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Abstract

The problem of genotyping polyploids is extremely important for the creation of genetic maps and assembly of complex
plant genomes. Despite its significance, polyploid genotyping still remains largely unsolved and suffers from a lack of
statistical formality. In this paper a graphical Bayesian model for SNP genotyping data is introduced. This model can infer
genotypes even when the ploidy of the population is unknown. We also introduce an algorithm for finding the exact
maximum a posteriori genotype configuration with this model. This algorithm is implemented in a freely available web-
based software package SuperMASSA. We demonstrate the utility, efficiency, and flexibility of the model and algorithm by
applying them to two different platforms, each of which is applied to a polyploid data set: Illumina GoldenGate data from
potato and Sequenom MassARRAY data from sugarcane. Our method achieves state-of-the-art performance on both data
sets and can be trivially adapted to use models that utilize prior information about any platform or species.
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Introduction

Most agriculturally important plant species, such as potato,

sugarcane, coffee, cotton and alfalfa, are polyploids. In fact, about

half of the natural flowering plant species are polyploids [1].

Despite their importance, our understanding of these species does

not fully benefit from marker technology. Molecular markers are

widely used for diploid species and can be very useful for building

linkage maps [2], finding genomic regions associated with

variation in quantitative traits (or QTL) [3], studying the genetic

architecture of quantitative traits [4], and assembling genome

sequences [5].

Accurate genotyping of polyploids (even for largely unchar-

acterized species or in cases when the ploidy is unknown) is a

missing keystone in genetics that must be solved in order to utilize

the approaches that have marked a revolution in biology over the

past hundred years. Accurate genotypes are necessary to

understand the genetic mechanisms and specific loci that

determine phenotypes via QTL mapping and association studies.

These genotypes are also necessary for the creation of linkage

maps, which are exceedingly useful in developing a greater

understanding of genome evolution. These linkage maps will be

essential for the assembly of complex polyploid genomes.

The current approach used for several genetic studies on

polyploids, especially for linkage mapping, is based on marker loci

with only a single copy (simplex) in one of the parents and a

nulliplex in the other, in F1 populations obtained from the cross of

non-inbred parents. Markers such as AFLP and SSR ( i.e.

microsatelites) are then scored as presence or absence of bands

[6–8] and behave like dominant markers. For sugarcane, most

available linkage maps are based on markers segregating in 1 : 1

(single dose in one parent) or 3 : 1 patterns (single dose in both

parents) [9]. Even if complex statistical methods are applied to

obtain integrated maps that combine information from markers

with both patterns simultaneously [10,11], the available maps are

based on a small sample of the genome, since markers with higher

doses are normally not included; therefore, they are not well

saturated and informative for genome assembly [12]. For QTL

studies in sugarcane, the situation is similar. Statistical models

developed for backcrosses are used for simplex|nulliplex

configurations with available software that was developed for

diploids [13]. Since the ploidy level could be related with gene

expression [14], these approaches need to be modified to

incorporate allele dosage using more efficient marker systems.

Nowadays, new technologies such as Illumina GoldenGateTM

[15] and Sequenom iPLEX MassARRAYH [16] allow researchers

to generate high-throughput genotyping data from SNPs. These

data usually contain two signals for each SNP locus, each one

corresponding to an intensity recorded for one of the two possible

alleles. The expected value of each signal intensity is proportional

to the corresponding allele dosage [16,17], and therefore SNPs are

the marker of choice for genetic studies in polyploids. They are

more informative than presence/absence markers, and should

allow a better coverage of the genome and the development of

more realistic models for linkage studies, QTL and association

mapping, among other applications.

In order to explore the full potential of such technologies, a first

required step is the development of statistical methods for SNP

genotype calling, i.e. inferring the (discrete) genotype of each

individual for each locus, identifying the number of copies of each

allele. For diploids, including humans, a number of methods are

already available [18]. This is not the case for polyploids. Methods
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for polyploid genotyping need to be able to deal not only with

multiple copies of the alleles, but also with some complex problems

such as aneuploidy and unknown ploidy, which can be present for

some species.

Voorrips et al. [19] presented an approach based on mixture

models for genotype calling in autotetraploids, in a similar way as

done by [20] in diploids. Based on the (transformed) allele signal

ratio (ratio of one signal peak to the total), they fitted a mixture of

five normal distributions, each one corresponding to one genotype

class (from zero to four copies of the allele). They compared several

models and were also able to test for Hardy-Weinberg equilibrium

in a potato panel with 224 tetraploid potato varieties. Their model

could be expanded for allowing the inclusion of more classes in the

mixture in order to be useful for other autopolyploids; however, in

certain situations the ploidy (and hence the number of classes) is

unknown and need to be estimated. Also, crosses with distinct

ploidies and parents may result in similar segregation patterns,

making the selection of the best model a complicated task. This is

the case for sugarcane, which is a very complex polyploid and

aneuploid species. Genotype calling in sugarcane is extremely

difficult, especially if commercial varieties are used, since they are

interspecific hybrids between domesticated and wild relatives [21].

Here we present a graphical Bayesian model for SNP

genotyping calling. Our graphical Bayesian method can infer

genotypes even when the ploidy of the population is unknown. At

the core of Bayesian thinking is the notion of modeling processes

forwards rather than trying to model their inverse. Generally, a

great deal of prior knowledge is available regarding the way any

process behaves running forwards; when the process is modeled

generatively ( i.e. running forwards), this prior knowledge can be

exploited to improve the fidelity with which it describes the

process. In graphical models prior knowledge regarding indepen-

dence and conditional independence of variables can be visualized

in the structure of the graph. The highly connected subunits of the

graph can be considered with modularity; that is, a subunit can be

easily interchanged with another. This modularity is what allows

our model to work with populations in Hardy-Weinberg

equilibrium, the progeny of an F1 cross, or any population with

a known theoretical distribution of genotypes. This modularity

results in a model and inference procedure that are compatible

with any theoretical distribution of genotypes in the population.

There are many other ways that our model, and similarly

motivated models, can be easily changed and improved because of

their modularity and generality.

We also introduce an algorithm for finding the exact maximum

a posteriori (MAP) genotype configuration with this model. This

algorithm is implemented in a freely available software package

named SuperMASSA. We demonstrate the utility, efficiency, and

flexibility of the model and algorithm by applying them to data

from two polyploids processed with two different platforms: potato

[19] using Illumina GoldenGateTM assay [15] and sugarcane

using Sequenom iPLEX MassARRAYH [16].

