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Professor Guido Imbens Tristan Zajonc

Essays on Causal Inference for Public Policy

Abstract

Effective policymaking requires understanding the causal effects of competing pro-

posals. Relevant causal quantities include proposals’ expected effect on different

groups of recipients, the impact of policies over time, the potential trade-offs be-

tween competing objectives, and, ultimately, the optimal policy. This dissertation

studies causal inference for public policy, with an emphasis on applications in eco-

nomic development and education.

The first chapter introduces Bayesian methods for time-varying treatments that

commonly arise in economics, health, and education. I present methods that account

for dynamic selection on intermediate outcomes and can estimate the causal effect of

arbitrary dynamic treatment regimes, recover the optimal regime, and characterize the

set of feasible outcomes under different regimes. I demonstrate these methods through

an application to optimal student tracking in ninth and tenth grade mathematics.

The proposed estimands characterize outcomes, mobility, equity, and efficiency under

different tracking regimes.

The second chapter studies regression discontinuity designs with multiple forcing

variables. Leading examples include education policies where treatment depends on

multiple test scores and spatial treatment discontinuities arising from geographic bor-

ders. I give local linear estimators for both the conditional effect along the boundary

and the average effect over the boundary. For two-dimensional RD designs, I derive

an optimal, data-dependent, bandwidth selection rule for the conditional effect. I

demonstrate these methods using a summer school and grade retention example.
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The third chapters illustrate the central role of persistence in estimating and inter-

preting value-added models of learning. Using data from Pakistani public and private

schools, I apply dynamic panel methods that address three key empirical challenges:

imperfect persistence, unobserved student heterogeneity, and measurement error. Af-

ter correcting for these difficulties, the estimates suggest that only a fifth to a half of

learning persists between grades and that private schools increase average achievement

by 0.25 standard deviations each year. In contrast, value-added models that assume

perfect persistence yield severely downwardly biased and occasionally wrong-signed

estimates of the private school effect.
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Chapter 1

Bayesian Inference for Dynamic

Treatment Regimes: Mobility, Equity,

and Efficiency in Student Tracking

1

Policies in health, education, and economics often unfold sequentially and adapt
to changing conditions. Such time-varying treatments pose problems for stan-
dard program evaluation methods because intermediate outcomes are simultaneously
pre-treatment confounders and post-treatment outcomes. This paper extends the
Bayesian perspective on causal inference and optimal treatment to these types of dy-
namic treatment regimes. A unifying idea remains ignorable treatment assignment,
which now sequentially includes selection on intermediate outcomes. I present meth-
ods to estimate the causal effect of arbitrary regimes, recover the optimal regime,
and characterize the set of feasible outcomes under different regimes. I demonstrate
these methods through an application to optimal student tracking in ninth and tenth
grade mathematics. For the sample considered, student mobility under the status-quo
regime is significantly below the optimal rate and existing policies reinforce between
student inequality. An easy to implement optimal dynamic tracking regime, which
promotes more students to honors in tenth grade, increases average final achieve-
ment 0.07 standard deviations above the status quo while lowering inequality; there
is no binding equity-efficiency tradeoff. The proposed methods provide a flexible

1This chapter has benefited from comments by Alberto Abadie, Guido Imbens, Dale Jorgenson,
Asim Khwaja, Jamie Robins, Donald Rubin, and seminar participants at Harvard. Thanks go to
the NCERDC for providing data, and IQSS and HMDC for providing computing resources.

1



CHAPTER 1. DYNAMIC TREATMENT REGIMES 2

and principled approach to causal inference for time-varying treatments and optimal
treatment choice under uncertainty.

1.1 Introduction

Programs in health, education, and economics can often be described as dynamic
treatment regimes—adaptive policies that recommend actions in each treatment pe-
riod depending on past observations and decisions. Economists, for instance, recom-
mend dynamic social insurance programs that account for changing needs and incen-
tives (e.g., Shavell and Weiss, 1979; Heckman et al., 1999; Fredriksson and Holmlund,
2006). Educators seek instructional regimes, implemented over many years, and tai-
lored to each child’s development, that best advance educational goals (e.g., Hong
and Raudenbush, 2008; Raudenbush, 2008). And epidemiologists debate how to se-
quence and assign treatment to individual patients (e.g., Murphy, 2003; Robins, 2004;
Kitahata et al., 2009; Lang, 2009). Policymakers, across many disciplines, require es-
timates of the causal effect of such policies and a means to select between them. For
instance, how should unemployment benefits be scheduled to maximize social wel-
fare? Or how should schools track students to maximize average performance? Or
when should patients begin HIV antiretroviral or Parkinson’s treatment given their
developing health status?

As highlighted by Robins (1986), time-varying treatments pose problems for stan-
dard program evaluation methods because intermediate variables are simultaneously
post-treatment outcomes and pre-treatment confounders. An HIV-positive patient’s
measured health status, for example, depends on previous treatments and influences
future treatment. Likewise, a student’s test score depends on past coursework and
influences future coursework. Given time-varying treatments, the standard advice to
control for pre-treatment covariates but not post-treatment outcomes no longer makes
sense. Not controlling for intermediate outcomes ignores an important determinant
of selection into treatment, but controlling for intermediate outcomes ignores that
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they are affected by earlier treatments. Analysis of time-varying treatments, and dy-
namic treatment regimes more generally, therefore require methodological tools that
can properly incorporate intermediate outcomes and dynamic selection.

This paper presents the Bayesian perspective on causal inference for time-varying
treatments and dynamic treatment regimes. Once properly formulated, dynamic
treatment regimes fit within the unifying Bayesian framework for causal inference in-
troduced by Rubin (1978). This approach defines causal effects in terms of potential
outcomes, clearly separates the scientific model for potential outcomes and covariates
from the treatment assignment mechanism, and then, optionally, uses Bayesian pos-
terior predictive inference on causal effects (Rubin, 1978, 2008). Sequential selection
into treatment on intermediate outcomes can be addressed in this framework.

A unifying idea remains that all ignorable treatment mechanisms—mechanisms
that are independent of missing potential outcomes but may depend on the observed
data—yield the same posterior inferences and that sequential unconfoundedness is
a particular ignorable mechanism. This implies that existing multiple imputation
methods can be used after carefully defining potential outcomes and the observed and
missing data provided that sequential unconfoundedness holds. I present a model that
can account for discrete and continuous variables with grouped structures. The partial
pooling of information across groups offered by Bayesian methods plays an important
role in providing information from which to impute missing potential outcomes. Using
this model, I describe estimation of simple causal estimands, such as the comparison
between two treatment sequences, more complex estimands, such as the comparison
between two dynamic treatment regimes, and optimal treatment choice, such as when
to begin treatment based on time-varying characteristics.

I approach optimal treatment choice as a Bayesian decision problem (Berger, 1985;
Dehejia, 2005). Policymakers seek the optimal treatment rule for future units that
have not yet been assigned treatment. The optimal treatment rule can depend both
on units’ baseline characteristics and time-varying intermediate outcomes. Consistent
with practical policy constraints, the rules may be limited to a feasible class, such as
those based on a simple linear index or a single covariate. By adopting a Bayesian
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perspective, the resulting regime is optimal regardless of sample size and integrates
over all sources of uncertainty.

I demonstrate the proposed approach using ninth and tenth grade mathemat-
ics tracking in North Carolina public schools. Tracking policies can have significant
impacts on average student performance and between-student inequality and remain
controversial. Common concerns include tracking students into inappropriate courses,
tradeoffs between equity and efficiency of outcomes, and insufficient mobility between
tracks (Slavin, 1987, 1990; Hanushek and Woessmann, 2005; Brunello and Checchi,
2007; Duflo et al., 2010). As in most other school systems, students in North Carolina
can choose different levels of specific courses, such as standard and honors Algebra I,
Geometry, and Algebra II. Performance in Algebra I strongly influences track assign-
ments in Geometry and Algebra II.

Using data on students who enroll in Algebra I in ninth grade, I find significant
tracking sequence effects. Amongst single-streaming policies, enrolling all students to
standard mathematics in ninth grade and honors mathematics in tenth grade yields
the highest average achievement, roughly 0.13 standard deviations higher than demo-
tion from honors to a standard and 0.07 standard deviations above the status quo.
Methods that ignore dynamic selection or intermediate causal effects yield signifi-
cantly different results.

To study treatment choice, I consider three classes of optimal treatment rules: a
dynamic cutoff rule that assigns students to honors if their most recent score exceeds
a threshold, a static index rule that assigns students to honors based on their base-
line characteristics, and a dynamic index rule that assigns students based on all past
observed data. All three rules increase average achievement while lowering inequality
relative to the status quo. Most of these gains arise from streaming students into
the standard/honors tracking sequence. By comparison, the status quo policy signif-
icantly under-promotes students after ninth grade, assigning over 60 percent to the
standard/standard track.

The proposed methods can also characterize the set of feasible outcomes. I explore
the tradeoff between equity and efficiency, as measured by the mean and standard
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deviation of performance obtainable by a dynamic cutoff regime. There is signifi-
cant room for improvement over the status quo in both directions. Holding average
achievement constant, the status quo tracking rule outcome is near the upper fea-
sible bound for achievement variance. These results are consistent with concerns
that status quo policies reinforce between-student inequality. But there is no binding
equity-efficiency tradeoff.

The approach developed in this paper differs from existing proposals such as g-
computation and structural nested mean models pioneered by Robins (1986, 1989,
1997, 1999a) and Gill and Robins (2001), and inverse probability weighting and
marginal structural models proposed by Robins (1999b), Robins et al. (2000), Hernan
et al. (2001), Murphy et al. (2001), and Lechner (2009). Robins and Hernan (2008)
provide an accessible review of g-computation, structural nested mean models, and in-
verse probability weighting for time-varying exposures. Abbring and Heckman (2007)
and Heckman and Navarro (2007) link this literature to economic dynamic discrete
choice models. This paper’s Bayesian approach to optimal treatment choice also
differs from plug-in proposals by Murphy (2003) and Robins (2004).

The proposed approach has both practical and theoretical appeal. First, once
properly framed, it offers a simple recipe for studying time-varying treatments that
enforces a clear separation between the scientific model and treatment assignment
mechanism. For many applications, existing software for multiple imputation can
be adapted to study time-varying treatments. Second, Bayesian hierarchical models
allow partial pooling of information where scientifically justified, both across groups
and across treatment sequences, thereby informing the imputation of the missing data
on the basis of the pooled observed data. A major concern in sequential settings is the
exponential explosion of potential outcomes associated with each treatment sequence.
As the number of possible treatment sequences grows, pooling information becomes
critical; hierarchical models on the space of potential outcomes provide a flexible
alternative that falls between the two extremes—complete pooling or separation—
offered by marginal structural models. For applications in education, where grouped
structures are common, pooling information across groups is also helpful. Finally,
Bayesian methods are ideally suited to study optimal treatment choice. The methods
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I propose integrate over all sources of uncertainty—a potentially vital step in small
samples or high-dimensional settings where uncertainty is large. While there remain
significant opportunities to build richer models and hierarchical priors suitable for
larger-scale applications, the proposed approach provides a framework to study time-
varying treatment problems that lie at the heart of epidemiology, education, and
economics.

