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and vital to progress
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The editorial by Moghbel and colleagues published in this
issue of the European Journal of Nuclear Medicine and
Molecular Imaging raises a number of concerns with regard
to amyloid-beta (Af3) imaging [1]. We appreciate the
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opportunity to address and clarify these concerns by referring
to the scientific literature. There are several issues raised by
Moghbel and colleagues which we acknowledge require care-
ful consideration, further discussion, and research, including
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nonspecific white matter retention, the diagnostic value of A3
imaging, and the role of A3 pathology in disease generation.
However, the editorial by Moghbel and colleagues brings into
question the very feasibility of imaging A3 in the brains of
living humans [1]. Many of the issues raised in the editorial
have been extensively researched and discussed in various
scientific venues and publications over the past decade. How-
ever, it may be worthwhile to communicate these findings to a
larger community, including scientists not active in this par-
ticular field of research. Thus, to avoid further misunderstand-
ings and foster discussion based upon common grounds of
knowledge in the future, we will try to address the issues
raised by Moghbel and colleagues point by point and summa-
rize the corresponding evidence in the following order: (1)
alleged anomalies in the distribution of A3 radiotracers, (2)
perceived difficulties in visualizing A3 plaques, (3) concerns

W. J. Jagust

Public Health and Neuroscience, University of California,
Berkeley,

Berkeley, CA, USA

e-mail: jagust@berkeley.edu

K. A. Johnson

Departments of Radiology and Neurology,
Harvard Medical School,

Boston, MA, USA

e-mail: kajohnson@partners.org

R. A. Koeppe

Department of Radiology, University of Michigan,
Ann Arbor, MI, USA

e-mail: koeppe@umich.edu

C. L. Masters

Mental Health Research Institute, University of Melbourne,
Parkville, VIC, Australia

e-mail: c.masters@unimelb.edu.au

T. J. Montine

Department of Pathology,

University of Washington School of Medicine,
Seattle, WA, USA

e-mail: tmontine@uw.edu

J. C. Morris

Department of Neurology,

Washington University School of Medicine,
St. Louis, MO, USA

e-mail: morrisj@abraxas.wustl.edu

A. Nordberg

Department of Neurobiology, Care Sciences and Society,
Karolinska Institute, Karolinska University Hospital,
Huddinge, Stockholm, Sweden

e-mail: agneta.k.nordberg@ki.se

R. C. Petersen

Department of Neurology, Mayo Clinic College of Medicine,
Rochester, MN, USA

e-mail: peter8@mayo.edu

@ Springer

about the binding properties of A3 radiotracers to plaques,
and (4) questions regarding the theoretical basis of Af3
imaging.

