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Optimization of Stochastic Strategies for Spatially Inhomogeneous
Robot Swarms: A Case Study in Commercial Pollination

Spring Berman, Radhika Nagpal, and Ádám Halász

Abstract— We present a scalable approach to optimizing
robot control policies for a target collective behavior in a
spatially inhomogeneous robotic swarm. The approach can
incorporate robot feedback to maintain system performance in
an unknown environmental flow field. We consider systems in
which the robots follow both deterministic and random motion
and transition stochastically between tasks. Our methodology
is based on an abstraction of the swarm to a macroscopic
continuous model, whose dimensionality is independent of the
population size, that describes the expected time evolution of
swarm subpopulations over a discretization of the environ-
ment. We incorporate this model into a stochastic optimization
method and map the optimized model parameters onto the
robot motion and task transition control policies to achieve a
desired global objective. We illustrate our methodology with a
scenario in which the behaviors of a swarm of robotic bees are
optimized for both uniform and nonuniform pollination of a
blueberry field, including in the presence of an unknown wind.

I. INTRODUCTION

A robotic swarm is a system that would consist of hun-
dreds or thousands of autonomous, relatively expendable
robots with limited sensing, communication, and computa-
tional capabilities. This kind of system has the potential to
perform tasks with a high degree of parallelism, redundancy,
flexibility, and adaptability to dynamic, possibly hazardous
environments. A key challenge in robotic swarms is the
development of approaches to design robot control policies
that can provably produce a specific macroscopic outcome
which is robust to disturbances in the system.

Fully centralized control strategies for a robot collective
can provide globally optimal solutions but are computa-
tionally infeasible for such enormous populations. We use
the paradigm of a broadcast architecture [18] to ensure
scalability of the control approach with the swarm population
size while enabling guarantees on system performance. A su-
pervisory agent computes parameters that govern the robots’
behaviors and transmits them to the swarm, without requiring
information about the individual robot activities. Each robot
in the entire swarm or a large subset is identical, unidentified,
and follows the same set of decentralized algorithms, which
rely only on local information from sensors and/or commu-
nication without knowledge of the global system state.

Our main contribution in this work is a top-down approach
to synthesizing robot control policies that are optimized for a
particular global objective to be accomplished by a spatially
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inhomogeneous swarm, whose members are arbitrarily dis-
tributed throughout their environment. We consider systems
in which the robots transition stochastically between tasks
at constant rates and follow a velocity field while executing
random motion that can be modeled as Brownian motion.
We describe optimization strategies that are open-loop, which
compute the control policies independently of robot measure-
ments, and closed-loop, which use this feedback to adapt the
control policies to an unknown bulk motion of the medium,
such as wind or water, in which the robots operate.

Our approach relies on the development of an abstraction
of the physical system, which is facilitated by the stochastic-
ity of the robot behaviors. We employ a modeling technique
from the stochastic simulation of reaction-diffusion chem-
ical systems [9]. From this model, we derive the macro-
continuous model, a set of ordinary differential equations
(ODE’s) that govern the time evolution of average swarm
subpopulations in each cell of a discretization of the envi-
ronment. The dimensionality of this model is independent
of the swarm population size; hence, for a fairly coarse
discretization, it is much faster to numerically solve the
ODE’s than to simulate individual robots. This makes the
model suitable for use in a stochastic optimization technique
as a tool for quickly predicting system performance under a
certain set of parameters. A supervisory agent can use such
a technique to optimize the model parameters for a target
objective in terms of swarm subpopulations. When these
parameters are mapped to the robot motion controllers and
stochastic policies for task transitions, the swarm produces
the desired collective behavior.

