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Abstract

Many behavioral phenomena have been found to spread interpersonally through social networks, in a manner similar to
infectious diseases. An important difference between social contagion and traditional infectious diseases, however, is that
behavioral phenomena can be acquired by non-social mechanisms as well as through social transmission. We introduce a
novel theoretical framework for studying these phenomena (the SISa model) by adapting a classic disease model to include
the possibility for ‘automatic’ (or ‘spontaneous’) non-social infection. We provide an example of the use of this framework
by examining the spread of obesity in the Framingham Heart Study Network. The interaction assumptions of the model are
validated using longitudinal network transmission data. We find that the current rate of becoming obese is 2% per year and
increases by 0.5percentage points for each obese social contact. The rate of recovering from obesity is 4% per year, and
does not depend on the number of non-obese contacts. The model predicts a long-term obesity prevalence of
approximately 42%, and can be used to evaluate the effect of different interventions on steady-state obesity. Model
predictions quantitatively reproduce the actual historical time course for the prevalence of obesity. We find that since the
1970s, the rate of recovery from obesity has remained relatively constant, while the rates of both spontaneous infection and
transmission have steadily increased over time. This suggests that the obesity epidemic may be driven by increasing rates of
becoming obese, both spontaneously and transmissively, rather than by decreasing rates of losing weight. A key feature of
the SISa model is its ability to characterize the relative importance of social transmission by quantitatively comparing rates
of spontaneous versus contagious infection. It provides a theoretical framework for studying the interpersonal spread of any
state that may also arise spontaneously, such as emotions, behaviors, health states, ideas or diseases with reservoirs.
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Introduction

Social network effects are of great importance for understanding

human behavior. People interact with a varying number of

individuals and with some individuals more than others, and this

affects behavior in fundamental ways. Sociologists have long

studied social influence through networks, and networks now

routinely appear in investigations from other fields, including

economics [1], physics [2], public health [3] and scientific

publishing [4,5]. Extensive reviews of social networks analysis,

including investigations of their structure and their effect on social

dynamics, include Mitchell [6], Wasserman [7],Watts [2], Rogers

[8], Jackson [1], and Smith [9]. Networks have also long been

known to be important in many areas of biology (reviewed by

[10]), including ecological food webs and the evolution of

cooperation [11–14]. Social networks have also been studied as

determinants of health (reviewed by Smith [9]), ranging from

determining the patterns of infectious disease spread [15] to the

propagation of phenomena such as emotions [16–18], smoking

cessation [19], obesity [20], suicide [21], altruism [22], anti-social

behavior [23], and online health forum participation [24]. These

studies suggest that on top of the physical environment, the social

environment can also be an important contributor to health. They

have lead to suggestions that public health interventions must be

designed that work with the network structure and that the

network can be exploited to spread health related information

[9,25].

Within network studies, much work has focused on how

information, trends, behaviors and other entities spread between

the individuals in social networks. These processes are generally

referred to as ‘contagion’. Such suggestions of contagious

dynamics and the possible relevance of network structure can be
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rigorously examined using mathematical models of contagious

processes. These can then be used to obtain accurate measures of

expected prevalences, interventional efficacy, and optimized

information flow. Many previous models have been proposed to

study influential interactions between individuals. Most of these

have considered well-mixed populations, although more recent

work has focused on network-structured populations. The most

well studied are classic epidemiological models (like SIS and SIR)

for the spread of microbial infectious diseases [26], including

spread in network-structured populations [27–30], [31], [15].

Various related processes have been used to model social

influence, with important contributions including the same

epidemiological models [32,33], diffusion models [8,34–38],

statistical mechanics type interactions [39,40], and threshold

models [41](reviewed by Jackson [1] and Newman et al. [42]).

Each of these models, however, has one or more properties that

are problematic for studying social contagion. Many do not

capture the probabilistic nature of contagion, or the asymmetry

inherent in traditional infectious disease (where the infected state

spreads through social contagion whereas the non-infected state

does not). Others only consider well-mixed populations, where

everyone is influenced by everyone else, ignoring the effect of

network structure. Most models inspired by epidemiology are not

directly applicable to the social spread of other phenomenon,

because many phenomena that spread by social contagion may

also arise spontaneously. That is, it is possible to adopt a trend or

behavior, or obtain information, from an outside source, without

directly ‘catching’ it from a contact in the network. In other words,

on top of the probability of obtaining the infection from each

infected contact, there is also a non-zero probability of

‘automatically’ obtaining the infection, independent of the local

network. This ‘automatic’ non-social infection is not included in

traditional infectious disease models. Economic models for the

diffusion of innovations, based on early work by Bass [34], do take

into account ‘automatic’ infection. Individuals move from

‘susceptible’ (non-adopter) to an infected (adopter) state by

adopting a new product or idea, influenced by both social and

non-social factors. However, these models do not allow for

recovery; because the innovation adoptions are assumed to be

permanent changes in behavior, individuals never move back to a

susceptible state. This results in the entire population becoming

adopters at equilibrium. This does not reflect the dynamics of

many phenomena that spread socially, which may be repeatedly

acquired and lost (for example, happiness or obesity). Through a

balance of infection and recovery, a steady-state with multiple

states of individuals coexisting can be reached. Finally, most

previous models make assumptions about the type of interaction

between individuals, the particulars of which are not usually

validated with real data. Yet, long term behavior of a model and

the prevention strategies it suggests can depend critically on the

specifics of the interaction assumptions.

Here, we introduce a new model to study the spread of entities

in a social network which has all of the important properties listed

above. We then analyze its characteristics and show how it can be

applied in different contexts. This model is an extension of the

classical infectious disease model, combining features from other

models mentioned above. It describes infections that can be

contracted both spontaneously and through social (network-

structured) transmission, and allows for recovery from infection.

As an example, we focus on the spread of obesity in the

Framingham Heart Study (FHS) network. The interaction

assumptions of the model will be validated using longitudinal

network transmission data. We show how we can quantitatively

assess the values for the rate of adopting a trend spontaneously

versus by contagion to determine the extent to which social

transmission is important. We use it to predict prevalences and

intervention effectiveness (i.e. get quantitative output, not just

qualitative behavior). The results of this model are very different

from models with other interaction assumptions, such as the

‘majority rules’ models. We will show that transmissive compo-

nents are often small compared to the automatic component, but

may still contribute materially to prevalence levels. Lastly, we will

use pair-wise approximations to generate analytic results for

infections in network-structured populations, as well as presenting

simulations using a real social network.

Methods

Classic infectious disease modeling
In the simplest infectious disease models [26], individuals are

classified as occupying one of two states: ‘susceptible’, meaning they

do not have the disease, and ‘infected’, meaning they do have the

disease. The disease can be transmitted to a susceptible person when

they come into contact with an infected person. The rate of this

disease transmission from infected to susceptible is defined as b, the

transmission rate. Once an individual is infected, they recover from the

disease at a constant rate g, regardless of their contacts with

susceptibles or infecteds. In one class of disease models (susceptible-

infected-recovered, or SIR), recovered individuals become immune

to further infection and enter a ‘recovered’ state. However,

behaviors, trends, health states, etc, can occur many times over

an individual’s life, and therefore we assume infected individuals

return to the susceptible state after recovering. This form of

susceptible-infected-susceptible (SIS) model is used to model

infectious diseases that do not confer immunity, like many STDs.