1.2 Dynamic Causal Effects and Treatment Regimes

1.2.1 Basic setup

Time-varying treatment applications often include many periods and treatments.
However, all the conceptual issues surrounding dynamic treatment regimes can be
captured in a simple, two-period, binary treatment model. I focus on this simpli-
fied setup because extensions to additional periods and categorical treatments are
straightforward but add notational complexity.

Consider a sample of N units, such as children, patients, or workers, indexed by i =

1, . . . , N . In each of two periods, indexed by t = 1, 2, units receive a binary treatment
Wit. By convention, let Wit = 1 denote receiving the active treatment and Wit = 0

denote receiving the control or placebo treatment. Units can therefore experience
treatment in both periods (1, 1), neither period (0, 0), only the first period (1, 0), or
only the second period (0, 1). For instance, these four sequences could represent the
standard and honors mathematics tracks in ninth and tenth grade. Alternatively, if
(1, 0) is not an available option, the three remaining sequences could represent varying
treatment start times for Algebra I coursework, or, applied to health, initiation of HIV
or Parkinson’s therapy. Treatment sequences are a type of compound treatment where
the constituent treatments unfold sequentially.

Units have baseline (t = 1) covariates and intermediate (t = 2) outcomes Xit

drawn from the space Xt. Baseline covariates include characteristics measured prior
to the onset of treatment, such as age, gender, baseline test scores, or an initial health
measure. Intermediate outcomes, such as an updated achievement or health measure,
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Figure: Two Period Dynamic Treatment Framework

Xi1

Xi2(0)

Yi (0, 0)

Wi2 = 0

Yi (0, 1)Wi2 = 1
W

i1 = 0

Xi2(1)

Yi (1, 0)

Wi2 = 0

Yi (1, 1)Wi2 = 1

W i1
= 1

Notes: Each path along the tree represents a potential treatment sequence. Additional periods or treatments 
grow the tree structure.
Figure 1.1: A two-period, time-varying, binary treatment setup. Each path along
the tree represents a potential treatment sequence. Additional periods or treatments
grow the tree structure.

are recorded after the first treatment but prior to the second treatment. Thus Xi2

comes before Wi2 even though both have t = 2. A final outcome Yi, such as tenth
grade achievement, is the object of primary interest and is measured after the final
treatment. Covariates and outcomes may be multivariate, although I reserve boldface
to denote vectors and matrices of these primitives.

Following Neyman (1923), Rubin (1974, 1978), and Robins (1986), I define causal
effects in terms of potential outcomes. Potential outcomes capture the hypothetical
outcomes associated with a particular, not necessarily assigned, treatment sequence.
With treatment unfolding over multiple periods, both intermediate outcomes Xi2

and final outcomes Yi have associated potential outcomes. Using lower case letters
to denote fixed values, Xi2(w1) and Yi(w1, w2) represent the intermediate and final
potential outcomes under the hypothetical treatment sequence (w1, w2). For instance,
Xi2(1) gives unit i’s intermediate outcome assuming treatment in the first period, and
Yi(1, 1) gives the final outcome assuming treatment in both periods. Implicit in this
multi-period potential outcome notation is the assumption that treatments cannot
have effects before they occur and there is no interaction between units (i.e., SUTVA
in Rubin, 1980). Figure 1.1 illustrates this two-period, binary treatment setup.
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A key feature of potential outcomes is that we observe only the potential out-
comes associated with the treatment sequence units actually receive. Thus observed
outcomes link to potential outcomes as

Xi2 ⌘ Xi2(Wi1), Yi ⌘ Yi(Wi1,Wi2). (1.1)

For every observed potential outcome there are one or more missing potential out-
comes. Specifically, the missing intermediate potential outcomes are

X

mis
i2 ⌘ Xi2(1�Wi1), (1.2)

and the missing final outcomes are

Ymis
i ⌘ (Yi(1�Wi1, 1�Wi2), Yi(Wi1, 1�Wi2), Yi(1�Wi1,Wi2)) . (1.3)

Equations (1.1) through (1.3) transform potential outcomes and observed treatment
to observed and missing data. In any particular sample, the observed treatment as-
signment indicators uniquely determine the missing data matrix that indicates which
values are missing and observed.

Compared to point treatments, there are substantially more missing potential
outcomes than observed outcomes. However, the primary difficulty remains the same:
since units can only receive one treatment sequence at any time, only one sequence of
potential outcomes is ever observed. The inability to observe all potential outcomes
defines the “fundamental problem of causal inference” (Holland, 1986) and leads to a
view of causal inference as a missing data problem (Rubin, 1978).

1.2.2 Simple causal estimands

Causal effects are comparisons between potential outcomes for a common set of units
(Rubin, 2005). For ease of exposition, I focus on the final outcome Yi(w1, w2) and
average effects. However, we can easily define other estimands based on intermediate
outcomes or ratios and quantiles.
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At the lowest level, comparisons between Yi(w1, w2) and Yi(w
0
1, w

0
2) give the unit-

level causal effect of treatment (w1, w2) compared to treatment (w

0
1, w

0
2). In general,

causal effects are defined over collections of units. Following the literature on point-
treatment causal effects, let the sample-average treatment effect be

⌧SATE(w,w0
) ⌘ 1

N

N
X

i=1

[Yi(w1, w2)� Yi(w
0
1, w

0
2)] . (1.4)

I focus primarily on inference for sample average effects rather than population infer-
ence. Alternative causal estimands, such as quantile treatment effects or conditional
treatment effects, are simply different comparisons between potential outcomes or
comparisons within different subsamples.

1.2.3 Dynamic treatment regimes

Although treatments index potential outcomes, it is also useful to think of potential
outcomes in terms of treatment regimes. A treatment regime is an assignment mech-
anism that determines treatment for each unit on the basis of previous observations
for that unit. The biostatistics literature also refers to treatment regimes as adaptive
strategies, interventions, treatments, or therapies.

I define a dynamic treatment regime as a pair � of decision functions �1 : X1 7!
{0, 1} and �2 : X2 ⇥ {0, 1} ⇥ X1 7! {0, 1} that assign units with observed covari-
ates (x2, w1, x1) to a treatment sequence � ⌘ (�1(x1), �2(x2, w1, x1)). More generally,
Murphy et al. (2001) study randomized dynamic treatment regimes where decision
functions are conditional probability distributions over treatments. Effects of ran-
domized treatment regimes are straightforward to estimate in a Bayesian framework
but, again, they add notational complexity and are rarely of interest to policymakers.

We can distinguish between dynamic treatment regimes that assign treatment
based on time-varying covariates, Xi1 and Xi2, and static treatment regimes that
assign treatment based only on baseline covariates, Xi1. As an example, assigning
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ninth graders to an honors track if they score above a cutoff on a baseline exam and
tenth graders to honors if they receive an A or B in ninth grade is a dynamic treatment
regime, whereas assigning students based only on their baseline socio-economic status
or achievement is a static treatment regime. In some cases, we may be interested in
treatment regimes of a specific class D. Robins et al. (2008) and Lok et al. (2008)
study regimes that initiate treatment if a single time-varying covariate falls below
of pre-specified threshold. Restricted rules may be of interest for legal or normative
reasons, such as to avoid racial profiling, or to simplify implementation.

Because treatment regimes map covariate histories to treatments, we can index
potential outcomes by decision functions instead of treatment sequences. That is,
Xi2 (�1(Xi1)) gives the intermediate potential outcome given treatment assignment
�1(Xi1) and

Yi(�) ⌘ Yi(�1(Xi1), �2(Xi2(�1(Xi1)), �1(Xi1), Xi1))

gives final potential outcome under regime �.
To define the average causal effects between two regimes, let �0 be the reference

regime such as a placebo treatment in all periods or never receiving treatment. Then
the sample-average treatment regime effect is

⌧SATRE(�, �
0
) ⌘ 1

N

N
X

i=1

[Yi(�)� Yi(�
0
)] . (1.5)

If � is a particular static regime that treats all units equally, say � = (w1, w2), and
the reference regime assigns �0

= (w

0
1, w

0
2), then the average treatment regime effect

is equivalent to the average treatment effect. Again, we can easily define treatment
regime effects in terms of ratios, quantiles, or any other comparison between potential
outcomes.

In applications with existing status quo policies, such as existing mathematics
tracking rules, we may also be interested in the causal effect of a new policy compared
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to the status quo regime. For instance, does the status quo tracking policy perform
better than single-streaming children into a common track? To capture this idea, we
can define the sample-average treatment regime improvement as

⌧SATRI(�) ⌘ 1

N

N
X

i=1

[Yi(�)� Yi] , (1.6)

where we define improvement over the observed status quo outcome Yi. Likewise, if
we are interested in the causal effect of regimes on inequality, measured by the sample
variance, we can define the sample-variance treatment regime improvement as

⌧SVTRI(�) ⌘ 1

N

N
X

i=1

"

Yi(�)� 1

N

N
X

i=1

Yi(�)

#2

� 1

N

N
X

i=1

"

Yi � 1

N

N
X

i=1

Yi

#2

, (1.7)

where negative values, i.e., lower sample variance, indicates an improvement.

1.3 Bayesian Inference for Dynamic Treatment

Regimes

1.3.1 Bayesian perspective on causal effects

Rubin (1978) introduced the Bayesian perspective on causal inference and its rela-
tion to general missing data problems (Rubin, 1976). Rubin (2005, 2008), Imbens
and Rubin (1997, forthcoming), and Hirano et al. (2000) provide further discussion
and extensions of causal inference from a Bayesian perspective. To a Bayesian, the
missing potential outcomes are no different than unknown parameters. The natural
solution is therefore to form a posterior predictive distribution over missing outcomes.
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Despite the conceptual appeal and inherent simplicity of the Bayesian perspective,
its application has not been fully articulated for time-varying treatments.

Bayesian inference for sample causal effects on the final and intermediate out-
comes Y and X2, where the missing i subscript denotes the full data, i.e., Y ⌘
(Y1, Y2, . . . , YN), follows from the posterior predictive distribution of missing poten-
tial outcomes f(Ymis

,Xmis
2 | Y,W2,X2,W1,X1). The posterior predictive distribu-

tion allows us to “fill in” or multiply-impute the missing data. Typically we evaluate
the predictive distribution and resulting inference on causal effects by simulation.
Focusing on the final outcomes, let Y

mis,(l)
i (w1, w2) denote a draw l from the pos-

terior predictive distribution of the missing outcomes under treatment (w1, w2). A
“completed” draw l for unit i is then

Y

(l)
i (w1, w2) ⌘

8

<

:

Yi if Wi1 = w1 and Wi2 = w2,

Y

mis,(l)
i (w1, w2) otherwise.

Posterior distributions for sample causal estimands are functions of the completed
data.

Treatment regime effects can be estimated via imputation just as easily as
static causal effects. For sample-average treatment regime effects, ⌧SATRE, we
can draw from the posterior predictive distribution to complete the data, and
then select the relevant potential outcomes for any treatment rule � as Y

(l)
i (�) ⌘

Y

(l)
i (�2(X

(l)
i2 (�1(Xi1)), �1(Xi1), Xi1), �1(Xi1)).