Alleged anomalies in the distribution of A3 radiotracers

Moghbel and colleagues point out two issues regarding the
regional distribution of A3 radiotracers. One is a limitation
of all existing A3 radiotracers: nonspecific white matter
retention. This phenomenon is well known, having previ-
ously been demonstrated in in vitro studies with human
brain (see Fig. 4 of [2], Figs. 1C&D of [3], and Fig. 2 of
[4]), in animal studies, (see Fig. 3 of [5]), and from the very
beginning of in vivo human studies (see Fig. 3B of [4]). In
hundreds of subjects, it has been shown that the level of this
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nonspecific white matter retention does not differ between
Alzheimer’s disease (AD) patients and normal controls
[6-9]. Given that regional cerebral blood flow in white
matter is approximately 40-50% of that in neocortex [10,
11], slower clearance of tracers [12] likely contributes to Af3
radiotracer retention in white matter [4, 13]. This nonspe-
cific retention continues to represent a challenge to optimiz-
ing the analysis of A imaging positron emission
tomography (PET) data. It is true that spillover can occur
from this nonspecific retention into neighboring gray matter
(and vice versa when gray matter contains high amounts of
fibrillar A3). However, it should be mentioned that due to
the relatively small width of the cortical gray matter, which
can be below the resolution of a PET scanner, the partial
volume effect is not a problem unique to A3 imaging but
affects PET imaging procedures of the brain in general.
Furthermore, in Fig. 2 of Moghbel et al., a representation
of the partial volume effect is given that is not appropriate
for A3 imaging. Moghbel et al. refer to work in malignant
lung lesions where the intensity differences are indeed huge
and “overwhelming” [14]. In contrast, the typical retention
of A radiotracers in gray matter is not a small fraction of an
overwhelming level of white matter retention as depicted,
but at least comparable to threefold higher in typical Af-
positive scans. Nevertheless, it is clear that the white matter
uptake and the corresponding partial volume effects may lead
to inaccuracies in the precise quantification of cortical tracer
retention and thus assessment of cortical A3. While common
to all AP radiotracers, this is more noticeable in currently
published studies using '*F-labeled AP radiotracers, which
appear to generally show somewhat higher white matter re-
tention as compared to ''C-labeled Pittsburgh Compound-B
(PiB) [4, 7, 9, 15—17]. However, this limitation has not proven
to be a major hurdle to the quantitation of A3 deposits in
cortical gray matter, neither in the in vivo/postmortem cross-
validation studies, nor in studies on the predictive value of the
Af imaging findings, with regard to future cognitive decline.
Nevertheless, there is room for further improvement in this
context with regard to the development of tracers with less
white matter retention and of image evaluation techniques
(such as partial volume correction algorithms/volume of
interest-based techniques for selective identification of gray
matter uptake) [ 18—20]. Finally, it needs to be emphasized that
for many clinical purposes, answering the question of the
general presence of A3 pathology in the brain with YES or
NO by visual assessment will be of higher priority than
absolute quantification and localization of these abnormali-
ties. For example, in routine clinical practice, fluorodeoxyglu-
cose (FDG) PET data of the brain are read without partial
volume correction and the interpretation is usually established
without absolute quantification of the findings.

A second alleged discrepancy between Af3 tracer reten-
tion and AP pathology—the claim that the frontal lobes do

not harbor very high A3 deposition in AD—is contradicted
by a wealth of existing data. Thal et al. have clearly dem-
onstrated heavy and early frontal A3 deposition [21]. In
their classic 2002 paper, this group (led by Heiko Braak)
stated that in the earliest phase of A3 deposition (phase 1)
“there are A[3 deposits in the frontal, parietal, temporal, or
occipital neocortex” [21] and Fig. 2 of this group’s 1997
paper based on the examination of 2,661 brains clearly
shows early and predominant basal frontal and anterior
temporal A3 deposition [22] (Fig. 1).

Numerous other neuropathological studies recapitulate
these findings. In fact, the lead author of the paper that
Moghbel et al. lean upon most heavily [23] later published
a report showing that very high plaque density is found in
the frontal cortex in AD [24]. An even more recently pub-
lished work by this group demonstrated good correlation of
an '8F AP tracer to pathologically determined AP load in
biopsies of the frontal cortex [25]. Despite the fact that
neuropathological studies consistently detect a high Af3
plaque load in frontal cortex, neuropathological measures
of percent plaque area are only semiquantitative and are
complicated by variations caused by the fluorescence prop-
erties of the dyes used or secondary reactions used to am-
plify Af3-antibody binding. Therefore, this may not be the
most appropriate comparison to A3 imaging. A more ap-
propriate postmortem analysis would be truly quantitative
assessments such as enzyme-linked immunosorbent assay
(ELISA) analysis of A3 load [26, 27]. In their benchmark
study of 79 postmortem brains, Néslund et al. clearly show
that frontal cortex typically contains two- to fourfold higher
levels of total A3 than temporal, entorhinal, parietal, or
visual cortices [26]. In summary, the contention by Moghbel
and colleagues that the frontal lobe is not a prominent site of
AP deposition is inconsistent with the current state of
knowledge regarding the neuropathology of AD.

The suggestion by Moghbel and colleagues that congo-
philic angiopathy (CAA) could be responsible for Af3 tracer
retention in the frontal cortex also does not follow from the
neuropathology literature. Several studies (including a re-
cent one they cite [28]) clearly identify the occipital lobe as
the site of highest A3 deposition in CAA, but the occipital
lobe is one of the lowest neocortical sites of A radiotracer
retention in AD [6, 29].