Application to social contagion
In the standard SIS model, infection can only be transmitted by

having a contact between an infected and a susceptible individual.

Social ‘infections’, however, can also arise due to spontaneous

factors other than transmission. Therefore, we extend the SIS

model by adding a term whereby uninfected individuals

Author Summary

Information, trends, behaviors and even health states may
spread between contacts in a social network, similar to
disease transmission. However, a major difference is that as
well as being spread infectiously, it is possible to acquire
this state spontaneously. For example, you can gain
knowledge of a particular piece of information either by
being told about it, or by discovering it yourself. In this
paper we introduce a mathematical modeling framework
that allows us to compare the dynamics of these social
contagions to traditional infectious diseases. We can also
extract and compare the rates of spontaneous versus
contagious acquisition of a behavior from longitudinal
data and can use this to predict the implications for future
prevalence and control strategies. As an example, we study
the spread of obesity, and find that the current rate of
becoming obese is about 2% per year and increases by 0.5
percentage points for each obese social contact, while the
rate of recovering from obesity is 4% per year. The rates of
spontaneous infection and transmission have steadily
increased over time since 1970, driving the increase in
obesity prevalence. Our model thus provides a quantita-
tive way to analyze the strength and implications of social
contagions.

Modeling Social Contagion in Networks
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spontaneously (or ‘automatically’) become infected at a constant

rate a, independent of infected contacts. A diagrammatic

representation of our modified SIS model, which we will call

SISa, is shown in Figure 1. The corresponding differential

equations for a well-mixed population are described in Eq. 1

dI=dt ~bSI{gIzaS

dS=dt ~{bSIzgI{aS

IzS ~N

ð1Þ

where I is the number of infected individuals, S is the number of

susceptible individuals, N is the population size, b is the

transmission rate, g is the recovery rate, and a is the rate of

spontaneous infection. This model assumes a constant population

size and neglects birth and death. The SISa model is related to

infectious disease models with ‘imports’ (migration of infecteds into

the population), although here the rate of spontaneous infection is

proportional to the number of susceptibles, while in import models

it is a constant or proportional to the total population size.

In the infectious disease literature, a disease is said to be

‘endemic’ if a stable, non-zero fraction of the population is infected

at steady state. If a single infected individual is introduced to a

totally susceptible population, then the average number of

secondary infections they cause before recovery is called the basic

reproductive ratio, R0. For the regular SIS model in a well-mixed

population of N individuals, R0~bN=g. An epidemic, leading to

an endemic equilibrium, only occurs for R0w1, and hence R0 is a

fundamental quantity used to describe and compare infectious

diseases. For the SISa model, an epidemic occurs for all parameter

values, due to the spontaneous infection term. Thus, social

behaviors that can be adopted independently of neighbors mean

that there is no longer a threshold for the behavior to become

prevalent in a population, and even in the absence of contagion

there would be a non-zero steady state prevalence. Because of this,

there is not an obvious definition for R0 in the SISa model. The

steady state fraction of infected individuals in a well-mixed

population is given by Eq. 2.

I�

N
~

1

2
1{

azg

bN
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

azg

bN

� �2

z
4a

bN

s0
@

1
A ð2Þ

Infectious diseases on networks
Traditional models of infection assume that the population is

well-mixed. However, this assumption is unrealistic for many

diseases, and also for the social spread of trends and behaviors. To

account for the population structure, the infectious process can be

constrained to take place on a social network. An infected

individual can only pass their infection on to the suspectibles to

whom they are connected. Properties of the infectious process thus

depend on both the epidemiological parameters and the network

structure, and there are often no longer simple analytic formulas to

describe the reproductive ratio or steady state level of infection.

For example, a property of disease spread on networks are spatial

correlations (in the network sense) that arise between individuals in

the same state. This correlation is defined as the ratio of the

observed number of connections between two types of individuals

to the number of connections expected if the positioning of

individuals in the network was random. Spatial correlations of like

individuals can be caused by an infective process spreading within

a network [29], but may also be caused by confounding

environmental factors which similarly influence the behavior of

connected individuals, or the formation of contacts based on

similar behavior (also called homophily). For a network of N

individuals with a total of E connections between them, the

correlation between two states X and Y is defined by:

CXY ~
observed number of X-Y edges

expected number of X-Y edges

~
XY½ �

E � X � Y=N2

ð3Þ

The correlation between infected individuals, CII , rises above

one as the epidemic proceeds, due to cluster formation as infected

individuals transmit to their contacts. Similarly, the correlation

between infected and susceptible individuals, CSI , drops below

one. The deviation of these correlations from 1 increases with (i)

the ratio of transmissive infection (b) to spontaneous infection (a) in

our model (there are no correlations without a transmissive

component), and (ii) the inter-connectivity (transitivity) of the

network. As a result of these spatial correlations, diseases on

networks can progress more slowly than their well-mixed

counterparts, leading to lower basic reproductive ratios. However,

heterogeneity in the number of contacts per individual acts to

increase R0. For two networks with the same average degree, if

one has a larger variance in degree, then R0 will be increased.

Thus, it is possible for diseases on networks to have lower (or

nonexistent) thresholds for endemic epidemics.

Approximate pair-wise equations
There are no analytic methods to solve SIS-type dynamics on

arbitrary networks without making approximations. Thus, simu-

lations are a more accurate tool to explore theoretical disease

dynamics in structured populations without making simplifying

assumptions about the network structure. For scaled, well-mixed

populations, the formulas given in the previous sections for R0 and

I� are good approximations if N is replaced with n, the average

contacts at a given time, while fixed networks, especially if non-

uniform and highly inter-connected, can deviate from these values

significantly. We can use a pair-wise approximation [29,43,44] to

formulate the infectious process on a network structure in terms of

differential equations. The fundamental variables are numbers of

individuals of each type, and also the pairs of individuals, [XY]

(where the edges are not directional). Because [XY] = [YX], and

Figure 1. The SISa model of infection. There are three processes by
which an individual’s state can change. (i) An infected individual
transmits infection to a susceptible contact with rate b. (ii) A susceptible
individual spontaneously becomes infected at rate a, regardless of the
state of their contacts. (iii) An infected individual returns to being
susceptible at rate g, independent of the state of their contacts.
doi:10.1371/journal.pcbi.1000968.g001

Modeling Social Contagion in Networks
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the total individuals and total edges is constant, the system can be

reduced to three equations.