In prior work on this topic [3], we described an advection-
diffusion-reaction partial differential equation (PDE) model
of a spatially inhomogeneous swarm and discussed the
mapping between its parameters and the robot controllers.
Similarly, [11], [22] develop PDE models of swarms based
on the Fokker-Planck equation; they do not address the
problem of controller optimization. Existing methods of
optimizing control policies for swarms of robots whose be-
havioral rules are stochastic, or can be modeled as stochastic,
apply to problems of task allocation [2], [5], [16], [20] and
robotic assembly and self-assembly [7], [13], [17] that do not
incorporate spatial descriptions of swarms. Optimization of
a spatial model is considered in [19] for the specific purpose
of directing a swarm to a desired location.

As in [3], we apply our methodology to a scenario of
interest for the Robobees project [1], whose objective is to
develop a colony of insect-inspired micro air vehicles [23].
We address the problem of designing control policies for a
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Fig. 1. A section of an orchard with a hive of robotic bees and a mobile
beacon.

swarm of robotic bees that guarantee adequate pollination
of an orchard of rabbiteye blueberries (Vaccinium ashei).
We discuss the projected capabilities and constraints of the
system in Section II and describe the models of the scenario
in Section III. Section IV explains our optimization method,
and Section V illustrates its use in producing specified
distributions of pollination over an orchard, including in
the presence of wind. More generally, this approach can be
applied to any situation in which a swarm must achieve a
desired number of repetitions of a task in different regions.

II. PROBLEM STATEMENT

A. Pollination objectives

We consider a scenario in which a swarm of robotic bees
must pollinate a field with a given layout. The environment
that we model is a section of a rabbiteye blueberry orchard,
illustrated in Fig. 1, that consists of Q alternating rows
of two cultivars. Insect pollination is needed for sufficient
commercial yields of this crop, since almost all rabbiteye
cultivars require cross-pollination with a compatible cultivar
[6]. It is desirable to achieve uniform pollination of cultivated
crops [8], but it can also be desirable to favor some cultivars
or crop rows over others, depending on the crop timing.

To support this objective, we aim to design robot control
policies that produce a uniform density of flower visits along
rows of plants, and that can achieve any ratio between
numbers of flower visits at plants of different cultivars.
In addition, the pollination strategies should be able to
incorporate feedback from the robots in order to fulfill the
pollination task in the presence of unknown environmental
disturbances, such as wind.

B. Robotic system components and capabilities

The components of our system are shown on the left
side of Fig. 1. The robots would have sufficient power to
undertake brief flights [12], or sorties, that originate from
a location called the hive, and they would return to the
hive to recharge. A computer at the hive can serve as
the supervisory agent in our architecture. The computer
calculates the parameters of the robot motion and task

transitions for a specified pollination objective and transmits
these parameters to the robots when they are docked at the
hive for charging and uploading data. We assume that the
robots can fly radially outward from a robotic mobile beacon,
which initially spreads out the swarm from the hive to cover a
broad area. To control the direction and angle θ of this swarm
dispersal (see Fig. 1), the hive can command the location of
the beacon before each sortie.

During a sortie, the robots are assumed to be capable
of recognizing a flower that is very close by, potentially
using an ultraviolet light sensor; flying to the flower; and
hovering briefly while obtaining pollen from the flower using
an appropriate appendage. In our scenario, a robot might
vibrate a flower to release its pollen as is done by efficient
blueberry pollinators [6]. Each robot is equipped with a
compass and thus can fly with a constant heading. We assume
that the robots can count the rows of plants that they fly over
and switch between sets of parameters upon encountering a
particular row.

In order to adapt the robot strategies to unforeseen distur-
bances, the hive must incorporate the spatial distribution of
successful flower visits into its calculation of parameters for
the next sortie. Hence, the robots must be able to record the
locations of their flower visits and upload this information
upon their return to the hive. A major constraint on our
system is the lack of global positioning information, as it
is infeasible to use GPS sensors on the tiny, highly power-
constrained microrobotic platforms. We assume that the
robots can perform discretized localization within a coarse
grid over the field. A robot can identify the current grid cell
it occupies using the angle of the beacon in a robot-fixed
reference frame whose x-axis points east, as measured by
the robot’s compass. Alternatively, the robot may use dead
reckoning combined with visual landmarks, such as the row
edges. The robots record the number of flower visits they
execute in each cell.

