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The dogfish ortholog of aquaporin 4 (AQP4) was amplified from cDNA using degenerate
PCR followed by cloning and sequencing. The complete coding region was then obtained
using 5′ and 3′ RACE techniques. Alignment of the sequence with AQP4 amino acid
sequences from other species showed that dogfish AQP4 has high levels (up to 65.3%)
of homology with higher vertebrate sequences but lower levels of homology to Agnathan
(38.2%) or teleost (57.5%) fish sequences. Northern blotting indicated that the dogfish
mRNA was approximately 3.2 kb and was highly expressed in the rectal gland (a shark fluid
secretory organ). Semi-quantitative PCR further indicates that AQP4 is ubiquitous, being
expressed in all tissues measured but at low levels in certain tissues, where the level
in liver > gill > intestine. Manipulation of the external environmental salinity of groups of
dogfish showed that when fish were acclimated in stages to 120% seawater (SW) or 75%
SW, there was no change in AQP4 mRNA expression in either rectal gland, kidney, or
esophagus/cardiac stomach. Whereas quantitative PCR experiments using the RNA sam-
ples from the same experiment, showed a significant 63.1% lower abundance of gill AQP4
mRNA expression in 120% SW-acclimated dogfish.The function of dogfish AQP4 was also
determined by measuring the effect of the AQP4 expression in Xenopus laevis oocytes.
Dogfish AQP4 expressing-oocytes, exhibited significantly increased osmotic water perme-
ability (P f) compared to controls, and this was invariant with pH. Permeability was not
significantly reduced by treatment of oocytes with mercury chloride, as is also the case
with AQP4 in other species. Similarly AQP4 expressing-oocytes did not exhibit enhanced
urea or glycerol permeability, which is also consistent with the water-selective property of
AQP4 in other species.
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INTRODUCTION
Aquaporins (AQPs) are commonly known as cell membrane water
channel proteins although various isoforms exist that exhibit other
transport properties including having permeability’s for small
solutes such as glycerol and urea. In mammals, there are 13 iso-
forms known (numbered 0–12), where AQPs 0, 1, 2, 4, 5 fall into a
sub-group of water-selective channels and where AQP1 is the most
ubiquitously expressed in mammalian tissues (Ishibashi et al.,
2009; Zelanina, 2010). Most AQPs are reversibly inhibitable by
mercury, although one exception to this is AQP4, whose original
name was MIWC (mercury insensitive water channel; Hasegawa
et al., 1994; Jung et al., 1994). Mammalian AQP4 is expressed in
a number of tissues but is not as ubiquitous as AQP1 (Ishibashi
et al., 2009), AQP4 is particularly abundant in the brain (Amiry-
Moghaddam et al., 2010; Brian et al., 2010; Zelanina, 2010), but
is also expressed in the retina (Goodyear et al., 2009; Hirrlinger
et al., 2011), salivary gland (Delporte and Steinfeld, 2006), res-
piratory tract (Matsuzaki et al., 2009), heart and muscle (Butler
et al., 2006; Wakayama, 2010), gastrointestinal tract (Ma and Verk-
man, 1999; Xu et al., 2009), and kidney (Nejsum, 2005). The

mammalian AQP4 gene is also known to produce alternative splice
forms (Crane et al. (2009); Strand et al., 2009; Fenton et al., 2010).
Several of these variants produce proteins with a variable sized
N-terminal region.

In lower vertebrates very little is known about AQPs. The
sequence of AQP4 has been determined in both Pacific and
Atlantic hagfish (Cutler, 2007a; Nishimoto et al., 2007) and
information is also available on hagfish AQP9 (Cutler, 2006a),
but very little information is available in other lower verte-
brate taxonomic groups such as in the elasmobranches (Cutler
et al., 2005; Cutler, 2006b; Cutler, 2007b). The studies presented
in this article (and its companion article) were performed to
begin to rectify this situation. However at the outset when lit-
tle is known, basic information needs to be determined. This
includes (1) showing which organs or tissues express AQP4
and at what level (2) determining the functional properties of
expressed AQP4 protein to show functional similarities or dif-
ference to AQP4 in other species and (3) undertaking an ini-
tial investigation to see if AQP4 might be involved in body
fluid homeostatic mechanisms by perturbing the fish’s osmotic
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environment to determine whether this effects the level of AQP4
expression.