½ _II � ~b½SI �za½S�{g½I �
½ _III � ~2b(½ISI �z½SI �)z2a½SI �{2g½II �
½ _SSI � ~b(½SSI �{½SI �{½ISI �)za(½SS�{½SI �)zg(½II �{½SI �)

ð4Þ

Here [XYZ] represents the number of situations where and X

individual is connected to a Y individual who in turn is connected

to a Z individual. We can approximate all these triples in terms of

pairs, using a moment closure approximation ([43], Text S1),

which then reduces the number of variables to three also. Then

these equations can be simplified to

_ff I ~bnfSI za{(azg)fI

_ff II ~2b(n{1)
f 2
SI

1{fI

1{wzw
fII

f 2
I

� �
z2(bza)fSI {2gfSI

_ff SI ~b(n{1)
fSI

1{fI

(1{fII {2fSI ) 1{wzw
fSI

fI (1{fI )

� �
{fSI 1{wzw

fII

f 2
I

� �� �
{(bzazg)fSI za(1{fII {2fSI )zgfII

ð5Þ

with

fI ~I=N

fII ~ II½ �=nN

fSI ~ SI½ �=nN

ð6Þ

where n is the number of contacts each individual has and w is the

transitivity of the network (the ratio of triangles to triples). Having a

simplified set of equations is very useful for understanding contagion

dynamics in structured populations. Integrating equations is much

faster than running simulations on large networks, and from them

analytic results can be derived which allows determination of

parameter dependence. These equations assume that the local

neighborhood for each individual is identical, that is, everyone has

the same number of contacts (n) and the same w. They thus take into

account the effects of fixed network structure but not heterogeneities

between individuals. In the Supplementary Information (Text S1)

we have included the extension of these equations to include

heterogeneities. These equations can be used to easily simulate

disease spread and get expected steady state prevalences and

correlations, which are very useful approximations and give insight

into parameter dependence. Later, we will compare these equations

to results from full simulations on realistic networks. When w~0
(which is approximately the case for most random graphs) we can

get a closed-form solution for the prevalence at steady state:

I�~
1

2
1{

azg

bnC�SI

z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

azg

bnC�SI

� �2

z
4a

bnC�SI

s0
@

1
A ð7Þ

C�SI~
(1{J(azg)

Jbn(1{Jg)
ð8Þ

0~((azg)2{gbn(n{1)zbna)J2z(bn(n{1)

z(n{2)(azg))J{(n{1)
ð9Þ

The result of a network structure is that the number of

partnerships between susceptible and infected individuals quickly

becomes less than if random, and so CSIv1. We can compare Eq.

7 to the well mixed result (Eq. 2), and see that the effect of the

network is to lower the effective transmission rate by a factor of

CSI , and hence lower the prevalence, due to these correlations that

build up locally. The larger b is compared to a, the more network

effects are important. If infection is mostly automatic (when

b=a?0), the network no longer matters. Equation 7 actually holds

generally (for any homogeneous network and any w value), while

Equations 8 and 9 are only applicable with w = 0.

Analyzing the n-regular pair-wise equations allows us to get

analytic results and determine how and under what conditions

network structure affects the spread of behaviors which are both

spontaneously acquired and spread interpersonally. Although

simple closed-form solutions do not exist when w is non-zero,

these equations can easily be integrated or numerically solved to

get solutions. These equations ignore heterogeneities in the

number of edges for different individuals, which can facilitate

spread under some conditions (see supplement Text S1 for

extension). Full stochastic simulations on large networks can be

carried out to determine how and when the results differ.

Results

Calibrating model with FHS Network data
The SISa model provides a formal way for assessing the social

contagion of trends and behaviors that may be repeatedly caught

and recovered from. Using data from the Framingham Heart

Study (FHS) [45] we tested the validity of this model and estimated

transmission parameters for various health related behaviors,

though the focus here is on obesity as an example. To both

demonstrate that obesity can display infectious-disease-like

dynamics, and to estimate values for the model parameter a,b,

and g, we use dynamic information about transitions between

states based on our multiple time points of data. For data points

separated by time intervals (Dt) smaller than the average time

between transitions, the transition probabilities can be linearized.

The probability of a transition from susceptible to infected after a

time Dt can be given by P(S?I ,Dt)*(azbnI )Dt, and the

probability of transition from infected to susceptible after time Dt,
by P(I?S,Dt)*gDt. It is necessary for the time between

measurements to not be comparable to or greater than the

average lifetime of a state to keep the probability of double

transitions within a time interval low.

This epidemiological approach to social contagion has impor-

tant differences from other models which look at correlations in

present and past states of connected individuals. Here, similar to

others [16,19,20], [46] we look at how contacts influence the

transitions between states, which better captures the nature of

contagion. Since we use pre-existing social ties, we do not see

effects from selection bias in choosing friends with similar states.

Additionally, time invariant confounding events that lead to

concurrent changes in connected individuals will not show up as

contagion effects in this model.

The dataset we use is a subset of individuals from the

Framingham Heart Study [45]. This study was initiated in 1948

in Framingham, Massachusetts and has continued enrolling

subjects through the present. We examined individuals in the

Offspring Cohort, enrolled starting in 1971. Subjects come to a

central facility at regular intervals (approximately every 4 years) for

medical examination and collection of other survey data. Body

mass index (BMI) was measured at each exam, and obesity was

defined as BMI§30 [47]. All other, lower, weights, which include

ð5Þ

Modeling Social Contagion in Networks
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underweight, normal range weight and over-weight, were

classified as ‘not obese’. In additional to information on mental

and physical health, subjects were asked to name at least one close

friend at each exam, and were also connected to all first-order

relatives, as well as coworkers and residential neighbors. For each

subject, the following social connection data is available: (i) each

other person to whom they were connected, (ii) the dates of

initiation and termination of that relationship, (iii) the type of

relationship (neighbour, coworker, first-degree relative, or friend),

and (v) the geographic distance between the two subjects. The

social network for each exam was constructed by creating a

network matrix G, where Gijk~1 if subject i nominated subject j
as a connection before or during the time that subject i was

administered exam k. All relationship types are mutual except for

friendships, which are self-nominated, such that Gijk=Gjik is

possible for friendships.

To study the transmission of obesity, we examine changes in

BMI between sequential exams. Seven exams were administered

to the Offspring Cohort between 1971 to 2001, with network data

collected for each. We examine transitions occurring between each

exam. The average fraction of the network that was classified as

obese increased between these seven exams, suggesting the

transmission process is not yet at steady state (Exam 1: 14%
obese; Exam 7: 29% obese). Each set of exams were closely and

consistently spaced (Dt~7:9+0:5 year (exam 1), 3+1 year (exam

7)). In general when modeling an infectious process, the rates of

infection and recovery are assumed to be constant over time, with

the prevalence changing as the infectious process begins and

finally reaches equilibrium or is eliminated. When examining the

spread of obesity using longitudinal data on transitions between

exams, we can actually test this assumption and detect changes in

the rates themselves.

A given state X is considered infectious if having more contacts

in state X makes you more likely to switch to state X . That is, a

positive relationship between the number of contacts in state X
and the probability to transition from state Y to state X indicates

that state X is infectious with respect to state Y . Therefore, to test

whether a given state X is infectious with respect to another state

Y , we perform an ordinary least squares (OLS) linear regression as

follows. Each subject in state Y in exam N is coded as either

having transitioned to state X (transition = 1) or not (transition = 0)

in exam N+1. We then regress this binary transition variable for

each subject against the number of contacts in state X that subject

had during exam N. A significant positive correlation indicates

that having more friends in state X at the earlier exam makes you

more likely to switch to state X in the later exam. If state X is

infectious (a significant positive correlation exists), then the value

of b can be calculated from the slope of the regression line, and the

value of a can be calculated from the intercept. If state X is not

infectious (no significant correlation exists), then the value of g can

be calculated from the intercept. Dt was taken as the average time

between examinations, which varied between exams from 3 to 8

years. Using logistic regression as opposed to OLS regression gives

very similar results, as the datapoint line is within the linear range

of the logistic model.

