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Abstract 

The ranunculid genus Aquilegia holds extraordinary promise as a model system for investigating 

a wide range of questions relating to the evolution and ecology of petals. New genetic and 

genomic resources, including an extensive EST database, BAC libraries and physical maps, as 

well as viral induced gene silencing are facilitating this research on multiple fronts. At the 

developmental genetic level, Aquilegia has been important for elucidating the developmental 

program for specifying petals and petaloid characteristics. Data suggest that duplication events 

among the petal and stamen identity genes have resulted in sub- and neofunctionalization. This 

expansion of gene function does not include the petaloidy of Aquilegia sepals, however, which 

does not depend on the same loci that control identity of the second whorl petals. Of special 

interest is the elaboration of the petal into a nectar spur, a major innovation for the genus. Intra 

and inter-specific variation in the shape and colour of petals, especially the spurs, has been 

shown to be adaptative for different pollinators. Thus, understanding the genetic basis of these 

traits will help us connect the ecological interactions driving speciation with the genetic changes 

responsible for remodeling morphology. Progress in this area has focused on the multiple, 

parallel transitions in flower colour and nectar spur length across the genus. For flower colour, 

upstream transcription factors appear to be primarily targets of natural selection. Thus research in 

Aquilegia spans the initial evolution of petals and petaloidy to the diversification of petal 

morphology to the ecological basis of petal form, thereby providing a comprehensive picture of 

the evolutionary biology of this critical angiosperm feature. 

 

Keywords: Aquilegia, Ranunculaceae, petal evolution, adaptation, speciation, nectar spur 
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1. Introduction 

The evolution of petaloid organs in the reproductive axis is a notable innovation of the 

angiosperms that has clearly played a major role in their diversification, especially in the context 

of attracting pollinators (Endress 1994). What makes petaloid features so intriguing is that they 

appear to be a true innovation with no obvious precursor in extant gymnosperms. Then, once 

petals evolved, more subtle changes to their shape and colour have been major factors allowing 

species to attract and become specialized on different pollinators. From a genetic standpoint, 

there are many aspects of petaloid organs that we would like to understand in terms of both 

macroevolutionary and microevolutionary processes. How many times have petaloid organs 

evolved? Is their developmental genetic basis the same when petaloid features are produced in 

different positions? How is the elaboration of petals controlled and how are these genetic 

pathways altered in the context of pollinator shifts? Do independent shifts to similar pollinators 

involve similar genetic changes to petals? These types of questions cover a multitude of different 

genetic pathways and can only be answered through analysis of a similarly diverse set of genetic 

models. In this review, we discuss the new model system Aquilegia and how it is contributing to 

our understanding of the evolution of petaloid organs. 

 

Flowers typically have two types of organs – reproductive and sterile. While the reproductive 

organs are divided into stamens (androecium) and carpels (gynoecium), the sterile organs are 

collectively termed the perianth. The phenomenon of petaloid organs is challenging because it 

can occur in any of these organs, as well as in extra-floral leaf-like organs termed bracts. If we 

restrict our consideration to the perianth, there are further distinctions. In some taxa, such as 

Magnolia or Tulipa, perianth parts are relatively similar in appearance (whether petaloid or not), 
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in which case they are termed tepals. More commonly, the perianth is bipartite with two or more 

distinct organ types (in contrast to the unipartite condition of tepals). In these cases, the outer 

organs, called sepals, are often adapted for protective functions while the inner organs, called 

petals, are more specialized for a role in pollinator attraction. Thus, classically, petals have a 

fixed position on the floral axis – in the second whorl between the sepals and androecium. 

However, as mentioned above, petaloid features can occur in either of the perianth whorls and in 

the case of the family Ranunculaceae, of which Aquilegia is a member, often occur in both. How 

then should we define petaloid features? While there is no clear set of criteria (Endress 1994), 

petaloidy can be defined as being conspicuous and brightly coloured or patterned as opposed to 

green or leaf-like. It is important to note that in some taxa, the true petals themselves are quite 

small, meaning that not all petals are dramatically petaloid.  

 

Eames (1961) wrote that “Theories of the nature and development of the perianth are closely 

bound up with theories of the origin of the flower”, by which he was referring to two ideas about 

where perianth organs came from. According to the first idea, originally espoused by Goethe 

(1790), the perianth parts, and the petals in particular, are modified stamens termed andropetals 

(Takhtajan 1991). The alternative hypothesis is that perianth organs were derived from pre-

existing sterile bracts that were associated with the reproductive axis, giving rise to bracteopetals 

(Takhtajan 1991). These two hypotheses may not be mutually exclusive. Some taxa may have 

perianth organs derived from both bracts and stamens while others may have only bracteopetals 

or andropetals. The criteria used to distinguish between andro- and bracteopetals are largely 

developmental and morphological, relating to vasculature, developmental kinetics, phyllotaxy, 

and morphological similarities (Eames 1961; Smith 1928; Takhtajan 1991). However, beyond 
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the details, the fundamental point is that the perianth in general and petals in particular have 

evolved many times independently within the angiosperms, with different precursor organs 

giving rise to sterile, attractive structures in different lineages (Bierhorst 1971; Eames 1961; 

Takhtajan 1991). Reconstruction of perianth evolution in the context of modern molecular 

phylogenies confirms that the bipartite perianth has evolved many different times independently 

(Hileman & Irish 2009; Zanis et al. 2003), as have novel types of petaloid features in various 

positions both inside and outside the flower (Jaramillo & Kramer 2007; Walker-Larsen & Harder 

2000). 