MATERIAL AND METHODS
CLONING AND SEQUENCING
Dogfish AQP4 was cloned and sequenced using well established
methods (Cutler and Cramb, 2002a,b, 2008; Martinez et al., 2005)
of degenerate PCR followed by 5′ and 3′ RACE. AQP4 degenerate
primers were produced using an elasmobranch-targeted primer
design with sequence information obtained from an aquaporin
sequence cloned from the bull shark (Cutler et al., 2005). The
sense primer was 5′-CAYRTIAGYGGI GCICAYRTIAAYCC-3′ and
the antisense primer 5′-GGICCIACCCARTAIACCCART G-3′ the
derived amino acid sequences of these primers are located at
117–125 and 257–264 of the alignment (as indicated) respectively
(Figure 1.). Nucleotides using the base inosine (I) were incor-
porated into primers at positions of major sequence uncertainty.
PCR conditions used with these primers varied but was essen-
tially similar to: −96˚C – 1 s, 55˚C – 15 s, and 72˚C – 30 s for
40 cycles. This amplifies an expected and actual cDNA fragment
of 443 bp. cDNA for amplifications was made from dogfish total
RNA from both rectal gland and kidney (extracted as in Cutler and
Cramb, 2008), using Superscript III reverse transcriptase (Invitro-
gen) according to manufacturers instructions, with the exception
that 65˚C was used for RNA denaturation, as 1 μl of SUPERase•In
thermostable RNase inhibitor was additionally added (Ambion).
cDNA fragments were gel purified using a Gene clean kit (MP
Biomedicals) and were cloned using a TOPO TA cloning kit for
sequencing (Invitrogen). Sequencing reactions were performed
by CUGI at Clemson University, S.C. 5′ and 3′ RACE primers
were designed from the sequences obtained and RACE was per-
formed using a Marathon RACE cDNA amplification kit (Clon-
tech). Sequences were analyzed and aligned using Genejockey II
software (Biosoft).

OSMOTIC MANIPULATION EXPERIMENTS
In order to determine whether AQP4 was directly involved in any
kind of osmoregulatory or body fluid volume regulation processes
in the shark, an attempt was made to disturb the shark regula-
tory system to try to cause changes in the expression of effector
protein components. In other words, the external environmen-
tal salinity of the fish was manipulated to try to modulate the
expression of aquaporin (and others) genes, such as AQP4. At the
Mount Desert Island Biological Laboratory (MDIBL) at Salisbury
Cove, in Maine, small (800–1500 g) adult mixed sex dogfish were
(otherwise) randomly selected from a stock tank and were unfed
during the experiment. All experimental animal protocols used
were in compliance with IACUC regulations and had both GSU
and MDIBL IACUC approval. The fish were placed in pairs in
four-foot experimental tanks (approximately 1000 l). The accli-
mation of dogfish to dilute seawater (SW) in stages over 7 days
was a protocol modified from Panabecker and Danzler (2005).
A similar protocol to acclimate fish to 120% SW was then also
devised. Two groups of sharks (six fish per group) were held in
SW adjusted to either 75% salinity or 120% salinity in stages.
The stages were 85% 3 days, 80% 2 days, and 75% 2 days or 110%
3 days, 115% 2 days, 120% 2 days. The acclimation of dogfish to