We note that any delay in swarm redeployment due to the
data upload is not significant in our pollination application.
For a realistic scenario with several thousand robots and a
thousand cells, it is reasonable to estimate that the robots
can simultaneously upload their visit counts to the hive over
a wired medium in a few minutes; by comparison, rabbiteye
blueberry flowers are open for 2-4 days [8].

C. Robot controller

We assume that the swarm performs a basic high-level
behavior for pollination during a single sortie; the optimiza-
tion method described in Section IV computes several of
the parameters of this behavior over multiple sorties. Each
member of a swarm of N robots performs the following
actions during a sortie. Upon deploying from the hive,
a robot flies radially away from the mobile beacon at a
constant speed v, and once it encounters the edge of row
rv ∈ {1, ..., Q}, it begins to fly eastward at this speed. This
switch in direction prevents the robots from flying beyond
the domain to be pollinated and focuses the swarm on the
plants. Concurrently with this deterministic motion, the robot



executes random movement that either arises from inherent
noise due to sensor and actuator errors or is actively added
by the robot’s motion controllers, or both. This random
motion provides a mechanism for the swarm to achieve
thorough coverage of the field. We assume that the flowers
are distributed densely enough such that a robot can always
detect at least one flower in its sensing range when it flies
over plants. While a robot is flying over row number j, it
decides with probability per unit time khov,j to pause at a
flower in its sensing range and hover for pollination. The
robot resumes flying with a fixed probability per unit time
kfly, which determines the time taken to pollinate. A sortie
lasts for a fixed time, ts, at which the robot begins its return
to the hive.

III. MODELS OF THE POLLINATION SCENARIO

A. Micro-Continuous Model

This model is used to simulate the robots’ motion and
probabilistic decisions to visit and leave flowers that are
produced by the robot controller in Section II-C. A robot
i has position qi(t) ∈ R2 at time t. While the robot is flying
during a sortie, its deterministic motion is governed by the
velocity field

v(qi(t)) =
[
vx(qi(t))
vy(qi(t))

]
=

{
v qi(t)−qB

||qi(t)−qB || , x < xrv
,

[v 0]T , x ≥ xrv
,
(1)

where qB = [xB yB ]T are the mobile beacon coordinates
and xrv is the x coordinate of the left boundary of row rv .
We model the random robot movement as a Brownian motion
that drives diffusion, where D is the associated diffusion
coefficient. D is the sum of Dinh, a constant determined by
inherent noise, and Dact, a tunable parameter that produces
actively added random motion. We assume that we can
characterize Dinh and thus compute D. The displacement
of robot i over each timestep ∆t during flight is defined
according to the Itō-Taylor integration scheme [9],

qi(t+ ∆t)− qi(t) = v(qi(t))∆t+ (2D∆t)1/2 Z(t), (2)

where Z ∈ R2 is a vector of independent, normally dis-
tributed random variables with zero mean and unit variance.
A robot is stationary while it is hovering.

The probabilistic decisions are modeled at each timestep
∆t. When a robot is flying over row j, it decides to start
hovering for pollination with probability khov,j∆t at each
timestep. A hovering robot resumes flying with probability
kfly∆t per timestep.

B. Macro-Discrete Model

We develop an abstraction of the system in which the
robots’ motion and probabilistic decisions are modeled as
chemical reactions, which form the basis for the model that
we use in optimization. We discretize the environment into
M square cells of side length l. If we use an open-loop
optimization strategy, the minimum l is only constrained by
the computational resources available at the hive to solve the
corresponding macro-continuous model. If we use a closed-
loop strategy, which requires data that is associated with each
cell, then the minimum l is determined by the smallest region
in which a robot can localize. The set F consists of the
indices of the MF cells that contain flowers. Sets FC1 and
FC2 divide F according to the cultivar type of the flowers,
and sets Fj , j ∈ {1, ..., Q}, divide F according to the row
number of the flowers. The set H contains the indices of the
MH cells that overlap with the hive.