Moghbel et al. also claim that structural and functional
changes such as regional atrophy, hypoperfusion, or hypo-
metabolism should serve as a predictor of regional A
pathology. However, evidence that these processes are as-
sociated with regional postmortem A[3 pathology is sparse.
For example, while brain atrophy may indeed occur in some
areas of the brain affected by A3 pathology, the data suggest
that these abnormalities are sequential, and that Af3
deposition precedes synaptic dysfunction and neuronal
loss [30-32], which are then evidenced as structural
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Fig. 1 “Development of
amyloid deposits in 2,661
nonselected autopsy cases. The
first line displays the frequency
of cases devoid of changes in
relation to the total number of
cases in the various age
categories. The second, third,
and fourth lines are similarly
designed, and show the
evolution of the AD-related
changes. The dark areas of the
columns refer to subgroups
showing the presence of neuro-
fibrillary changes.” (reproduced
with permission from Neurobiol
Aging, [22])

changes [33]. This may very well explain the regional
discrepancies between patterns of atrophy and A3 de-
position detected by in vivo imaging studies [34]. At
any rate, these considerations revolve around the inter-
action of different neurodegenerative pathologies and do
not relate to the value of AP imaging to accurately
measure the presence of Af3 in the brain.

The strongest proof of the feasibility of A imaging to
accurately measure A3 deposition in vivo is founded on a
wealth of detailed A 3 PET-neuropathology correlative studies
that demonstrate the close match between in vivo Af3 radio-
tracer retention and postmortem Af3 pathology as assessed by
ELISA, immunohistochemistry, Bielschowsky silver staining,
or quantitative in vitro assessment of tritiated PiB binding [25,

@ Springer
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35-43] (Fig. 2). Further support is added by the fact that high
retention of A3 radiotracers closely corresponds with: (1) low
CSF A levels, (2) presence of the apolipoprotein E €4 allele,
and (3) increasing age [44—47].

To make this argument even stronger, those subjects with
a different regional distribution of A} in the brain such as
those carrying one of the mutations associated with autoso-
mal dominant AD [48-50], or familial British dementia
[51], or subjects with posterior cortical atrophy [52—55] or
CAA [56, 57] show a different regional distribution of PiB
retention. If the retention of A3 radiotracers was determined
by nonspecific factors as much as Moghbel and colleagues
suggest, then all scans would look relatively similar. The
sharp distinction between the regional pattern of PiB
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retention in many presenilin-1 mutation carriers [48] and
sporadic AD (Fig. 3)—corresponding to the known patterns
of A3 aggregation in their brains—makes a convincing argu-
ment for specific A3-driven retention of AP PET tracers.

Perceived difficulties in visualizing A3 plaques

Moghbel and colleagues raise the concern that A3 plaques
in the brain are too small to allow in vivo imaging by means
of PET. This argument would not only render A3 imaging

Fig. 3 Comparison of the regional distribution of PiB retention in a
presenilin-1 mutation carrier (leff) and a sporadic case of AD (right).
The MRI is shown in gray and PiB retention is overlaid in a hot metal
scale on transaxial (fop), sagittal (middle), and coronal images (bottom)

04 06 08 1 0 05 10 15 20
Total AB (pmolimg tissue)

as impractical, but it would argue against the possibility of
imaging structures/processes of even smaller size (i.e., mo-
lecular imaging in general), such as neuronal glucose me-
tabolism (regularly imaged with FDG) or the receptor
density on cell membranes. A3 imaging does not attempt
to resolve an individual 50-100 um Af plaque. That futile
effort would indeed be thwarted by the limited resolution of
PET and the partial volume effects described. However,
partial volume effects not only decrease the signal within a
small structure such as a plaque due to low-signal bleed-in,
but partial volume effects also increase the signal in the plaque
penumbra by high-signal bleed-out. The net effect is a blurring
of the signal on a submillimeter scale, but without significant
loss of total signal on a larger scale. Like any other PET
technique, A3 imaging assesses the average concentration
of A3 radiotracer binding sites within a region of interest. Just
as one dopamine receptor would be swamped by neighboring
receptor-free tissue but millions of dopamine receptors pro-
duce a strong ''C-raclopride signal in the striatum, also
millions of fibrillar A3 deposits produce a signal that is easily
detectable in A[3-laden parts of gray matter.