dilute SW in stages over 7 days was a modified protocol from
Panabecker and Danzler, 2005. A matching protocol to acclimate
fish to 120% SW in stages was also then devised. Differing salin-
ities were produced by the addition of de-chlorinated tap water,
or sea salt (Instant Ocean) using a re-circulating system including
a cooler to maintain temperature and biofilters. Control animals
were kept in 100% salinity (normal) SW (around 31–32 ppt at
MDIBL) for the same time period. Salinity was controlled using a
model 85 dissolved oxygen, conductivity, salinity, and temperature
meter (YSI). At the end of the 7 day experiment, fish were sacri-
ficed and gill arches, kidney, rectal gland, esophagus (including the
fundic stomach), and intestine were removed. Kidney and rectal
gland were homogenized using a Polytron homogenizer (Kinemat-
ica). Gill epithelia were removed by scraping with a razor blade.
Combined esophageal/cardiac stomach epithelia were removed
by scraping with a microscope slide. The intestines were cleaned
as much as possible and waste material removed. The intestinal
epithelium was then also scraped using a microscope slide. Gill,
esophageal/cardiac stomach, and intestinal epithelia were homog-
enized using a syringe and 16 gage needle. All tissues were homog-
enized in solution D for RNA extraction as previously outlined
(Cutler and Cramb, 2008). Levels of AQP4 mRNA were then mea-
sured using Northern blots, performed using a 32P labeled AQP4
DNA probe (purified degenerate PCR fragment). Blots were quan-
tified as previously,using electronic autoradiography via an Instant
Imager (Canberra Packard). As the level of AQP4 expression in gill
was too low to be detectable by this technique, quantitative PCR
(QPCR) was instead employed using total RNA samples normal-
ized utilizing rRNA levels measured with a gel documentation and
analysis system (Syngene). This technique was used instead of the
use of housekeeping genes as (1) few housekeeping are available
for S. acanthias (2) In any case supposed housekeeping genes such
as GAPDH (and others) can vary in different circumstances (De
Jonge et al., 2007; McCurley and Callard, 2008) and (3) testing
of housekeeping genes in any case requires comparison to rRNA
levels. QPCR was performed using a MX 4000 QPCR machine
and Brilliant II QPCR master mix (Stratagene). Statistical analy-
sis of quantitative results was performed using Statview statistical
analysis software (Abacus Concepts) using ANOVA and a Fisher
post hoc test.

OOCYTE EXPRESSION STUDIES
Production of aquaporin cRNA for micro-injection
A full-length cDNA encompassing the entire AQP4 coding region
was amplified from rectal gland cDNA using PCR employ-
ing highly accurate Phusion DNA polymerase (Finnzymes),
the resulting DNA band was gel purified and cloned into
a pXT7 expression vector, which contains a T7 promoter
upstream of the multiple cloning site. Plasmid DNA for dog-
fish AQP4 was cut with restriction enzyme XbaI to linearize
it and prevent run on of transcription. cRNA transcripts were
produced using a mMessage mMachine kit (Ambion) utiliz-
ing T7 DNA-dependent RNA Polymerase. The cRNA pro-
duced was purified using phenol/chloroform extraction fol-
lowed by isopropanol precipitation, dissolved in RNAse free
water and quantified using a Biophotometer spectrophotometer
(Eppendorf).
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FIGURE 1 | Alignment of Dogfish AQP4 [Accession number (Ac. No.)

JF944824] amino acid sequence with AQP4 sequences from Human

(Homo sapiens; Ac. No. NM_001650.4; 63.0%), Rat (Rattus norvegicus;

Ac. No. AF144082; 62.5%), Chicken (Gallus gallus; Ac. No.

NM_001004765; 65.3%), African ClawedToad (Xenopus laevis; Ac. No.

NM_001130949.1; 56.7%), Zebrafish (Danio rerio; NM_001003749;

57.5%), and Hagfish (Eptatretus burgeri ; Ac. No. AB258403.1; 38.2%).

Percentages in parentheses represent amino acid homologies. Numbers

indicate position within the alignment. • Symbols indicate positions with
identical amino acids. | Symbols indicate positions with chemically similar
amino acids. Bold underline _ indicates the position of the peptide
sequences used to raise the polyclonal antibodies. Wavy underline
indicates the position of amino acids sequences used to make degenerate
primers for initial AQP4 OCR amplifications. Double underline indicates the
positions of putative N -glycosylation sites with the dogfish AQP4
sequence.

