
cal synapses, influences LTP, and increases the binding of
glutamate to AMPA receptors [38]. In wild-type mice,
wheel running has been shown to enhance hippocampal
LTP [39]. Environmental enrichment, including enhanced
physical exercise on running wheels, may therefore amel-
iorate the defects in the HD mice by directly overcoming
deficiencies of synaptic function, including synaptic plas-
ticity.

Furthermore, there is evidence that another form of cellu-
lar plasticity, adult neurogenesis, is disrupted in the hip-
pocampus of R6/1 [40,41] and R6/2 [42,43] HD mice,
and that environmental enrichment may ameliorate this
hippocampal neurogenesis deficit [44]. The demonstra-
tion that wheel running can ameliorate deficits of spatial
memory in HD mice [14], which are know to be depend-
ent on the hippocampus, is of interest, particularly as
wheel running is known to enhance hippocampal neuro-
genesis in wild-type mice [45].

These results show that environmental enrichment has a
somewhat greater beneficial effect that wheel running in
Page 8 of 12
(page number not for citation purposes)



BMC Neuroscience 2008, 9:34 http://www.biomedcentral.com/1471-2202/9/34
mitigating the effects of HD in transgenic mice, even when
wheel running was started at a juvenile age. In particular,
environmental enrichment delayed onset of a motor coor-
dination deficit on the accelerating rotarod [8], whereas in
the present study wheel running did not significantly
affect this specific motor deficit. This suggests the possibil-
ity that sensory stimulation, mental exercise and physical
activity could all be employed in attempts to harness envi-
ronmental enrichment for the benefit of human sufferers.
Strategies of occupational therapy based on the principles
of environmental enrichment may be beneficial for gene-
positive presymptomatic individuals and patients with
HD, even those with fairly advanced disease [46,47], for
which there is currently no accepted treatment. A study of
Venezualan kindreds provides strong evidence for a role
of environmental factors in modifying age of disease
onset in HD [48], although the nature of these environ-
mental modifiers is unknown. It was calculated that 60%
of the variability seen in age of onset of HD after account-
ing for the effect of CAG repeat length is due to environ-
mental factors [48]. This is supported by the fact that
monozygotic twins with confirmed identical CAG repeat
lengths can present with different symptomatology [49].

These findings may have broader implications for other
brain disorders. Mental and physical engagement with a
stimulating environment is thought to have beneficial
effects in delaying dementia in Alzheimer's disease [50].
Recent studies have demonstrated beneficial effects of
environmental enrichment and wheel running in trans-
genic mouse models of Alzheimer's disease [51-54], as
well as various other brain disorders involving the adult
cortex and striatum [10,55,56]. Such environmental
manipulations may thus allow us to model 'brain reserve',
or more specifically 'cognitive reserve' in the context of
dementia, and the underlying neuroprotective mecha-
nisms [10]. We have also recently demonstrated differen-
tial effects of environmental enrichment and wheel
running on onset and progression in a transgenic mouse
model of amyotrophic lateral sclerosis (ALS), highlighting
important differences in the quality and quantity of motor
stimulation associated with these two environmental
manipulations (Stam et al., submitted).

Conclusion
We have demonstrated that both environmental enrich-
ment and wheel running can rescue abnormal locomotor
habituation of HD mice in the open field. We have also
provided evidence that wheel running from a juvenile age
can delay onset of some, but not all, motor deficits in HD
mice. Our results suggest that a combination of enhanced
mental and physical activity may be optimal in delaying
the onset of Huntington's disease. Environmental enrich-
ment and wheel running do not, however, alter the den-
sity of protein aggregates in the anterior cingulate cortex

or striatum at 9 months of age, suggesting that these large
intracellular aggregates may not be directly involved in
pathogenesis. However, early stages of pathological pro-
tein aggregation and protein-protein interactions remain
promising targets in the search for HD therapeutics [57].
Finally, environmental manipulations provide powerful
tools for elucidating the molecular and cellular mecha-
nisms of pathogenesis, with the identification of potential
novel molecular targets for therapeutic intervention [58],
which may have implications for the treatment of HD and
other neurodegenerative diseases.

Methods
Animals
Male R6/1 mice [3] (Jackson Laboratories, USA), after
back-crossing onto the CBA background for greater than
10 generations, were mated with female CBA mice to pro-
duce experimental cohorts. The offspring were ran-
domised into environmentally enriched, wheel running
and non-enriched (standard housed) groups. The enrich-
ment was through either exposure to novel objects (envi-
ronmental enrichment) or access to running wheels (both
described below). At 1 month of age, the mice were tail-
tipped for genotyping [3], and a microchip (Labtrac, Uck-
field, UK) was inserted subcutaneously, under Halothane
anaesthesia, for identification purposes. The genotype
coding was broken only at the end of the experiments. As
expected, approximately 50% of mice in each litter were
positive for the HD transgene and the remainder served as
wild-type controls. All animal work was conducted in
accordance with the United Kingdom Animals (Scientific
Procedures) Act of 1986 and was approved under a Home
Office project license.