Another concern brought up by Moghbel and colleagues
is based on the surprising and unsupported assumption that
the mass of A} in mild cognitive impairment (MCI) would
be 60-fold less than (i.e., 1-2% of) that in AD, thus not
possibly providing enough target structures for successful
imaging. This assumption is not supported by data of neuro-
pathological studies. In contrast, the quantitative postmortem
data of Néslund et al. showed that subjects who die at the
Clinical Dementia Rating (CDR) 0.5 stage (typically consid-
ered MCI) had an AP load 25-76% of that seen in patients
with established dementia (CDR of 1.0 or greater) [26].

Even in groups of autopsy cases consisting of early or
mild-moderate AD, neocortical amyloid markers are not
significantly different when compared to those in MCI cases
[58]. A recent review summarized the extent of amyloid
pathology in MCI relative to cognitively normal people
and early AD [59].

There is ample AP in the neocortex of AD and MCI
patients and many normal controls to be detected with Af3
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radiotracers. The nominal concentration of A3 in AD front-
al cortex is ~3 uM [26, 27, 60], which is about twofold the
number of PiB binding sites measured in vitro under satu-
rating conditions [60] (and in the mid-nanomolar range
under non-saturating conditions [61]). This is several orders
of magnitude higher than the concentration of many recep-
tors successfully assessed by PET. A recent paper demon-
strated that, even under non-saturating conditions, there are
about the same number of binding sites available in frontal
and temporal cortex in postmortem human AD tissue [~60
fmol/mg tissue (~60 nM)]. The authors concluded that “the
observed binding of ['' C]PIB to amyloid plaques in vitro in
human AD tissue, but not in healthy controls, is in corre-
spondence with in vivo studies of patients with AD. This
radiotracer is therefore very suitable in the early diagnosis
of AD and can be used for the detection of pathological
changes before there is a significant loss in cognitive func-
tion.” [61]. This, along with the high affinity of the PET
radiotracers for Af3, renders the concerns about visualizing
A plaques inconsistent with a wealth of existing data.

Concerns about the binding properties of A3 plaques

Moghbel and colleagues also propose that there may be
“inherent difficulties of targeting fibrillar amyloid plaques,
which are not as well-defined as the soluble forms of the
protein.” Since the soluble (including oligomeric) forms of
Af3 are not well defined at all, it is difficult to interpret this
concern. In principle, conversion of a number of available
binding sites from a soluble to a more solid or immobile
status would be expected to increase the binding of a suit-
able ligand. For example, decreasing the mobility of recep-
tors by fixation to a solid support can increase the binding of
ligands [62, 63] because of decreased entropy and increased
rebinding of small molecule ligands [64]. Currently, there
are no data to support the idea that A3 radiotracer binding to
insoluble A3 fibrils is fundamentally different than any
other binding interaction of a radioligand with specific
binding sites on other proteins (many of which are relatively
immobile because they are embedded in membranes). In
fact, the binding of A3 radiotracers to A3 fibrils shows
typical, reversible binding properties in in vitro kinetic
binding analyses [18].

The authors point out that no in vivo studies using high
doses of unlabeled AP PET ligand to compete off the
specifically bound A3 radiotracer have been performed to
validate the specific and reversible nature of binding in
humans. This is true and will likely remain true for two
reasons: (1) the nominal concentration of A3 radiotracer
binding sites is on the order of 1 uM in AD cortex [26,
27, 60], requiring micromolar levels of unlabeled ligand to
effectively compete off the A3 radiotracer; and (2) none of

@ Springer

the A tracers have been approved for human use at the
doses required to achieve micromolar levels in brain. While
it might be possible to perform such studies in animals, there
are significant problems using A3 radiotracers in transgenic
mouse models of AD [60, 65], although some of these
problems may be possible to overcome [66].