 

Our understanding of the developmental genetic basis of floral organ development has grown 

exponentially over the last twenty years, with considerable impact on our understanding and 

interpretation of floral evolution. Especially notable is the elucidation of the ABC model for 

floral organ identity (Coen & Meyerowitz 1991). This genetic model describes three classes of 

gene activity, expressed in overlapping domains of the floral meristem, thereby creating a 

combinatorial code. Each whorl of the flower has a distinct set of gene activities: A alone 

encodes sepals; A+B, petals; B+C, stamens, and C alone, carpels (Fig. 1). The model has been 

modified over time by the addition of two other gene activities (D, for ovules, and E, as a broad 

facilitator of ABC gene function) and substantial reconsideration of the nature of A function 

(Davies et al. 2006; Litt 2007). Most of the genes associated with the ABC model are members 

of the large type II class of MADS box containing transcription factors, which has facilitated 

their identification across a broad range of seed plants (Becker & Theissen 2003). Overall, it 

appears that while A function is not conserved, the functions of the B and C class gene homologs 
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are largely the same throughout the angiosperms, particularly in terms of stamen and carpel 

identity (Kramer 2006; Kramer et al. 2004; Zahn et al. 2005b). 

 

This leads to the question of petal identity – is there a deeply conserved petal identity program 

or, in keeping with the idea of multiple independent derivations, are there many genetically 

different ways to produce a petal? Answering this question has proved difficult, for a number of 

reasons. First, the B class genes, represented in Arabidopsis by the MADS box genes APETALA3 

(AP3) and PISTILLATA (PI) (Goto & Meyerowitz 1994; Jack et al. 1992), have complex 

evolutionary histories (Kramer et al. 1998; Kramer & Irish 2000; Stellari et al. 2004) and have 

experienced gene duplication at every phylogenetic level. Most notably, the AP3 lineage was 

duplicated at the base of the core eudicots to give rise to two distinct paralogs termed euAP3 and 

TM6 (Kramer et al. 1998). This is of interest because the euAP3 lineage experienced a distinct 

sequence divergence at its C terminal end as the result of a frameshift mutation, which converted 

the otherwise deeply conserved paleoAP3 motif into the core eudicot-specific euAP3 motif 

(Kramer et al. 2006; Vandenbussche et al. 2003). The biochemical implications of this event are 

still a matter of debate (Lamb & Irish 2003; Piwarzyk et al. 2007), but the fact remains that the 

defining B class genes, AP3 from Arabidopsis and its ortholog DEFICIENS (DEF) from 

Antirrhinum, are members of a core eudicot-specific lineage and therefore do not have simple 

orthologs outside this clade (Kramer et al. 1998; Kramer & Zimmer 2006). Another complicating 

factor for understanding the conservation of the petal identity program is the potential for 

convergence at the genetic level. This phenomenon has frequently been observed among both 

plants and animals and can result in non-homologous structures expressing homologous genes 

(Abouheif et al. 1997; Jaramillo & Kramer 2007). Convergence is particularly likely in the case 
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of andropetals where independent sterilization of stamens could have repeatedly involved the 

recruitment of B gene homologs to control andropetal identity (Irish 2009). Even for 

bracteopetals, the transformation of bracts into petaloid organs might have occurred via outward 

expansion of the B gene domain from the stamens (Baum & Whitlock 1999; Irish 2009). How 

then should we interpret the finding that B gene homologs are almost always expressed in true 

petals or petaloid tepals (reviewed in Kim et al. 2004; Kramer & Jaramillo 2005; Zahn et al. 

2005b)? Some have interpreted these data as evidence for a deeply conserved petal identity 

program, suggesting that petal identity may have evolved once and just been redeployed to 

different positions in the flower (Bowman 1997). Others have held to the convergence model, 

that petals evolved many times but recruited similar genes to control their development in each 

case (Irish 2009). Discriminating among these alternatives may never be entirely possible but 

growing evidence seems to support a mixed model – the identity of true petals in the second 

whorl may be controlled by a commonly inherited genetic program in many cases but, at the 

same time, there are definitely genetic mechanisms that do not utilize the B gene program for 

promoting petaloid features in other positions of the flower (Rasmussen et al. 2009; and see also 

below). 

 

Of course, understanding petal diversity only starts with questions related to organ identity. 

Across taxa, petals differ in every aspect of their morphology, including colour, symmetry and 

other aspects of shape, and presence or absence of nectaries. Our knowledge of the genetic 

control of these aspects is very uneven. Few direct targets of the B class genes have been 

identified (Mara & Irish 2008; Sablowski & Meyerowitz 1998), but several loci have been 

implicated in the sculpting of petals, particularly factors controlling the balance between cell 
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division and cell expansion (reviewed Irish 2008). Among these is APETALA2 (AP2), which was 

originally considered an A class gene but has subsequently been found to primarily affect petal 

development rather than identity (Drews et al. 1991; Litt, 2007). Unlike the other genes of the 

ABC model, AP2 is a member of the AP2/EREBP family of transcription factors (Okamuro et al. 

1997; Weigel 1995). Together with a related family member, AINTEGUMENTA (ANT), AP2 

contributes to petal initiation and size (Keck et al. 2003; Krizek et al. 2000). 