1.3.2 The science and assignment mechanism

Obtaining the posterior predictive distribution requires a model of the data. A basic
insight of Rubin (1978) is the joint distribution of potential outcomes, assignments,
and covariates factors into two components, which Rubin calls the science and the
treatment assignment mechanism. In Rubin’s terminology, the science represents the
true underlying data, whereas the assignment mechanism determines what data are
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actually observed or missing. The same general principle applies to time-varying
treatment. Let S ⌘ (Y(0, 0),Y(0, 1),Y(1, 0),Y(1, 1),X2(0),X2(1),X1) denote the
underlying data of interest. In the two-period, dynamic-treatment setup, we can
factor the joint distribution of missing and observed data, denoted J, into

f(J) = f (S) f (W2,W1 | S) . (1.8)

This factorization clearly separates the subject matter model or science from the
particular treatment assignment mechanism that determines what we are able to
observe.

1.3.3 Ignorable treatment assignment and sequential uncon-

foundedness

In order to make progress on causal inference, we must make assumptions about
the treatment assignment mechanism. Rubin (1976, 1978) defines a missing data
mechanism, such as treatment assignment, as ignorable if it does not depend on the
missing data. Adapted to time-varying treatments, the weakest form of ignorable
treatment is

f(W2,W1 | S) = f(W2,W1 | Y,X2,X1). (1.9)

That is, treatment assignments can depend on all the recorded data (Y,X2,X1) but
not the missing data (Xmis

2 ,Ymis
). Completely randomized experiments and exper-

iments randomized conditional on baseline characteristics X1 are clearly ignorable.
But they are both special cases of ignorability that fail in most time-varying applica-
tions due to dynamic confounding.

Much of the literature on time-varying treatments focuses on a particular ignor-
able assignment mechanism: sequential unconfoundedness. Formally, Robins (1986)
defines sequential unconfoundedness as

f(W2,W1 | S) = f(W2 | X2,W1,X1)f(W1 | X1). (1.10)
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That is, observed treatments W1 and W2 are independent of missing past potential
outcomes and future potential outcomes given past observed data. Sequential un-
confoundedness is intuitive in longitudinal settings and is substantially weaker than
assuming that the entire treatment sequence is independent of the potential outcomes
conditional on baseline characteristics. For instance, it fits teachers that assign stu-
dents randomly to tracks conditional on previous tracking and observed performance,
or doctors that propose therapies randomly conditional on observed prognostic fac-
tors and prior treatments up to that point. Critically, sequential unconfoundedness
is an ignorable assignment mechanism because it does not depend on missing data.

1.3.4 Posterior inference under ignorable treatment assign-

ment

Rubin (1978, 2008) describes posterior inference in point-treatment settings under ig-
norable treatment assignment. Once set up in a similar framework, posterior inference
for time-varying treatments follows the same basic steps. As in point-treatment set-
tings, posterior inference for sample causal effect follows from the posterior predictive
distribution over missing data,

f(Ymis
,Xmis

2 | Y,W2,X2,W1,X1) =
f (S) f (W2,W1 | S)

R R

f (S) f (W2,W1 | S) dYmis
dXmis

2

. (1.11)

Under any ignorable assignment mechanism, including sequential unconfoundedness,
(1.11) simplifies to

f(Ymis
,Xmis

2 | Y,W2,X2,W1,X1) =
f (S)

R R

f (S) dYmis
dXmis

2

/ f(S). (1.12)
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Ignorable treatment rules, where treatment is independent of the missing potential
outcomes, allow the treatment rule to move from under the integral and cancel with
the treatment rule in the numerator.

This result illustrates the unifying scope of ignorable missing data mechanisms.
Causal inference for dynamic treatment regimes under ignorable treatment assign-
ment, including sequential unconfoundedness, requires only a model of the science
f(S). After appropriately defining the potential outcomes for intermediate and final
outcomes, and therefore the missing and observed data, a full-information analysis
proceeds equivalently to standard multiple imputation procedures under a missing-
at-random/ignorability assumption (e.g., Little and Rubin, 1987). A major benefit
of this result is that existing software for multiple imputation can often be used, even
if not originally designed with sequential unconfoundedness in mind.

So far the model has no explicit parameters and instead works with the full data.
We can make the model practical by appealing to exchangability of the unit indices.
Assuming that the parameters and priors for the science and assignment mechanism
are distinct, i.e., ✓J ⌘ (✓,✓W ) and ⇡(✓,✓W ) = ⇡(✓)⇡(✓W ), the the logic of (1.11) and
(1.12) still applies and we can write the model of science as

f (S) =

Z

"

N
Y

i=1

f(Yi(0, 0), Yi(0, 1), Yi(1, 0), Yi(1, 1), Xi2(0), Xi2(1), Xi1 | ✓)
#

⇡(✓)d✓.

The applied problem, which I confront in Section 1.5, is how best to model f(Si | ✓),
specify the prior ⇡(✓), and compute the posterior distribution for parameters and
missing data. This problem may present significant practical difficulties, particularly
in applications with many periods and treatments, but is conceptually straightfor-
ward.
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1.4 Optimal Treatment and Feasible Outcomes

Policymakers, in health, education, or economics, primarily seek the optimal treat-
ment regime not simply the effect of an arbitrary regime. Manski (2000), Manski
(2004), Dehejia (2005), and Hirano and Porter (2009) study frequentist and Bayesian
decision theoretic approaches to optimal treatment in the context of point treatments.
For dynamic treatment regimes, Murphy (2003), Robins (2004), Robins et al. (2008),
and Lok et al. (2008) propose semiparametric plug-in methods to find the regime that
maximizes the expected final outcome E [Yi(�)] asymptotically.

I consider a Bayesian decision theoretic approach to optimal treatment choice.
Assume data analysts observe a random sample of N units with data Z ⌘
(Y,W2,X2,W1,X1) from which they infer treatment efficacy and base recommen-
dations for future units. Constraints limit policymakers to a class of feasible rules D,
and policymakers have a utility function over outcomes.

Information about a treatment regime’s efficacy is contained in the posterior pre-
dictive distribution f(

˜

Y (�) | Z), where the tilde symbolizes a hypothetical future
unit and � is a function imputed data. If we have preferences u�(y) over the final
outcome, subscripted by � to allow for treatment costs, then outcome of interest –
the posterior expected utility – for regime � given prior ⇡(✓) is

U(�, ⇡ | Z) /
Z Z

u�

⇣

˜

Y (�)
⌘

f(

˜

Y (�) | ✓)
N
Y

i=1

[f(Si | ✓)] ⇡(✓)d✓d ˜Y (�) . (1.13)

Expected utility averages over the posterior distribution of the unknown outcome
˜

Y (�) conditional on the observed data Z and incorporate uncertainty in the param-
eters ✓.

The optimal treatment regime selects the maximizing rule, conditional on the
observed data and prior, �⇤

(⇡,Z) = argmax�2D U(�, ⇡ | Z). How best to compute �⇤

depends on the class of feasible rules D. But the general strategy is always the same:
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integrate over all sources of uncertainty by maximizing using the posterior predictive
distribution.

Given an estimated optimal policy rule �⇤, we may be interested in the out-
come under that rule. The population-average treatment regime effect can be es-
timated by applying the optimal rule to the posterior predictive simulations and
comparing it to another benchmark regime. Alternatively, we could apply the opti-
mal rule retrospectively to the sample data and ask, for example, whether the op-
timal treatment rule performs better than the status quo policy on the observed
sample. To capture this idea, define the sample-average maximum improvement as
⌧SAMI = N

�1
PN

i=1 [Yi(�⇤
)� Yi] .

In some instances, we may wish to characterize the set of feasible outcomes that are
(ex-ante) achievable given a particular class of rules. Consider the perceived tradeoff
between equity and efficiency in education. Some educators worry that tracking
rules designed to maximize average achievement increase inequality. The set of (ex-
ante) feasible mean and variance outcomes is,

n

E
h

˜

Y (�) | Z
i

,V
h

˜

Y (�) | Z
i

: � 2 D
o

,
where the conditional expectation and variance is taken over the posterior predictive
distribution given observed data Z and prior ⇡. To characterize the boundary of
this set, we can define a mean-variance utility function as U(�, ⇡ | �;Z) = �1 ·
E
h

˜

Y (�) | Z
i

+ �2 · V
h

˜

Y (�) | Z
i

, with weights �1 and �2 on the mean and variance
terms capturing different preferences. By varying �1 and �2 and maximizing we can
recover the optimal rule for any mean-variance preference and therefore the boundary
of feasible mean and variance outcomes.

1.5 Implementing the Bayesian Approach

1.5.1 Model of the science and priors

The most appropriate parametric model of f(Si | ✓) and prior ⇡(✓) depends on the
precise application. For the application to education tracking, I consider a model
directly on joint distribution rather than an alternative factorization. Directly mod-
eling the joint distribution leads to a simple and efficient sampling strategy. An
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alternative would be to model the data conditional on baseline covariates or to use
chained-equation approaches commonly found in the multiple imputation literature
(e.g., Su et al., 2009).

The education data I study includes both continuous variables (e.g., test scores
and age) and discrete variables (e.g., gender and free lunch eligibility). Discrete
data can be modeled using a latent variable formulation. Let S⇤

i represent both
the continuous data and a latent representation of the discrete data. That is, S⇤

i =

(Sc
i ,S

d⇤
i ) where Sd⇤

i are latent variables underlying the discrete components Sd
i , and Sc

i

are the continuous variables. If the discrete variables are binary, i.e., Sd
ik 2 {0, 1} for

each binary component k, then we can link the observed discrete data to their latent
variables through Sd

ik = 1{Sd⇤
ik � 0}. Ordinal data can be modeled with additional

cutoffs.
A second common characteristic of education data is a nested structure. Students

reside within schools and classrooms. To account for school-level heterogeneity, I
introduce a random-effects multivariate normal model:

within school j: S⇤
i ⇠ N (µj,⌃j), (1.14)

where µj is a K ⇥ 1 vector of means, ⌃j is a K ⇥K covariance matrix that varies by
school j, and K is the dimension of Si. I place conditionally conjugate hierarchical pri-
ors on the school means and covariances, µj ⇠ N (m,V) and ⌃j ⇠ IW(⌫,T), where
m and V are the mean and covariance matrix for a multivariate-Normal distribution,
and ⌫ and T are the degrees of freedom and scale matrix for an inverse-Wishart distri-
bution. Given the internal replication in the data generated by schools, these param-
eters can be estimated from the data in a hierarchical setup. To complete the model,
I place hyperpriors m ⇠ N (am,BM), V ⇠ IW(aV ,BV ), ⌫ � K � 1 ⇠ lnN (a⌫ , b⌫),
and T ⇠ W(aT ,BT ) at the top level.

Both the intercept and slopes of the conditional distributions for missing potential
outcomes, which are central to imputing missing data, vary by school and treatment
sequence but are shared within schools. In this setup, the central untestable as-
sumption is that sequential unconfoundedness holds within schools. With so many
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parameters, the hierarchical priors play the important role of pooling information
across schools. Intuitively, the degrees of freedom parameter ⌫ captures the numbers
of prior measurements – or pseudo-observations – on ⌃j and determines the degree of
pooling. In applications with many time periods or grouped data, the ability to use
hierarchical priors that partially pool information across similar treatment paths or
groups is a potential major advantage of Bayesian methods. Existing strategies, such
as marginal structural models, enforce complete pooling or separation of potential
outcomes and do not easily accommodate grouped structures.

