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Abstract

Due to the inexorable invasion of our hospitals and communities by drug-resistant bacteria, there is a pressing need for
novel antibacterial agents. Here we report the development of a sensitive and robust but low-tech and inexpensive high-
throughput metabolic screen for novel antibiotics. This screen is based on a colorimetric assay of pH that identifies
inhibitors of bacterial sugar fermentation. After validation of the method, we screened over 39,000 crude extracts derived
from organisms that grow in the diverse ecosystems of Costa Rica and identified 49 with reproducible antibacterial effects.
An extract from an endophytic fungus was further characterized, and this led to the discovery of three novel natural
products. One of these, which we named mirandamycin, has broad-spectrum antibacterial activity against Escherichia coli,
Pseudomonas aeruginosa, Vibrio cholerae, methicillin-resistant Staphylococcus aureus, and Mycobacterium tuberculosis. This
demonstrates the power of simple high throughput screens for rapid identification of new antibacterial agents from
environmental samples.
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Introduction

Microbes that live together in the environment develop long-

lasting methods to keep each other at bay. As a result, many of our

most effective bactericidal agents have come from environmental

organisms. These include glycopeptides such as vancomycin first

isolated in 1953 [1], b-lactam derivatives such as penicillin first

isolated in 1929, and aminoglycosides [2,3].

The emergence of bacteria with resistance to multiple anti-

microbial agents has motivated the development of high thro-

ughput chemical screens (HTS) to identify novel antibiotics. These

screens differ in the number of samples that can reasonably be

evaluated and the level of technology required to carry out the

screen [4–7]. Furthermore, some screening assays assess inhibition

of a known, purified bacterial target, while others measure toxicity

to intact bacteria. The advantage of the former approach is that

the target of inhibition is known for any identified compound. The

great disadvantage, however, is that, in secondary screens, the

compound is often found to have no activity against intact bacteria

due to inadequate penetration, rapid efflux, or inactivation by

bacterial products [8]. For this reason, compounds discovered in

screens using whole cells are often farther along the path to the

development of a successful antibacterial agent.

Here, we describe a sensitive and robust colorimetric whole cell-

based HTS for antibacterial compounds. We used this assay to

screen a collection of over 39,000 crude extracts from organisms

that grow in the diverse ecosystems of Costa Rica. Forty-nine

antibacterial extracts were identified, and, as proof of principle, one

was further fractionated, leading to the elucidation of three novel

natural products. One of these was found to have activity against the

acid-fast bacterium, Mycobacterium tuberculosis, the Gram-positive

bacterium, methicillin-resistant Staphylococcus aureus (MRSA), and

several Gram-negative bacteria. Our results demonstrate the utility

of simple metabolic screens in rapid identification of novel, broad-

spectrum antimicrobial agents.

Methods

Bacterial strains and media
A V. cholerae O139 strain MO10 (PW357) was used for screening

[9]. As a control, we used a V. cholerae phosphoenolpyruvate pho-

sphotransferase (PTS) mutant (DEI, PW961), which is unable to

transport sucrose [10]. Mycobacterium tuberculosis H37Rv (ATCC

27294), Escherichia coli (ATCC 25922), carbapenemase-positive

Klebsiella pneumonia (ATCC BAA-1705), and methicillin-resistant

Staphylococcus aureus (MRSA, ATCC BAA-976) were used for

further evaluation of antibacterial activity.

A previously described minimal medium (MM) supplemented

with sucrose (0.5% wt/vol), thymol blue (0.006% wt/vol) and

bromothymol blue (0.006% wt/vol) (pH-MMSuc) was used for the

HTS [10]. In secondary screens, MM was also supplemented with
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glucose (0.5% wt/vol), thymol blue (0.006% wt/vol), and bro-

mothymol blue (0.006% wt/vol) (pH-MMGlu) or pyruvate (0.5%

wt/vol) (MMPyr).

M. tuberculosis H37Rv was grown at 37uC in Middlebrook 7H9

liquid medium (Difco) supplemented with albumin (0.5% wt/vol),

dextrose (10 mM), glycerol (0.2% vol/vol) and Tween 80 (0.05%

vol/vol) (7H9-TW80-ADC).