A more pertinent concern that Moghbel et al. correctly
point out is that there are different tertiary forms of Af3
deposited in brain, such as the amorphous deposits in cere-
bellum which have very low affinity for all A radiotracers.
This conformational variability also may come into play in
autosomal dominant forms of AD [48, 67] and in early
stages of A3 deposition [37], but the significance of non-
fibrillar A3 in typical, sporadic, late-onset AD is unknown.
Studies assessing the selectivity of PiB for other aggregated
misfolded proteins present in AD, such as tau/neurofibril-
lary tangles [36, 68] and «-synuclein/Lewy bodies [69, 70]
utilizing in vitro methods that are more pertinent to PiB
binding in vivo, have shown that in vivo cortical retention
of '"'C-PiB primarily reflects fibrillar AR deposits. The
potentially differential affinity of the A tracers to various
forms of A3 deposits does not necessarily affect the clinical
utility of A3 imaging. For example, the case mentioned by
Moghbel and colleagues [37] did not meet two commonly
used sets of neuropathological criteria for AD [71, 72],
because only sparse neuritic plaques and neurofibrillary
tangles were present, although the case did meet the older
Khachaturian criteria [73]. Nevertheless, it is important to
keep in mind that different conformations of A3 deposits in
the brain [74] may affect the binding pattern of the tracers
and that A3 imaging modalities may not recognize all types
of A3 pathologies with equal sensitivity. This may be an
interesting area of future research, to further improve the
understanding of the quantitative information provided by in
vivo AP imaging methods. However, any additional
insights in this regard would rather lead to assigning a more
specific information to the A} imaging signal than putting
the general utility of this method into question.

Questions regarding the theoretical basis of A3 imaging

Finally, Moghbel and colleagues broaden their concerns
well beyond issues related to PET imaging by questioning
the AP cascade hypothesis itself. This would imply that if
A deposition is not causative of AD, it is not worth
measuring. In this context, it is important to draw a clear
distinction between the value of A3 imaging and the merits
of the A3 hypothesis—a hypothesis that remains supported
by the bulk of existing data [75]. The basic feasibility of
imaging AD pathology in vivo should not be confused with
a discussion of the causal relevance of A in AD. In
isolation, A imaging is not diagnostic, it is agnostic—that
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is, agnostic to the role of A3 deposition in AD. A3 imaging
was intended to assess the pathology of AD in vivo. This
tool may ultimately be used to help prove or disprove the
A3 hypothesis of AD. The A3 cascade hypothesis, though
important, is not highly relevant to the feasibility and valid-
ity of A3 imaging since, by definition, A3 deposition
remains a pathological hallmark of this disease.

Further, Moghbel et al. suggest that if A3 deposition is
causative, then the levels of AP in brain should correlate
with cognition. Again, A3 imaging is not a tool to assess
cognition. In contrast, it may represent a tool to detect A3
pathology independently and in particular before the onset
of clinically significant cognitive symptoms. For example, a
number of studies that have demonstrated the predictive
value of A3 pathology in subjects with MCI with regard
to subsequent cognitive decline support this notion [76—79].
The long-recognized discrepancy between cognitive impair-
ment and A plaque burden in the brain [80] may be
explained by three factors: (1) a dissociation in timing be-
tween early disease events and subsequent events that are
more directly related to cognition [81]; (2) cognitive changes
may be more related to the long-term, cumulative effects of
soluble, oligomeric forms of A3 (not apparent by routine
neuropathology or imaged by current PET tracers) [82, 83];
and (3) the importance of cognitive reserve in the modulation
of symptoms in the presence of brain pathology [84, 85].