Estimation of the random-effects multivariate normal model follows standard
Markov Chain Monte Carlo (MCMC) methodology. The basic idea is to vary be-
tween data augmentation steps, which completes the data, and parameter updates,
which are straightforward given the completed data. Given lower level parameters,
the hierarchical priors are then updated either using a Gibbs step or a slice-sampling
step, depending on the ability to draw from the full conditionals. An appendix con-
tains a full description of the MCMC algorithm and posterior predictive model checks
that do not suggest any problems with the model specification.

1.5.2 Simulation-based optimal treatment and feasible out-

comes

A simple simulation strategy can be used to estimate the optimal treatment rule given
a parametric class of policy rules D. Let �1 be parameters for the first period rule
�1(x1; �1) and �2 be the parameters for the second period rule �2(x2, w1, x1; �2). For in-
stance, �1 and �2 may assign treatment if a linear index x

0
1�1 and (x

0
2, �1(x1; �1), x

0
1)

0
�2

exceeds a cutoff. In Section 1.6, I consider static and dynamic linear index rules and a
dynamic cutoff rule. However, the following strategy can be used for any parametric
rule, regardless of flexibility.

The estimation strategy consists of two steps. First, we simulate from the joint
posterior predictive distribution,

Z

f(

˜

Y (0, 0),

˜

Y (0, 1),

˜

Y (1, 0),

˜

Y (1, 1),

˜

X2(0),
˜

X2(1),
˜

X1 | ✓)f(✓ | Z)d✓,
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for a large number R of hypothetical future units, which we index with i > N .
Given this approximation to the population predictive distribution, we search for the
optimal rule

ˆ�⇤
(

ˆ

�1,
ˆ

�2) = arg max

�(�1,�2)

1

R

N+R
X

i=N+1

u�

⇣

˜

Yi

⇣

�1(
˜

Xi1; �1), �2(
˜

Xi1(�1(
˜

Xi1; �1)), �1(
˜

Xi1; �1),
˜

Xi1; �2)

⌘⌘

using any preferred maximization routine. For instance, Mebane and Sekhon (2009)
describe a prepackaged global optimization solution that performs well for a wide
range of difficult optimization problems. Under weak regularity conditions required
for the Law of Large Numbers and for suitably large R, this two-step procedure yields
the Bayesian optimal treatment regime within the class of rules D. By estimating
the optimal rule from posterior predictive simulations rather than from completed
sample data or unbiased estimates of the parameters, we account for estimation un-
certainty. Given an estimated optimal treatment regime, posterior inferences, such
as the probability that the optimal treatment regime performs better than the status
quo, follow the same logic as any other estimand.

Estimation of feasible sets follows that same exact steps, but iterated multiple
times for different utility functions. To compute the set of feasible outcome means
versus outcome variances, for instance, we can vary the weights �1 and �2 on a
mean-variance utility function and optimize. Each set of weights returns a particular
optimal rule. When applied to the posterior predictive outcomes, each rule returns a
point on the feasible outcome set boundary. Alternatively, we can apply each rule to
the completed sample data and compare these outcomes to the status quo regime.
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1.6 Application: Educational Tracking

1.6.1 Data

I demonstrate these proposed methods through an application to ninth and tenth
grade mathematics tracking in North Carolina public schools. Consistent with the
two-period, binary treatment setup introduced earlier, I study a small component
of the overall tracking problem: the decision to enroll in standard versus honors
mathematics in ninth and tenth grade. I limit the sample to students enrolling in
Algebra I in ninth grade. Roughly fifty percent of students take Algebra I in ninth
grade, twenty percent enroll before ninth grade, and the remainder enroll after ninth
grade. Students enrolling in earlier grades score significantly higher on the end-
of-course Algebra I test despite being younger. The sample students are therefore
neither the best nor the worst performers, and the tracking choice they face is the
most common.

North Carolina’s student testing program is one of the most comprehensive in
the United States. Between third and eighth grade, students take annual end-of-
year exams in reading and mathematics. After taking Algebra I, students take a
standardized end-of-course exam and report their anticipated course grade. In tenth
grade, students take further end-of-course exams, and, in some years, a comprehensive
tenth grade mathematics assessment. I use longitudinal data, maintained by North
Carolina Education Research Data Center (NCERDC), on students enrolled in tenth
grade in the 2001-2002 school year.

Children’s baseline covariates include gender, race, free or reduced lunch eligibility,
score gain between seventh and eight grade, and eighth grade score. Intermediate
outcomes include children’s Algebra I test score and dichotomized anticipated grade.
The final outcome is students’ tenth grade comprehensive mathematics test score,
which is available in 2001-2002. I normalize all variables to have mean zero and
standard deviation one in each grade and drop students with incomplete records.
Students are grouped into the honors track if they take either honors, advanced
placement, or college placement mathematics. Because some schools are too small
to offer comprehensive tracking options, I drop any school without students in each
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track. The combined effect of dropping some schools and incomplete records leaves
24,112 students in 325 schools, compared to 44,696 ninth graders tested in Algebra
I. While this is a significant reduction, most causes are plausibly missing at random,
given the rich covariate information. The science, Si, includes 13 dimensions: four
final outcomes (tenth grade scores), four intermediate outcomes (ninth grade scores
and grades), and five baseline covariates (gender, race, free/reduced lunch eligibility,
seventh to eighth gain score, and eighth grade score).

Consistent with intuition, students scoring higher in mathematics are significantly
more likely to enroll in the ninth grade honors track, and there is clear evidence of
dynamic selection into tenth grade honors (see appendex). Both the intermediate
Algebra I end-of-course score and anticipated course grade have large and significant
effects on the probability of enrolling in tenth grade honors mathematics. Given ninth
grade track assignment, students performing better at the end of Algebra I are less
likely to be demoted to a lower track and more likely to be promoted to a higher
track. However, even given significant sorting, students enroll in standard and honors
at all points in the test-score distribution in both ninth and tenth grade. There is
significant overlap across tracks in the baseline covariate and intermediate outcome
distributions.

1.6.2 Priors and computation

Given the large sample size, the exact prior specification is relatively unimportant. I
use weak but proper priors primarily to ensure numerical stability of the unidentified
scale parameters on the latent traits backing binary covariates such as gender. Specif-
ically, with thirteen dimensions of the latent S⇤

i , I assume am = 0, Bm = I,aV = 16,
BV = I, a⌫ = 2, b⌫ = 3, aT = 16, and BT = I.

The random-effects multivariate normal model (1.14) is simple but quite flexible.
The hierarchical Bayesian specification makes this flexibility feasible given limited
data. With 325 schools and 13 dimensions to S⇤

i , there are 325 ·(13+13 ·(13�1)/2) =

29, 575 coefficients in µj and ⌃j. In the application to educational tracking, the
posterior mean for ⌫ is roughly 80, which can be interpreted as 80 pseudo-observations
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FIGURE 6.  MATH OUTCOMES FOR DIFFERENT TRACKING SEQUENCES
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Notes: Dots give the posterior median of the average score (left) or standard deviation (right) under 
alternative tracking sequences. Results are compared to the observed status quo (horizontal line at zero). 
Bars give 90% credible intervals.

Figure 1.2: Math outcome for different tracking sequences. Dots give the posterior
median of the average score (left) or standard deviation (right) under alternative
tracking sequences. Results are compared to the observed status quo (horizontal line
at zero). Bars give 90% credible intervals.

being added to each school when estimating ⌃j. Posterior predictive checks also
suggest the model fits the data well (see online supplement).

Computation follows the algorithm described in the appendix. The results use
a MCMC chain of 10,000 iterations, retaining the last 9,000. Running the chain
multiple times leads to similar results and the chain converges quickly. Due to the
large portion of missing data and data augmentation steps, Gibbs sampling leads to
significant autocorrelation in some parameters, although the main treatment effect
parameters mix well. To compute the optimal treatment effect, I sample R = 20, 000

future units, keeping the school assignment probabilities fixed at their sample means.

1.6.3 Basic results

Educators often discuss tracking policies in terms of both their impact on average
achievement and inequality. I report both average effects and, in some cases, effects
on the achievement standard deviation.
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Figure 1.2 gives the sample-average treatment improvement (1.6) and posterior
credible intervals for each tracking sequence compared to the status quo. A second
panel gives the effect on the standard deviation. As can be seen, tracking students
first into standard mathematics and then into honors leads to the highest average
outcome. While standard tracking performs better in the short run than honors, by
tenth grade standard/standard tracking outperforms only demotion from honors to
standard. The honors/honors track experiences the largest one-year gain but still
perform worse than standard/honors over both years (p = 0.99). Examining the
entire tracking sequence therefore conveys a different picture than looking at each
grade separately.

In terms of inequality, as measured by the outcome standard deviation, single-
streaming students reduces inequality compared to the status quo, across all tracking
sequences. The concern that status-quo tracking policies increase inequality appears
to have some merit. Enrolling all students in standard/honors or honors/honors
increases average performance while reducing inequality.

A major argument for tracking is that different courses are suitable for different
students. Conditional results, reported in the appendix, are largely similar to Figure
1.2. One exception is that white and Asian students appear to suffer more than non-
white/Asian students from demotion. Consistent with intuition, promotion to honors
(standard/honors) is slightly more beneficial for top performers, whereas demotion
to standard (honors/standard) is worse for top performers. Nevertheless, students
of virtually all abilities (and enroll in Algebra I in ninth grade) perform best in the
standard/honors track. Thus while significant heterogeneity exists, most of it is not
relevant for optimal treatment choice.

1.6.4 Principal stratification on intermediate outcomes

Estimating causal effects stratified by intermediate outcomes is more subtle because
observed intermediate outcomes are functions of earlier treatments. One approach
to resolve this difficulty is to stratify instead on intermediate potential outcomes,
which by definition do not depend on the treatment actually received. Doing so is
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FIGURE 8. CONDITIONAL SAMPLE AVERAGE TREATMENT EFFECT VS. STANDARD/
STANDARD BY BASELINE PERFORMANCE
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Notes: Dots give the posterior binned sample means of tenth grade scores under different tracking sequences 
compared to enrolling in standard in both periods (horizontal line at zero).  The x-axis is eighth grade score 
(top).  Shaded areas give pointwise 90% credible intervals.

FIGURE 9. CONDITIONAL SAMPLE AVERAGE TREATMENT EFFECT BY INTERMEDIATE 
POTENTIAL PERFORMANCE
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Notes: Dots give the posterior binned (conditional) sample-average treatment effects by intermediate 
potential ninth grade performance for two treatment sequences contrasts.  Shaded areas give pointwise 90% 
credible intervals.   The x-axis is potential ninth grade performance, including all units within the sample, 
not observed performance.