The structure of the Framingham Heart Study social network

varies over the course of time, ranging from 7500 individuals with

an average of 5.3 connections each at the first exam, to 3500

individuals with 2.8 connections on average at the seventh exam.

Summary statistics are presented in the supplement (Table S1).

These changes in population size and average degree occur

because individuals may die or drop out of the study but new

individuals are not added. The network is approximately Poisson

distributed (see Figure 2), although with some subjects having no

connections. The transitivity w is consistent over time at

approximately 0.64. While neighbors were included as contacts

in the study, like Fowler and Christakis [20] we find no significant

trends when including neighbors, and so did not include these

contacts. For friendships, we only consider the contacts of an

individual to be those other individuals whom they nominated

(other relationships are all mutual), and so the network is

directional.

The results of infectiousness analysis for the spread of obesity

between exams 4 and 5 are shown in Figure 3 as an example.

Consistent with the SISa model formulation, we find a significant

positive correlation between the probability of transitioning from

‘not obese’ to ‘obese’ and the number of ‘obese’ contacts

(Figure 3A, coeff = 0.016, p = 0.0001), and no significant relation-

ship between the transition from ‘obese’ to ‘not obese’ and the

number of ‘not obese’ contacts (Figure 3D, coeff = 0.006, p = 0.15).

Additionally we find no significant relationship between the

probability of transitioning from ‘not obese’ to obese and the

number of ‘not obese’ contacts (Figure 3B, coeff = 20.0005,

p = 0.75), or the probability of transitioning from ‘obese’ to ‘not

obese’ and the number of obese contacts (Figure 3C,

coeff = 20.002, p = 0.85). The same analysis was repeated for

each interval between sequential exams and very similar results

were found. The full results from the regression analysis are

presented in the supplement (Table S2). This suggests that obesity

can indeed be modeled as an infectious process in the SISa

framework, with ‘not obese’ susceptibles becoming ‘obese’

infecteds, and transmitting obesity to other susceptibles. The

parameters for the SISa model can be calculated from the

transition probabilities mentioned earlier, by dividing slope and

intercept values by Dt, the average time between exams. These

values are reported for each exam in Figure 4, and the values at

the latest exam interval are summarized in Table 1. For most

recent exam, the transmission rate, b, is found to be 0:0050/year.

The spontaneous transmission parameter a is found to be 0:019/

year. The recovery parameter g is found to be 0:043/year. From

these SISa model parameters, other values of interest can be

calculated. The ‘average lifetime’ of a state is the average length of

time and individual spends in this state before recovering, which

Figure 2. The degree distribution of the Framingham Heart
Study Network. The degree distribution of the Framingham Heart
Study social network at the most recent exam (7) considered in this
study. Connections include friends, family and coworkers. The average
degree is around k = 3 and the transitivity is w = 0.64 (the ratio of
triangles to triples).
doi:10.1371/journal.pcbi.1000968.g002
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was found to be 24 years for this time period. The ‘influence’ of a

state is the cumulative probability that the infection will be passed

from an infected to a susceptible connection before the infected

individual recovers, and is observed here to be 13%. The ‘cycle

length’ is the average length of time between spontaneous

infections, and is 56 years. The basic reproductive ratio is

approximately 0.35, which implies that without spontaneous

appearance, the obesity epidemic would not be self-sustaining

based on transmission alone. However this calculation is an

approximation since uses the formula for a population that is well-

mixed but only effectively contacting a fraction of the total

population at each time (n contacts), so does not factor in fixed

Figure 3. Evidence for disease-like spread of obesity. Obesity behaves like a disease agent, infecting those in a susceptible ‘not obese’ state.
The probability of transitioning from ‘not obese’ to ‘obese’ increases in the number of ‘obese’ contacts (A), and doesn’t depend on the number of ‘not
obese’ contacts (B). Conversely, the probability of recovering to the ‘not obese’ state does not depend on the number of ‘not obese’ contacts (D) or
the ‘obese’ contacts (C)). Labels above points on plot are the number of observations averaged into that data point, and error bars are the standard
error of the proportion.
doi:10.1371/journal.pcbi.1000968.g003

Figure 4. Change in observed parameters over time. Parameter measurements for obesity from each set of consecutive exams. Data point at
exam N represents the value for the transition from exam N to N+1. Error bars are 95% confidence intervals on measurements from regression of
transition probability versus number of contacts of a certain type. (A) Contact-independent rates. The rate of recovery (g) appears to be constant
within the margins of error throughout the study while the rate of automatic infection (a) appears to increase between exams 1 and 3, then stay
constant. (B) The contact-dependent transmission rate (b) appears to increase over time.
doi:10.1371/journal.pcbi.1000968.g004
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network structure (there is no analytic formula for this situation).

We observed a correlation in the positioning of obese and non-

obese individuals of CII = 1.3 and CSI = 0.9.

Since these rates were measured for 6 different inter-exam

transitions over 30 years, we can look at how the value of these

rates changes over time. Figure 4 shows the measured automatic

infection (a), transmission (b), and recovery rates (g) for each exam

interval. Error bars are 95% confidence intervals on measurements

from analyses like Figure 3. While the rate of recovery (g) has

remained relatively constant since the 1970s, the rate of

spontaneous infection (a) has steadily increased over time. The

transmission rate, b, also appears to have increased over time.

These trends were tested using weighted regression (to include the

different errors for each measurement) and found to be significant

for a and b but constant for g. For the rest of the study we used the

time-averaged value of g, g~0:035. This suggests that the obesity

epidemic may be driven by increasing rates of becoming obese,

both spontaneously and transmissively, but not by decreasing rates

of losing weight.

We also found that both happiness and depression fit the SISa

model, both being contagious from a neutral emotional state [18],

that smoking cessation, though not smoking itself, also fit, and that

both alcohol consumption and abstinence were contagious from

the opposite state (data not shown). For all of the above cases, we

tested if the transition probability depended instead on the fraction

of contacts in a state, instead of the number, and found no

significant dependence. We also tested for dependence on other

personal attributes such as age, sex and education, and found no

dependence in most cases. For obesity, the transition probability

from not obese to obese decreased slightly with age (coeff =

20.0012, p = 0.04). Our results show that many models of social

influence make assumptions about interpersonal interactions that

are not supported by this longitudinal data. One of these

assumptions is the ‘majority rules’ interaction, which assumes that

people will be most likely to switch to the state most of their

contacts are in [40]. Here, transitions depend on the number of

contacts, and only certain states (those we class as ‘infectious’)

actually influence transitions (in other words, contagion is only in

one direction). This has significant effects on the predictions for

epidemic progression. For example, ‘majority rules’ models predict

100% infected at steady state, and that weight loss behavior

spreads and so an effective intervention is to ‘pin’ certain

individuals at low weights. Also, many models assume that the

probability of transitioning to a state is zero if no contacts are in

that state, but these results show that there is a constant probability

of spontaneously becoming ‘infected’. Finally, using this frame-

work, we can get rates for transitions, and hence have an idea for

the time-course of the progression, not just the final outcome.

Case study: Modeling the obesity epidemic
In this section, we will use the SISa model to make predictions

and evaluate interventions for the obesity epidemic, using the

parameters observed in the FHS data. For simplicity and

generality, we will keep the parameters a and b constant at the

values observed for the most recent exams, and use the time-

averaged value of g. Since we are mostly interested in predicting

future trends, and the parameters seem to have relatively constant

values over the final decade, this simplification should not affect

these predictions. We also keep the network fixed at the structure

observed at Exam 6, except when we compare to historic data.