We model the robots’ motion through continuous space
as a set of virtual reactions that represent transfers of
robots between adjacent grid cells. This model relies on
the approximation that the robots in each cell obey the
well-mixed property, that is, they are uniformly randomly
distributed throughout the cell. Borrowing from chemical
reaction terminology, a species refers to the set of robots
in a particular cell that are all performing a certain task.
Bifly represents a member of the species that consists of
robots that are flying in cell i. We define a directed graph
G = (V, E) for which the vertex set V contains the indices of
the M cells and the edge set E = {(i, j) ∈ V × V | i ∼ j }
contains the possible transitions of robots between pairs of
neighboring cells, where i ∼ j denotes that a robot at cell
i can move to cell j. Every edge (i, j) is associated with a
rate constant kij , the probability per unit time for one robot
in cell i to move to cell j. The set of reactions that describe
the transfer of robots between cells is

Bifly →kij Bjfly, (i, j) ∈ E . (3)

We consider the environment to be unbounded. If i is a cell
at the boundary of the domain under investigation, signified
by i ∈ Bin, and j is an adjacent cell that would exist on the
other side of the boundary, signified by j ∈ Bout, then we
define a reaction to represent robots leaving the domain:

Bifly →kij ∅, (i, j) ∈ Eb, (4)

where Eb = {i ∈ Bin, j ∈ Bout | i ∼ j }.
Each rate constant is defined as the sum kij = kdij + kvij .

The rate constant kdij is the probability per unit time of robot
transfer from cell i to j by diffusion and is defined as [9]

kdij = D/l2. (5)



The rate constant kvij converts deterministic motion governed
by the velocity field (1) into a probability per unit time
of transfer from cell i to j. Since we assume a uniform
distribution of robots in each cell, this transfer probability
in one timestep ∆t, which we denote by kv1ij ∆t, can be
approximated as the area swept out in ∆t by the cells’
common edge moving with the velocity component in the
direction from i to j, divided by the area of cell i, l2.
Dividing this expression by ∆t yields

kv1ij =
1
l
·


max

(
vx(xci + l

2 , y
c
i ), 0

)
, qcj = [xci + l yci ]

T

max
(
−vx(xci − l

2 , y
c
i ), 0

)
, qcj = [xci − l yci ]

T

max
(
vy(xci , y

c
i + l

2 ), 0
)
, qcj = [xci yci + l]T

max
(
−vy(xci , y

c
i − l

2 ), 0
)
, qcj = [xci yci − l]T ,

(6)
where vx, vy are defined in equation (1) and qci = [xci y

c
i ]
T

is the center of cell i. For a swarm with no diffusive motion
and no flower visits, the Euler method for integrating the
corresponding macro-continuous model with kvij = kv1ij is
equivalent to the donor-cell upwind finite volume method
[15] for solving advection equations. To reduce the numer-
ical diffusion that this method introduces, we observe that
the upwind scheme can be written as the sum of central
finite difference approximations to an advection term and a
diffusion term with diffusion coefficients kv2ij l

2, where

kv2ij =
1
2l
·


|vx(xci + l

2 , y
c
i )|, qcj = [xci + l yci ]

T

|vx(xci − l
2 , y

c
i )|, qcj = [xci − l yci ]

T

|vy(xci , y
c
i + l

2 )|, qcj = [xci yci + l]T

|vy(xci , y
c
i − l

2 )|, qcj = [xci yci − l]T .

(7)

We subtract out this diffusion by setting kvij = kv1ij − kv2ij .
We also define reactions that model a robot’s decisions to

hover at a flower and to leave the flower after a pollination
attempt. In these reactions, Bihov is a member of the species
that consists of robots that are hovering at a flower in cell i,
and V i signals an instance of a flower visit in cell i:

Bifly →khov,j Bihov + V i, i ∈ Fj , j ∈ {1, ..., Q}, (8)

Bihov →kfly Bifly, i ∈ F . (9)

Let Ns(t) be the integer population of species s ∈
{1, ..., S} in our system at time t. We define the vector of
species populations,

N(t) = [NB1
fly
...NBM

fly
|NB1

hov
...NBM

hov
|NV 1 ...NVM ]T ,

(10)
where each entry is evaluated at time t. The Chemical Master
Equation [9] governs the probability of the system having
any given set of species populations at each point in time.
As we discuss next, we can use this equation to derive the
expected value of N(t), which we will use as a prediction of

the swarm behavior to evaluate the pollination metrics that
serve as our optimization objective functions.