 

Another major influence on petal shape is whether or not the flower is bilaterally or radially 

symmetric. In the case of the former, different petal morphologies are produced in different 

positions in the same whorl of the flower. Studies of the genetic control of bilateral symmetry in 

Antirrhinum (snapdragon) indicate that fine control of cell division patterns is also critical to this 

type of differentiation (Gaudin et al. 2000). Studies of other bilaterally symmetric species, 

particularly legumes, have provided evidence that very similar genetic pathways have evolved by 

co-opting homologs of the same genes (reviewed by Preston & Hileman 2009; Rosin & Kramer 

2009). At the same time, studies in legumes have demonstrated the potential to uncover novel 

factors that may be influencing the internal symmetry of individual petals (Wang et al. 2008).  

 

Further elaborations of petal morphology take a variety of forms but one component that appears 

to be a critical aspect of diversification is the presence of nectaries (Hodges 1997a; Hodges & 

Arnold 1995). These structures, which produce sugar-rich liquid that serve as rewards for 

visiting pollinators, are not restricted to petals and can be present on any organ in the flower. 

Although nectaries have evolved many times independently (Bernardello 2007), a study of the 

core eudicots surprisingly found that orthologs of the same gene, the YABBY transcription 
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factor CRABS CLAW (CRC), are associated with nectaries from diverse taxa (Lee et al. 2005). 

However, this correlation between CRC and nectaries does not appear to extend outside the core 

eudicot clade. When nectaries occur on the perianth organs, they are often associated with the 

development of spurs that show a close correlation between their morphology and the feeding 

structures of the flower’s pollinator. Currently, no candidate loci have been associated with the 

development of naturally occurring spurs but an intriguing mutant in Antirrhinum may provide 

some insight. Transposon insertions near two KNOX transcription factors result in ectopic gene 

expression that appears to promote the development of spur-like structures (Golz et al. 2002). It 

will be very interesting to see whether KNOX gene expression is actually responsible for the 

normal development of spurs. 

 

Aside from nectaries, petals use other morphological features to attract pollinators, particularly 

the interplay of colour and iridescence. The latter is usually produced by the presence of conical 

or papillated epidermal cells. In Antirrhinum, a MYB transcription factor, MIXTA (MIX), is 

critical to the formation of these cells as well as proper pollinator attraction (Glover et al. 1998; 

Martin et al. 2002; Whitney et al. 2009). Antirrhinum has also been an important model for the 

genetic dissection of colour production, particularly in regards to the upstream regulators, which 

are also members of the MYB gene family (Noda et al. 1994; Schwinn et al. 2006). Natural 

variation among these paralogs has been shown to control spatial patterns of colour production 

and colour differences (Schwinn et al. 2006; Whibley et al. 2006). The enzymatic pathways 

responsible for colour production, which are genetically downstream of the MYBs, have been 

well characterized in a number of systems including Antirrhinum, Ipomoea and, recently, 

Aquilegia (Martin & Gerats 1993; Rausher 2008; Whittall et al. 2006; Hodges & Derieg 2009). 
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This leads to the question of why petals are so diverse. Over a century of research, including that 

of Darwin, has shown that pollinator interactions play a major role in shaping petal 

characteristics. As we review below, research in Aquilegia has shown that much of the intra and 

inter-specific variation in petals is intimately associated with variation in primary pollinators. 

These associations are especially true for variation in nectar spur length and colour (Fig. 2A-D). 

Because specialization to different pollinators causes reproductive isolation, petals represent 

important adaptive features in Aquilegia that may play direct roles in speciation processes. Thus, 

dissecting the genetic basis of these traits will provide an understanding how adaptation and 

speciation proceeds.  

 

2. Morphology & evolutionary history of Aquilegia  

Aquilegia is a member of the family Ranunculaceae, which falls within the eudicot order 

Ranunculales (APG 2003; Fig. 3). This order is sister to the rest of the core eudicots (Hoot et al. 

1999). Aquilegia, therefore, adds an important third data point to deep evolutionary comparisons 

between the monocot grasses and core eudicot models such as Arabidopsis, Petunia and 

Antirrhinum. Aquilegia flowers are unique among these model genetic systems in that they 

possess five types of floral organs instead of the typical four: petaloid sepals in the first whorl, 

petals with nectar spurs in the second whorl, four to seven whorls of stamens, one whorl of 

staminodia, and an innermost whorl of carpels (Kramer 2009). The development of these organs 

has been studied in detail, confirming close affinities between the stamens and staminodia 

(Tucker & Hodges 2005). Some of the floral features of Aquilegia are found across the 

Ranunculaceae, particularly the petaloid sepals and petal nectaries, while the petal spurs and 



 11 

staminodia are recently evolved (Hodges & Arnold 1994a; Ro & McPheron 1997; Tucker & 

Hodges 2005). The petal spurs, in particular, have been the subject of considerable research due 

to their critical role in pollinator interactions (Hodges 1997b; Hodges & Arnold 1994a; Hodges 

et al. 2004). The spurs initiate relatively late in floral development, after the stamens have 

differentiated into filaments and anthers (Tucker & Hodges 2005). Beginning as an outpocketing 

close to the base of the concave petal, the spur does not elongate substantially until the last 

phases of floral development, reaching a final length of anywhere from 1-2mm to 10-12 cm 

(Hodges and Arnold 1995; Tucker & Hodges 2005). The nectary develops inside the distal tip of 

the spur. It appears that diversity in floral spurs, along with other aspects of floral morphology 

such as orientation and colour, have facilitated the rapid radiation of Aquilegia species in less 

than 2 million years (Hodges 1997b; Kay et al 2006; Whittall & Hodges 2007). This recent 

evolutionary history has made the genus an excellent model for understanding speciation via 

pollinator diversification (Hodges et al. 2004). Other interesting morphological and physiological 

features of Aquilegia include compound leaves, a perennial life cycle, vernalization-based 

control of flowering time, and adaptations to a variety of environments including alpine and 

desert. 