Fungal culture
Agar plugs containing the endophytic fungal isolate 1223-D

were initially grown at 25uC on yeast malt agar plates sup-

plemented with streptomycin (30 mg/mL) and chlortetracycline

(12 mg/mL). After one week, 3 macerated agar plugs were placed

in 75 mL of rich seed media consisting of peptone (5 g/L),

dextrose (10 g/L), yeast extract (3 g/L), and malt extract (10 g/L)

adjusted to pH 6.2 and cultured at 25uC with shaking for 6 days.

450 mL of malt extract (0.66% wt/vol) and 10 g HP-20 resin were

then added to each flask, and the fungi were cultured under the

same conditions for 21 days. The fungal culture was subsequently

incubated statically at 25uC for 5 days and filtered. The HP-20

resin with mycelia was extracted three times with 200 mL of

ethanol to yield the crude extract.

Natural product library
The natural product library, which was prepared in Costa Rica

(collection permits 307-2003-OFAU, R-CM-03-2006, R-CM-

INBio-06-2006, R-CM-INBio-082-2009, R-CM-INBio-04-2009,

R-CM-INBio-088-2009 and R-CM-INBio-094-2010), consisted

mainly of pre-fractionated extracts from microbial sources, such

as fungal endophytes and marine bacteria, although extracts

from other sources such as marine invertebrates, cyanobacteria

and lichens were also included [11]. Extracts were suspended in

dimethyl sulfoxide (DMSO) at a concentration of ,15 mg/mL.

The compound library was stored at 220uC in dessicated storage

containers.

HTS for antimicrobial activity
The first step of compound identification was an HTS for

inhibitors of V. cholerae sucrose fermentation in pH-MMSuc

medium. A work-flow chart for this HTS is shown in Figure 1.

Fermentation decreases the pH of the medium. pH indicators in

the medium allowed us to monitor medium acidification spec-

trophotometrically through a change in absorbance at 615 nm

(A615). To initiate the assay, V. cholerae derived from a glycerol

stock was streaked on an LB-agar plate and incubated overnight at

37uC. A loopful of cells was harvested, washed three times with

PBS, and then resuspended in PBS at an optical density of 0.015.

For the HTS, 10 mL of this bacterial cell suspension was aliquoted

into the wells of a 384-well plate containing 30 mL of pH-MMSuc

and 100 nL of the test compound. For each assay, the A615

was measured after incubation at room temperature for 6 and

20 hours. This step was automated and validated in 384-well plate

format using an EnVisionTM multi-well spectrophotometer.

Compound isolation and identification
The crude extract was resuspended in 90% water/methanol

and passed over a C18 SPE column to get fraction I. The column

was then washed with methanol to get fraction II. The compound

mixture in fraction II was separated on an Agilent 1100 series

HPLC with a preparative Phenyl-hexyl column (Phenomenex,

Luna, 25 cm610 mm, 5 mm particle size) using an elution buffer

containing 20% acetonitrile/water with 0.1% formic acid at a flow

rate of 2 mL/min for 50 minutes. This yielded compound 1 (tR:

23.5 min), compound 2 (tR: 25 min), and compound 3 (tR: 44 min).

Spectra for compound identification were obtained on an Alpha

FT-IR mass spectrometer (Bruker), an UltrospecTM 5300 pro UV/

Visible Spectrophotometer (Amersham Biosciences), and an

INOVA 600 MHz nuclear magnetic resonance spectrometer

(Varian).

Determination of minimum inhibitory concentrations
(MIC)

The MICs for all species except for M. tuberculosis were

determined in cation-adjusted Mueller-Hinton broth (CAMHB)

using the microdilution broth method, according to M07-A8

and M100-S21 guidelines [12,13]. Standardized inocula of each

bacterium were prepared from cultures grown overnight at 37uC
in CAMHB, which were subsequently diluted 1:50 in fresh

CAMHB and grown for 3 h at 37uC without shaking. Each log-

phase culture was diluted to deliver a final bacterial density of

56105 CFU per mL. To perform the tests, a dilution series of

the indicated antimicrobial agent in CAMHB was prepared from

a stock solution containing 10 mg/mL of the compound in

DMSO. The final concentrations of the natural product were

between 0.625 and 80 mg/mL. These were chosen because we

knew that the compound was active against V. cholerae within this

range. Dilutions of known antimicrobial compounds were similarly

chosen based on the reported MIC’s for the bacterium in question.

An MIC 2000 inoculator (DynaTech) was used to accurately

dispense 1.5 mL of bacterial culture into 100 mL of CAMHB alone

or supplemented with an antimicrobial agent in a 96 well plate.