Preparation of Xenopus laevis oocytes
All experiments were done in accordance with IACUC approved
protocols at Beth Israel Deaconess Medical Center. Xenopus

laevis frogs (Harvard Institute of Medicine, Boston, MA, USA)
were anesthetized in 1 l 0.5% (w/v) 3-aminobenzoic acid ethyl
ester methanesulfonate salt (Tricaine) containing ice for 20 min.
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Oocytes were removed bilaterally from the abdominal cavity and
the egg mass cut into small pieces and placed in calcium free
ND96 buffer (in mM; 96 NaCl, 1 KCl, 1 MgCl2 5 Hepes, pH 7.5).
Oocytes were then defolliculated in 2 mg/ml collagenase (Sigma-
Aldrich), 0.2 mg/ml trypsin inhibitor (Sigma-Aldrich) in calcium
free ND96 for 55 min with rotation on an Adams Nutator before
washing three times with phosphate buffer [in mM; 100 K2HPO4,
0.1% (w/v) BSA, pH 6.5] and then allowing oocytes to incubate in
phosphate buffer for 10 min at room temperature. Oocytes were
transferred to calcium free ND96 and then to modified Barth’s
solution [MBS; in mM; 88 NaCl, 1 KCl, 2.4 NaHCO3, 0.82 MgSO4,
0.33 Ca(NO3)2, 0.41 CaCl2, 10 Hepes, pH 7.4, supplemented with
1% v/v penicillin/streptomycin] where they were maintained at
18˚C. cRNA (10 ng) of saAQP4s was injected into oocytes using a
Nanoject II Auto-Nanoliter Injector (Drummond Scientific Co.).
Control oocytes were either injected with water alone or were
uninjected. After 3 days incubation at 18˚C, oocytes were tested
for their ability to transport water, urea, or glycerol. Water trans-
port kinetics were assessed at room temperature by quantitation
of oocyte swelling after placement in hypotonic buffer (65% of
normal MBS). Time lapse video microscopy was used to capture
oocyte images every 10 s for 3 min. using an Olympus SZX7 binoc-
ular microscope equipped with a Scion CFW 1308C digital camera
(1360 × 1024 pixel resolution).

Aquaporin activity was tested over a pH range of 6.6–8.6. For
all experiments other than pH 7.4 oocytes were placed in MBS
at the tested pH for 5 min and then were swelled in hypotonic
MBS (65%) at the same pH. Studies investigating the inhibition of
water permeability by mercury were performed at pH 7.4 in MBS
containing 1 mM HgCl2.

Calculation of permeability coefficients
The images were converted to black and white in ImageJ (Rasband,
1997–2011) using the Binary function and the cross-sectional pixel
area was calculated with the Analyze Particle function. Data from
ImageJ was exported to Microsoft Excel and areas from each image
were normalized to 1.0 relative to a starting value. To calculate the
permeability coefficient (P f) the data were adjusted from area (A)
to volume (V ) by (A/Ao) = (V /V o)3/2 (Zhang et al., 1990) then
a second order polynomial equation was fit and the derivative of
the equation was used to obtain the initial rate of swelling. P f was
calculated using the equation (Zhang et al., 1990):

Pf = d (V /Vo) /dt × (1/S) × (1/V w) × (
1/�C

)

Where d(V /V o)/dt is the rate from the curve fit, V o is the ini-
tial volume of the oocyte, calculated as 5.2 × 10−4 cm3 based on
a 1 mm diameter, S is the surface area of the oocyte (0.4 cm2

Zampighi et al., 1995), V w is the molar volume of water
(18 mol/cm3), and ΔC is the concentration difference of the
applied hypo-osmotic solution in mol/cm3.

Urea and Glycerol uptake
Solute fluxes were measured by isotopic uptake of [3H]glycerol
and [14C]urea (American Radiolabeled Chemicals, St. Louis, MO,
USA). Oocytes were incubated for varying times in MBS to which
either 10 μCi/ml [14C]urea (55 mCi/mmol) and, or 10 μCi/ml

[3H]glycerol (20–40 Ci/mmol), and then made to a final concen-
tration of 2 mM with unlabelled urea or glycerol respectively. At
the end of the incubation period for uptake, oocytes were washed
six times with ice-cold buffer containing 5 mM solute. Individ-
ual oocytes were then placed in scintillation vials, had 300 μl 20%
SDS added and vortex mixed for 10–15 s before addition of 4 ml
Scintisafe scintillation cocktail. Vials were counted for 2 min in a
Packard 1500 liquid scintillation analyzer.