Materials and Methods

Data
Potato. An autotetraploid potato collection was used,

comprising 384 SNPs scored in a panel of 224 individuals using

the Illumina GoldenGateTM assay, as described in [22] and [19].

This data set is distributed along with the free R package fitTetra

[23], under the GNU General Public License. To exemplify the

results obtained using the mixture model, [19] chose three loci,

PotSNP016, PotSNP034 (Figure 1) and PotSNP192. However, for

loci PotSNP192, they noted that the Illumina GoldenGate assay

produced significantly different signal strengths for the alleles,

resulting in skewed clusters. Thus, the intensity ratio between those

alleles can not be easily used to infer genotypes. Since our model

assumes the signal strength of each allele is proportional to the

dosage (and that the proportionality constant for both alleles is

similar), we used only PotSNP016 and PotSNP034 to exemplify our

method. For this data set, we use the same model of the genotype

distribution as [19] ( i.e. Hardy-Weinberg). Moreover, since we

know the ploidy for both the diploid and tetraploid potatoes, we can

check if the ploidy estimated by our model matches the actual one.

These two SNPs were also scored in 64 diploid potato varieties that

were used for a visual check of the goodness of fit. We also analyze

the diploid individuals using PotSNP016 and PotSNP034.

Sugarcane. A sugarcane mapping population derived from a

cross between two commercial varieties (IACSP 95-3018|IACSP

93-3046) was used. It was comprised of 180 individuals scored for

241 SNPs using the Sequenom iPLEX MassARRAYH technology

[16]. This assay is based on allele-specific primer extension with a

mass-modified terminator [24]. The DNA products of this

reaction are analyzed by a MALDI-TOF mass spectrometer and

each polymorphic region of interest is detected by a mass of the

allele-specific primer [25]. Both parents were also scored 12 times

for each SNP. If the ionization efficiency is similar for both alleles,

the intensities produced by mass spectrometry are proportional to

abundance (with very similar proportionality constant if run in the

same sample prep); therefore, the if the amplification of both

alleles is similar, the skew is minimal. We observe much less skew

in the sugarcane data set compared to the potato data set.

Modern sugarcane varieties have highly polyploid and aneu-

ploid genomes, with ploidy levels ranging from 5 to 16 [26,27].

Therefore, unless there is strong cytological information for a

marker, it is important to also estimate the ploidy. Since we want

to test our model and do not have a reference point for sugarcane

(such as the known diploids or tetraploid potato varieties), and also

because sugarcane meiosis frequently result in deviations from the

expected Mendelian segregation ratios [26–28], we used a blind

method to curate the data and evaluate SuperMASSA.

First, all sugarcane loci were curated by eye using several

criteria. For each locus, an expert looked at raw scatter plots as

shown in Figure 1 and assessed the following: i) the overall quality;

ii) the number of clusters; and iii) the expected ploidy level based

on parental data. This resulted in 27 SNPs that were easily

classified by eye. SuperMASSA was used to predict the ploidy and

number of clusters for each of these 27 loci and three of them (the

three judged to be of the highest quality) are used to show the

results of our model.

It is important to note that in this blind validation experiment,

SuperMASSA was not used to curate the data and the model

behind SuperMASSA was not changed after observing and

curating the data.

Probabilistic Graphical Model
We use a Bayesian approach to model the probability of the

observed data given the ploidy and all genotypes. By modeling the

generative process ( i.e. the process by which the data is produced

assuming we know the ploidy and genotypes of all individuals), we

can build the model from realistic assumptions for the data. Using

the model, we then perform inference (described in the

Probabilistic Inference section) to effectively enumerate all possible

ploidies and genotypes for individuals in the population, and

choose the configuration that maximizes the posterior probability

of the model. This configuration is known as the maximum a posterior

(MAP) and is guaranteed to result in the highest possible

probability.

Fast Bayesian MAP Genotyping in Polyploids
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In Figure 2 we present two probabilistic directed graphical

models of the SNP genotyping process for a single locus: a Hardy-

Weinberg model and an F1 model. These models represent

dependencies using directed edges. Both models share similar

motivation and notation; the few differences arise from different

models of the distribution of genotypes in the population. We first

present the shared model components and then present the details

specific to each model.

Hardy-Weinberg and F1 Model Similarities. For both

models, the ‘‘genotype configuration’’ G~(G1,G2, . . . Gn) is the

collection of genotype assignments for all individuals in the data

set. Because the ploidy, denoted P, determines the possible set of

genotype outcomes, the genotype configuration depends on the

ploidy P. Denote the set of possible genotype outcomes for a given

ploidy as m(P)~fm0,m1, . . . mPg. For example, for a diploid locus

P~2 and the set of possible genotypes is m(P)~
fm0~(0,2),m1~(1,1),m2~(2,0)g. Both models use a uniform

prior on the ploidy P; it should be noted that for the data we

analyzed, the influence of any weak priors is negligible because of

a pronounced drop in suboptimal posteriors relative to the MAP

configuration.

The observed data D is composed of a collection of data points

D1,D2, . . . Dn, each of which comprises an (x,y) intensity pair and

an individual i that gave the sample producing the (x,y) pair. We

assume that each data point depends only on the individual that

produced it; therefore, the likelihood of any genotype configura-

tion G~g can be written as a product over individuals:

Pr (DjG~g)~P
i

Pr (DijGi~gi)

For some gi[m(P)~fm0,m1, . . . mPg, we model the likelihood

proportional to Pr (DijGi~gi) using a normal distribution with

unknown standard deviation s:

Figure 1. Raw data. The scatter plot of allele intensities for PotSNP034 (A), tetraploid, and SugSNP225 (B), which has an unknown ploidy.
doi:10.1371/journal.pone.0030906.g001

Figure 2. A Graphical View of SNP Genotyping. Two models for SNP genotyping are presented. Variables are shown as nodes and solid arrows
depict dependencies between variables. The observed data D depend on the genotypes of all individuals G. In both models the distribution of
genotypes C is determined by the genotype configuration G. Also, in both models the probability of a genotype distribution depends on T , the
distribution of genotypes in the population. Furthermore, both models use the same method to compute the probability of the data given the
genotype configuration. Lastly, the possible genotypes depend on the ploidy P. (A) In the Hardy-Weinberg model, the distribution of genotypes in
the population is determined by one of the allele frequencies a. (B) In the F1 model, the distribution of genotypes in the population depends on the
parent genotypes Q1 and Q2 . The dashed arrows and nodes (D(1) and D(2)) depict optional dependencies and variables; these variables and
dependencies exist only when data from the parents is included.
doi:10.1371/journal.pone.0030906.g002