Figure 1.3: Conditional sample-average treatment effect by intermediate potential
performance. Dots give the posterior binned (conditional) sample-average treatment
effects by intermediate potential ninth grade performance for two treatment sequences
contrasts. Shaded areas give pointwise 90% credible intervals. The x-axis is poten-
tial ninth grade performance, including all units within the sample, not observed
performance.

an example of principal stratification (Frangakis and Rubin, 2002), applied to con-
tinuous intermediate outcomes. Estimating causal effects stratified by intermediate
potential outcomes is often of direct interest to policymakers; it allows them to im-
pose counterfactual policies in earlier periods but still explore heterogeneity for later
treatments.

Figure 1.3 shows the conditional sample-average treatment effect of promotion
(standard/honors vs. standard/standard) and demotion (honors/standard vs. hon-
ors/honors) conditional on intermediate potential achievement. By conditioning on
the entire sample’s intermediate potential performance given standard (left) or hon-
ors (right) in ninth grade, Figure 1.3 differs from the alternative of treating ninth
grade as the baseline and allowing for heterogeneity by the observed ninth grade
track and achievement. In contrast to that approach, Figure 1.3 asks: had all stu-
dents been assigned to standard (left) or honors (right) in ninth grade, how would
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TABLE 5.  ESTIMATED OUTCOMES IGNORING INTERMEDIATE SELECTION OR EFFECTS
Students’ Mathematics Track in Ninth and Tenth GradeStudents’ Mathematics Track in Ninth and Tenth GradeStudents’ Mathematics Track in Ninth and Tenth GradeStudents’ Mathematics Track in Ninth and Tenth Grade

Analysis Assumptions Standard, 
Standard

Standard, 
Honors

Honors, 
Standard

Honors, 
Honors

Intermediate selection and effects -0.04 0.07 -0.06 0.03
[-0.05 , -0.04] [0.06 , 0.08] [-0.09 , -0.04] [0 , 0.05]

No intermediate selection -0.05 0.13 -0.08 0.08
[-0.06 , -0.05] [0.11 , 0.14] [-0.11 , -0.06] [0.05 , 0.11]

No intermediate effects -0.04 0.11 -0.11 0.21
[-0.05 , -0.03] [0.06 , 0.12] [-0.12 , -0.09] [0.14 , 0.27]

Notes: Cells contain posterior modes for the average effect and brackets contain 90% credible intervals, 
compared to the status quo.  First row correctly accounts for dynamic selection and intermediate effects. The 
second row incorrectly drops intermediate ninth grade math scores and grades, and therefore ignores 
dynamic selection.  The third row assumes that there are no intermediate effects on math scores or grades, 
and therefore incorrectly includes these variables as baseline controls.

Table 1.1: Estimated outcomes ignoring intermediate selection or effects. Cells con-
tain posterior modes for the average effect and brackets contain 90% credible intervals,
compared to the status quo. The first row accounts for dynamic selection and inter-
mediate effects. The second row drops intermediate ninth grade math scores and
grades, and therefore ignores dynamic selection. The third row assumes that there
are no intermediate effects on math scores or grades, and therefore includes these
variables as baseline controls.

honors versus standard tracking in tenth grade affect students’ final outcomes given
their intermediate, ninth grade, performance? As can be seen, regardless of the hy-
pothetical ninth grade tracking assignment, higher-achieving students at the end of
ninth grade gain more from being assigned into honors mathematics in tenth grade
than lower-achieving students, although all benefit.

1.6.5 Ignoring dynamic selection or intermediate effects

The preceding results allow for both dynamic selection and effects on intermediate
outcomes. Table 1.1 shows the results from an analysis that assumes either no dy-
namic selection or no intermediate effects. Both assumptions are unreasonable. Stu-
dents are promoted and demoted after ninth grade on the basis of their intermediate
performance, even controlling for their baseline achievement, and intermediate per-
formance is not predetermined—it directly depends on students’ ninth grade tracking
assignment.

The results demonstrate the problem with analyzing time-varying treatments us-
ing standard tools. The first line shows the estimated effects accounting for dynamic
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selection and allowing for intermediate effects, as in Figure 1.2. The second row as-
sumes no dynamic selection by dropping intermediate outcomes. Ignoring dynamic se-
lection doubles the estimated treatment effect of standard/honors and honors/honors
compared to standard/standard. This makes sense since high performing students
are filtered from standard to honors over time. Dynamic selection therefore biases
the estimated effect of honors upward. The third row assumes no intermediate effects
by treating post-treatment intermediate outcomes as baseline covariates. Doing so
also induces significant biases. For instance, the effect of honors/honors compared to
the status quo jumps from 0.03 to 0.21. Figure 1.2 provides intuition for this result:
for the sample considered, honors in ninth grade has a negative effect compared to
standard, which we falsely mitigate by assuming Xi2(0) = Xi2(1) = Xi2.

1.6.6 Optimal treatment and feasible outcome sets

While the precise objectives of educators are complex, a major goal, particularly given
the rise of test-based accountability systems, is to increase average performance. With
this goal in mind, I explore the design of optimal dynamic treatment regimes that
maximize average tenth grade achievement.

I consider three types of treatment regimes. The simplest is a dynamic cutoff
regime. Cutoff rules are easy to understand and implement. The dynamic cutoff rule
assigns students to honors if their last mathematics test score exceeds a cut-point
defined separately for each grade and track. I also explore static and dynamic linear
index regimes that assign students to tracks if a linear index of the observed data,
including a constant term, exceeds zero. In contrast to the static regime, the dynamic
regime includes intermediate outcomes in the tenth grade decision function. Follow-
ing the approach described in Section 1.5.2, I select each rule by simulating 20,000
hypothetical future units and estimating the optimal treatment regime parameters
using an off-the-shelf global maximization routine (Mebane and Sekhon, 2009).

Tables 1.2 and 1.3 summarize characteristics of the resulting track assignments if
we apply the estimated optimal treatment regimes retrospectively to the sample data.
In Table 1.2 each cell contains the estimated fraction of students assigned to each
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TABLE 6.  ALTERNATIVE OPTIMAL TREATMENT REGIMES

 
Dynamic Cutoff RegimeDynamic Cutoff RegimeDynamic Cutoff Regime Static Linear Index 

Regime
Static Linear Index 

Regime
Dynamic Linear 
Index Regime

Dynamic Linear 
Index Regime

Grade 9 Grade 10 Grade 10 Grade 9 Grade 10 Grade 9 Grade 10
Constant (Intercept) -2.9 9.6 -3.9 2.7
Female -4.6 -3.2 -6.1 5.4
White or Asian -4.9 5.4 1.1 3.7
Free or Reduced Lunch -2.7 3.3 -6.8 0.3
Grade 8 Math Score 3.3 -8.8 3.6 -4.7 0
Grade 7 to 8 Math Gain Score 1.6 -0.4 -1.1 1.9
Grade 9 Math Score -6.6 2.1 0.3
Grade 9 Algebra I Grade (A or B) 6.5
Honors in Ninth Grade No Yes -1.4 -5.2

Notes: Cells give the coefficients or cutoffs of the estimated optimal treatment regimes.  The dynamic cutoff 
regime assigns students to honors if their most recent mathematics score exceeds a particular cutoff defined 
for each track.  The static and dynamic linear index regimes constructs a linear index based on each students 
measured outcomes and previous track, and assigns units to honors if the index exceeds zero.  Indices are 
created separately for each grade, but not each track.

TABLE 7.  FRACTION OF STUDENTS ASSIGNED TO EACH TRACK BY TREATMENT REGIME
Standard, 
Standard

Standard, Honors Honors, 
Standard

Honors, 
Honors

Status quo regime 0.64 0.20 0.06 0.10
Dynamic cutoff regime 0.00 1.00 0.00 0.00
Static linear index regime 0.00 0.86 0.01 0.13
Dynamic linear index regime 0.01 0.87 0.04 0.08

Notes:  Cells give posterior median of fraction of (sample) students enrolled in each track under different 
treatment regimes.  Posterior standard errors for dynamic rules that depend on potentially unobserved 
intermediate outcomes are less than 0.01 and therefore suppressed.

Table 1.2: Fraction of student assigned to each track by treatment regime. Cells give
the posterior median of the fraction of (sample) students enrolled in each track under
different treatment regimes. Posterior standard errors for dynamic rules that depend
on potentially unobserved intermediate outcomes are less than 0.01 and therefore
suppressed.

TABLE 8. CHARACTERISTICS BY TRACK UNDER DYNAMIC LINEAR INDEX REGIME
Standard, 
Standard

Standard, 
Honors

Honors, 
Standard

Honors, 
Honors

Fraction Female 0.00 0.56 0.04 0.16
Fraction White/Asian 0.00 0.63 0.54 0.81
Fraction Free/Reduced Lunch 0.49 0.16 0.03 0.01
Average Seventh to Eighth Score Gain 0.00 0.17 -1.21 -1.23
Average Eighth Grade Score -1.60 0.09 -1.12 -0.27
Average Ninth Score Grade Score (Standard) -1.36 0.03 -0.72 0.10
Average Ninth Score Grade Score (Honors) -1.52 -0.02 -0.71 0.03
Fraction Ninth Grade A or B (Standard) 0.26 0.50 0.02 0.55
Fraction Ninth Grade A or B (Honors) 0.00 0.47 0.42 0.44

Notes:  Cells give posterior means of the sample characteristics for students in each track when assigned 
using the estimated optimal dynamic linear index regime.  Standard errors, which are extremely small, are 
suppressed to conserve space.

Table 1.3: Characteristic by track under dynamic linear index regime. Cells give
posterior means of the sample characteristics for students in each track when assigned
using the estimated optimal dynamic linear index regime. Standard errors, which are
extremely small, are suppressed.
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FIGURE 11.  OUTCOMES UNDER ALTERNATIVE OPTIMAL TREATMENT REGIMES
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Notes: Dots give the posterior median of the mean score (left) or standard deviation (right), compared to the 
status quo, under alternative optimal treatment regimes. Bars give 90% credible intervals. The dynamic 
cutoff rule assigns students to honors if their score exceeds a particular cutoff defined for each grade and 
track.  The static and dynamic linear index rules constructs a linear index based on each students’ measured 
outcomes and previous track, and assigns units to honors if the index exceeds zero.  Linear indices are 
created separately for each grade, but not each track.  The status quo gives outcomes under the status quo 
regime (i.e. observed outcomes).  Effects are sample treatment regime effects.

Figure 1.4: Outcomes under alternative optimal treatment regimes. Dots give the
posterior median of the mean score (left) or standard deviation (right), compared to
the status quo, under alternative optimal treatment regimes. Bars give 90% credible
intervals. Effects are sample treatment regime effects.

track. The dynamic cutoff rule assigns virtually all students to the standard/honors
track. This result is consistent with the standard/honors tracking sequence con-
sistently outperforming other tracking paths. By comparison, the status quo has
significantly less track mobility—only 30 percent of students switch tracks between
ninth and tenth grade. Under both the static and dynamic linear index rule, the
standard/honors track also receives over 85 percent of students. Table 1.3 shows the
characteristics of students assigned to each track under the optimal dynamic linear
index regime. Students assigned to honors/standard and honors/honors have lower
baseline scores than the dominant standard/honors track.