RESULTS
A translation of the putative dogfish AQP4 cDNA sequence (Acces-
sion number JF944824) resulting from degenerate PCR and 5′
and 3′ RACE DNA fragments is shown in Figure 1. The com-
bined cDNA produced, aligns with AQP4 sequences from other
species. The homology of the dogfish amino acid sequence shares
homology between 38.2 and 66.3%, ranging from hagfish (lowest)
to chicken (highest; see Figure 1.) Interestingly, using the same
alignment the homology of hagfish to human AQP4 was only
43.3%. The dogfish AQP4 sequence also shows two putative N -
glycosylation sites at positions 233–235 and 310–312 of the amino
acid alignment (Figure 1.) that are common to both human and
rat AQP4, but that are absent in some other species.

The first priority following cloning experiments was to estab-
lish an expression profile for AQP4 in dogfish. This was performed
in two different ways, initially using Northern blotting where
a mRNA band of around 3.2 kb was detected, particularly in
the rectal gland, but also with lower levels in the eye, esopha-
gus/fundic stomach, skeletal muscle, stomach, brain, and kidney
with no apparent signal from liver, gill, or intestine (Figure 2). Sec-
ondly this was followed up by a semi-quantitative PCR survey, to
increase the sensitivity of detection (Figure 3). Similar results were
obtained but bands were also detected with the following inten-
sity, liver > gill > intestine. Although a band could be detected in
intestine the level of expression was clearly extremely low.

In conjunction with the Northern blotting and semi-
quantitative PCR, the level of mRNA expression measured in
(100%) SW fish (Figure 4) showed higher levels of AQP4 mRNA
expression in rectal gland, with lower levels in kidney and

FIGURE 2 | Northern blot of 5 μg of total RNA extracted from various

tissues of the dogfish (S. acanthias) and probed with a 32P

radioisotope-labeled cDNA fragment of the AQP4 gene. The probe
hybridizes to a single band of 3.2 kbp.
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FIGURE 3 | Semi-quantitative PCR amplification of dogfish AQP4

(274 bp) and GAPDH (271 bp) cDNA fragments. The primers used were
also used for quantitative PCR and were designed across conserved
intron–exon splice junctions of the respective genes to avoid genomic DNA
amplification. 0.5 μl of cDNA template (made with the following
microgram’s of total RNA; 1.15 gill; 0.67 rectal gland; 0.93 kidney; 0.88
esophagus/cardiac stomach; 0.99 stomach; 1.56 intestine; 0.41 brain; 0.21
muscle; 0.28 eye; 0.71 liver) was used in all reactions and GAPDH was
used as a positive control. The negative (Neg.) control reactions were
without cDNA.

FIGURE 4 | Analysis of a Northern blot experiment measuring the

mRNA expression of aquaporin 4 (AQP4) in the tissue of dogfish

acclimated to different external environmental salinities. No significant
differences were seen in any tissue between any of the salinities.

esophagus/cardiac stomach. Expression in gill and intestine could
not be detected using this technique. The effect of adjusting the
external environmental salinity of the fish made no significant
difference to the level of AQP4 mRNA expression in rectal gland,
kidney, or esophagus/cardiac stomach. In order to carry out a
similar type of analysis on the gill (more sensitive) QPCR was
employed to determine mRNA expression levels in the 75, 100,
and 120% SW fish. In this case, the fish held in 120% SW showed
a significant 63.1% lower level of AQP4 mRNA in comparison to
the 100% SW control dogfish (Figure 5).

Experiments measuring the function of AQP4 expressed in
Xenopus laevis oocytes, showed that water permeability (P f) was
significantly higher in oocytes expressing AQP4 than in controls
(Figure 6). The level of oocyte permeability also did not vary across

FIGURE 5 | Relative dogfish AQP4 mRNA abundance in the gills of fish

acclimated to 75, 100, or 120% seawater (SW). mRNA expression was
determined using quantitative PCR, with primers designed at conserved
exon–intron splice junctions within the gene sequence to avoid
amplification of genomic DNA. n = 6 Fish per group. * = Statistically
significant difference between 75 and 100% SW fish, where p < 0.05.

a range of pH values. The effect of mercury on permeability was
also measured (Figure 7), and this did cause a small reduction in
permeability but this was not statistically significant. Additionally,
as some AQP isoforms also show a urea and glycerol permeability,
the uptake of isotopic versions of these molecules was tested and
no significantly higher level of permeability was found in AQP4
expressing-oocytes compared to controls (Figures 8 and 9).