While the simplified pair-wise equations we present are designed

for symmetrical networks, they can be approximately adapted to

directional networks by letting n represent the average out-degree

(average number of influential contacts) instead of the total

number of contacts. In the Framingham data, greater than 90% of

contacts are symmetrical, and so there is little error in this

approximation. For hypothetical networks were the contacts

formed by out-degree and in-degree are very different sets of

individuals, deviations are expected. Figure 5 shows the results of

both the n-regular pair-wise equations and a full simulation on the

FHS network for the spread of the obesity epidemic. The

parameters used were those measured from FHS as discussed

earlier. One of the important properties of the SISa model is that it

always leads to a stable coexistence of both infected and

susceptible individuals, with infecteds becoming 100% prevalent

only in the limit as a or b approaches infinity. This is very different

from statistical-physics-based interaction models where the

population always ‘coarsens’ to everyone in a single state [40].

These results show that for the parameters measured for obesity,

the pair-wise equations are not significantly different from the full

simulations for predicting prevalence, and hence provide a good

substitute. The reason is that the spontaneous rate (a) is

significantly larger than the transmissive component (b). For

larger values of b=a, there is a noticeable difference (shown in the

next section).

This model predicts that, assuming the rates do not further

change over time, the steady state proportion of obese individuals

will be 42%. While not great, this is a much more optimistic

estimate than 100% [40]. However, all of the parameters observed

in this study have an error associated with them, and so there is

some uncertainty in this prediction. Figure 4 shows the ranges of

the 95% confidence intervals for these values. We can estimate the

uncertainty in this prediction by using first the values of these

parameters, within the range of one standard deviation, that would

give the highest prevalence (azda,g{dg,bzdb) and then those

that would give the lowest (a{da,gzdg,b{db). We used

g = 0.05, a = 0.015 and b = 0.002 to get the minimum and

g = 0.03, a = 0.023 and b = 0.008 to get the maximum. These

simulations suggest the confidence interval for the expected

prevalence can be approximated as 25% to 54%. This model also

allows us to estimate the time-course of the epidemic, and suggests

it would take around 40 more years for the obesity prevalence to

be within 1% of this maximum value. At the first time point in our

data (1970), we measured the rates to be a = 0.008, g = 0.03 and

Table 1. Parameter estimates for obesity between exams 6
and 7 (1995–2001) using the SISa model framework.

Parameter Description Value

a rate of spontaneous infection 0:019/yr

g rate of recovery 0:043/yr

b rate of transmission through contact 0:0050/yr

1/a cycle 53 years

1/g lifetime 24 years

1{e
{bn

g influence 0.13

Ro~bn=g basic reproductive ratio 0.35

The ‘average lifetime’ of a state is the average length of time an individual
spends in this state before recovering. The ‘influence’ of a state is the
cumulative probability that the infection will be passed from an infected to a
susceptible connection before the infected individual recovers. The ‘cycle
length’ is the average length of time between spontaneous infections. The
basic reproductive ratio is calculated by setting a~0. However this calculation
is an approximation since it does not factor in fixed network structure. Since
R0v1, the obesity epidemic would not be self-sustaining based on
transmission alone.
doi:10.1371/journal.pcbi.1000968.t001
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b = 0.001, and the prevalence to be 14%. These parameters would

have led to a steady state prevalence of 24%, which suggests that

the rates of becoming obese must have originally been much lower

than this.

We can also compare historical data on the obesity prevalence

(from both national studies [47] and the FHS data) to the

predicted time course shown here. To generate the model

prediction, we simulated an epidemic with the pair-wise equations

but allowed the rate values and network parameters to change as

measured from the data (see Figure 4 and Table S1). We kept g

constant at the average value observed, 0.035, and varied a and b
as observed. The value for parameter a measured for the transition

between exam N and Nz1 (aN ) was used in the simulation for

times (years) between the average examination dates of exams N

and Nz1, and then increased to aNz1 for the next time interval.

The same was done for b. For times before the earliest data points

in FHS for which we have measured rate constants(pre 1970), we

assumed the epidemic was at a steady state of 14%. This could be

achieved, for example, with a~0:0057 and b~0. Figure 6 shows

that there is a good match in the time course of the model with

reality after 1970, with similar rates of increase in the prevalence.

We can use the pair-wise equations to see how the steady state

prevalence depends on various parameters, which is especially

useful to see how interventions that aim to change a certain

parameter may affect the prevalence. Figure 7 shows these results.

For the parameter values for obesity, although a is quite large, b is

still important. If b changes from 0 to 0.005, the expected steady

state changes from around 0.35 to 0.42. However, much larger

changes can be realized by decreasing a or increasing g. For the

obesity parameters, completely removing the contagious compo-

nent is only expected to change the steady state prevalence by

around 7%. However, changing the spontaneous infection term

can have much larger effects. While a 50% change in b will result

in only a 3% decrease in I, cutting a in half will reduce the

prevalence by 15%. However, a similar absolute decrease of 0.005

would also lead to a 7% difference. The efficiency of changing one

parameter versus the other can be looked directly at dI=dx for

various parameters, which will be shown in the next section.

General properties of SISa model
In this section we will examine the more general properties of

‘infections’ following SISa model dynamics. While Figure 5

showed excellent agreement between the pair-wise equations

and full simulations for the time dynamics, this is not true for all

parameter regimes. When b is larger and a is smaller (as shown in

Figure 8), and the network is strongly heterogeneous (as the

Framingham network is), the pair-wise model deviates more. The

reason is that heterogeneous network effects become more

Figure 5. Simulations of obesity epidemic using SISa model. Time series of an epidemic on the Framingham Heart Study network, using full
simulations (light blue) or the n-regular pair-wise equations (dark blue). Parameters used are those measured for the obesity epidemic:
a~0:019, b~0:0050, g~0:035, w~0:64, n~3:0. In the SISa model there is a co-existence of susceptible and infected individuals at steady state. For
these parameters there is a good agreement with simulations and the pair-wise equations for the fraction infected (A), but the equations predict less
correlations (B), due to the neglect of heterogeneities in the number of contacts.
doi:10.1371/journal.pcbi.1000968.g005

Figure 6. Comparing SISa model timecourse to historical data.
A comparison of historical data on the prevalence of obesity in the
Framingham Heart Study (blue dots) and the National Health and
Nutrition Examination Survey (red dots) with the timeseries predicted
from the SISa model with time-varying parameters. For the simulation,
we allowed the parameters a and b to vary as observed in Figure 4, but
kept g constant at its average value. Before 1970 (when our
measurements started), the prevalence of obesity was assumed to be
stable at 14%. The model and the data both show very similar rates of
increase, with a slow post-1970 increase, followed by a rapid increase,
and then increasing more slowly. The SISa model predicts the
prevalence of obesity will increase slowly to a peak at 42%.
doi:10.1371/journal.pcbi.1000968.g006
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important for larger b, and the pair-wise approximations are best

for homogeneous networks. The extension of the pair-wise

equations to heterogeneous networks is described in the supple-

ment (Text S1).