Figure 1.4 shows the main result: the effect of each optimal tracking regime on
average achievement and the standard deviation of achievement. All three regimes
outperform the status quo tracking regime by roughly 0.07 standard deviations, while
slightly lowering the standard deviation of achievement. Within the sample, the static
linear regime performs best, although the dynamic regime should always obtain a
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FIGURE 12.  FEASIBLE MATH OUTCOMES UNDER A DYNAMIC CUTOFF REGIME
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cutoff regime.  Grey lines give posterior draws of feasible outcome sets.  For computational reasons, sets are 
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assignment policy.  In contrast to population feasible sets, sample feasible sets are not necessarily convex, as 
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Figure 1.5: Feasible math outcomes under a dynamic cutoff regime. The dark line
outlines the posterior mean for the (sample) feasible outcome set given a dynamic
cutoff regime. Grey lines give posterior draws of feasible outcome sets. For com-
putational reasons, sets are computed at eight points. The status quo point gives
the observed outcome under the status quo track assignment policy. In contrast to
population feasible sets, sample feasible sets are not necessarily convex, as can be
seen in some posterior draws.

better population outcome than the static regime. Virtually all the gains come from
tracking students to the standard/honors sequence.

Finally, Figure 1.5 shows the feasible outcome set under a dynamic cutoff regime.
I compute the set by choosing eight different weights on the mean and variance
preferences and maximizing utility. The boundaries therefore represent an eight-
point approximation of the feasible set. To facilitate a comparison to the status quo,
I apply the population-optimal regimes to the sample data, which can lead to non-
convex feasible sets for some posterior draws. Each light line represents a posterior
draw of the sample tenth grade achievement mean and standard deviation under the
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eight regimes. The dark lines and dots give the posterior expectation. If policymakers
favor lower variance and higher mean, then the lower-right part of the plot represents
potential improvements over the status quo. As can be seen, there is significant room
for improvement both in terms of the average and standard deviation of performance.
The status quo outcome falls in the undesirable upper-left portion of the feasible
outcome set. There is no binding equity-efficiency trade off and current tracking
policies exacerbate inequality.

1.7 Conclusion

Time-varying treatments and dynamic treatment regimes lie at the heart of many
different disciplines. Yet standard program evaluation methods are not designed to
handle dynamic selection into treatment and intermediate causal effects. This paper
extends the framework for missing data and causal inference introduced by Rubin
(1976, 1978) and Bayesian decision theory to study dynamic treatment regimes and
treatment choice. I propose a model on the joint distribution of potential outcomes
and baseline covariates that can handle continuous and discrete variables and grouped
data. While the conceptual framework is general, there is considerable room for
research on models suitable for applications with many intermediate variables and/or
many time points, and methods to compare different model specifications and to
assess the sensitivity of results to model and prior choices.

Applied to educational tracking, the proposed methods provide inference for cen-
tral quantities in the policy debate: outcomes under different tracking regimes, the
optimal tracking regime, student mobility between tracks, and the tradeoff between
equity and efficiency in student outcomes. The results suggest room for improving
tracking policies, including rules which simultaneously increase achievement while re-
ducing inequality. However there are caveats to these results. They apply only to
the sample of students that enroll in Algebra I in ninth grade. The analysis also
assumes that peer effects associated with rearranging students are negligible and that
teachers do not adapt when faced with different students. Richer models of classroom
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behavior, which extend beyond the time-varying dimension of education, may further
improve the design of optimal tracking rules.

The Bayesian approach to dynamic treatment regimes has a number of appealing
characteristics. A key idea is that sequential unconfoundedness is simply a particular
ignorable treatment mechanism. After carefully defining the missing and observed
data, Bayesian inference follows the same steps as multiple imputation procedures
developed outside of the dynamic treatment context. Bayesian hierarchical models
also offer the potential to partially pool information across treatment paths or groups.
Pooling information is often critical given many treatment paths or in applications
such as education where grouped structures are common. Finally, the proposed meth-
ods integrate over all sources of uncertainty when performing treatment choice and
can address more complex questions such as estimation and inference for feasible out-
come sets. Extending causal analysis to dynamic treatment regimes has the potential
to deepen understanding of causal mechanisms and improve policy and practice across
different disciplines.

1.A Appendix

1.A.1 Inference given randomized treatment or no intermedi-

ate effects

All ignorable treatment rules lead to the same posterior inference. This result im-
plies that a full-information Bayesian analysis proceeds equivalently regardless of
whether treatment is sequentially unconfounded or completely randomized. Neverthe-
less, completely randomized treatments do offer the possibility of limited-information
analysis that ignores intermediate outcomes. For example, given randomization con-
ditional on baseline characteristics, f(W2,W1 | S) = f(W2,W1 | X1), it becomes
possible to ignore intermediate outcomes. While the full Bayesian paradigm demands
conditioning on all available information, ignoring intermediate outcomes can simplify
the analysis. The problem reduces to a point-treatment setting with four treatments.
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Specifically,

f(Ymis | Y,W2,W1,X1) / f(Y(0, 0),Y(0, 1),Y(1, 0),Y(1, 1),X1). (1.15)

In applications where randomization can be justified, time-varying treatments can
therefore be estimated with the standard tools used to evaluate point-treatment causal
effects. However, given dynamic selection based on intermediate outcomes, which
almost always occurs in sequential observational settings, such methods will fail; one
can no longer ignore the intermediate outcomes and still obtain (1.15).

Another special case arises when intermediate outcomes exist, but the science of
the problem suggests that treatment has no causal effect on intermediate outcomes.
That is, when we know a priori that X2(0) = X2(1). For instance, it may be plausible
to assume that tracking policies have no effect on time-varying parental employment,
but still potentially allow for parental employment to influence tracking decisions and
be correlated with potential outcomes. Full-information analysis proceeds by treating
intermediate outcomes as additional baseline covariates. Under ignorable treatment,
and assuming no intermediate causal effects,

f(Ymis | Y,W2,X2,W1,X1) / f(Y(0, 0),Y(0, 1),Y(1, 0),Y(1, 1),X2,X1).

This is equivalent to point-treatment analysis with four treatments and X2 and X1

as baseline covariates. If, as is typically the case, treatment does affect intermediate
outcomes, then treating intermediate outcomes as additional baseline covariates will
lead to incorrect inference. Therefore, except in limited special cases, we cannot
analyze time-varying treatments using the same tools developed for point-treatment
settings.

1.A.2 Data and selection

Table 1.4 gives summary statistics for students by each tracking sequence. Table 1.5
tests dynamic selection into tracks using a logit model of track assignment in ninth
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TABLE 3.  SAMPLE SUMMARY STATISTICS BY MATHEMATICS TRACK

Students’ Mathematics Track in Ninth and Tenth GradeStudents’ Mathematics Track in Ninth and Tenth GradeStudents’ Mathematics Track in Ninth and Tenth GradeStudents’ Mathematics Track in Ninth and Tenth Grade

Measure Standard, 
Standard

Standard, 
Honors

Honors, 
Standard

Honors, 
Honors

Female 0.564 0.55 0.549 0.559
White or Asian 0.693 0.766 0.674 0.741
Free or Reduced Lunch 0.169 0.124 0.167 0.155
Grade 7 to 8 Math Gain Score -0.016 0.086 -0.069 -0.025

[1.013] [0.965] [0.993] [0.977]
Grade 8 Math Score -0.143 0.377 -0.126 0.241

[0.947] [1.035] [0.941] [1.056]
Grade 9 Math Score -0.132 0.386 -0.215 0.214

[0.941] [1.037] [0.98] [1.06]
Grade 9 Algebra I Grade (A or B) 0.486 0.724 0.491 0.652
Grade 10 Math Score -0.151 0.414 -0.179 0.257

[0.942] [1.026] [0.955] [1.045]
N 15362 4744 1529 2477

Notes: Cells contain means and brackets contain standard deviations. All continuous variables have been 
normalized to have mean zero and standard deviation one for each grade within the sample. Honors includes 
honors, advanced, and college placement courses.  The sample includes students with no missing information 
and who enrolled in Algebra I in ninth grade and geometry or Algebra II in tenth grade.  All students were 
in tenth grade in 2003.

Table 1.4: Sample summary statistics by mathematics track. Cells contain means and
brackets contain standard deviations. All continuous variables have been normalized
to have mean zero and standard deviation one for each grade within the sample.

and tenth grade on past observables. These models describe the status quo treatment
assignment mechanism.

1.A.3 Model checking

While ignorable treatment assignment is untestable without additional assumptions,
it is useful to check the sensitivity of inferences to model modifications. Zhang et al.
(2009), for instance, consider how Box-Cox transformations of wage rates influences
the log-likelihood and average treatment effect of a training program. In multivari-
ate applications, mixture models, copula-based multivariate distributions, conditional
factorizations, or different random effects structures provide other avenues to explore.

One can often motivate model modifications by comparing posterior predictive
replications under a starting model to the observed data (Rubin, 1984; Gelman et al.,
1996). That is, does the model generate data that looks similar to the observed data?



CHAPTER 1. DYNAMIC TREATMENT REGIMES 35

TABLE 4.  LOGIT TREATMENT SELECTION MODEL

 
Ninth Grade 

Honors

Tenth Grade 
Honors given 
Ninth Grade 

Standard

Tenth Grade 
Honors given 
Ninth Grade 

Honors
Female 0.01 -0.01 0.07

(0.04) (0.04) (0.07)
White or Asian -0.09 -0.08 0.08

(0.04) (0.04) (0.08)
Free or Reduced Lunch 0.05 -0.16 0.18

(0.05) (0.05) (0.1)
Grade 7 to 8 Math Gain Score -0.11 -0.03 -0.01

(0.02) (0.02) (0.04)
Grade 8 Math Score 0.17 0.31 0.12

(0.02) (0.03) (0.05)
Grade 9 Math Score 0.2 0.25

(0.03) (0.05)
Grade 9 Algebra I Grade (A or B) 0.65 0.36

(0.04) (0.07)
Intercept -1.57 -1.54 0.15

(0.04) (0.05) (0.09)
N 24112 20106 4006

Notes: Coefficients are expressed in logits from a logit regression with weakly informative Cauchy prior 
(Gelman, 2008).  Parentheses give the posterior standard errors.Table 1.5: Logit treatment selection model. Coefficients are expressed in logits from
a model with weakly informative Cauchy prior (Gelman et al., 2008). Parentheses
give the posterior standard deviations.
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Such posterior predictive checks can be formalized to return posterior predictive p-
values for discrepancy statistics or used graphically to motivate model modification.
With missing data, standard posterior predictive checks require modeling the missing
data mechanism. As an alternative, Gelman et al. (2005) propose comparing com-
pleted data, which includes both imputed and observed data, with replicated data.
Completing the data first avoids the need to model the missing data mechanism.
Moreover, the completed data S is generally easier to interpret in terms of the orig-
inal model than the observed Sobs. However, working with completed rather than
observed data may reduce power since both the replicated and completed data are
based on the model.