C. Macro-Continuous Model

This model consists of a set of ordinary differential equa-
tions that describe the time evolution of µ(t) ≡ E(N(t)). We
define the model using the quantities Di ∈ RS , the vector
of species population changes that result from the execution
of reaction i ∈ {1, ..., R}, and ai(N), the propensity [10]
associated with each reaction i. If the species population
vector is N and reaction i occurs, this vector becomes N +
Di. The propensity ai(N) is defined such that ai(N)∆t is
the probability that reaction i will occur in the next ∆t, given
a species population vector of N. For a unimolecular reaction
with reactant species j and rate constant ki, ai(N) = kiNj .
Since all of the reactions in our system are unimolecular, the
dynamics of µ(t) can be derived as a closed set of ODE’s
from the Master Equation [10]:

µ̇(t) =
R∑
i=1

Diai(µ(t)) (11)

For the reaction network defined by (3), (4), (8), (9),
equation (11) is

µ̇(t) =
∑

(i,j)∈E

(uj − ui) kijµi(t)−
∑

(i,j)∈Eb

uikijµi(t)

+
Q∑
j=1

∑
i∈Fj

(ui+M + ui+2M − ui) khov,jµi(t)

+
∑
i∈F

(ui − ui+M ) kflyµi+M (t). (12)

where ui is the ith Cartesian unit vector. This equation can
be written in matrix form,

µ̇(t) = Kµ(t), (13)

where K ∈ R3M×3M contains the rate constants kij , (i, j) ∈
E , Eb; khov,j , j = 1, ..., Q; and kfly. Since equation (13) is
a linear ODE model, its solution is

µ(t) = eKtµ(0). (14)

IV. OPTIMIZATION

We use the macro-continuous model (13) to compute the
tunable parameters of the system that maximize a metric of
the degree of pollination over a specified number of sorties,
β, each with duration ts. We define a vector whose entries
are the parameters to be optimized per sortie:

p = [v D khov,1 ... khov,Q xB yB rv]T . (15)



In general, v and D can be functions of row j in addition to
the hovering probability rate, at the expense of increased
computation time. Note that K = K(p), and therefore
µ(t) = µ(p, t) by equation (14). We denote the parameter
vector for sortie j by pj and define a matrix of parameters
to be optimized for β sorties,

P = [p1 p2 ... pβ ] . (16)

The pollination metric is defined in terms of the target
number of flower visits per cell i ∈ F , Nd

V i . One possible
metric is the expected total fraction of pollination:

f1(P) =
1
MF

∑
i∈F

min

(∑β
j=1 µV i(pj , ts)

Nd
V i

, 1

)
. (17)

Another metric, which we denote by f2(P), is the expected
fraction of cells i ∈ F that receive at least Nd

V i visits. A third
possible metric is a measure of distance from the target visit
distribution:

f3(P) = −
∑
i∈F

∣∣∣∣∣∣
β∑
j=1

µV i(pj , ts)−Nd
V i

∣∣∣∣∣∣ . (18)

The entries of the initial population vector µ(pj , 0) for
each sortie j are defined as

µBi
fly

(pj , 0) =
{
bN/MH + 0.5c, i ∈ H, j = 1, ..., β,
0, i /∈ H, j = 1, ..., β,

µBi
hov

(pj , 0) = 0, i = 1, ...,M, j = 1, ..., β,

µV i(pj , 0) =
{

0, i = 1, ...,M, j = 1,
νi(pj−1, ts), i = 1, ...,M, j = 2, ..., β.