Fast Bayesian MAP Genotyping in Polyploids
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Pr (DijGi~gi)!
e
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2

s2
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2p
p

s

where the operator û~
u

EuE1

is used to perform L1 normalization

on Di and gi. This likelihood effectively uses the expected angles of

each genotype and penalizes individuals deviant from the

genotype of the expected angle. For this reason, ‘‘skewed’’ data,

where the intensities measured by allele 1 and allele 2 use very

different constants of proportionality with their respective dosages,

cannot be modeled without including a latent variable for the

skew. Sigma is given a uniform prior and inference is performed in

a manner similar to inference over all ploidy.

For any genotype configuration G~g, both models also

compute C, the distribution of possible genotypes.

C~(C0,C1, . . . CP), where Cj equals jfgi : gi~mjgj, the number

of individuals assigned to genotype mj . The probability of any

distribution C is modeled using the theoretical distribution of

genotypes T . Given the theoretical genotype frequencies for the

population T~(p1,p2, . . . pP) where p1zp2z . . . pP~1, the

probability of observing any genotype distribution C is multino-

mial:

Pr (CjT)~
n!

P
P

j~0
Cj !

P
P

j~0
p

Cj
j

Both the Hardy-Weinberg and F1 models allow for individuals

with replicate data points. If all individuals have the same number

of replicate data points, then the MAP configuration is guaranteed

to be found (as shown in the Supplement S1).

Hardy-Weinberg Model. Figure 2A depicts the dependencies

of the Hardy-Weinberg model. In the Hardy-Weinberg model, the

theoretical distribution of genotypes is modeled using a binomial

distribution. Given a, the allele frequency of the first allele (in the

ordered pair), the probability of any genotype mj~(j,P{j) is

pj~
P

j

� �
aj(1{a)P{j . The parameter a is modeled using a

uniform prior. To perform grid search, we discretize a into the

range (0,1) with a resolution of 0:05.

F1 Model. Figure 2B depicts the dependencies of the F1

model. In the F1 model, the theoretical distribution of genotypes is

modeled using hypergeometric distributions for the gametes (it is

important to note that any model could be trivially applied

instead). Denote mj :x to be the dosage for the first allele in the

ordered pair and mj :y to be the dosage of the second allele in the

pair. Given parents Q1~q1 and Q2~q2, both which have values

in m(P), the probability of observing gamete U1 from Q1 (without

loss of generality) is

Pr (U1~u1jQ1~q1)~

q1:x

u1:x

� �
q1:y

u1:y

� �
P

u1:xzu1:y

� � :

Therefore, the probability of observing offspring mj is

pj~
X

u1,u2:u1:xzu2:x~j

Pr (U1~u1jQ1~q1) Pr (U2~u2jQ2~q2):

In the F1 model, the parent genotypes Q1 and Q2 depend on

the ploidy since the outcomes of both must be in m(P). We model

the prior probability as uniform for the number of unique

outcomes: Pr (Q1,Q2jP)~
Pz2

2

� �
:

In Figure 2B dashed nodes and arrows represent variables and

dependencies that exist only when data from the parents is

included. The probability of these parameters can be modeled as

conditionally independent, just like Pr (DjG):

Pr (D(1)jQ1)~P
k

Pr (D
(1)
k jQ1)

When parental data is used, the parents are distinct and so the

number of unique parental combinations becomes (Pz1)|
(Pz1); therefore, when parental data is available, the prior

probability on parental configurations becomes uniform over these

(Pz1)|(Pz1) distinguishable outcomes.

Generalized Population Model. The inference procedure

described does not make any special use of the type of parameters

that determine T ; therefore, given the parameters h that determine

T (and do not depend on G, D, or C), our inference method will

find the MAP genotype configuration. This illustrates that both the

Hardy-Weinberg and F1 models are specific instances of a general

model (where h~(P,a) and h~(P,Q1,Q2), respectively). s is

searched in a similar manner, but since we use a uniform prior, we

search all parameter configurations for a given s and omit s from h
for simplicity (this strategy also allows us to cache the table of

likelihoods for a given s). When parental data is included in the F1

model, it can be modeled by setting the prior probability (that is, the

probability including available parent data but excluding data from

progeny) to

Pr (h,D(1),D(2))~

Pr (P,Q1,Q2,D(1),D(2))~ Pr (P) Pr (Q1,Q2jP) Pr (D(1)jQ1) Pr (D(2)jQ2)

We define the ‘‘generalized population model’’ as the model

defined using h. For each h we will compute the MAP genotype

configuration g�h; using the prior probability of h, we can enumerate

the possible outcomes of h and compute both the genotype

configuration and parameters (h�,g�h� ) that jointly maximize the

posterior probability for these parameters. Using this approach we

can also approximate Pr (g�h� ,h
�jD), the posterior belief that the

MAP parameter and genotype configuration is correct.

Identifiability
Before inference is performed, it is necessary to demonstrate that

the parameters (P,h,s) can be inferred with a sufficient amount of

data ( i.e. they are ‘‘identifiable’’). By the law of large numbers, the

densities of the genotypes and allele intensities converge to the density

expected from the parameters (P,h,s) as n??; therefore, with

enough individuals, the exact distribution of genotypes and allele

intensities is known. In order to prove that the parameters are

identifiable, we must demonstrate that (P,h,s) can be computed from

this density pdf P,h,sð Þ(X ,Y ,G) ( i.e. that (P,h,s).pdf P,h,sð Þ(X ,Y ,G)
is one-to-one). It is sufficient here to prove that no two non-identical

pair of parameters (P,h,s) can yield the same density.

By assumption, our model considers data which is a weighted

sum of Gaussians (one for each genotype), each with a mean mi at

the expected slope for the two allele intensities. Algabraically, for

two densities to be equal, the two equivalent sums of shifted

Gaussians, each of the form
P

i wiG(mi,s), must use identical sets

Fast Bayesian MAP Genotyping in Polyploids
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fmi : wi=0g (when sv?). Furthermore, the corresponding

weights wi must be equal for Gaussians shifted by the same mi.