Following this strategy, Figure 1.6 show graphical posterior predictive checks of
the marginal distribution of final potential outcomes, which are the most important
model components. Specifically, Figure 1.6 uses twenty completions and replications
from f(S,Srep | Z), where S denotes a N⇥13 completed data matrix for the observed
sample and Srep denotes an N⇥13 posterior predictive replicated dataset, holding the
school assignment probabilities fixed. If the model is correct, the quantile-quantile
(QQ) plots of completed and replicated achievement measures should fall along the
diagonal. As the plots show, the model fits the observed data, with no large devia-
tions from the expected distribution. The one exception is a small but statistically
significant deviation in the lower part of the distribution for the Y(0, 0) outcome.
Similar posterior predictive checks for the conditional means and variances show no
systematic deviations, except for artifacts caused by ignoring test-score rounding.

1.A.4 Extended results

Table 1.6 presents the parameters of the estimated optimal treatment regimes. The
dynamic cutoff rule assigns only the very best students—those with eighth grade
scores 3.3 standard deviations above the average—to honors in ninth grade. Given
assignment to standard in ninth grade, the optimal cutoff rule assigns any student
scoring above -6.6 to honors in tenth grade. Interpreting the linear and dynamic
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FIGURE 4.  POSTERIOR PREDICTIVE CHECKS OF MARGINAL OUTCOME DISTRIBUTIONS
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Notes: QQ-plots of 20 completed intermediate and final potential outcomes for different treatment sequences 
versus posterior predictive replications. Under the model the QQ-lines should fall along the diagonal.

Figure 1.6: Posterior predictive checks of the marginal outcome distributions. QQ-
plots of 20 completed intermediate and final potential outcomes for different treatment
sequences versus posterior predictive replications. Under the model the QQ-lines
should fall along the diagonal.
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FIGURE 7. MATH OUTCOMES BY SUBPOPULATION FOR DIFFERENT TRACKING SEQUENCES
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Notes: Dots give the posterior median of the average score (left) or standard deviation (right), compared to 
the status quo, for alternative tracking sequences within different subpopulations. Bars give 90% credible 
intervals.

Figure 1.7: Math outcomes by subpopulation for different tracking sequences.
FIGURE 8. CONDITIONAL SAMPLE AVERAGE TREATMENT EFFECT VS. STANDARD/

STANDARD BY BASELINE PERFORMANCE
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Notes: Dots give the posterior binned sample means of tenth grade scores under different tracking sequences 
compared to enrolling in standard in both periods (horizontal line at zero).  The x-axis is eighth grade score 
(top).  Shaded areas give pointwise 90% credible intervals.

FIGURE 9. CONDITIONAL SAMPLE AVERAGE TREATMENT EFFECT BY INTERMEDIATE 
POTENTIAL PERFORMANCE
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Notes: Dots give the posterior binned (conditional) sample-average treatment effects by intermediate 
potential ninth grade performance for two treatment sequences contrasts.  Shaded areas give pointwise 90% 
credible intervals.   The x-axis is potential ninth grade performance, including all units within the sample, 
not observed performance.

Figure 1.8: Conditional sample-average treatment effect vs. standard/standard by
baseline performance. Dots give the posterior binned sample means of tenth grade
scores under different tracking sequences compared to enrolling in standard in both
periods (horizontal line at zero). Shaded areas give pointwise 90% credible intervals.



CHAPTER 1. DYNAMIC TREATMENT REGIMES 39

TABLE 6.  ALTERNATIVE OPTIMAL TREATMENT REGIMES

 
Dynamic Cutoff RegimeDynamic Cutoff RegimeDynamic Cutoff Regime Static Linear Index 

Regime
Static Linear Index 

Regime
Dynamic Linear 
Index Regime

Dynamic Linear 
Index Regime

Grade 9 Grade 10 Grade 10 Grade 9 Grade 10 Grade 9 Grade 10
Constant (Intercept) -2.9 9.6 -3.9 2.7
Female -4.6 -3.2 -6.1 5.4
White or Asian -4.9 5.4 1.1 3.7
Free or Reduced Lunch -2.7 3.3 -6.8 0.3
Grade 8 Math Score 3.3 -8.8 3.6 -4.7 0
Grade 7 to 8 Math Gain Score 1.6 -0.4 -1.1 1.9
Grade 9 Math Score -6.6 2.1 0.3
Grade 9 Algebra I Grade (A or B) 6.5
Honors in Ninth Grade No Yes -1.4 -5.2

Notes: Cells give the coefficients or cutoffs of the estimated optimal treatment regimes.  The dynamic cutoff 
regime assigns students to honors if their most recent mathematics score exceeds a particular cutoff defined 
for each track.  The static and dynamic linear index regimes constructs a linear index based on each students 
measured outcomes and previous track, and assigns units to honors if the index exceeds zero.  Indices are 
created separately for each grade, but not each track.

TABLE 7.  FRACTION OF STUDENTS ASSIGNED TO EACH TRACK BY TREATMENT REGIME
Standard, 
Standard

Standard, Honors Honors, 
Standard

Honors, 
Honors

Status quo regime 0.64 0.20 0.06 0.10
Dynamic cutoff regime 0.00 1.00 0.00 0.00
Static linear index regime 0.00 0.86 0.01 0.13
Dynamic linear index regime 0.01 0.87 0.04 0.08

Notes:  Cells give posterior median of fraction of (sample) students enrolled in each track under different 
treatment regimes.  Posterior standard errors for dynamic rules that depend on potentially unobserved 
intermediate outcomes are less than 0.01 and therefore suppressed.

Table 1.6: Alternative optimal treatment regimes. Cells give the coefficients or cut-
offs of the estimated optimal treatment regimes. The dynamic cutoff regime assigns
students to honors if their most recent mathematics score exceeds a particular cut-
off defined for each track. The static and dynamic linear index regimes constructs
a linear index based on each students measured outcomes and previous track, and
assigns units to honors if the index exceeds zero. Indices are created separately for
each grade, but not each track.
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index rules is more difficult due to the correlation between covariates. The final
column shows clear positive sorting on the intermediate performance.

1.A.5 Complications: peer effects and non-ignorable treat-

ment

In some applications, such as educational tracking, the assumption of no interac-
tion between units implicit in the potential outcome notation may be suspect. For
instance, researchers often assume that students’ classroom peers have a causal im-
pact on performance. Conceptually, incorporating peer effects simply requires an
expansion of potential outcome space. With interaction between units, each unit has
potential outcomes associated with every possible combination of treatment assign-
ments for the entire group. For instance, if w = ((w11, w12), . . . , (wN1, wN2)) denotes a
potential treatment allocation for all units, then units have potential outcomes Yi(w),
which incorporate the potential influence of peers. Given two periods and a binary
treatment, this leads to 4

N potential outcomes for each unit.
To make estimation practical, we clearly must limit the potential outcome space

in some way. In the context of education, students may be affected only by peers
in the same classroom and through particular functions of their peer’s characteris-
tics. One approach might specify a measure of peer quality p and assume that peer
effects are linearly additive, i.e., Yi(w1, w2, p) = Yi(w1, w2) + ↵p. Incorporating peer
effects nevertheless can be quite complex in practice and is left as a potential future
extension.

A second concern, but one that is inherently untestable, is that treatment assign-
ment is confounded. While the rich longitudinal information available in administra-
tive data mitigates this concern, policymakers may rely on unobserved information
related to the missing potential outcomes to determine treatment. Absent ignorable
treatment, Bayesian analysis requires modeling the treatment assignment mechanism.
In practice, many of the ideas used in point-treatment settings may be usefully ex-
tended to sequential treatments. For instance, in applications where a credible exoge-
nous source of variation exists, instrumental variable approaches similar to Imbens



CHAPTER 1. DYNAMIC TREATMENT REGIMES 41

and Rubin (1997), Hirano et al. (2000), and Frangakis and Rubin (2002) may be
applicable. However, further work is needed to extend these strategies to sequential
settings.

1.A.6 Posterior inference using MCMC

We can explore the posterior distribution of the parameters and missing data using
Markov Chain Monte Carlo (MCMC) methods. The sampling procedure proceeds by
iterating between data augmentation steps for the missing potential outcomes and
latent science, and posterior draws from the parameters given the completed data,
along with updates of the priors. If desired, posterior predictive simulations can be
made conditional on each parameter draw. The following describes a simple MCMC
algorithm for posterior inference in the random-effects multivariate normal model.

Step 0: Initialize the missing data and parameters.

Initialize the missing potential outcomes, latent variables, and parameters at some
reasonable value; for instance, by drawing values from the prior.

Step 1: Augment the missing potential outcomes.

Let superscripts S1
i denote the unobserved potential outcomes and S2

i denote the
observed data of the latent S⇤

i for unit i. Then a Gibbs data augmentation step for
the missing potential outcomes follows the properties of the multivariate normal

f(S1
i | · · · ) = N

⇣

µ1
j +⌃12

j

�

⌃22
j

��1
(S2

i � µ2
j),⌃

11
j �⌃12

j

�

⌃22
j

��1
⌃21

j

⌘

,

where superscripts define the partitioned matrices associated with the observed and
missing components, and subscripts indicate the school assignment j for child i. In
this notation, the meaning of superscripts varies by unit, depending on the pattern
of missing data.
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Step 2: Augment the discrete components with their latent representa-

tions.

Draw Sd⇤
i from a truncated multivariate normal with mean and variance following the

properties of the partitioned conditional multivariate normal, similar to Step 1, and
truncation in each dimension k as (1, 0] if Sd

ik = 0 and (0,1) if Sd
ik = 1. A simple

sampling method, although not the most efficient, takes multiple univariate Gibbs
steps, each from a truncated normal drawn by the inverse-CDF method.

A difficulty in latent variable formulations for discrete data are that the variances
are not identified. That is, the observed data are invariant to scale transformation of
the latent variables and parameters. In theory, this situation poses no difficulty to
Bayesian methods, since we can resolve identification issues by placing proper priors
on all the parameters. In practice, some care must be taken to avoid numerically
unstable estimates. Following Edwards and Allenby (2003), I use proper priors on
all the parameters and post-process the data to restrict the variances to one for the
discrete components.

Step 3: Update the parameters µj and ⌃j.

Sample µj and ⌃j from their full conditionals. Within school j,

f(µj | · · · ) = N
 

�

V�1
+Nj⌃

�1
j

��1

 

V�1m+⌃�1
j

X

i

S⇤
i

!

,

�

V�1
+Nj⌃

�1
j

��1

!

,

f(⌃j | · · · ) = IW
 

⌫ +Nj,T+

X

i

(S⇤
i � µj)(S

⇤
i � µj)

0
!

,

where Nj is the number of children in school j, and the summations are taken for
children within school j.
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Step 4: Update the priors m, V, ⌫ and T.

Sample priors m, V, and T from their full conditionals:

f(m | · · · ) = N
 

�

B�1
m + JV�1

��1

 

B�1
m am +V�1

J
X

j=1

µj

!

,

�

B�1
m + JV�1

��1

!

,

f(V | · · · ) = IW
 

aV + J,BV +

J
X

j=1

(µj �m)(µj �m)

0
!