DISCUSSION
This article documents the characteristics of an elasmobranch
aquaporin for the first time. Despite the relatively ancient origin
of elasmobranchs, in common with Agnathans such as the hag-
fish (elasmobranchs, around 528 million years old and Agnathans,
around 564 million years old; Kumar and Hedges, 1998), dog-
fish AQP4 shares a much higher level of amino acid homol-
ogy with mammalian AQP4 sequences than does the hagfish
AQP4 sequence. As has been seen with other elasmobranch gene
sequences, dogfish AQP4 has a higher level of homology (63%)
to human AQP4 than the somewhat more recently developed
teleost fish (450 million years old; Kumar and Hedges, 1998) AQP4
sequence from zebrafish (60.4%). This therefore may represent
another example of an apparently slower rate of evolutionary
change in cartilaginous fish in comparison to teleost fish.

Due to the relatively high level of amino acid homology of
AQP4 sequences, it might be expected that dogfish AQP4 might
be functionally similar to homologs in other species such as mam-
mals. The oocyte functional expression studies here show that
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FIGURE 6 | Osmotic water permeability (P f) of Xenopus laevis oocytes

micro-injected with dogfish AQP4 cRNA (-�-) or with H2O (-o-). The
data are averages of four experiments where measurements were made at
six different pH values with an average of eight oocytes per group, at each
pH value, in each experiment.

FIGURE 7 |The effect of mercury chloride (Hg) on the osmotic water

permeability (P f) of Xenopus oocytes micro-injected with dogfish

AQP4 cRNA or in with H2O (Control). Data represent averages of three
experiments, with approximately eight oocytes per group in each. There
was no statistically significant difference in P f with or without mercury
chloride.

FIGURE 8 |The uptake of C-labeled urea in Xenopus laevis oocytes

micro-injected with dogfish AQP4 cRNA or uninjected. Results are
averages from three experiments with approximately eight oocytes used
per group.

FIGURE 9 |The uptake of C-labeled glycerol in Xenopus laevis oocytes

micro-injected with dogfish AQP4 cRNA or uninjected. Results are
averages from three experiments with approximately eight oocytes used
per group.
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that was indeed the case in as much as, dogfish AQP4 expres-
sion produced significant oocyte water permeability irrespective
of pH (other AQP isoforms can be affected by pH; Zelenina et al.,
2003; MacIver et al., 2009), and it is permeability was insensitive
to mercury (Hasegawa et al., 1994). The cysteine residue which is
often present in most AQPs and is thought to be responsible for
mercury-sensitive inhibition of AQPs is located at position 237
in the amino acid alignment (Figure 1; Yukutake et al., 2008). In
AQP4 sequences from other species such as mammals, this residue
is instead an alanine, hence explaining the mercury insensitivity
of mammalian AQP4. Dogfish AQP4 also possesses an alanine
residue at this position and this would therefore indicate that it
is also likely to be insensitive to mercury. The Oocyte expression
experiments also showed that dogfish AQP4 has no capacity to
transport urea or glycerol in a similar way to mammalian AQP4
(Ishibashi et al., 2009).

In contrast to the tissue distribution of AQP4 mRNA expression
in mammals, where there is significant expression in the GI tract
but no expression in liver, in the dogfish there appears to be little
(although still some) expression in intestine but definite expres-
sion seen in liver (Ishibashi et al., 2009). Dogfish AQP4 expression
was seen at some level in every tissue tested and its expression
is consequently more widespread than dogfish AQP1 (data not
shown). Whereas, in mammals AQP1 is viewed as the ubiquitous
aquaporin isoform (Zelanina et al., 2005; Ishibashi et al., 2009).
There have been some suggestions that the intestine may play a role
in osmoregulatory and/or body fluid homeostatic mechanisms in
elasmobranch fish (Anderson et al. (2007)), but the low level of
intestinal AQP4 mRNA expression in this study clearly suggests
that this is unlikely to involve AQP4 at least in the dogfish.