Together, these statements require that identical densities must be

created by sets of parameters with identical angles mi for all

possible genotypes (wiw0). This requires that all genotypes have

an equal dosage to ploidy ratio for each possible genotype.

If this set of mi contains more than one possible genotype, then

the difference between the two dosages increases for the larger

ploidy (because the ploidy, the denominator in both slopes, has

increased, but the slopes remains constant). Because these dosages

are necessarily integers, then the difference must increase by at

least one, indicating a new genotype class with expected slope

between the other two. Therefore, to have the same set of mi, the

larger ploidy has a possible genotype class not possible with the

smaller ploidy, and this genotype class is not possible with the

smaller ploidy. Thus, the larger ploidy must assign a weight wi~0
to that new genotype class.

However, both models considered (Hardy-Weinberg and F1)

create unimodal (or flat) weight distributions. For this reason, they

cannot create sequential weights that are nonzero, zero and then

nonzero again. Furthermore, given the ploidy, the weights (or

expected frequencies) are sufficient to estimate h. Therefore, if more

than one possible genotype exists, the parameters are identifiable

(the lowest ploidy that could produce the desired angles is the only

one possible). When only one possible genotype exists, the ploidy

cannot be estimated (it could be any multiple of a ploidy that

produces the correct angle). In this case, we use an Occam’s razor

approach by placing a decreasing prior on the ploidy P.

Probabilistic Inference
In order to perform inference on the generalized population

model described in the Probabilistic Graphical Model section, we

introduce three approaches: a greedy approach (maximum

likelihood), an exact approach (MAP) via dynamic programming,

and a substantially more efficient exact approach (also MAP). For

all inference methods, assume h is known. The best greedy

genotype configuration and h can be chosen by enumerating all

outcomes of h and selecting the one with highest posterior.

Graphically, it is trivial to demonstrate why MAP inference is

difficult. Consider Cj , a single bin in the distribution C; it has

incoming edges from all individuals’ genotypes G1,G2, . . . ,Gn.

Thus, in the the moral graph (in which all nodes with a common

successor are joined by an undirected edge), an edge joins each

pair of nodes Gi1 ,Gi2 , resulting in a clique of size n. The treewidth

[29] of a graph containing an n{clique is at least n, so standard

inference methods ( e.g. naive enumeration or junction tree

inference [30,31]) will require number of steps exponential in n at

least; for problems of the size we consider (n&200), a runtime

exponential in n is infeasible.

Greedy Inference. Rather than jointly consider all genotype

assignments, the greedy approach approximates g�h by using

maximum likelihood estimation. The likelihood considers only

Pr (DjG). Because of conditional independence of data given the

genotype configuration, the maximum likelihood genotype

configuration is defined:

g�h&g
(ML)
h

~argmax
g

Pr (DjG~g)

~argmax
g

P
i

Pr (DijGi~gi)

~(argmax
g1

Pr (D1jG1~g1), . . . argmaxgn Pr (DnjGn~gn))

The greedy estimate can independently compute the most likely

genotype of each Gi individually, effectively ignoring their

combinatorial joint dependencies.

For each h, the maximum likelihood genotype configuration

g
(ML)
h can be evaluated by computing the joint probability with the

data. Denote the distribution resulting from a given genotype

configuration g as c(g). Then the joint probability given h can be

written as follows:

Pr (D,G~gjh)~ Pr D,G~g,C~c(g)jhð Þ ð1Þ

~ Pr (D,G~g,C~c(g)jTh) ð2Þ

~ Pr (DjG~g) Pr (C~c(g)jTh) ð3Þ

Using the equation 3, the configuration with the highest joint

posterior

Pr (D,G~g
(ML)
h jh) Pr (h)

can be found by enumerating outcomes of h.

Exact Inference. The combinatorial dependencies between

genotypes in different individuals must be recognized in order to

compute the MAP genotype configuration. It is tempting to

approximate these dependencies with a mixture model. A mixture

model approach treats all Gi as independent draws from the

distribution T ; however, a mixture model rewards configurations

assigning all individuals the most probable genotype in T . In

reality, such a configuration is extremely improbable because there

is only one series of genotype assignments that result in this

outcome. On the other hand, if C is chosen so that not all

individuals are assigned the most probable genotype in T , the

multinomial probability may be larger because there are many

genotype configurations that could lead to C (compared to the

single configuration that yields the most probable genotypes).

Modeling this dependency between all individuals, although

computationally challenging, is extremely important.

In the simplest approach, all possible genotype configurations

can be enumerated naively in exponential time, resulting in the

tree shown in Figure 3A. Although it is infeasible to think of

enumerating the entire tree, it may be possible to ignore subtrees

that cannot lead to an optimum, substantially reducing the search

space.

Consider individuals in an arbitrary order with some genotypes

assigned: Let Gpre~gpre denote (G1,G2, . . . Gk)~(g1,g2, . . . gk)
for kvn and Gsuf denote the unassigned genotypes

(Gkz1, . . . Gn). We refer to the assigned genotypes Gpre~gpre as

a ‘‘prefix’’ genotype configuration and the unknown Gsuf as a

‘‘suffix’’. Given a prefix genotype configuration, it is possible to

bound the joint probability of all configurations with this prefix by

bounding the likelihood for the remaining configurations:

Vgsuf Pr (D,Gpre~gpre,Gsuf ~gsuf jh)~

Pr (D,Gpre~gpre,Gsuf ~gsuf ,C~c(gpre,gsuf )jh)

~ Pr (gpre,gsuf jC~c(gpre,gsuf )) Pr (C~c(gpre,gsuf )jh)|
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Pr (DjGpre~gpre,Gsuf ~gsuf )

~ Pr (gpre,gsuf jC~c(gpre,gsuf )) Pr (C~c(gpre,gsuf )jTh)|

P
i1ƒk

Pr (Di1
jGpre

i1
~g

pre
i1

) P
i2wk

Pr (Di2
jGsuf

i2
~g

suf
i2

,Gpref ~gpref )

ƒ P
i1ƒk

Pr (Di1
jGpre

i1
~g

pre
i1

) P
i2wk

max
g

suf
i2

Pr (Di2
jGsuf

i2
~g

suf
i2

) ð4Þ

Given a genotype and parameter configuration G~g’,h’, any

configuration including the prefix satisfying the following inequal-

ity is suboptimal:

Pr (D,G~g’,h’)w

Pr (h) P
i1ƒk

Pr (Di1
jGpre

i1
~g

pre
i1

) P
i2wk

max
g

suf
i2

Pr (Di2
jGsuf

i2
~g

suf
i2

)

The prefixes correspond to paths from the top of the tree in

Figure 3A; prefixes that are shown to be suboptimal can be

‘‘bound,’’ meaning that they are not branched and searched

further down. The second product may be cached for all k for a

speedup of n. It is worth noting that this second product must be

included, because the likelihood constant on Pr (DijGi) is

unknown and so we cannot guarantee that L(Gsuf jDsuf )

!Pr (Dsuf jGsuf ~gsuf )ƒ1. With all of the branch and bound

approaches, the initial values (g’,h’) can be computed using the

greedy maximum likelihood approach and then improved as more

probable configurations are found.

A more sophisticated dynamic programming approach (shown

in Figure 3B) merges nodes of equal depth that produce identical

distribution prefixes

Cpref ~ C
pref
0 ,C

pref
1 , . . . ,C

pref
j

� �
and the number of individuals with each genotype in the genotype

prefix. Because c(gpref ,gsuf )~c(gpref )zc(gsuf ), then if two

prefixes gpref1 ,gpref2 produce the same distribution prefixes

c(gpref1 )~c(gpref2 ), the suffixes satisfying C~c(gpref1 ,gsuf ) are

the same as the suffixes satisfying C~c(gpref2 ,gsuf ). For this

reason, other than the prefix likelihoods Pr (Dpref1 jGpref ~gpref )

and Pr (Dpref2 jGpref ~gpref ), all other values in equations 4 will be

the same; therefore, all prefixes producing the same prefix

distribution can be grouped together, using the greatest prefix

likelihood and corresponding prefix path. These grouped nodes

can be added in batches for each depth to produce a ‘‘layer;’’ by

induction the best path to each node in a layer includes the best

path to the nodes in the layer above. The same bound from the

naive tree is used, but subproblems that are identical are grouped

and solved together to avoid redundant computation and storage.

Efficient Exact Inference. There are a number of reasons

that the naive and dynamic programming branch and bound

methods are inefficient. First, the number of nodes visited in these

trees may be as much as
Pn{1

depth~0 (Pz1)depth andPn{1
depth~0

nzdepth

depth

� �
, both of which are exponential in Pz1.

This number of nodes determines the time and (if implemented in

a manner that emphasizes runtime efficiency), the space required.

Secondly, the suffix path is unconstrained; given gpref , there is no

restriction on gsuf , and so the bound must use the maximum

likelihood for the remaining gsuf likelihood. Most importantly, the

bound in equation 4 is very conservative; in order to bound a

subtree with prefix gpref , the overall likelihood of all subsequent

trees must be less than the product of the overall likelihood and

multinomial multiplier Pr (C~c(g’)jTh’) for a full configuration g’.

Figure 3. Illustration of Exact Inference. Exact MAP computation can be performed by enumerating all possible genotype configurations.
Because each individual’s genotype is among m0,m1, . . . mP, searching through genotype configurations can be viewed as a tree in which each
individual genotype assignment branches into Pz1 separate outcomes. (A) A naive search progresses downward through the tree and chooses the
series of genotype assignments that lead to the highest posterior probability. A naive branch and bound method derived from this tree bounds
genotype configurations for which the prefix determines that all subsequent paths are poor. (B) A multinomial graph ( i.e. the subset graph of the
power-set of G) merges outcomes that result in the same genotype counts C. Multiple paths (from the top) can lead to any given set of genotype
counts; therefore, dynamic programming is used. Given the layer above, each node can compute the most likely path from the top that leads to it.
Once the most likely path and score are computed for each node in a layer, the next layer can progress. At the bottom layer, the node with the
highest combined likelihood Pr (DjG~g) (computed via dynamic programming) and Pr (C~c(g)jT) (the same for any path terminating at the node)
maximizes the posterior probability. As in the naive tree, once all lower adjacent nodes in a subtree are provably suboptimal, then the subtree can be
bounded. The dynamic programming approach is substantially more time space-efficient than the naive approach.
doi:10.1371/journal.pone.0030906.g003
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Because even the largest multinomial probability Pr (C~c(g’)jTh’)
is usually very small, the bound is extremely conservative. It is not

feasible to use either the naive or dynamic programming branch

and bound methods on the presented data.

For these reasons, we introduce a novel geometric branch and

bound method; this method has several advantages. First, when

the number of individuals is substantially larger than the ploidy

(n&p), the worst-case tree produced by our method is several

orders of magnitude smaller (O nPz1
� �

rather than O (Pz1)nð Þ).
Secondly, our geometric method allows us to substantially

constrain valid suffix configurations. Lastly, our method makes

use of the multinomial probability in the bound; this multinomial

probability is very influential in selecting the optimum (especially

when the optimal s� is not very close to zero). Our geometric

method has these advantages because it exploits a geometric

property that MAP configurations must exhibit. By searching only

configurations with this property, our method dramatically

reduces the possible search space.

To present our branch and bound method, we first rephrase the

problem in a geometric context and then derive a geometric

property of optimal configurations (Figure 4). In the likelihood

Pr (DijGi), both the data Di and the theoretical genotypes mj are

normalized so that EDiE1~1 and EmjE1~1. This likelihood is

therefore equivalent to Pr (cDiDijGi~bmjmj). This normalization

effectively places the points along the line yzx~1. For all Di

and mj , define the operator v to order them using their

normalized values along the line yzx~1 (the direction of the

ordering is arbitrary). Similarly, for all Di and mj define the

distance E:E2 to operate on normalized values of the points on this

line. It should be noted that other methods of normalization ( e.g.

normalizing on a unit circle) will also enable ordering the points in

this way and are compatible with this method.

Fix the genotype distribution C. In the joint probability

Pr (D,G~g) in equation 4, Pr (CjTh) is a constant multiplied by

all genotype configurations for which c(g)~C. Thus the optimal

genotype configuration producing this C is the one that maximizes

the likelihood Pr (DjG~g). Consider two genotype configurations

ginferior and gsuperior that result in identical genotype distributions

c(ginferior)~c(gsuperior). If these configurations are identical except

two individuals’ genotype assignments, then one configuration must

swap the genotype assignments of these individuals (or else the

distribution C would change). Let these individuals’ indices be

denoted i1 and i2 and the possible genotypes be denoted mj1
and mj2

.