 

3. Genetic & Genomic Resources for Aquilegia 

To facilitate the genetic dissection of traits in Aquilegia, genomic resources have been, and are 

being, developed for the genus. One consequence of the recent and rapid divergence of Aquilegia 

species is extreme similarity at the DNA level among species (Hodges & Arnold 1994a; Kay et 

al. 2006; Whittall et al. 2006; Whittall & Hodges 2007). Thus, resources developed from one 

species are often readily transferable to most other species of the genus (Whittall et al. 2006; 
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Yang et al. 2005). This transferability across species that vary markedly in ecology and 

morphology is a great advantage to Aquilegia as a model system.  

 

At the core of the development of new model species is the creation of an EST database 

(Abzhanov et al. 2008). An EST database is ideal for the identification of candidate genes (e.g., 

Hodges & Derieg 2009), the development of expression arrays and can be used for 

phylogenomics (Abzhanov et al. 2008). Such a database becomes increasingly useful as the full 

transcriptome becomes represented. For the Aquilegia EST database (the Aquilegia Gene Index, 

AqGI, http://compbio.dfci.harvard.edu/tgi/cgi-bin/tgi/gimain.pl?gudb=aquilegia), mRNA was 

isolated from a broad range of tissues and developmental stages including vegetative and floral 

apical meristems, flowers from early buds through anthesis, as well as leaves and roots from 

hybrids of A. formosa X A. pubescens. This diversity and emphasis on flowers was designed to 

capture a large portion of the transcriptome and those genes involved with floral development in 

particular. In addition, the mRNA was selected for full-length transcripts and normalized in order 

to obtain as many transcripts with their entire, or nearly entire, sequence.  

 

The current version of the AqGI (release 2.1) contains over 85,000 sequences that assemble into 

13,556 tentative consensus (TC) sequences and 7,278 singletons. This is likely to represent a 

high percentage of Aquilegia genes, given that Arabidopsis currently has just over 27,000 

protein-coding genes (TAIR9). The Aquilegia TCs average 1,293 bp in length (Fig. 4), close to 

the mean length found for eukaryotic genes (1,346 bp; Xu et al. 2006). This similarity suggests 

that most of the TCs in the AqGI represent near full-length transcripts. Many of the genes have 

been classified using GO vocabularies to various molecular functions, biological processes and 
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cellular components (Fig. 5A-C). As expected, general categories such as ‘catalytic activity’ and 

‘cellular processes’ are highly represented, but there is also a broad range of classifications 

highlighting the diversity of genes represented. Thus, the AqGI provides an excellent resource 

for searching for homologs of specific genes and also for transcriptome studies using either 

oligonucleotide arrays or next generation sequencing. 

 

In addition to the AqGI, other genetic and genomic tools are being developed for Aquilegia. 

Currently there are three BAC libraries, two for A. formosa and one for Aquilegia coerulea 

Goldsmith, an inbred horticultural line. The A. formosa BAC libraries have been fingerprinted 

and assembled into a physical map 

(https://www.genome.clemson.edu/activities/projects/aquilegia/pmap/). These maps will greatly 

aid in the assembly of a complete genome sequence, which is currently in production at the DOE 

Joint Genome Institute. A complete genome sequence will be especially useful for identifying 

the genes underlying genetic variants.  

 

While the above resources are ideal for identifying candidate genes, in order to test if they 

actually influence specific traits, a functional assay is essential (Abzhanov et al. 2008). Luckily, 

we have been able to adapt a reverse genetic tool, virus-induced gene silencing (VIGS), for use 

in Aquilegia (see Gould & Kramer 2007 for detailed protocol). This approach uses the tobacco 

rattle virus to induce RNAi-based silencing of targeted genes (Burch-Smith et al. 2004). This 

method is especially useful since the effect of repressing gene expression can be observed in a 

matter of weeks, but it also has a number of disadvantages (Gould & Kramer 2007).  These 

include the fact that genes can only be down-regulated, not over-expressed, and the fact that 
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silencing often occurs in clonal sectors of varying size rather than constitutively in all tissues. In 

order to address these problems, we are working to develop stable transformation as a 

complement to VIGS.  We believe that Aquilegia may be a good candidate for dip transformation 

due to the fact that its carpels do not close until quite late in development (Tucker and Hodges 

2005), but we are also pursuing the possibility of tissue culture transformation. 

 

4. Developmental genetics 

The diverse floral organ types of Aquilegia bring several evolutionary questions to mind. Are the 

B class genes responsible for petaloid aspects in the first whorl sepals? If they are, how is the 

identity of the second whorl petals distinguished from that of the petaloid sepals? What genetic 

pathways are responsible for the development of nectar spurs on the petals? How is the identity 

of the fifth organ type, the staminodia, determined? Answering all of these questions starts with 

identifying homologs of the floral organ identity genes from Aquilegia as well as related taxa. 