We can use the pair-wise equations to see how the steady state

prevalence depends on various parameters, which is especially

useful to see how interventions that aim to change a certain

parameter may affect the prevalence. Figure 9 shows how the

steady state changes with the rate of transmission, b. The blue line

(a~0) shows what would happen in a classical epidemic, with no

spontaneous infection. When b is below a certain value (Row1),

the infection does not spread. The fraction infected increases

rapidly with b in this regime. As soon as we add aw0, this

thresholding behavior disappears. When aw0 the steady state is

less sensitive to b. The red line (a~0:02) shows the approximate

parameter values for obesity. Here although a is quite large, b is

still important. As with classical infectious disease models [29],

disease spread on a network leads to decreased CSI , the spatial

correlation between infected and susceptible individuals, and

increase CII and CSS , the correlation between pairs of infected

individuals and pairs of susceptible individuals, respectively. If we

look at CII , we can see that we expect there to be some

correlations of infected people at some b=a values, but not all. So

while seeing spatial correlation may hint there is a inductive

process, it is definitely not necessary. You can have an infectious

process without seeing correlations, just like you can see

correlations without it being caused by the dynamics of influence.

Spatial correlation is much higher when a is small.

Figure 10 shows the dependence on the rate of spontaneous

infection, a. The more spontaneous infection, the more infected.

When b is larger (red line), increasing a has less effect. The green

line is for the parameters measured for obesity. We can use these

graphs to compare the effects of various interventions which may

reduce the rate of infection. In Figure 9 (vs b), we can see the

expected decrease in the prevalence of the infection for a given

decrease in b. Changing b has more effect when a is small. The rate

Figure 7. Fraction infected versus SISa model parameters. Dependence of the equilibrium fraction infected on obesity interventions which
act to change the rates of infection (transmission (A) and ‘automatic’ infection (B)) or recovery (C). When not varying, parameters are
a~0:019, b~0:0050, g~0:035, w~0:64, n~3:0.
doi:10.1371/journal.pcbi.1000968.g007

Figure 8. Pairwise equations diverge from simulations when transmission is higher. Time series of an epidemic on the Framingham Heart
Study network, using full simulations (light blue) or the n-regular pair-wise equations (dark blue). When the ratio of b=a is larger than that observed
for the spread of obesity, the pair-wise equations diverge more from the full simulations, both for the fraction infected (A) and the correlations (B).
a~0:005, b~0:02, g~0:0045, w~0:64, n~3:0.
doi:10.1371/journal.pcbi.1000968.g008
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Figure 9. Dependence of the equilibrium fraction infected and correlations on the rate of transmission, b. Dependence of the
equilibrium fraction infected (A) and correlations (CSI :(B), CII :(C), CSS :(D)) on the rate of transmission, b. When aw0, expected in most social
infections, there is no longer a threshold (Row1) needed for the infection to invade the population. The network causes infected individuals to
cluster CIIw1 away from susceptible individuals CSIv1, and this is more pronounced for larger b=a and lower fraction infected. Parameters are
g~0:035, w~0:64, n~3:0.
doi:10.1371/journal.pcbi.1000968.g009

Figure 10. Dependence of the equilibrium fraction infected and correlations on the rate of automatic infection, a. Dependence of the
equilibrium fraction infected (A) and correlations (CSI :(B), CII :(C), CSS :(D)) on the rate of automatic infection, a. Parameters are
g~0:035, w~0:64, n~3:0.
doi:10.1371/journal.pcbi.1000968.g010
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of recovery from an infection is g, and in the obesity case, represents

the rate at which obese people lose weight and transition to normal

BMI values, in probability per year. Higher rates of recovery lead to

lower fraction infected (Figure 11). One possible intervention is to

increase the rate of recovery. For low recovery values, this has a

large effect on I , but for g around 0.04 (the value for obesity), only

small changes in I result from changing g.

In general, the spatial correlations (CII ) are negatively

correlated with the fraction infected (I); more correlations are

observed when a disease is not too infectious. If the spatial

correlations were fixed to be a certain value (for example obese

people cluster together due to selection bias in friendships or

confounding factors), then this would actually serve to slow

infection. Since we do not observe contagion of losing weight, it

does not seem like it would be beneficial to have an intervention

which broke up obese clusters.

The most direct way to compare various parameters for spread,

and therefore interventions that reduce one of the parameters, is to

look directly at dI=dx for various parameters (I is the steady state

fraction infected, x is the parameter of interest. Figure 12 shows

that for most parameter regimes, it is always best to increase the

recovery rate, g, as a method to reduce the fraction infected, I .

However, for low a and low b, it is best to decrease the

spontaneous infection term a, and for a window of intermediate b,

it is best to decrease the transmissive component b. The third plot

shows the results for the a value measured for obesity, and because

b is low here we are in a regime where it decreasing b has the most

effect, so this is the best intervention.

Many analytic models of network phenomenon assume the

transitivity, w, is zero, meaning there are no triangles in the

network. This is done to get the analytic expression presented here

(Eq. 2), which is not necessary to numerically integrate the pair-

wise equations, as presented in the results above. In the FHS

network, we observed that w is 0.64, suggesting human social

networks are quite transitive. We want to examine the importance

of w in predicting the fraction infected. For the observed bn value,

the effect of w is negligible, as shown in Figure 13. The reason is

that the dominant effect here is the spontaneous infection, which

does not depend on the network structure. This justifies ignoring w
for infections that have only low infectivity terms. However, for

large bn values (the equivalent of R0*2 is shown in Figure 14) w
has a more pronounced effect. While for a purely infectious

process (blue line), at high w, a disease can die out, even for R0w1,

when aw0, this doesn’t occur, but w still slightly reduces the

spread. It also results in more observed spatial correlation of

infected individuals. Overall, there is very little effect of w in the

SISa model.

We’ve already discussed how changes in parameters of infection

affect the steady state prevalence, and we can consider this an

analysis of different types of public health interventions that

change rates of recovery, infection or network structure. In

previous analysis of the obesity epidemic done by Bahr et al [40]

they suggest a strategy of ‘pinning’ groups of people to stay in a

non-obese state, similar to vaccinating against an microbial

disease, as a method to remove the ‘infection’ from the population.

However, in the Bahr model this intervention works (if enough

people are ‘pinned’) because becoming non-obese is also

contagious, which we don’t find in this analysis. In the classical

infectious disease setting, vaccinating can lower Ro below the

threshold for disease invasion, but in the SISa model there is no

threshold, and so neither mechanism makes this an effective

strategy in the SISa model. Two other possible intervention

strategies come out of this model. Firstly, from Eq. 7 we can see

that the fraction infected decreases with CSI , the correlation of

Figure 11. Dependence of the equilibrium fraction infected and correlations on the rate of recovery from infection, g. Dependence of
the equilibrium fraction infected(A) and correlations (CSI :(B), CII :(C), CSS :(D)) on the rate of recovery from infection, g. Parameters are
a~0:019, w~0:64, n~3:0.
doi:10.1371/journal.pcbi.1000968.g011
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susceptible and infected people. If an intervention actively reduced

this number, by isolating or clustering infected people, this could

reduce the prevalence. Secondly, the fraction infected could be

reduced if it were possible to make the ‘susceptible’ state also

contagious through contacts.