If

E
g

inferior
i1

g
inferior
i2

24 35{
Di1

Di2

" #
E2

2wE
g

superior
i1

g
superior
i2

24 35{
Di1

Di2

" #
E2

2

then log( Pr (Di1
jgsuperior

i1
) Pr (Di2

jgsuperior
i2

))wlog( Pr (Di1
jginferior

i1
)

Pr (Di2
jginferior

i2
)) and log( Pr (DjG~gsuperior))wlog( Pr (DjG~

ginferior)). We prove (see Supplement S1) that genotype configura-

tions that do not form contiguous genotype blocks along the line

xzy~1 always contain two genotypes that can be swapped to

decrease the distance and increase the likelihood; therefore, the

optimal genotype configuration consistent with C (which cannot be

improved without changing C) must contain only contiguous blocks

of genotype assignments along the line xzy~1.

This approach lets us find the optimal genotype configuration

for a given C in O nð Þ steps by sorting (the sorted order of

individuals can be cached and won’t vary with the parameters h or

s). We prove that, for this reason, the optimal genotype

configuration can be found by searching possible genotype

distributions C and for each C choosing the optimal genotype

configuration.

Given a prefix distribution Cpref , the best genotype configura-

tion prefix g
pref

Cpref can likewise be trivially found using the sorted

order of individuals. In general, we generalize a previous method

that performs search on the cardinality of sets rather than on the

sets, themselves [32]; our approach generalizes this for the

multinomial distribution, rather than a single count. Furthermore,

the joint probability of the best genotype configuration consistent

with the prefix distribution is bounded above by the product of the

multinomial bound, the prefix likelihood, and the best remaining

suffix likelihood (more thorough proof shown in Supplement S1):

max
Csuf

Pr (D,G~g,(Cpref ,Csuf )~c(g))ƒ

n!

C0!C1! . . . Cj !
P

j’ƒj
pj’

Cj

	 

(1{p0{p1{ . . . {pj)

n{npref
|

Pr (Dpref jGpref ~g
pref

Cpref ) P
iwnpref

max
gi :gi[fmjz1,mjz2,...mk’g

Pr (DijGsuf
i ~gi)ð5Þ

Using this formula, branch and bound can be performed on the tree

composed of the search space for the distribution C; unlike the naive tree

and the dynamic programming graph, the tree of all possible distributions

has a significantly smaller depth of Pz1, rather than n. Furthermore,

performing branch and bound on this tree is significantly more efficient

and can utilize information from a prefix Cpref ( e.g. using the

multinomial and restricting the suffix genotype configurations) to

establish a much tighter bound. This method lets us efficiently find

the exact MAP g�h for any h and the overall MAP g�.
Approximating the Posterior Probability of the MAP

Configuration. Given an initial guess at the MAP configuration

(g’,h’) (from the greedy search), it is possible to simultaneously

compute the MAP configuration g�h and also approximate the

posterior probability of g�h. This posterior probability is of great

practical utility because it indicates the reliability of the results by

quantifying how much better the MAP configuration is compared to

all other configurations. In order to approximate the posterior of the

MAP, we make two assumptions: first, most of the joint distribution’s

mass is from the neighborhood nearby the MAP, and second, the

posterior distribution of configurations in these neighborhoods

behave similar for different values of h. Using these two

assumptions, we can approximate the marginal probability as

proportional to the joint probability of the MAP:

X
g

Pr (D,G~gjh1)!Pr (D,G~g�h1
jh1)

X
g

Pr (D,G~gjh2)!Pr (D,G~g�h2
jh2)

where the constant of proportionality is similar for h1 and h2.

Therefore, the posterior of a configuration can be approximated:

Pr (G~g�hjD)&
Pr (D,G~g�hjh) Pr (h)P

h’
Pr (D,G~g�h’jh’) Pr (h’)

ð6Þ
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Denote the greedy genotype configuration for h as g’h and the

greedy configuration with highest posterior g’. During the branch

and bound, it is possible to bound only configurations with joint

probabilities so low, omitting them cannot significantly influence

the denominator, and hence the overall value of equation 6. To

the best of our knowledge, this is the first application of branch

and bound to numerical marginalization; in our approach the

maximum absolute posterior error (provided as a parameter)

determines how conservative the approach must be to bound

subtrees when estimating the posterior of the MAP configuration.

Rather than bound any distribution prefix for which all joint

probabilities provably inferior to Pr (D,G~g’jh’), we can only

bound distribution prefixes that are substantially inferior. For

some d[(0,1�, we bound configurations when maxg Pr
(D,G~g,Cpref jh)vd Pr (D,G~g’jh’) (where the maximum is

conservatively estimated using the upper bound from equation

5). Larger values of d permit more aggressive bounding and

smaller values bound more conservatively. We demonstrate (see

Supplement S1) that the greatest absolute posterior error " is

bounded by the product of d and the total number of parameter

configurations queried (not including the MAP):

Evdjfh1,h2, . . .g\h�j~d jfVhgj{1ð Þ. Given ", the minimum

allowed d can be found dw

E
(jfVhg{1)

.

Approximating Posterior Probabilities for Each Genotype

Assignment. It is important to distinguish the configuration

posterior (which we approximate above) from posterior estimates

that each individual is assigned the correct genotype.

SuperMASSA, our implementation of the proposed efficient

geometric inference method, also approximates the posteriors for

each individual by using the relative likelihood between the MAP

genotype and the other possible genotypes for that individual. The

user is allowed to set a threshold for this value, and only the

individuals with a likelihood ratio exceeding this posterior will be

Figure 4. Illustration of a Suboptimal Genotype Configuration. The essential motivation behind the geometric branch and bound is
demonstrated. The top figure shows the original data and the bottom figure shows the data after being normalized to cDiDi and bGiGi within the likelihood
function Pr (Di jGi). The two figures on the left correspond to a suboptimal genotype configuration. In the figures on the right, a pair of ‘‘blue’’ and
‘‘red’’ points (highlighted) are switched to the opposite class. After swapping the categories, the numbers of individuals with each genotype C do not
change, but the total distance between these two points and their classes decreases. Decreasing this distance increases the likelihood while holding
C constant. Thus the joint probability Pr (D,G~g(inferior))v Pr (D,G~g(superior)). Because the MAP configuration cannot be improved by any such
swaps, it must correspond to contiguous groups of class assignments along the normalized axis. Searching only the configurations that result in
contiguous class assignments dramatically narrows the search space and makes inference computationally feasible where it wouldn’t be with the
dynamic programming branch and bound method.
doi:10.1371/journal.pone.0030906.g004
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reported (in both figures and output genotype assignments). This

approach formalizes heuristics that filter out data points with a

total intensity (x2zy2) less than some threshold.