 

Multiple studies of the MADS box genes have found that they are highly prone to retain 

duplicate copies, which may lead to divergences in gene function (Kramer & Zimmer 2006; Litt 

& Irish 2003; Zahn et al. 2005a). For this reason, it is critical to first establish whether paralogs 

are present and, if so, when the duplication events occurred. In the case of Aquilegia, we have 

detected three AP3 homologs and one PI (Kramer et al. 2003). The multiple AP3 paralogs are 

derived from relatively ancient events that predated the diversification of the Ranunculaceae and, 

most likely, the bulk of the order Ranunculales (Kramer et al. 2003; Rasmussen et al. 2009). In 

keeping with these ancient paralogs, the expression patterns of the AP3 loci, termed AqAP3-1, 

AqAP3-2 and AqAP3-3, are quite different from one another (Fig. 1) (Kramer et al. 2003; Kramer 
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et al. 2007; Rasmussen et al. 2009). AqAP3-1 is broadly expressed in petal, stamen and 

staminodium primordia at very early stages but, as soon as the carpels initiate, this domain 

begins to contract until it only comprises the staminodia (Kramer et al. 2007). The second 

paralog, AqAP3-2, is turned on slightly later in a region covering the stamens and staminodia but 

not the petals. At slightly later stages, it shifts to exclude the staminodia but comes on in the 

petals. Lastly, AqAP3-3 is very specifically expressed in the petals throughout their development. 

The other B gene homolog, AqPI, is broadly expressed throughout the petals, stamens and 

staminodia. This is in keeping with the finding that the AqPI protein heterodimerizes specifically 

with all three AP3 proteins (Kramer et al. 2007). The spatially and temporally distinct expression 

patterns of each AP3 paralog are suggestive of subfunctionalization (Force et al. 1999). 

 

Subfunctionalization is an evolutionary process whereby complex, ancestral functional 

repertoires become genetically parsed among duplicate gene copies. In the case of these B class 

gene homologs, it would appear that an ancestral expression domain encompassing the petals and 

stamens throughout development has become subdivided such that one copy is primarily 

expressed at early stages (AqAP3-1), another is primarily in stamens (AqAP3-2) and the third is 

limited to petals (AqAP3-3) (Kramer et al. 2007). This situation is made more complex by the 

presence of the staminodia, which are a novel organ type that evolved very recently (Ro & 

McPheron 1997; Tucker & Hodges 2005). In these organs, we see specific late expression of the 

AqAP3-1 paralog to the exclusion of the other two (Kramer et al. 2007).  This suggests an 

attractive hypothesis whereby the evolution of this new organ identity has been facilitated by the 

presence of B class gene paralogs– an example of neofunctionalization following gene 

duplication (Force et al. 1999). 
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Another important point is in regard to the petaloid sepals. The expression of the B gene 

homologs can be detected in these organs at later stages using RT-PCR but in situ hybridization 

at early developmental stages does not detect AP3 and PI expression (Kramer et al. 2003; 

Kramer et al. 2007). Given that studies in core eudicot models indicate that expression is 

required from inception to determine proper organ identity (Bowman et al. 1989; Zachgo et al. 

1995), these results indicate that the loci are not contributing to the identity of the petaloid 

sepals. The data do leave open the possibility that later stage expression could be important for 

promoting petaloid features, which actually appear fairly late in development (Kramer et al. 

2007). 

 

These hypotheses require rigorous functional testing in order to determine whether the loci are 

actually required for the identity of petals, stamens and staminodia as well as the late petaloidy 

of the sepals. Application of VIGS to the AqPI locus resulted in dramatic homeotic 

transformations of petals into sepals and both stamens and staminodia into carpels (Kramer et al. 

2007). A strongly modified phenotype would be expected given the fact that AqPI is required for 

the function of all three AqAP3 paralogs due to their heterodimerization. These findings 

demonstrate that the B class genes are, in fact, essential to petal, stamen and staminodium 

identity. Interestingly, however, there was no effect on sepal identity and the conical epidermal 

cells, which are among the hallmarks of petaloidy, were not affected. This leads us to believe 

that the B gene homologs are not critical to either the identity of the sepals or their petaloidy. 

This finding is in keeping with studies of other taxa with petaloid sepals that have similarly 
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found that B gene homologs are not expressed in these organs (Geuten et al. 2006; Jaramillo & 

Kramer 2004; Park et al. 2004; Park et al. 2003). 

 

Several research directions immediately suggest themselves from these results. First, we would 

like to use VIGS to knockdown each of the three AP3 paralogs in turn. This will determine their 

degree of redundancy and whether they have specific functions in different whorls. One 

challenge will be the specific targeting of each paralog separate from the others, which may not 

be possible using VIGS, although other studies indicate a high degree of specificity (Liu et al. 

2004). Another matter of considerable interest is how petaloidy is actually promoted in the 

sepals, since this does not appear to involve B gene homologs. To pursue this question, we are 

taking a mixed approach of both forward and reverse genetics/genomics. In the context of 

reverse genetics, which relies on candidate genes, we will examine two loci called AqSEP1 and 

AqSEP2. These genes are homologs of the Arabidopsis E class genes SEPALLATA1/2/4 and 

show sepal-specific expression in Aquilegia (Kramer et al. 2007). When AqPI is silenced and the 

petals are transformed into sepals, the expression of these genes expands into the second whorl, 

suggesting that they are closely associated with sepal identity. We will also take a gene discovery 

approach that utilizes next generation sequencing and available horticultural homeotic mutants of 

Aquilegia (Fig 2F). By comparing the floral transcriptome of flowers composed almost 

exclusively of sepals to that of flowers composed primarily of petals, we hope to be able to 

identify sepal-specific gene networks that are involved in promoting petaloidy. This experiment 

has the added benefit of identifying petal-specific pathways, which could include genes involved 

in nectary and spur development. As noted above, the Aquilegia CRC ortholog does not appear 
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to be involved in nectary development (Lee et al. 2005) so we do not currently have candidate 

genes for the nectary. 