The plates were prepared in duplicate and incubated overnight at

37uC. A positive control for growth containing no antimicrobial

compound but the relevant amount of DMSO and a negative

growth control containing no bacteria were also prepared for each

assay. The MIC was determined visually as the lowest antimicro-

bial agent concentration that prevented bacterial growth. The M.

tuberculosis MIC was determined by the fluorometric microplate-

Figure 1. Flow chart of HTS assay. The HTS assay begins with
manual preparation of working solutions of pH-MMSuc and a bacterial
suspension with OD600 of 0.015 in PBS. Subsequent steps of the assay
are fully automated: solution mixing in the 384 well-plates is performed
by a ThermoScientific Matrix WellMate liquid dispenser, pin-transfer of
the natural extracts tested is done with a custom-built Epson robot, and
A615 readout after incubation at room temperature is accomplished
at 6 and 20 hours using an EnVisionTM multi-well spectrophotometer.
Finally, EnVisionTM data were analyzed with SpotfireTM and Excel. Each
assay is performed in duplicate. A measurement was considered to be
statistically significant if it deviated by at least three standard deviations
from the mean measurement calculated using all measurements made
with a particular extract library. The calculated Z9 factor for the screen
was 0.80860.088.
doi:10.1371/journal.pone.0031307.g001
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based Alamar blue assay (MABA) in 7H9 liquid media containing

casein (0.1% wt/vol) and lacking Tween 80 (7H9-Casein-ADC)

[14,15].

Microdilution Alamar blue assay for M. tuberculosis
Briefly, 1 mL of M. tuberculosis cell stock was added to 49 mL of

7H9-TW80-ADC media and incubated for 4–5 days at 37uC with

shaking (120 rpm) until an OD600 of 0.6–0.8 (#3–4 McFarland

turbidity standard) was reached. The cells were then washed twice

with PBS and resuspended in 7H9-Casein-ADC to a final con-

centration of 26105 cells/mL. 100 ml of the cell suspension was

inoculated into the wells of clear-bottomed, 96-well microplates

preloaded with 100 ml of 7H9-Casein-ADC media containing

appropriate dilutions of the test compound. Initial compound

dilutions were prepared in DMSO, and subsequent two-fold

dilutions were directly performed in the microtiter plates used for

the assay. To determine if bacterial densities were adequate for the

assay, 32.5 ml of Alamar blue solution (106Alamar blue dye, 20%

Tween 80, 86PBS, pH 7) were added to a control well after 6–7

days of growth at 37uC. If the control well remained blue or turned

purple and/or had a fluorescence reading ,17,500 fluorescence

units (FU) after 18–24 hours of further growth at 37uC, additional

control wells were tested daily until the well turned pink and the

fluorescence reading was greater than 17,500 FU’s. At this point,

the Alamar blue solution was added to the entire plate, and

the fluorescence was measured after overnight incubation. All

fluorescence measurements were performed in an HTS7000 Plus

Bio Assay Reader (Perkin Elmer) in bottom-reading mode with

excitation at 550 nm and emission at 595 nm. Percent inhibition

was defined as (experimental well FU – media only FU)/(bacteria

only FU – media only FU)6100. The lowest drug concentration

effecting $90% inhibition was considered the MIC.

Fungal identification by internal transcribed spacer
amplification (ITS) and sequencing

For fungal identification, isolate 1223-D was cultured on agar as

described above for 26 days. The mycelium was then retrieved and

ground to a fine powder in liquid nitrogen. Genomic DNA was

extracted using the Wizard Genomic DNA Purification Kit

(Promega), and the large subunit ribosomal DNA was amplified

by PCR using primers LR5 (59-TCCTGAGGGAAACTTCG-39)

and LROR (59-ACCCGCTGAACTTAAGC-39) as well as their

reverse complements. The PCR products were submitted for

sequence analysis (Genewiz), and the resulting sequences were

used in a BLAST search against deposited sequences. These se-

quences are shown in Text S1.

Results

Development of a high throughput screen
In the clinical microbiology laboratory, one of the character-

istics used to distinguish V. cholerae from other Vibrio species is its

ability to ferment sucrose on thiosulfate-citrate-bile salts-sucrose

(TCBS) plates, which contain the pH indicators bromothymol blue

and thymol blue. As the pH of a solution decreases below 7.1 for

bromothymol blue and 8.0 for thymol blue, these aromatic

compounds, which are weak acids, gain a proton resulting in a

color change from blue to yellow. This process is reversible.