Furthermore, it is possible to extend our approach to compute

exact posteriors for each genotype assignment. The space searched

by branch and bound would be much more complex; however, the

MAP genotype configuration computed above would provide the

most efficient possible bound. When the MAP has a substantial

portion of the probability mass, nearly every subtree will be

bounded, resulting in a very efficient runtime.

Results

Runtime Improvement with Geometric Branch and
Bound

The improved runtime of our geometric branch and bound

method relative to the dynamic programming method is a nontrivial

change; it makes exact MAP computation feasible where it was not

before. In Figure 5, we demonstrate the relationship between the

ploidy P, the parameter s and the runtime of these methods using

the SugSNP225 locus. Not only is the geometric method

substantially more efficient for more difficult problems (over 100

times faster in some instances), the gap between the two methods

grows nonlinearly (as shown by the increasing gap on the log-scale

runtimes). Furthermore, the amount of memory used by the

dynamic programming method is prohibitively large; in both cases,

the dynamic programming runtime series is terminated early for

using more than 3 GB of RAM. Most importantly, the dynamic

programming time and memory requirements prohibit analysis

using the optimal parameters. The optimal ploidy for this locus is 10

and the optimal s value is 0.16; it is infeasible to run the dynamic

programming method for any ploidy greater than four (when s is at

its optimal value 0.16) and for any s greater than 0.03 when the

ploidy is at its optimal value of 10. For this reason, the dynamic

programming method could not practically be applied to this data

set.

Inference Results from Potato and Sugarcane Data
For all loci investigated, Table 1 shows the ploidy and number

of clusters predicted by both the expert and SuperMASSA. The

application of our method provided very good results for the SNPs

evaluated, both for potato (diploid and tetraploid) and sugarcane.

For potato, SuperMASSA was able to find the correct ploidy level

and number of clusters in all cases. For sugarcane the ploidy level

was the same for 21 SNPs. For the remaining loci, SuperMASSA

predicted similar ploidies for four (differences from 10 to 8 in

SugSNP004, 12 to 14 in SugSNP013, and 8 to 6 in SugSNP186

and SugSNP204) and incorrect ploidies (10 to 14 in SugSNP060

and 6 to 14 in SugSNP114). It is important to note that the

curated result is not sacrosanct; the exact answer is not known,

since the ploidy level is unknown for sugarcane. The number of

clusters for sugarcane was the same for 24 SNPs, with only small

differences in the remaining. Interestingly, this happened only for

loci with different results for ploidy level as well.

Further investigation into the loci where the expert and

SuperMASSA disagree revealed that the distributions resulting

from the ploidies set by the expert were quite divergent from the

theoretical distributions expected for any possible sets of parents.

The expert did not analyze these distributions when curating the

data, because it was prohibitively time-consuming: the number of

possible parents for the considered ploidy range (two to 16) totals

444; enumerating all sets of parents for the 241 considered

sugarcane loci would have resulted in 107,004 figures requiring

manual analysis.

SuperMASSA Output from Selected Potato and Sugarcane

Loci. SuperMASSA was run on two potato loci (from both the

diploid and tetraploid individuals) and on sugarcane loci using the

same parameters. The ploidy range searched was 2 to 16 (only

even ploidies were searched) and the s range searched was

(0:01,0:02,0:04,0:08,0:16,0:32). For the sugarcane data, peak

heights were used as the measure of intensity ( SuperMASSA has

the option of using the peak areas for MassARRAY data). Figures

reported were generated automatically without manual editing

Figure 5. Runtime of Exact MAP Computation with Dynamic Programming and Geometric Branch and Bound. Both methods were run
and timed while solving the same MAP inference problem. The y-axis plots the log of the runtime in seconds and the x-axis plots either the ploidy or
the parameter s. Both methods were implemented in Python and run on sugarcane locus SugSNP225 and timed using user time. Parental data was
not used. For this data set, the optimal ploidy and s values are (10,0:16). In the figure on the left, s is held constant at 0:16 and the ploidy is varied
from 2 to 10. In the figure on the right, the ploidy is fixed at 10 and s is doubled successively from 0:001 to 0:064. In both figures, the dynamic
programming branch and bound series is incomplete because the method was terminated after using more than 3 GB of RAM. In comparison, the
geometric branch and bound method never used more than 50 MB. The growing gap between the methods indicates a superpolynomial speedup,
especially when larger ploidies and larger values of s are used. For very low s values, the dynamic programming method is sometimes slightly faster
due to decreased overhead.
doi:10.1371/journal.pone.0030906.g005
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using the –save_figures option. Parental data (consisting of 12

replicates of each parent) was used for sugarcane loci (results were

very similar without using this data).

Figure 6 shows the output from SuperMASSA on potato loci

from the diploids and tetraploids. For the diploid potato used as

reference by [19], it is easy to see that the results strongly agree

with what is expected. First, the observed and estimated

proportion of individuals on each class of the distribution are

very close to each other. Second, there are 3 clusters correspond-

ing to alleles with 0, 1 or 2 copies. It is also possible to see that

there is no skew on the clusters around the expected angles for

each cluster (0, p=4 and p=2). It is important to note that the

method was able to deal with clusters containing few individuals.

More importantly, the ploidy level was correctly estimated as two.

In individuals of the tetraploid potato variety, the results also

indicated that the proposed method works well. The estimated

ploidy was four, there are five clusters, and the expected and

observed proportions under HWE are quite similar. Little skew

from the expected angles was observed.