 

For the spur itself, we are considering an array of candidate loci including KNOX genes and 

several genes controlling the balance between cell division and expansion such as JAGGED, BIG 

PETAL, and AINTEGUMENTA (reviewed Irish 2008). This line of research can be explored on 

an evolutionary scale as well. Since the nectar spur is specific to Aquilegia, candidate loci for its 

development can be studied comparatively relative to outgroup taxa in order to understand how 

these genetic modules were recruited to function in spur development. Within the genus, the 

critical question is how diversification of spur length and morphology is controlled at the genetic 

level. Candidate genes for spur development will, therefore, also become candidates for QTL 

studies of natural variation in spur morphology. Previous genetic studies using interspecies 

hybrids have suggested that there may be relatively few loci controlling spur initiation with 

higher numbers of genes modulating length (Prazmo 1965). 

 

5. Phylogeny, Ecology & Pollination biology 

While Aquilegia is ideal for dissecting the genetic basis of floral organ differentiation, the genus 

has also long been noted for the diversity of shape and colour of its petals in association with 

variation in pollinators. For example, just among North American species, spur length varies 

over a 16-fold range (Whittall & Hodges 2007). In addition, spurs can be straight or highly 

curled and the diameter of the tube varies, especially at the opening, from fairly broad to quite 

narrow (Fig. 6). Petal blades vary similarly in length (both absolute and relative to spur length), 

width, and orientation to the floral axis (Fig. 2A-D, 6). Finally, the colour of the spurs varies 
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tremendously including red, blue, purple, violet, yellow and white. Both the spur and the blade 

may be the same colour (Fig. 6A-C) or, often, the blade may be wholly or partially contrasting 

with the spur (Fig. 6D-F). Much of this variation in petals has been correlated with the types of 

pollinators visiting Aquilegia, thus, establishing these traits as adaptations. The genetic dissection 

of this variation is therefore of particular interest as debate continues over the types of mutations 

and the genes involved in adaptation (e.g., Hoekstra & Coyne 2007).  

 

Darwin himself was interested in the association of petal spurs with their pollinators and 

proposed a co-evolutionary model to account for the exceptionally long spurs of Angraecum 

sesquipedale (Darwin 1862). He envisioned reciprocating evolution between a pollinator’s 

tongue and the plant’s spur; when the average tongue length is shorter than spur length, longer-

tongued individuals have an fitness advantage by gaining more nectar rewards, and when the 

average spur length is shorter than tongue length, longer spurred individuals have a fitness 

advantage by having more pollen dispersed and received. This reciprocating selection pressure 

would then lead to a gradual lengthening of both tongues and spurs. Alternatively however, 

evolution may be one-sided with floral-spurs evolving to fit the tongue-lengths of pollinators, 

which do not evolve in response to spur-length (Wasserthal 1997). This hypothesis suggests that 

increases in spur length will occur during transitions between primary pollinators with different 

tongue lengths (Wasserthal 1997). Recently these hypotheses were tested phylogenetically using 

the North American Aquilegia species (Whittall & Hodges 2007). Transitions between 

pollination classes were found to be directional (bee to hummingbird and hummingbird to 

hawkmoth) with concomitant increases in spur length. In addition, models of the pace of spur-

length evolution strongly favored those where evolution occurred primarily at the time of 
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speciation. Thus, in Aquilegia, spur-length evolution has likely proceeded primarily due to rapid 

adaptation to the already established tongue-lengths of its primary pollinators rather than in a co-

evolutionary race as envisioned by Darwin and others (Whittall & Hodges 2007; Hodges & 

Whittall 2008).  

 

The match between spur and pollinator tongue length has been studied in depth in Aquilegia 

formosa and A. pubescens along with a number of other petal characteristics. Over 50 years ago, 

Verne Grant used these two species, as the first example of how floral characters could be 

associated with specific pollinator visitation and thus affect the degree of reproductive isolation 

between species (Grant 1952). In particular, Grant noted the differences between the species in 

the colour and length of the petal spurs and blades. He found that hummingbirds visited A. 

formosa with short, red and yellow petals while hawkmoths visited A. pubescens with long, 

white or pale-yellow petals. Given that these two species are highly intercompatible, Grant 

concluded that these petal traits were a major source of reproductive isolation between these 

species due to their affect on pollinator discrimination (Grant 1952, 1976). Chase & Raven 

(1975) challenged Grant’s conclusion because they observed instances of visitation by 

hummingbirds and hawkmoths to both species. Grant (1976) then disputed Chase & Raven’s 

findings noting that their observations were not made when both species were blooming 

simultaneously, the situation most relevant to reproductive isolation. Subsequently, simultaneous 

observations of both species in natural stands and in experimental arrays showed that 

hummingbirds and hawkmoths do strongly differentiate between these species (Fulton & Hodges 

1999; Hodges et al. 2002). Furthermore, manipulative experiments showed that spur length 

strongly affects pollen removal (and likely deposition on stigmas as well), while flower colour 
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and orientation strongly affect pollinator visitation (Fulton & Hodges; Hodges et al 2002) and 

these traits show steeper clines than neutral genetic markers (Hodges & Arnold 1994b). Thus 

both petal colour and spur-length can directly affect reproductive isolation and speciation in 

Aquilegia.  