Discussion

The SISa model offers a framework for quantitatively analyzing

and predicting the public health affects of socially contagious

phenomenon. Using a longitudinally measured health outcome

and social network data, the SISa model can be used to determine

the dynamics of a health trend in terms of rates of acquisition,

recovery and inter-personal transmission. From these rates, the

relative importance of social contagion can be determined, and

changes in prevalence over time can be predicted. The framework

can also be used to examine how these rates themselves change

over time, helping to understand the mechanisms behind drastic

changes in disease prevalence, such as in the obesity epidemic

current effecting the United States. Finally, understanding the

Figure 12. Determining the best parameter to target in an intervention. This graph compares interventions which act to change different
parameters of infection (transmission (A), ‘automatic’ infection (B), recovery (C)). Shown is the rate of change of the fraction infected at equilibrium
with respect to a change in various parameters of infection. The y axis labels represent the absolute change in the percent infected for a change of
0.01 in one of the parameters. Changing a is better for small b and changing g is best for larger b. For intermediate b, changing b is best. Parameters
are g~0:035, w~0, n~3:0.
doi:10.1371/journal.pcbi.1000968.g012

Figure 13. Dependence of the equilibrium fraction infected and correlations on the network transitivity, w. The dependence of the
equilibrium fraction infected(A) and correlations (CSI :(B), CII :(C), CSS :(D)) measured from the pair-wise equations on the network transitivity, w. For
the parameters measured for the transmission of obesity, shown here, there is no strong dependence on w. Hence for studying the obesity epidemic
it is justified to ignore w to simplify calculations. Parameters are b~0:0050, g~0:035, n~3:0.
doi:10.1371/journal.pcbi.1000968.g013
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dynamics of a health behavior using the SISa model allows us to

evaluate the benefits of various interventions, especially those that

may work within social networks.

The prevalence of obesity in the Framingham Heart Study

cohort has increased from 14% in the 1970s to 30% in 2000, and

continues to increase. We find that the most recent rate of

becoming obese is 2% per year and increases by 0. % for each

obese social contact. The rate of recovering from obesity is 4% per

year, and does not depend on the number of non-obese contacts.

These results show that obesity has an infectious character: obesity

can be acquired through social contagion as well as through non-

social factors. Examining over 30 years of data, we find that these

rates have changed throughout the course of the study, with the

rate of becoming obese through mechanisms other than social

contagion increasing approximately twofold since 1970, and the

rate of transmission increasing approximately fourfold. The rate of

recovery, however, has changed little. These results suggest that

social norms are changing the propensity for becoming obese by

non-social mechanisms, and also magnifying the affect that obese

individuals have on their non-obese contacts. It is possible that

while causing changes in prevalence, these rates may also be

responding to changing prevalences (i.e. more obese people leads

to increased social acceptability of obesity, which leads to higher

rate of becoming obese), creating a positive feedback mechanism

and a continuously increasing obese fraction of the population. It

has been suggested that changing social norms that stigmatized

smoking may have lead to its decline [48], and just the opposite

may be true for obesity [49].

Using the SISa model with these parameter values estimated for

obesity, we can make predictions about the future of the obesity

epidemic and the important factors controlling it. Our models

suggest that if the most recent rates stay constant, the population

will stabilize at 42% obese. However, it is very likely that the rates

of obesity infection may continue to increase if successful

interventions are not conducted. Our results show that while the

rate of automatic development of obesity appears to have leveled

off in the past decade, the rate of transmission has been steadily

increasing.

This model allows us to can predict how much spatial

correlation is expected from a purely infectious process, and

compare this to what is observed in the data, which could be

influenced by confounding factors and selection bias in choosing

friends. A coefficient of 1 indicates that arrangement of infected

nodes is random, while higher values are indicative of spatial

correlations. We observed a correlation coefficient for obese

individuals of 1.30, which was quite close to what was predicted

from epidemic simulations (1.33). This suggests that infection

alone is sufficient for explaining the observed correlations, and

there may not be much selection bias or confounding factors in

effect. We also show that network transitivity is not predicted to

have a strong affect on prevalences when there is an automatic

component to infection. However, our model also shows that

contrary to popular belief, a contagious process on a network does

not always result in clustering of infected individuals. This is

especially true if there is a large automatic infection term, which is

likely with many trends and behaviors.

The SISa approach allows us to compare the effectiveness of

different classes of intervention. For the parameter range observed,

we find that decreasing the rate of transmission b is the most

effective intervention (largest decrease in prevalence per unit

decrease in rate), although decreasing the automatic infection a is

almost as effective. More generally, while we find that gaining

weight is contagious, we do not find that losing weight is

contagious. Thus it does not seem to be beneficial to ‘break-up’

clusters of obese individuals or ‘pin’ the weight of certain people in

these clusters. Our results actually suggest that clusters of obese

people serve to slow the spread of obesity by reducing social

contagion to non-obese others outside of the clusters. Another

Figure 14. Dependence on network transitivity, w, for larger transmission rates. The dependence of the equilibrium fraction infected (A)
and correlations (CSI :(B), CII :(C), CSS :(D)) measured from the pair-wise equations on the network transitivity, w. For larger b=a, w slightly decreases
the fraction infected by leading to more spatial correlation of infected individuals. Parameters are b~0:02, g~0:035, n~3:0.
doi:10.1371/journal.pcbi.1000968.g014
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possible intervention would involve somehow facilitating the social

spread of becoming non-obese (losing weight), creating a bi-

directional transmissive process.

One possible limitation of this study is the incompleteness of the

social network dataset used. Because the Framingham Heart Study

was not designed as a study of social networks, no attempt was

made to capture all of a person’s important social contacts. Many

close friends of a person could be missing (usually only one friend

per person was recorded) and family and coworkers who play only

a small part in ones actual social network may have been counted.

However, even if under-sampling of real-world contacts did occur

in the FHS Network, it does not change our results qualitatively:

our data clearly show that rates of becoming obese increase with

the number of ‘infected’ contacts (i.e. is contagious) while the rate

of ‘recovery’ to a non-obese state does not depend on contacts.

However, under-sampling could quantitatively effect our mea-

surement of the rate constants. If a constant number of contacts for

each person were missed, our estimate of the y intercept of the

transition graphs would be shifted up from its true value, and the

actual a would be smaller than the a we measured. If a constant

fraction of contacts for each person were missed, then our estimate

of the x axis would be compressed from its true value and the slope

would be increased, so then the actual value of b would be smaller

than the b we measured. While it is likely that the FHS network

underestimates the total number of contacts, the relationship to

the number of ‘influential’ contacts is unclear. In this sense, the

observed value of the transmission rates, b, are network

dependent. Additionally, network connections may be weighted

differently according to their ability to transmit behaviors.

Longitudinal studies designed specifically with the intent of

measuring social networks and health, which carefully define

contacts, such as by amount of time spent together per day,

influence, etc, are an important area for future research.

It has recently been suggested that certain, particular types of

latent homophily, in which an unobservable trait influences both

which friends one chooses and current and future behavior, may

be impossible to distinguish from contagion in observational

studies and hence may bias estimates of contagion and homophily

[50]. The circumstances under which this is likely to be a serious

source of bias (e.g., whether people, empirically, behave in these

sorts of ways), and what (if anything) might be done about it

(absent experimental data of the kind that some new networks

studies are providing [22]) merits further study. Observational

data invariably pose problems for causal inference, and require

one set of assumptions or another to analyze; the plausibility of

these assumptions (even of standard ones that are widely used)

warrants constant review.