Another aspect of interest is the presence of AQP4 expression in
the rectal gland. Shark rectal gland has been a model for ion/fluid
transport studies for decades, as the tissue is dedicated to regulated
iso-osmotic fluid secretion. As many studies have concentrated on
sodium and chloride ion transport over the years, it might be
expected that the rectal gland function principally concerned the
eradication of excess ions (Karnaky, 1997; Evans et al., 2004; Evans
and Claiborne, 2008). However a series of nice studies by Solomon
et al. (1984a,b, 1985) showed that ion secretion by the rectal gland
was not stimulated when the animal was perfused with hyper-
tonic shark ringer solution (they raised plasma salinity without
changing body fluid volume), but was stimulated when body fluid
volume was increased using isotonic shark ringer. This strongly
suggests that the principle function of the rectal gland is actually
to eradicate excess water but due to the passive nature of water
transport, ions have to be transported to allow the water to follow
by osmosis. Initial studies investigating osmotic water permeabil-
ity of rectal gland cell membranes found little functional evidence
to support the presence of AQPs (Zeidel et al., 2005).

However the fluid transport function of the rectal gland would
suggest that this organ would likely contain AQPs. The Northern
blot and PCR data in this study suggest that the rectal gland is
likely to possess abundant aquaporin proteins but clearly further
work needs to be done to determine what the role of AQP4 in
the rectal gland is. A curious aspect of AQP4 rectal gland expres-
sion is that manipulation of the fish’s environmental salinity did

not significantly alter AQP4 mRNA expression. It would be antic-
ipated that placing the fish in a hyper-osmotic environment such
as 120% SW would result in loss of water across the gills by osmo-
sis and compel the fish’s regulatory system to retain both sodium
chloride and urea to raise the internal osmotic concentration to
match that of the external environment and to shut down rec-
tal gland output. Placing the fish in a hypo-osmotic environment
such as 75% SW, should have the opposite regulatory effect. Work
in other Elasmobranch species shows that placing the fish in a
dilute environment increases body fluid volume and consequently
body mass (Anderson et al., 2007) as would be expected and this
increases rectal gland secretion (Wong and Chan, 1977; Anderson
et al. (2002)). The lack of change in AQP4 mRNA levels in either
75 or 120% SW suggests that either AQP4 is not involved directly
in rectal gland fluid transport or that regulation occurs at another
level (such as shutting down blood flow to the gland) eliminating
any need to change AQP4 expression. The relatively high level of
mRNA expression in the rectal gland might also indicate post-
translational regulation of AQP4 protein production as seen with
AQPs in other species (Ishibashi et al., 2009).

The change in AQP4 mRNA expression that was seen in the
gill is also interesting. Its possible to hypothesize that in a hyper-
osmotic environment such as 120% SW, there would likely tend
to be a net outflow of water across the gills and if this produced
osmotic problems (dehydration) for the fish, one possible response
by the fish’s regulatory system would be to decrease branchial
AQP4 expression to reduce gill permeability to slow down water
loss. Dogfish tend to hold their body fluid osmotic concentra-
tion slightly above that of the external environment (Karnaky,
1997; Evans et al., 2004; Evans and Claiborne, 2008), which nor-
mally allows a small continual water influx across the gill, which
presumably matches outflows through urine production and rec-
tal/rectal gland fluid output. Again its possible to hypothesize that
if gill osmotic water inflows were reversed this may ultimately
cause problems for urine production, some minimal level of which
is necessary to remove toxic metabolites, and this may explain
the need to down-regulate branchial AQP4 mRNA expression,
to reduce gill permeability. However, one complicating factor for
that idea is that some elasmobranch species are known to drink in
response to dehydration and this would reduce the need to adjust
gill permeability (Anderson et al. (2007)). The other result from
gill is also curious because a hypo-osmotic external environment
such as 75% SW might have been expected to have the oppo-
site effect of 120% SW (i.e., increased AQP4 mRNA expression in
gill). However in that case, again it is possible to hypothesize that if
there are additional water inflows across the gill, the fish can merely
increase urine output and decrease urine concentration to miti-
gate the increased branchial influx. While it is possible to speculate
as to the possible reasons for the level of branchial AQP4 mRNA
expression in different environments, its clear further studies needs
to be performed to elucidate the actual regulatory mechanisms at
work.
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