 

In addition to spur length, the colour of the petals has been strongly linked to different 

pollination syndromes in Aquilegia (Hodges et al. 2004; Whittall & Hodges 2007). Species with 

predominantly bee pollination tend to be blue-purple, while those with strong hummingbird 

visitation are red and those with hawkmoth visitation tend to be white or yellow (Fulton & 

Hodges 1999; Hodges et al. 2004; Brunet 2009). The adaptive nature of these colour differences 

has been best studied with hawkmoths, which discriminate against red flowers in favor of white 

ones (Hodges et al. 2004). In A. coerulea, where flower colour can be polymorphic within 

populations (blue and white), populations with consistent hawkmoth visitation tend to have 

whiter flowers (Brunet 2009) and in populations with variable abundance of hawkmoths, white 

flowers set more seed when they are present (Miller 1981). Collectively these studies strongly 

support the evolution of light-coloured flowers as an adaptation to hawkmoth pollination. 

 

Anthocyanin pigments produce the blue/purple and red pigments of Aquilegia flowers while 

yellow is produced by carotenoids (Taylor 1984). Thus a major transition in Aquilegia has been 

from flowers producing anthocyanins (hummingbird pollination) to those lacking these pigments 

(hawkmoth pollination) (Whittall et al. 2006). Given that petal colour has been a major focus of 

genetic studies since Mendel’s original experiments with the garden pea, a great deal is known 

about the genes underlying the anthocyanin biochemical pathway (ABP) including the 
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transcriptional regulators (reviewed in Hodges and Derieg 2009). The core pathway consists of 

only six enzymatic steps and these loci, along with their transcriptional regulators, have been the 

subject of evolutionary studies in a number of species (Martin & Gerats 1993; Rausher 2008; 

Streisfeld & Rausher 2009). However, in addition to these genes, a number of other enzymatic 

pathways (e.g., those producing flavones and flavonols) intersect with the core pathway and can 

cause flux away from anthocyanin production and thus may influence flower colour (see Hodges 

& Derieg 2009).  

 

Phylogenetic analysis indicates multiple independent transitions to hawkmoth pollination in 

Aquilegia, all of which involve the loss of anthocyanins from petals. This distinctive pattern has 

allowed us to test whether convergence in phenotype is precipitated by convergence at the 

molecular level (Whittall et al. 2006). Across multiple independent losses of anthocyanins, 

Whittall et al. (2006) found that most involve down-regulation of multiple genes late in the core 

ABP. This finding, along with multiple studies suggesting that the losses of floral anthocyanins 

in Aquilegia is due to single QTL (Prazmo 1965; Taylor 1984; Hodges et al. 2002), point to 

mutations in translational regulators as common causes of these evolutionary transitions. 

However, ideally, all the genes in the ABP, the pathways that intersect with the ABP, and their 

translational regulators should be evaluated. Using the AqGI and rtPCR, Derieg & Hodges 

(2009) identified 34 candidate genes for the entire flavonoid pathway and its regulators. To 

monitor the expression of all of these genes with traditional methods such as rtPCR would be a 

daunting task. However, with the advent of next-generation sequencing, it should be possible to 

monitor both the expression and sequence variation of all of these genes simultaneously by 

sequencing directly from mRNA. Another future direction will be to establish that the candidate 
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genes, especially the translational regulators, function as predicted. This could be accomplished 

utilizing VIGS to target these genes and determining if anthocyanin production is suppressed 

(Gould & Kramer 2007).   

 

While the shape and colour of the petals of Aquilegia clearly have been central to adaptation to 

pollinators and speciation in the genus, the evolution of the nectar spur itself is especially 

intriguing. The origin of nectar spurs across numerous groups of flowering plants has been 

correlated with species diversification and termed a ‘key innovation’ (Hodges & Arnold 1995; 

Hodges 1997; Kay et al. 2006). Thus, as noted above, an important goal is to identify the genetic 

program that generates the spur itself. Prazmo (1961) performed now classic experiments by 

crossing the spurless columbine, A. ecalcarata, and spurred species. When she classified F2 

offspring from these crosses as spurred/non-spurred, Prazmo found simple Mendelian ratios 

suggesting that only one or two QTL were responsible for the presence of a spur. Plants that did 

possess petal spurs had a broad range of spur length suggesting a more complex and polygenic 

control of this aspect of spur development. If A. ecalcarata represents the ancestral character 

state of lacking spurs, then these experiments would indicate that spurs could evolve through one 

or two mutations (Gottleib 1984; Orr & Coyne 1992). However, phylogenetic analysis suggests 

that A. ecalcarata is nested within Aquilegia and that it represents the loss of petal spurs rather 

than the ancestral state (Hodges and Arnold 1995). Thus the origin of nectar spurs may have 

required a more complex set of genetic changes. Regardless, comparisons of gene expression 

patterns between A. ecalcarata and spurred species, as well as between progeny of segregating 

populations will likely provide strong candidates for important genes involved with the 

development of this novel trait. 
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6. Deeper questions about the assessment of homology in petals 

As discussed in the Introduction, petals are thought to have evolved many times independently 

across the angiosperms. These ideas about independent derivations, particularly in regards to 

andropetals, have been greatly elaborated in the family Ranunculaceae. Starting with the earliest 

morphological studies, the second whorl organs of many members of the family were set apart as 

“nectar leaves” or, more poetically, “honey leaves” (Prantl 1887). Although these organs are 

sterile and positioned in the second whorl of the flower, thereby fitting the broader definition of 

petals, they were considered to have evolved completely independently on many occasions, each 

case resulting from a sterilization of outer stamens (Hiepko 1965; Prantl 1887; Tamura 1965; 

Worsdell 1903). Evidence for these derivations is drawn from vascular patterns, developmental 

and morphological similarities, and homeotic interconversions. Such explicit hypotheses make 

the Ranunculaceae a very attractive group for investigating the genetic evidence for independent 

petal derivations. One caveat, however, is the problem with interpreting expression of B gene 

homologs – does “conserved” expression support a deeply conserved petal identity program or 

does it simply indicate independent recruitment of homologous genes? In the case of Aquilegia, 

there are two important factors. First, we have moved beyond mere expression data to 

demonstrate that the B gene homologs are essential to petal identity (Kramer et al. 2007). 