In the open-loop strategy, νi(pj−1, ts) = µV i(pj−1, ts), i.e.
the number of flower visits in a cell at the beginning of a
sortie is set to the number at the end of the previous sortie as
predicted by the macro-continuous model (13). In the closed-
loop strategy, νi(pj−1, ts) is the total number of visits to cell
i in j − 1 sorties that have been recorded by the robots and
uploaded to the hive upon their return.

Defining the objective function as f(P) = f1(P), f2(P),
or f3(P), we can now formulate the optimization problem:

maximize f(P)
subject to µ(pj , ts) = eK(pj)tsµ(pj , 0), (19)

pmini ≤ Pi,j ≤ pmaxi , i = 1, ..., Q+ 4, (20)
P(Q+5),j ∈ {1, ..., Q}, (21)
j = 1, ..., β.

We implement this problem using a Metropolis optimiza-
tion method [14]. We chose this method for its simplicity
and the fact that it yields reasonable improvements in f(P)

with moderate computing resources. At each iteration, the
vector pj for every sortie j is perturbed by a random vector
within the allowable parameter ranges (20), (21). With these
parameters, the vectors µ(pj , ts), j = 1, ..., β, are computed
by numerically integrating the corresponding model (13)
using the Euler method to obtain the solution (19). These
vectors are used to evaluate the objective function. For
the open-loop strategy, all vectors pj , j = 1, ..., β, are
randomly perturbed simultaneously. To simulate the closed-
loop strategy, the vector pj for a single sortie j is optimized
and input to the micro-continuous model, and the resulting
distribution of flower visits in each cell i is used as the initial
conditions µV i(pj , 0) in the optimization of pj+1.

V. SIMULATIONS

We developed micro-continuous and macro-continuous
models of a pollination scenario in which a colony of
robotic bees is tasked to pollinate 10 rows of rabbiteye
blueberry plants with the layout in Fig. 1. Using the macro-
continuous model, we optimized the tunable parameters of
our system for three objectives: uniform pollination of all
plants, different degrees of pollination for cultivars 1 and 2,
and uniform pollination in the presence of wind.

The environment is defined as a 140 ft × 100 ft domain,
and the cell length is set to a relatively high value of l = 4
ft for fast computation and to reflect the imprecision in the
robot localization capabilities. The dimensions in Fig. 1 are
set to (xH , yH) = (6 ft, 50 ft), dH = 16 ft, and dP,x = 12
ft, dP,y = 6 ft, the industry standard spacing for this crop
[21]. The hive is 4 ft × 12 ft and each plant is 8 ft × 6 ft.

We simulated N robots pollinating the field over several
sorties, each with a duration of ts = 150 s. The robots
begin in a uniform random distribution at the hive. We
set kfly = 0.2 to define an expected flower visit time of
k−1
fly = 5 s, the average floral handling time at rabbiteye

blueberry flowers for species that buzz the flowers for pollen,
Habropoda laboriosa (2.6 s) and four Bombus species (7.4
s) [4]. The parameters were optimized over the following
ranges: v ∈ [1 10] ft/s, D ∈ [3 5] ft2/s (here, Dinh = 3
ft2/s), khov,j ∈ [0.05 1.25] s−1 ∀j, rv ∈ {1, ..., 10},
xB ∈ [xH − 50 xH ] ft, and yB ∈ [−50 150] ft. The micro-
and macro-continuous models were run with ∆t=0.05 s.