Figure 7 shows the output from SuperMASSA on three

sugarcane loci. For each of these loci, there is a strong agreement

between the expected and observed number of individuals in each

cluster for an F1. There is no evidence of skew on the annotated

scatter plots and individuals were correctly allocated to clusters close

to the expected angles for the given ploidy and estimated dosage on

parents. Furthermore, the expected angles of these estimated parent

dosages closely matched the angles seen in the scatter plot of parent

genotype data. The ploidy level was correctly estimated based on

what is expected from eye-curation: 12 for SugSNP122, 10 for

SugSNP201 and 10 for SugSNP225. The allele dosage in the

parents was also estimated as simplex|nulliplex, simplex|simplex

and triplex|nulliplex, respectively.

Discussion

These results presented were possible only because our novel

approach to inference substantially reduced the search space and

permitted much greater utilization of available information ( e.g.

prior knowledge about rare genotype frequencies) in the branch

and bound. We present a geometric interpretation of how our

procedure reparameterizes and decreases the size of the search

space; however, the key mathematical concept that allowed us to

discover the geometric property of optima was due to an

exploitation of symmetry. In general, it is possible to condition

on outcomes of nodes in a graphical model that perform

associative operations (in this instance counting), even though

these nodes depend jointly on the state of all predecessor nodes.

This is possible by effectively collapsing predecessor configurations

that lead to the same outcome. In state-of-the-art software

packages for graphical models [33], this type of symmetry may

not be exploited to its full potential, and so for our problem, the

best runtime for an exact result would have had a worst-case time

exponential in the number of individuals. In the future, these

special types of dependencies could be identified automatically; it

is possible that this type of symmetry is hidden in myriad other

problems and could be exploited.

One such straightforward generalization that could be made to

our model would use a latent variable to represent the skew of

each locus. A prior probability on the skew with a unique mode at

zero (no skew) would choose a skewed solution only if it was

inferior to all solutions with a skew of zero. Performing inference

using a discretization of this latent variable would simply multiply

by a constant the runtime of our method. This improvement,

though simple, would be quite useful for fluorescence-based

genotyping assays, which are sometimes prone to distortion in the

relative intensities of each allele.

It is important to note that the method that we present is not

exclusively for polyploids; instead, it is a generalized method that

is applicable to any ploidy. This is especially important since our

method generalizes independent mixture models so that the

genotypes of individuals are considered and assigned in concert

rather than one at a time. Because of its simple and modular

nature, both our model and the inference procedures could be

trivially inserted into existing methods. Perhaps even more

Table 1. SuperMASSA Results on Potato and Sugarcane Loci.

PotSNP SugSNP

diploid Tetraploid

016 034 016 034 004 005 013 037 041 045 048 050 060 065 077

Ploidy Expert 2* 2* 4* 4* 10 6 12 10 8 8 6 10 10 8 6

SuperMASSA 2 2 4 4 8 6 14 10 8 8 6 10 14 8 6

# Clusters Expert 3* 3* 5* 5* 2 2 3 2 2 2 2 4 3 2 2

SuperMASSA 3 3 5 5 2 2 5 2 2 2 2 4 4 2 2

SugSNP

079 082 088 114 117 122 136 151 162 186 201 204 225 235 237 241

Ploidy Expert 6 8 6 6 10 12 12 6 8 8 10 8 10 8 8 8

SuperMASSA 6 8 6 14 10 12 12 6 8 6 10 6 10 8 8 8

#
Clusters

Expert 2 2 2 2 3 2 2 2 2 2 3 2 4 2 2 2

SuperMASSA 2 2 2 4 3 2 2 2 2 2 3 2 4 2 2 2

SuperMASSA was run on the potato loci (in both diploid and tetraploid individuals) and on the 27 curated sugarcane loci. The ploidy and number of clusters predicted
by an expert are shown with the row label ‘‘Expert.’’ The ploidy predicted by SuperMASSA agreed with the expert on all potato loci and on 21 of the 27 sugarcane loci.
The number of clusters predicted by SuperMASSA agreed with the expert on all potato loci and on 24 of the 27 sugarcane loci. The ploidy is known and the number of
clusters predicted by [19] is used for each data set, and so the results are marked with an � to indicate that expert curation was unnecessary.
doi:10.1371/journal.pone.0030906.t001
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importantly, the mathematical inference problem we solve is

nearly identical to important inference problems proposed for

analysis of copy number variation; the platforms that we tested

our method on are of great importance for identifying copy

number variants. Our method (or components of the model or

inference algorithm) could be applied to the relative ratio

intensities (due to copy number rather than ploidy) described in

[16].

Our approach undoubtedly simplifies the model of meioses in

polyploids. However, even when the assumptions of our meiotic

model are violated, the anomalous or seemingly contradictory

results ( e.g. parents with a ploidy different from some or all

progeny in an F1), are extremely informative. By using a simple

available model of meioses in polyploids, our approach will

facilitate the discovery of loci with these anomalous behaviors;

identifying and studying examples that violate a simple meiotic

model is crucial for furthering our understanding of and

developing more accurate models of meiosis in polyploids. A

greater understanding of these processes will not only benefit the

study of polyploids, it will add insight into the processes involved in

cell biology.

Availability
Our software SuperMASSA is implemented in Python and

freely available as an online application at http://statgen.esalq.

usp.br/SuperMASSA. The data from the sugarcane loci analyzed

are also available at this URL. The potato data analyzed is

available in [23].

Figure 6. SuperMASSA Output on Potato Loci. For each potato locus (and the ploidy of the species analyzed), we show the output of
SuperMASSA (using the –save_figures option). The first column shows the annotated scatter plot and the second column shows the theoretical
distribution of genotypes in the population and the distribution of individuals assigned to each genotype. For both loci (in both the diploids and
tetraploids), the genotype annotations are extremely close to the predicted angles for each assigned genotype and the genotype distributions are
nearly identical to the theoretical distribution in a Hardy-Weinberg population using the MAP estimate for the parameter a.
doi:10.1371/journal.pone.0030906.g006

Figure 7. SuperMASSA Output on Sugarcane Loci. For each sugarcane locus, we show the output of SuperMASSA (using the –save_figures
option). The first column shows the annotated scatter plot and the second column shows the theoretical distribution of genotypes in the population
and the distribution of individuals assigned to each genotype. In all three loci, the MAP configuration simultaneously finds the ploidy, a set of parents
with that ploidy, and genotype assignments with tight clusters that produce nearly identical theoretical genotype distributions and genotype
distributions.
doi:10.1371/journal.pone.0030906.g007
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