Second, the AP3 duplications provide us with a unique and fortuitous marker for petal identity: 

the AqAP3-3 ortholog is petal specific in its expression. This condition could have arisen in 

several different ways, however. If the petals of Aquilegia evolved independently relative to 

those of other Ranunculaceae, then AqAP3-3 could have been recruited to its petal-specific 

domain quite recently. Under this model, we would not expect orthologs of AqAP3-3 to have 
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similar expression patterns in other genera. On the other hand, if a commonly inherited genetic 

program controls petals in the Ranunculaceae, then other genera could show the same petal-

specific expression. 

 

We used RT-PCR to survey gene expression patterns among orthologs of AqAP3-1, -2 and -3 

across thirteen members of three families of the Ranunculales, which was combined with 

previous studies of seven genera from additional ranunculid families. We found that among taxa 

bearing petals, seven of eight genera of the Ranunculaceae and both of the surveyed 

Berberidaceae genera have AqAP3-3 orthologs that are specifically expressed in the petals 

(Rasmussen et al. 2009). Furthermore, members of this gene lineage tend not to be expressed in 

flowers that lack petals, such as those of Caltha and Thalictrum. We believe that the most 

parsimonious explanation for this pattern is that a commonly inherited petal identity program is 

functioning across the Ranunculaceae and Berberidaceae families. Under this model, the 

apetalous taxa of the two families likely represent petal loss events rather than an ancestral 

condition. One important caveat, however, is that there is at least one case where petals have 

clearly reappeared from an apetalous ancestor, that being the Atragene and Naraveliopsis 

sections of the genus Clematis (Miikeda et al. 2006). 

 

This hypothesis regarding process homology among Ranunculaceae petals contradicts over a 

century of botanical theory and, therefore, must be thoroughly evaluated. Functional tests on 

Aquilegia AqAP3-3 as well as its orthologs in several other genera would be ideal. At the same 

time, it is equally important to reconsider certain typologies regarding the “nectar leaves” of the 

Ranunculaceae. For example, the common presence of nectaries on Ranunculaceae petals has 
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been considered a feature that associates the petals with the stamens (Prantl 1887; Worsdell 

1903). However, nectaries are never present on the stamens of flowers that lack petals (Tamura 

1993), which would seem to suggest that their common presence on petals is a trait that 

associates the petals with each other rather than the petals with stamens. Given our already 

detailed understanding of plant developmental genetics, it is a timely endeavor to reevaluate such 

long-held concepts, which were largely developed to provide structure to a field that had few 

consistent characters to use for assessments of the homology and evolutionary derivation of 

floral organs. 

 

7. Concluding Remarks 

Aquilegia is not simply a model species but a model genus, with up to 70 different species that 

can be used to address a wide range of biological questions. We have focused on the evolution 

and ecology of petals and petaloid organs since they offer an opportunity to explore the full 

spectrum of genetics to morphology to evolutionary diversification to ecology of biotic 

interactions. However, future research into the evolutionary genetics of nectar spurs and floral 

colour promises even more exciting results. Of course, there is more to Aquilegia than just petals. 

In addition to the novel staminodia, their compound leaves, cymose inflorescences, vernalization 

response, soil adaptations and perenniality are all worthy of investigation. The development of 

genomic data for a wide range of Aquilegia species will allow these characteristics to be fully 

explored by a growing community of researchers. 
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Fig. 1. A. The classic ABC model with the addition of the E function. B. The corresponding 

ABCE genes from Arabidopsis. The A class genes APETALA1 (AP1) and APETALA2 (AP2) 

specify sepals (SEP) and with the B class genes, APETALA3 (AP3) and PISTALLATA (PI), 

specify petals (PET). The B class genes with the C class gene AGAMOUS (AG) specify stamens 

(STA) and the C class gene alone specifies carpels (CAR).C. and D. The modified ABC model 

of Aquilegia based on expression studies of the B gene homologs. C. Corresponds to early 

developmental stages while D. reflects expression after carpel initiation. 

 

Fig. 2. Floral variation across natural species and one cultivar of Aquilegia. A. A coerulea. B. A. 

shockleyi. C. A. pubescens. D. A. chrysantha. E. A. coerulea var. daileyae, which lacks spurs. F. 

A. vulgaris ‘Black Tower’, which has stamens transformed into petals. Photos: A, Nathan 

Derieg; B-E, Scott Hodges; F, Elena Kramer. 

 

Fig. 3. Simplified phylogeny of the angiosperms based on Moore et al. (2007) showing the 

position of Aquilegia relative to other major model systems. 

 

Fig. 4. Frequency distribution of the length of tentative consensus (TC) sequences in the AqGI. 

 

Fig. 5. Classification of sequences from the AqGI to GO vocabularies. A. Molecular Function, B. 

Biological Processes, C. Cellular Component. 

 

Fig. 6. Comparison of individual petals among species of Aquilegia. a. A. longissima, b. A. 

pinetorum, c. A. chrysantha, d & e, A. formosa, f. A. flabellata.  
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