Moghbel and colleagues further discuss the “noteworthy
rates of false-positive and false-negative PET scans using
amyloid tracers” [1]. This appears to reflect conceptual
misunderstanding and terminological imprecision. A person
with a positive A3 PET scan who is negative for clinical AD
should not be regarded as a “false-positive” but rather cor-
rectly classified as an “A3-positive” non-demented subject.
This was clarified in the original report using PiB PET [4] as
follows, “Therefore, at the outset, it may be best to not
equate amyloid deposition to clinical diagnosis. Rather than
as a method of diagnosis, it might be best to first think of
PiB retention more fundamentally as a method to detect and
quantify brain B-amyloidosis, a term first used in reference
to AD by Glenner [86].” A3 imaging simply detects cerebral
[3-amyloidosis. It does not provide a diagnosis by itself. It is
only one tool to be used along with clinical assessment and
other biomarker modalities to enhance our ability to provide
earlier and more accurate diagnoses. The “false-positives”
and “false-negatives” to which Moghbel et al. refer are
mismatches between the presence of cerebral f3-
amyloidosis and symptoms of dementia. They are not
false-positives and false-negatives for the presence of Af3.
The latter can only be determined by PET-neuropathology
correlations and to date, there have been essentially no
reported false-positives and only the rare false-negatives
that would be expected when comparing an in vivo tech-
nique with a highly sensitive tissue stain [41, 87].

Summary

We acknowledge that there are a number of caveats with
regard to the clinical value of A3 imaging. This includes
disorders other than AD which may show A deposition
(such as dementia with Lewy bodies), the unknown time to
conversion in healthy A-positive persons or the relative
plateauing of the A3 burden in later stages of disease [79,
87-90]. However, these caveats are not related to the proven
functionality of the tracers and should not hamper the appli-
cation and further evaluation of in vivo A3 imaging with PET.

The fact that A3 deposits can be detected by A3 imaging
in vivo is, in our opinion, a fact substantiated by a wealth of
peer-reviewed data. '®F-Labeled AP imaging radiotracers
may be approved for clinical use in the near future. If so, this
will be the first PET radiopharmaceutical developed com-
mercially and the first PET tracer approved for clinical use
by the US Food and Drug Administration (FDA) since
FDG. As such, it represents a landmark moment in the field
of molecular imaging and should encourage further com-
mercial investment and development in the field. The func-
tionality, sensitivity, and specificity of A3 plaque imaging
agents has by now been demonstrated in a level of detail and
reliability (including in vivo-to-postmortem autopsy corre-
lations) that has not been required or provided for most other
imaging tracers clinically used today. Many of the concerns
raised by Moghbel and colleagues in their current editorial
in the European Journal of Nuclear Medicine and Molecu-
lar Imaging have been resolved previously, and we attemp-
ted to summarize the available information on these issues,
to allow a future rational discussion on common grounds of
knowledge. As is the case for any clinical test, Af3
imaging does not represent a perfect tool and some
justified concerns remain, such as the nonspecific white
matter retention or the effects of atrophy and partial
volume on quantification. However, none of these con-
cerns reasonably question the general feasibility of Af3
imaging or have been demonstrated to hamper the value
of this procedure for detection of fibrillar A3 pathology.
A discussion regarding clinical indications for Af3 im-
aging is as welcome and important as the debate about
the causal role of A3 pathology in the genesis of AD.
However, both of these topics clearly need to be treated
independently from the feasibility of A imaging itself.
Thus, we believe that the remaining issues do not justify a
call to slow the clinical development of these radiotracers
and to withhold the availability of this technology from
those it could potentially help. In contrast, we believe that
hindering the progress of this exciting new molecular
imaging approach could send an erroneous and discourag-
ing signal to groups interested in the development of other
new diagnostic agents. The inability to obtain the informa-
tion provided by AP imaging would most certainly slow
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down the urgently needed progress in understanding the
basics of neurodegeneration and in the development of new
approaches aiming to treat these devastating disorders. A3
imaging has been repeatedly held up as one of the major
successes of the past decade in the fight against AD. Thus,
rather than to unnecessarily question the general feasibility of
A3 imaging, we believe we should vigorously foster the
application of this unique new tool to improve our understand-
ing of AD pathophysiology, to aid clinical diagnosis, and to
advance the development of effective therapy.
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