Environmental enrichment and wheel running housing 
conditions
All mice, including those in standard housing conditions,
were group-housed to control for any effects of social
interaction, with 4–6 animals in standard rodent cages
(measuring 44 × 28 × 12.5 cm). Environmental enrich-
ment consisted of novel objects placed in the home cages
from 4 weeks of age [6,8]. These were changed every two
days without additional handling of the mice. Enrichment
objects included small cardboard boxes, either enclosed
or open at one end, 15 ml and 50 ml plastic conical tubes
(Becton Dickinson, New Jersey, USA), cylindrical card-
board tunnels approximately 3 cm in diameter, and
folded sheets of paper approximately 10 × 10 cm. No edi-
ble or toxic substances were added to the cage. Control lit-
termate mice receiving routine care (non-enriched) had
normal feed, bedding and social contact. For wheel run-
ning cohorts of mice, two small metal running-wheels (8
cm diameter) were placed in each cage from 4 weeks of
age, without any other form of environmental enrich-
ment. The cages were monitored regularly and this con-
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firmed that the wheels were frequently used by the mice,
with either one or two mice observed to run on a single
wheel.

Behavioral analysis
For all behavioral experiments, mice were tested by an
observer who did not know the genotype of the mice.

Open field
Spontaneous motor activity was assessed for each mouse
at 5 months of age. The open field was a grey PVC
enclosed arena, 50 × 30 cm, divided into 10 cm squares.
Each experimental mouse was placed into a corner square
facing that corner, and the number of squares entered
(whole body) was counted over a 3 min period. Rearing
of the body (both front paws off the ground, but not as
part of grooming), and grooming episodes (number of
bouts and total duration) were also noted. The number of
squares crossed by wild-type non-enriched mice on the
first day of testing was normalised to 1 to facilitate com-
parison between groups of environmentally enriched,
wheel running mice and non-enriched mice, of both gen-
otypes. The open field test was repeated on a second day
in order to quantify habituation of activity.

Accelerating Rotarod
The mice were placed on a Rotarod (Ugo Basile model
7650, Sandown Scientific, Hampton, UK) at an initial rate
of 3.5 revolutions per minute (rpm) with an acceleration
of 20 rpm/min to a maximum of 40 rpm [8]. The central
cylinder was 3 cm in diameter and had 2 mm ridges along
its longitudinal axis. Two flanges, 30 cm in diameter, were
set at each end of the cylinder, at a separation of 6 cm, and
the mouse was placed on the rotating central cylinder
between the flanges. Mice were familiarised with the task
prior to measurements being taken.

Static horizontal rod test
The mouse was placed on the end of a horizontal, wooden
rod, 21 mm in diameter, facing towards the end of the
rod, which was suspended approximately 30 cm above an
open box containing soft bedding [6]. The rod was firmly
secured at the other end. In this situation, mice attempt to
turn around, and move to the fixed end. We measured the
time taken for the mouse to turn 180 degrees. The mouse
was judged to have failed this task if it took more than 100
seconds or fell off the rod. Disease onset was defined as
the first of an unbroken sequence of weekly trials on
which the mouse consistently failed, with an allowed
exception of a single subsequent successful test.

Rear-paw clasping
The clasping of the hind limbs together, which is observed
in parallel to onset of other motor signs, was analysed as
previously described [6].

Immunohistochemistry and quantitative analysis of tissue 
sections
Mice were terminally anaesthetised with halothane
(Halothane-RM: Rhone Merieux, Harlow, UK) followed
by intraperitoneal pentobarbitone (Euthatal: Rhone Mer-
ieux; 200 mg/kg), and perfused with phosphate-buffered
saline (Sigma, St Louis, USA), followed by 4% parafor-
maldehyde (TAAB, Aldermaston, UK) in phosphate buffer
(PB) (BDH, Poole, UK). The brains were then dissected
free and weighed (Precisa 125A, Precisa, Switzerland). All
procedures were conducted as authorised by the relevant
project and personal licenses issued by the UK Home
Office.

The paraformaldehyde-fixed brains were submerged for
24 h in a solution of 30% (w/v) sucrose (BDH) in PB.
Coronal sections of the forebrain were cut at 40 µm cov-
ering the entire anteroposterior extent of the striatum.
Immunohistochemistry was performed as described [59]
on alternate sections with a 1:3,000 anti-ubiquitin (rabbit
polyclonal: Dako, Glostrup, Denmark). Slides were coded
independent of the microchip number of the mouse and
examined by an observer who was blinded to the geno-
type or housing conditions of the mice. Ubiquitin immu-
noreactive cells were counted in sample sites throughout
the striatum and cortex by means of an automated stereo-
logical analysis system (Stereoinvestigator, MicroBright-
Field, Colchester, USA). In every sixth section, 15 sample
sites were randomly allocated by software within the
defined boundary of the striatum on each side. At each
site, ubiquitin-positive neuronal aggregates were counted
via an optical dissector (50 µm × 50 µm) with a 3D count-
ing frame height of 30 µm. The presence of aggregates also
independently identified mice carrying the HD transgene,
agreeing in every case with the result of PCR genotyping.
For each section containing the striatum, the boundaries
of the striatum were recorded and digitised. The anterior
cingulate cortex was defined as cerebral cortex superior to
the striatum, medial to a line drawn vertically from the
most superior point of the striatum. We calculated the
respective volumes of these two defined brain regions and
combined the values from both sides of the brain. In com-
bination with cell counts, these volumes were used for cell
density calculations.

Statistics
A Chi2 Test was conducted on the horizontal rod testing
and clasping data. A 2-way Analysis of Variance (ANOVA)
was conducted on the open field and rotarod behavioral
testing data and brain volume measurements. A student's
t-test was conducted on the counts of ubiquitin-positive
aggregates.
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