Therefore, if the pH is increased again, the color of these weak

acids will return to blue. Such pH indicators are often used as

reporters of bacterial fermentation [16–18].

We recently showed that transport of sucrose by V. cholerae

depends entirely on a phosphotransfer cascade known as the pho-

sphoenolpyruvate phosphotransferase system or PTS, which also

regulates biofilm formation [10,19]. We were interested in

developing a reporter medium that would allow us to identify com-

pounds that inhibit transport through the PTS, sugar fermenta-

tion, or bacterial growth. Therefore, we added bromothymol blue

and thymol blue, the pH indicators found in TCBS agar, to

minimal medium containing sucrose (pH-MMSuc). Based on the

pKa values of bromothymol blue and thymol blue, we predicted

that the medium would be yellow at pH,7.1, when both in-

dicators are protonated. We predicted that the medium would be

green at a pH between 7.1 and 8.0 because bromothymol blue

would be blue due to deprotonation, while thymol blue would

remain yellow. At pH.8.0, when both indicators are deproto-

nated, we anticipated that the medium would be blue.

Incubation of wild-type V. cholerae in this medium caused a change

in color from green to yellow due to fermentation (Figure 2). When

the PTS mutant, which cannot utilize sucrose, was incubated in pH-

MMSuc, the medium turned blue, indicating an increase in the pH.

This is the result of amino acid catabolism (Figure 2), which ge-

nerates ammonia, a weak base. We hypothesized that these visible

differences in the color of the medium at low and high pH were the

result of a change in absorbance at a wavelength in the visible range.

To identify this wavelength, we scanned the visible spectra of pH-

MMSuc alone, pH-MMSuc incubated with wild-type bacteria, and

pH-MMSuc incubated with a PTS mutant. As shown in Figure 2, the

maximum difference in absorbance for all these conditions was

observed at a wavelength of 615 nm. We based our screen on this

observation. It consisted of a room temperature incubation of V.

cholerae in MMSuc supplemented with bromothymol blue and thymol

blue, and measurements of A615 at 6 and 20 hrs (Figure 1).

To validate the screen, a pilot assay was conducted in 384 well

microtiter dishes using plates 1568 and 1569 from the Prestwick

Collection, a commercial library. Wild-type V. cholerae with no added

compound was used as a positive control, while a PTS mutant,

which is unable to transport sucrose, was used as a negative control.

One column of each dish was reserved for replicate positive controls

and another for replicate negative controls. To evaluate the

performance of our assay, we calculated a Z9 factor for each mi-

crotiter dish. This factor reflects the difference between positive and

negative control measurements [20] and is used to determine

whether the size of a response (e.g. change in absorbance) is large

enough to be useful in a HTS. A Z9 factor between 1 and 0.9 is

considered excellent, while one between 0.9 and 0.7 is considered

good. For these tests, the Z9 factor ranged from 0.785 to 0.914,

suggesting that this was a good to excellent assay. Therefore, we

proceeded with the HTS.

HTS of natural products
We carried out a screen of a library of partially purified extracts

from diverse Costa Rican organisms. The library consisted of

39,314 extracts arrayed in 384-well plates at a concentration

of ,15 mg/mL in DMSO (see: http://iccb.med.harvard.edu/

screening/compound_libraries/index.htm#natural). Each library

plate contained extracts in columns 1–22 and DMSO only

in columns 23 and 24. Compounds were pin-transferred into a

384-well plate pre-filled with pH-MMSuc. Columns 1–23 were

then inoculated with wild-type V. cholerae, and column 24 was

inoculated with a PTS mutant. Columns 23 and 24 served as

fermentation-positive and fermentation-negative controls, respec-

tively. Each plate of extracts was tested in duplicate. A mea-

surement was considered to be both statistically and biologically

significant if it deviated by at least three standard deviations from

the mean measurement, which was calculated from measurements

derived from all the compounds screened. Statistical analysis

performed after completion of the screen yielded a Z factor with a

High Throughput Screen for Antimicrobials
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mean value of 0.80860.088, indicating a very robust screen. We

identified 126 unique extracts with possible activity against V.

cholerae.