The SISa model as presented here assumes that all individuals

have the same probability of changing state (though not everyone

will actually change state within their lifetime). It is clearly possible,

however, that there is heterogeneity between individuals in these

rates. We do not have sufficient data on obesity in the

Framingham dataset to explore this issue, which would require

observing numerous transitions between states for each individual.

Exploring individual differences in acquisition rate empirically is a

very interesting topic for future research, as is extending the

theoretical framework we introduce to take into account individual

differences.

The results we have presented here reiterate an important

general principle of network processes: networks tend to magnify

whatever they are seeded with, but they must be seeded with

something. The increase in obesity is not purely a network-

diffusion phenomenon. Automatic infection serves to start and

continuously seed the epidemic. Here we show that the dominant

process in the increasing prevalence of obesity is contact-

independent weight gain; however, the rate of interpersonal

transmission contribute significantly to the overall prevalence and

appears to be increasing steadily over time. Thus consideration of

social transmission and network effects is an important issue for

health and policy professionals.

Supporting Information

Table S1 Summary statistics for the Framingham Heart Study

network at each exam. Out-degree is the number of contacts

named by an individual. Total degree includes both those who

named an individual and those who were were named by an

individual. Only friendships are directional, other contacts are

symmetrical. Phi (Q) is the transitivity of the network. CSI and CII

are the spatial correlations between susceptible and infected, and

infected, individuals, respectively. N is the number of people for

whom both social network and obesity data was available for at a

given exam.

Found at: doi:10.1371/journal.pcbi.1000968.s001 (0.01 MB PDF)

Table S2 Summary of results from regression of probability of

transitioning between states and the number of contacts in a given

state, similar to those shown in Figure 3. n = non-obese, o = obese.

The probability of transitioning from ‘not obese’ to ‘obese’

increases in the number of ‘obese’ contacts (A), and doesn’t depend

on the number of ‘not obese’ contacts (B). Conversely, the

probability of recovering to the ‘not obese’ state does not depend

on the number of ‘not obese’ contacts (D) or the ‘obese’ contacts

(C)). After dividing by the time between exams, the slope of (A)

gives b, the intercepts of (A) and (B) give a, and the intercepts of

(C) and (D) give g.

Found at: doi:10.1371/journal.pcbi.1000968.s002 (0.01 MB PDF)

Text S1 Deriving pairwise network equations for heterogeneous

networks.

Found at: doi:10.1371/journal.pcbi.1000968.s003 (0.15 MB PDF)
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EXAM out-degree total degree phi CSI CII N
1 5.29 5.29 0.68 0.93 1.28 7518
2 4.63 4.69 0.64 0.92 1.18 5608
3 4.07 4.14 0.62 0.92 1.25 4960
4 3.77 3.84 0.61 0.94 1.20 4861
5 3.37 3.44 0.62 0.92 1.28 4415
6 3.00 3.07 0.64 0.92 1.31 3969
7 2.77 2.84 0.65 0.90 1.30 3591



EXAM: 1->2 2->3 3->4 4->5 5->6 6->7
A: n->o vs o slope 0.009 0.01 0.013 0.016 0.015 0.015

p 0.001 0.003 0.001 0.000067 0.001 0.001
intercept 0.56 0.053 0.059 0.059 0.071 0.049

B: n->o vs n slope -0.0004 0.0004 -0.002 -0.0005 -0.001 -0.002
p 0.55 0.64 0.17 0.75 0.58 0.49
intercept 0.064 0.059 0.074 0.073 0.085 0.063

C: o->n vs o slope -0.012 -0.009 0.018 -0.002 -0.006 -0.017
p 0.28 0.489 0.077 0.845 0.446 0.04
intercept 0.25 0.197 0.102 0.138 0.131 0.132

D: o->n vs n slope -0.0001 0.0003 0.007 -0.006 0.001 -0.007
p 0.97 0.937 0.04 0.146 0.844 0.183
intercept 0.233 0.188 0.096 0.12 0.123 0.127
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Deriving pairwise network equations for heterogeneous networks

In the main text, the pairwise equations were derived assuming all individuals had the same number of

contacts. This allowed us to reduce the dynamics to three differential equations (after applying a moment

closure approximation) tracking the changes in the number of pairs of the form [AB] . Now we relax the

assumption of homogeneity, and track pairs for each class of individuals, where classes are defined by the

total number of contacts an individual has. This analysis follows that presented in Eames and Keeling, 2002

[1].

Term Description
a rate of spontaneous infection
g rate of recovery
β rate of transmission through contact

[n] # of individuals with n contacts
[nm] # of pairs of individuals with n and m contacts

[A] # of A individuals
[An]∗ # of A individuals with n contacts

[AnBm] # of edges between an An and a Bm individual

[AnB]∗ =
∑
m

[AnBm] # of B contacts of all An’s

[AnBmCq] # of triples with Bm having both An and Cq as contacts

Table 1: notation used in pairwise equations for heterogeneous networks

Table 1 summarizes the types of variables tracked with this approach. After describing some variables in

terms of others, only those that are starred (*) remain, for a total of 3k equations, where k is the maximum

number of contacts of any individual in the network. Whenever there is a sum, it is over all possible values

for the number of contacts an individual has, i.e
∑
n

implies

k∑
n=0

. Note that while in the main text we wrote

equations for the fraction of individuals in various classes, here we have left the equations for the absolute

1



numbers, for simplicity of notation.

d

dt
[In] = β[SnI] + a[Sn] − g[In]

d

dt
[InI] =

∑
m

d

dt
[InIm] = β(

∑
m,q

([InSmIq] + [IqSnIm]) + [SnI] + [InS]) + a([SnI] + [InS]) − 2g[InI]

d

dt
[SnI] =

∑
m

d

dt
[SnIm] = β(

∑
m,q

([SnSmIq] − [IqSnIm]) − [SnI]) + a([SnS] − [SnI]) + g([InI] − [SnI])

(1)

Many variables on the right hand side of these equations can be simplified until only 3k variables remain

(equal to the number of equations). Firstly, triples can be reduced to pairs using the moment closure

approximation [2]:

[AnBmCq] =
(m− 1)

m

[AnBm][BmCp]

[Bm]
(1 − φ+ φCAnCq ) (2)

CAnCq =
[n][q]

[nq]

[AnCq]

[An][Cq]
(3)

(4)

We still assume there is one φ that describes the whole population. We could have φnmq, though this

would be unnecessarily complicated for most applications. Furthermore, we can approximate pairs of the

type [AnBm] in terms of the smaller set of pairs of the type [AnB] using:

[AnBm] =
[AnB][BmA]

[AB]

[nm]
∑

q q[q]

nm[n][m]
(5)

Finally, since all individuals are either infected or susceptible, we can use:

[InS] = n[In] − [InI]

[SnS] = n[Sn] − [SnI]

[I] =
∑
n

[In]

[S] = N − [I]

(6)

2



This results in 3k equations and variables. If we want to find the spatial correlation discussed in the

paper, we can use:

CAB =
[AB]∑

n,m

[nm]

[n][m]
[An][Bm]

(7)
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