A. Uniform Pollination

We set the target number of flower visits per cell to be
Nd
V i = 100 ∀i ∈ F . For this case, we set khov,j ≡ khov ,

j = 1, ..., Q. We simulated N = 1500 robots executing 3
sorties and used the open-loop optimization strategy with



TABLE I
TYPICAL RUNTIMES OF THE MACRO-CONTINUOUS MODEL (τmacro)

AND MICRO-CONTINUOUS MODEL (τmicro) ON A 2.60 GHZ PC WITH

3.75 GB RAM VS. ROBOT POPULATION SIZE N

N 1000 2000 3000 5000 7000
τmacro (s) 0.6
τmicro (s) 11.7 57.4 94.3 255.7 562.7

Iteration of Metropolis optimization
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Fig. 2. Values of yB and f2(P) for uniform pollination computed at
each iteration of the optimization method. In the yB plot, the dark solid
line, dashed line, and light solid line correspond to sorties 1, 2, and 3,
respectively.

f2(P) as the objective function. Table I quantifies the signifi-
cant computational advantage of using the macro-continuous
model rather than micro-continuous model for optimization.

Fig. 2 shows that the stochastic optimization run converges
to a set of parameters that produce sufficient pollination over
the vast majority of the field, as measured by the metric
f2 = 0.958. Table II contains the optimized values of these
parameters over all three sorties. As the values of xB , yB
illustrate, coverage is optimized by relocating the mobile
beacon before each sortie in order to deploy the swarm
radially outward in different directions. The values of rv in
sorties 1 and 3 contribute to thorough coverage by redirecting
the robots eastward as they approach the field boundary.

We performed 30 runs of the micro-continuous model for
each sortie with the optimized parameters. Fig. 3 compares
the resulting average distributions of flower visits over the
field, NV i(pj , ts), i = 1, ..., 875, j = 1, 2, 3, to the expected
distributions from the macro-continuous model, µV i(pj , ts).
The macro-continuous model predicts the general shape of
the visit distribution in the micro-continuous model; discrep-
ancies between the models are due to the representation of
deterministic motion as fluxes between neighboring cells in
the macro-continuous model. The correspondence between
the models can be improved by decreasing l. The visit
distributions for each sortie in Fig. 3 illustrate the differenti-
ated coverage strategies that are produced by the optimized
beacon coordinates (xB , yB) and row rv . The plots in the
fourth row, which show the cumulative flower visits over all
sorties, confirm that most of the field is adequately pollinated.

B. Nonuniform Pollination

We model a scenario in which we require twice as many
flower visits in cultivar 1 as in cultivar 2: Nd

V i = 100

TABLE II
OPTIMIZED PARAMETERS FOR UNIFORM POLLINATION

Sortie v D khov xB yB rv
(ft/s) (ft2/s) (s−1) (ft) (ft)

1 6.03 3.00 1.02 -13.79 70.11 3
2 5.67 3.24 1.15 -8.77 50.36 10
3 5.59 3.20 1.25 -9.70 42.24 6
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Fig. 3. Distribution of flower visits over 3 sorties in the macro-continuous
model (left column) and micro-continuous model (right column) with pa-
rameters optimized for uniform pollination. Micro-continuous distributions
are averaged over 30 runs. Note that the plots are saturated at Nd

V i = 100.

∀i ∈ FC1 and Nd
V i = 50 ∀i ∈ FC2. We simulated

N = 1500 robots executing 3 sorties and used the open-loop
optimization strategy with f3(P) as the objective function.
The optimized values of these parameters over all three
sorties are given in Table III.

Fig. 4 shows the flower visit distributions from the macro-
continuous model and the corresponding micro-continuous
model, averaged over 30 runs. As in the uniform case, the
optimization produces a sequence of strategies that involve
moving the beacon before each sortie to send the swarm in
different directions. The optimized khov,j values are lower
for the rows of cultivar 2 than those of cultivar 1 to produce
fewer flower visits in cultivar 2. After all sorties, the macro-
continuous model closely yields the target visit distribution
over the two cultivars. This model slightly overestimates the
amount of pollination in the micro-continuous model, which



TABLE III
OPTIMIZED PARAMETERS FOR NONUNIFORM POLLINATION

Sortie v D xB yB rv khov,j (s−1), j =
(ft/s) (ft2/s) (ft) (ft) 1 2

1 7.11 4.44 -13.91 68.13 6 0.37 0.29
2 8.72 3.19 -9.89 29.25 4 0.45 0.32
3 3.83 3.70 -5.51 48.71 6 0.29 0.21