Secondary screens
Compounds that increase the pH of the medium or that absorb

in the visible spectrum could be a source of false positives in this

assay. These were easily eliminated by detailed monitoring of

the change in A615 over time. In addition, the following secondary

screens were designed to identify (i) inhibitors of PTS sugar

transport, (ii) inhibitors of sugar fermentation, or (iii) inhibitors of

bacterial growth. To distinguish between extracts that inhibited

PTS-dependent sugar transport and those that delayed fermenta-

tion, we compared medium acidification in MMGlu with that

in MMSuc in the presence of crude extracts with the following

rationale. After hydrolysis, the fermentation pathway of sucrose is

similar to that of glucose. However, unlike sucrose, glucose is

transported by both PTS-dependent and PTS-independent means

[10]. Therefore, we predicted that, in the presence of specific

inhibitors of the PTS, medium acidification would proceed more

slowly in MMSuc than in MMGlu. In contrast, inhibitors of fer-

mentation should behave similarly in both media. Because

pyruvate is transported independently of the PTS and is not

fermented, we used growth in MMPyr to identify extracts that

inhibited bacterial replication. Each assay was performed in du-

plicate, and each reported value represents the average of two

experimental replicates. To account for the variability of initial

absorbance measurements, experimental data were normalized to

the initial A615 for each well.

We first compared the performance of wild-type V. cholerae and a

PTS mutant in our proposed secondary screens (Figure 3A and B).

In MMSuc and MMGlu containing wild-type V. cholerae alone

(Figure 3A), the A615 initially decreased but then began to rise after

approximately 5 hours of incubation. We hypothesized that the

initial decrease in A615 represented acidification of the medium

due to sugar fermentation, while the subsequent increase in A615

reflected depletion of the sugar supply and initiation of amino acid

catabolism as well as cell growth.

An increase in A615 was observed during incubation of the PTS

mutant in MMSuc due to its inability to transport and consequently

ferment sucrose (Figure 3B). Unlike sucrose, glucose can be

transported by the PTS mutant. Therefore, in MMGlu, the A615 of

the medium initially decreased, albeit more slowly than was

observed for incubation with wild-type V. cholerae. Lastly, wild-type

V. cholerae and the PTS mutant grew equally well in MMPyr.

Our secondary screen yielded 49 extracts with reproducible

effects on medium acidification by V. cholerae (see Table S1 and

Figure S1). These included (i) one extract, CR1223-D, which

delayed medium acidification by sucrose fermentation more than

that by glucose fermentation, (ii) 34 extracts that blocked growth in

pyruvate but not medium acidification, and (iii) fourteen extracts

that blocked growth in pyruvate as well as medium acidification

(representative traces are shown in Figure 3C–E). We hypothe-

sized that CR1223-D might contain an inhibitor of PTS transport.

Furthermore, we reasoned that medium acidification in the

absence of cell growth, as was seen in group (ii), reflected the

presence of viable bacteria whose growth was inhibited. Therefore,

we hypothesized that these extracts were bacteriostatic. The

absence of both medium acidification and cell growth, as was

observed in group (iii), suggested the absence of viable bacteria.

We hypothesized that these extracts were bactericidal, although it

is formally possible that these extracts contained compounds that

inhibited both sugar transport and cell growth while preserving the

viability of bacterial cells.

Because of our interest in sugar metabolism, we subsequently

focused on characterization of CR1223-D. This extract was

derived from isolate 1223-D, an unclassified endophytic fungus

harvested from the twig of Neomirandea angularis, a host plant from

the Asteraceae family. Amplification, sequencing (see SI), and

alignment of the ITS region using Mega [21] suggested that this

fungus was most closely related to the environmental fungi,

Septofusidium herbarum and Acremonium alternatum.

Figure 2. Spectrophotometric assay for bacterial sugar fermentation. Absorbance spectrum of MMSuc alone (indicator) or incubated with
wild-type V. cholerae (WT) or a PTS mutant for 5 hours. The spectra are shown at the left, while the visible color difference is shown in microtiter dish
wells at the right. The largest difference in absorbance between MMSuc incubated with wild-type V. cholerae and that incubated with a PTS mutant is
measured at 615 nm (red arrow).
doi:10.1371/journal.pone.0031307.g002

High Throughput Screen for Antimicrobials
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Isolation and identification of three novel natural
products from isolate 1223-D

Extracts of fungal isolate1223-D were prepared and fractionat-

ed as described in the Materials and Methods. High resolution

mass spectrometry, infrared and ultraviolet spectrometry, and 1H

and 13C nuclear magnetic resonance spectroscopy were used to

identify compound 1 as 6-propyl gentisyl alcohol or 2-(hydro-

xymethyl)-3-propyl hydroquinone, compound 2 as 5-hydroxy-4-

(hydroxymethyl)-2-methyl 2,3-dihydrobenzofuran, and compound

3 as 2-(hydroxymethyl)-3-propyl benzoquinone (Figure 4). The

physical properties and NMR spectra of these compounds are

described in detail in Text S2 and Table S2. These are all

previously unreported natural products.

Activity of compounds 1, 2, and 3 against V. cholerae
To determine which of these compound(s) was responsible for

the activity of CR1223-D, we performed medium acidification

and growth assays in the presence of various concentrations of

compounds 1 through 3. Conditions were tested in duplicate in

each experiment, and two experimental replicates were performed

on separate days. Reproducibility was excellent. The result of one

experiment is shown in Figure 5, while the result of the replicate

experiment is shown in Figure S2. Compounds 2 and 3 had

only modest effects on medium acidification and growth even

at the highest concentrations studied. In contrast, compound 1

inhibited medium acidification at a concentration of 134 mM and

completely blocked medium acidification at a concentration of

261 mM. However, only modest effects on growth were observed

at these concentrations. At higher concentrations, compound 1

was able to completely inhibit growth of V. cholerae. To determine

whether this represented bacteriostatic or bactericidal activity,

dilutions of the cell suspensions were plated on LB agar after

20 hours of growth in MMPyr supplemented with compound 1 at

a concentration of 383 mM. No CFU were documented after

24 hours of incubation at 37uC, indicating that compound 1

inhibited fermentation and possibly sugar transport at lower

concentrations and was bactericidal at higher concentrations.

Thus, we concluded that compound 1 was responsible for the

inhibitory activity of CR1223-D detected in our HTS assay. We

have named compound 1 mirandamycin, after the genus of the

host plant of the producing fungus.

In vitro antimicrobial activity of mirandamycin against
other bacterial pathogens

To evaluate the antimicrobial efficacy of mirandamycin against

a broader panel of bacterial pathogens, we measured the activity

of compound 1 against clinical strains of E. coli, P. aeruginosa, car-

bapenemase-producing K. pneumonia, methicillin-resistant S. aureus,

and M. tuberculosis. As shown in Table 1, mirandamycin was most

active against Gram-positive organisms but also had some activity

against the more sensitive Gram-negative rods. Susceptibility of

these organisms to known antibiotics is shown for comparison.

Discussion

We have developed and implemented a simple, inexpensive, and

robust HTS for antibacterial agents based on a spectrophotometric

Figure 3. Representative results for secondary screen. Bacteria
were grown in MMPyr, pH-MMSuc, or pH-MMGlu. OD615 measurements of
cultures in MMPyr reflect the ability of cells to grow in the presence of
extract, while absorbance measurements in pH-MMSuc and pH-MMGlu

reflect the ability of cells to transport and ferment these sugars in the

presence of extract. Data are shown for wild-type V. cholerae and a PTS
mutant in the absence of extract (A,B) or for wild-type V. cholere in the
presence of extracts that we hypothesize (C) interfere with sugar
transport and fermentation, (D) inhibit bacterial growth (bacteriostatic),
or (E) kill bacteria (bactericidal).
doi:10.1371/journal.pone.0031307.g003
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assay of sugar fermentation, a process present only in viable

bacteria. Secondary screens allowed us to easily distinguish between

bactericidal and bacteriostatic compounds as well as those that

blocked sugar fermentation but did not decrease growth or viability.

As compared with other HTS for antibacterial compounds, this

screen has several advantages. First of all, the screen uses whole cells

rather than purified targets [7]. Secondly, it is an assay for cell viability

and, therefore, is biased toward bactericidal agents [22,23]. Thirdly,

because it does not require cell growth, it is rapid. Lastly, the screen

does not require expensive fluorescent reporters of cell viability.

As a proof of principle, we identified several extracts with anti-

bacterial activity. Fractionation of one of these derived from an

endophytic fungus led to the identification of three novel natural

products. One of these natural products, a hydroquinone that we

have called mirandamycin, has antibacterial activity against a wide

range of difficult to treat pathogens including P. aeruginosa, MRSA,

and M. tuberculosis.