Sortie khov,j (s−1), j =
3 4 5 6 7 8 9 10

1 0.67 0.32 0.85 0.48 1.19 0.79 1.18 0.68
2 0.82 0.36 0.76 0.29 0.68 0.28 1.04 0.44
3 0.61 0.46 1.07 0.65 1.21 0.61 1.21 0.65
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Fig. 4. Distribution of flower visits over 3 sorties in the macro- and micro-
continuous models with parameters optimized for nonuniform pollination.

approximately displays the desired ratio in the degree of
pollination between the two cultivars.

C. Uniform Pollination in the Presence of Wind

We set Nd
V i = 100 ∀i ∈ F to achieve uniform pollination.

In this scenario, a light southeast wind with velocity vw =
[1 −2]T ft/s blows over the entire field. This vector is added
to the robot velocity field (1) in the micro-continuous model.
The closed-loop strategy was used in order to adapt the
robot behaviors to the wind over 5 sorties. We simulated
the cycle of swarm deployment and parameter optimiza-
tion/transmission at the hive with N = 1500 and N = 3000

TABLE IV
OPTIMIZED PARAMETERS FOR UNIFORM POLLINATION WITH WIND

Sortie v D khov xB yB rv
(ft/s) (ft2/s) (s−1) (ft) (ft)

1 5.46 3.00 1.25 -5.14 49.80 10
2 5.48 3.00 1.25 -3.67 48.43 10
3 5.29 3.00 1.24 -0.72 49.24 10
4 4.40 3.00 1.25 -0.42 49.98 10
5 5.72 3.67 1.25 0.93 49.03 6

robots. We set khov,j ≡ khov , j = 1, ..., Q and used f1(P)
as the objective function. The optimized parameter values
for N = 3000 are given in Table IV.

Fig. 5 shows the flower visit distributions from the macro-
continuous model and single runs of the micro-continuous
model. The flower visit distribution in the micro-continuous
model always extends farther southeast than predicted by
the macro-continuous model due to the drift added to the
robots by the wind. For a swarm of 1500 robots, the repeated
optimization of the parameters for more thorough pollination
of the upper half of the field still left significant regions
unvisited after 5 sorties, as shown by the micro-continuous
visit distribution in the last row of Fig. 5. The other plots
illustrate that deploying twice as many robots yields a
substantial increase in the extent of sufficient pollination.
The optimized values of xB , yB indicate that the beacon is
moved closer to the hive for sorties 3− 5, which widens the
swarm dispersal angle θ in Fig. 1 in an effort to cover the
unpollinated upper and lower left corners of the field.

VI. CONCLUSIONS AND FUTURE WORK

We have described a methodology for optimizing robot
control policies for a desired global behavior in a swarm
whose members may be arbitrarily distributed in space
and execute stochastic task transitions. The parameters of
the robot motion and task switching are optimized using
an abstraction of the physical system. This macroscopic
model describes the expected populations of different swarm
elements over a discretized domain; its accuracy increases
with the grid resolution, which is constrained by the robot
localization capabilities if the optimization incorporates robot
feedback. We demonstrate the ability of our methodology to
approximately produce, using a relatively coarse discretiza-
tion, target distributions of pollination over a field by robotic
insects, including in the presence of an unknown wind.

We intend to investigate ways to increase the accuracy
of the macro-continuous model for a given grid resolution.
For the closed-loop strategy, the optimization method can
include an estimation of the unknown wind velocity, based
on the robot data on flower visits, to incorporate into kvij . We
are also interested in applying our methodology to models
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Fig. 5. Distribution of flower visits over 5 sorties in the macro-continuous
model and single runs of the micro-continuous model with parameters
optimized for uniform pollination in the presence of wind. Results are shown
for robot population sizes of N = 3000 and N = 1500.

for our system that include inter-robot communication, robot
failures, and the asynchronous return of robots to the hive
triggered by low remaining power levels.
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