Quinones and their corresponding reduced forms, the hydro-

quinones, are components of eukaryotic and bacterial electron

transport chains. In V. cholerae, ubiquinone-8 is reduced by the

Na+-translocating NADH:ubiquinone oxidoreductase (NQR) at

the cytoplasmic face of the inner membrane. The corresponding

hydroquinone then diffuses across the inner membrane where it is

oxidized by one of several possible quinol oxidases, discharging

protons to the periplasmic space. The resulting quinone is recycled

to the inner membrane [24]. Therefore, quinones are reduced at

the cytoplasmic face of the inner membrane and the correspond-

ing hydroquinones are oxidized at the periplasmic face.

The bactericidal secondary metabolite identified here, miran-

damycin, is a hydroquinone, closely related to homogentisic acid.

We hypothesize that the antibacterial activity of mirandamycin is

the result of an interaction with an outward facing bacterial quinol

oxidase. One possibility is that single electron oxidation of

mirandamycin by a quinol oxidase results in formation of a

semiquinone intermediate, which can then react with molecular

oxygen to produce a toxic superoxide radical. Inhibition of

bacterial quinol oxidase by mirandamycin is another possible

antibacterial mechanism.

Quinones are known to be toxic to both mammalian and

bacterial cells [25,26]. First of all, they can undergo single electron

Figure 4. Isolation and identification of three novel natural compounds. Chromatogram obtained during fractionation of the crude extract
CR1223-D showing three peaks corresponding to the three compounds isolated. Compound 1 was further identified as 6-propyl gentisyl alcohol,
compound 2 as 5-hydroxy-4-(hydroxymethyl)-2-methyl 2,3-dihydrobenzofuran, and compound 3 as 2-(hydroxymethyl)-3-propyl benzoquinone.
doi:10.1371/journal.pone.0031307.g004
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Figure 5. Impact of compounds 1, 2, and 3 on V. cholerae sugar fermentation and growth. The assays were carried out at 30uC in pH-
MMSuc to monitor sugar fermentation by A615 (A, B, and C) or in MMPyr to monitor bacterial growth by OD615 (D, E, and F). Bacteria were exposed to
mirandamycin (A and D), compound 2 (B and E) or compound 3 (C and F) at concentrations ranging from 14 to 383 mM. Replicate assay is shown in
Figure S2.
doi:10.1371/journal.pone.0031307.g005

Table 1. Minimum inhibitory concentrations (MICs) of mirandamycin and known antibiotics against selected bacterial pathogens.

Species ATCC MIC (mg/mL)

MIR LEVO AMP IMI TMP/SMX

E. coli 25922 80 0.019 2.5 1.25 0.125

P. aeruginosa 27853 80 1.25 .80 5 .16

K. pneumoniae carbapenemase positive BAA-1705 .80 .80 .80 .80 .16

MRSA BAA-976 10 0.312 .80 1.25 0.062

V. cholerae PW357 - 40 ,0.005 2.5 1.25 .16

MIR LEVO INH PZA ETH

M. tuberculosis H37Rv (*) 27294 25 0.25 0.25 100 2

(*)MIC was determined by Alamar Blue Assay as described in Material and Methods; Mirandamycin (MIR), levofloxacin (LEVO), ampicillin (AMP), imipenem (IMI), bactrim
(TMP/SMX), isoniazid (INH), pyrazinamide (PZA), ethambutol: ETH.

doi:10.1371/journal.pone.0031307.t001
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reduction at the cytoplasmic face of bacterial cell membranes

to form semiquinones. Secondly, quinones can interact with

thiol-containing compounds to form adducts. Interestingly, the

oxidized quinone form of mirandamycin reported here (compound

3) demonstrated no antibacterial activity. We hypothesize

that compound 3 does not enter bacterial cells and, therefore, is

not reduced to mirandamycin under the conditions of our

experiment.

Organisms that survive successfully in close proximity to bac-

terial pathogens have been a rich source of potent antibacterial

natural products. Here we present an easily implemented, sensitive

HTS that rapidly identified a large number of antibacterial

extracts from environmental samples. Through this screen, we

identified a quinol with activity against multiple pathogens. In

this era of rising resistance to existing antibiotics, approaches such

as this will be increasingly relied on to fill our antimicrobial

pipeline.

Supporting Information

Figure S1 Natural extracts with reproducible effects on
medium acidification by V. cholerae. Time course mea-
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the presence of test extracts. Extract designation is indicated above
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(PDF)

Table S1 Natural extracts with reproducible effects on
medium acidification by V. cholerae.
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