,

f(T | · · · ) = W
0

@

aT + J⌫,

 

B�1
T +

J
X

j=1

⌃�1
j

!�1
1

A

,

where J is the number of schools or groups. Finally, we can update ⌫ by taking a
Metropolis-Hastings or slice-sampling step using

f(⌫ | · · · ) / lnN (⌫ �K � 1 | a⌫ , b⌫) ·
J
X

J=1

IW (⌃j | ⌫,T) ,

where lnN (· | ·) and IW(· | ·) represent the log-normal and inverse-Wishart density
functions, and K denotes the dimension of ⌃j.

Step 5: Draw posterior predictive simulations as needed.

If necessary, draw posterior predictive simulations for future units from the model.
This step requires a multivariate normal draw of the latent science, S⇤

i⇠ N (µj,⌃j),
coupled with a transformation for the discrete components. For simplicity, I assume
the assignment probability to group j matches the sample data.
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By standard MCMC results, iterating these steps will cause the chain to converge
to a stationary distribution equal to the desired posterior distribution. After a suitable
burn-in period, we can then estimate any of the causal estimands introduced in Section
2 using either the completed data from Step 1 or the posterior predictive simulations
from Step 5. In a multivariate normal model, the parameters µj associated with
the potential outcomes give the posterior population mean under each treatment and
can be used to estimate population-average effects directly. For other models, this
straightforward mapping between parameters and causal effects may not always apply,
in which case posterior predictive simulations for hypothetical future units provides
an alternative.



Chapter 2

Regression Discontinuity Design with

Multiple Forcing Variables

1

Regression discontinuity designs identify causal effects by exploiting treatment assign-
ment rules that are discontinuous functions of underlying covariates. In the standard
regression discontinuity design setup, the probability of treatment changes discontin-
uously if a scalar covariate exceeds a cutoff. We consider more complex treatment
assignment rules that generate a treatment boundary. Leading examples include edu-
cation policies where treatment depends on multiple test scores and spatial treatment
discontinuities arising from geographic borders. We give local linear estimators for
both the conditional effect along the boundary and the average effect over the bound-
ary, and a consistent estimate for the variance of the average effect based on the
nonparametric delta method. For two-dimensional RD designs, we derive an optimal,
data-dependent, bandwidth selection rule for the conditional effect. We demonstrate
these methods using a summer school and grade retention example.

1An modified version of this chapter may appear with Guido Imbens. Thanks go to Brian Ja-
cob and Lars Lefgren, and the Chicago Public Schools, for making their data available. Raymond
Guiteras and Brigham Frandsen provided the actual final data we use and valuable clarifying docu-
mentation.

45
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2.1 Introduction

Regression discontinuity (RD) designs identify causal effects by exploiting treatment
assignment rules that are discontinuous functions of underlying covariates (Thistleth-
waite and Campbell, 1960; Hahn et al., 2001). In the classic RD setup, the probability
of treatment changes discontinuously if a scalar characteristic falls above or below a
cutoff. But treatment assignment rules can be more complex and depend on a vector
of covariates. In education settings, for instance, children often must pass multiple
subject exams to avoid summer school, advance to the next grade, or graduate (e.g.,
Jacob and Lefgren, 2004; Martorell, 2005; Matsudaira, 2008; Papay et al., 2008). Like-
wise, public policies can differ sharply across political, administrative, or geographic
borders defined by latitude and longitude (e.g., Holmes, 1998; Black, 1999; Pence,
2006; Lalive, 2008; Dell, 2010; Gerber et al., 2010).

Starting with Papay et al. (2009), a number of researchers have proposed methods
to extend RD design to applications with multiple forcing variables (e.g., Wong et al.,
2010; Reardon and Robinson, 2010). As highlighted by this work, RD designs with
multiple forcing variables identify the conditional treatment effect at every point
along the treatment boundary rather than at a single point. In many applications,
researchers may wish to explore this heterogeneity.

Motivated by this initiating work on boundary RD designs, this paper studies a
particular approach: local linear estimation of RD designs that generate a treatment
boundary. Local linear estimation has proven successful in scalar contexts but a
number of open issues remain given multiple forcing variables. To start, we give
estimators for two parameters identified by boundary RD designs. The first is a local
linear estimator for the conditional treatment effect at any point on the treatment
boundary. This estimator is a generalization of the local linear estimator proposed
by Hahn et al. (2001) for the scalar case. We consider both sharp designs, where
treatment is solely determined by the forcing variables, and fuzzy designs, where the
treatment probability changes discontinuously across the boundary.

Second, we also discuss estimation and inference for the average effect over the
boundary. The common approach of using the distance to the nearest boundary in a
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scalar RD setup gives a consistent estimate for an average effect along the boundary,
although the weighting scheme may differ from explicit integration along the boundary
for some designs. In most applications converting boundary RD designs to a scalar
RD design works well. However, we also explore directly averaging the conditional
effect over the boundary. At the expense of additional complexity, averaging explicitly
can have better finite sample properties. We give an estimator for the variance of the
explicitly integrated average effect based on the nonparametric delta method.

When interest lies only in the average effect along the boundary, we recommend
converting boundary RD designs into the scalar framework. RD designs’ credibil-
ity stems in large part from communicating the main results using simple graphs.
While three-dimensional plots can communicate the intuition of two-dimensional RD
designs, it is often difficult visualize model and estimation uncertainty. This makes
converting boundary designs to familiar scalar designs particularly attractive.

A major choice for RD designs is how much to smooth estimates using obser-
vations away from the boundary. For two-dimensional RD designs, we derive an
optimal, data-dependent, bandwidth selection rule for the conditional effect following
the same general plug-in approach proposed by Imbens and Kalyanaraman (2008).
Several characteristics complicate the calculation of optimal bandwidths in non-scalar
settings. While local linear estimators estimators can be applied to any dimension
problem, we focus primarily on two-dimensional treatment rules since the leading
applications appear to take this form. Two-dimensional treatment rules include those
based on two subject test scores (reading and math) and location (latitude and longi-
tude). They also include scalar RD designs with a continuous non-forcing covariate.

We demonstrate boundary RD methods using a summer school and grade reten-
tion example studied by Jacob and Lefgren (2004) and Frandsen and Guiteras (2010).
Under Chicago’s accountability policy, children in third must pass both a reading and
mathematics exam to avoid summer school and potentially being retained. This rule
generates a two-dimensional treatment boundary. Consistent with the results in Ja-
cob and Lefgren (2004), we find that third-grade students along the boundary who
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comply with the accountability policy gain roughly 0.1 standard deviations in read-
ing and 0.2 standard deviations in math. There is some evidence of treatment effect
heterogeneity along the boundary.

The rest of the paper is organized as follows: Section 2.2 reviews scalar RD design
and generalizes the notation, estimands, and identification results to boundary RD
design. Section 2.3 discusses estimation of sharp and fuzzy effects by multiple local
linear regression. Section 2.4 derives an optimal, data-dependent, bandwidth selection
rule for conditional sharp effects. Finally, Section 2.5 provides an application and
Section 2.6 concludes.

2.2 The Regression Discontinuity Model

2.2.1 Scalar RD designs

Using discontinuities in assignment rules to identify causal effects dates back to
Thistlethwaite and Campbell (1960) and has a long history in psychology (Cook,
2008). However the idea has received an explosion of attention in economics after
Hahn et al. (2001) formalized RD design in the language common to program evalu-
ation. Subsequent work has further clarified RD design’s underpinnings (Lee, 2008;
Lee and Lemieux, 2009), developed the theory behind estimation (Porter, 2003; Sun,
2005; Lee and Card, 2008; Frandsen and Guiteras, 2010), provided practical guid-
ance on bandwidth selection (Ludwig and Miller, 2007; Imbens and Kalyanaraman,
2008), and proposed tests of the underlying assumptions (McCrary, 2008). Imbens
and Lemieux (2008) and Lee and Lemieux (2009) review this surge in RD design
research, focusing on the standard scalar case.

In the standard RD setup, units have a continuous scalar covariate X and outcome
Y . The treatment mechanism can be classified as “sharp” or “fuzzy” depending on
whether the treatment is completely or partially determined by the covariate passing a
cutoff (Trochim, 1984). In a sharp design, units receive a binary treatment W 2 {0, 1}
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if and only if their covariate exceeds a cutoff c. That is,

W = 1{X � c},

where 1 {·} is the indicator function.
Following Neyman (1923) and Rubin (1978), we can define causal effects in terms

of potential outcomes. In the potential outcomes framework, Y (1) gives the outcome
under treatment and Y (0) gives the outcome under the control. Potential outcomes
Y (1) and Y (0) are linked to the observed variables Y by

Y = Y (W ) = (1�W ) · Y (0) +W · Y (1).

We only ever observe the potential outcome associated with the treatment actually
received. Average causal effects are then defined as averages over unit causal effects
Y (1) � Y (0). Because we can only observe Y (1) or Y (0) but never both for a given
unit, causal inference entails comparisons across potentially dissimilar units.

Intuitively, sharp regression discontinuity design identifies the average causal effect
of the treatment for units at the treatment boundary (X = c) by comparing units "
above and below the treatment boundary as " goes to zero. Assuming the conditional
regression functions of the potential outcomes E [Y (0) | X = x] and E [Y (1) | X = x]

are continuous in x, units just above and below the discontinuity have the same
average potential outcomes Y (0) and Y (1) but differ by their treatment status W

and potential outcome actually observed Y = Y (W ). The average causal effect of the
treatment for units at the treatment boundary is identified by taking the limits from
above and below,

⌧SRD = E [Y (1)� Y (0) | X = c] (2.1)

= E [Y | W = 1, X = c]� E [Y | W = 0, X = c]

= lim

x#c
E [Y | X = x]� lim

x"c
E [Y | X = x]

where the final equality follows from continuity (Hahn et al., 2001).
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The practical problem becomes how to estimate the two limits limx#c E [Y | X = x]

and limx"c E [Y | X = x]. Given the boundary nature of the problem, Hahn et al.
(2001) propose estimating the limits by local linear regression. Porter (2003) proves
that local linear regression is rate optimal for the regression discontinuity problem.
With a rectangular kernel, local linear regression amounts to predicting both limits
from a linear regression on a subset of observations around the discontinuity. Imbens
and Kalyanaraman (2008) recommend local linear regression with an edge kernel and
derive an optimal, data-dependent, bandwidth selection rule.

Fuzzy regression discontinuity design generalizes the RD setup to account for
treatment rules that are discontinuous in the probability of treatment (Trochim, 1984;
Hahn et al., 2001). That is, cases where

lim

x#c
Pr(W = 1 | X = x) > lim

x"c
Pr(W = 1 | X = x)

but the probabilities are not necessarily one and zero. Many real assignment rules
take this form due to noncompliance with treatment assignment or individual waivers
to sharp treatment rules.

As pointed out by Hahn et al. (2001), fuzzy regression discontinuity design has
a strong connection to instrumental variables estimation of treatment effects with
unit-varying effects (Imbens and Angrist, 1994). When a fraction of units receive
treatment on each side of the cutoff, the difference between average outcomes on
either side of the discontinuity becomes an intent to treat effect—the average effect
of the assignment or encouragement but not the treatment. The average outcomes
on both sides of the discontinuity include a mixture of treated and untreated units
due to noncompliance.

To see the connection to instrumental variables, assume that units receive an
encouragement or assignment Z depending on whether they fall above or below the
cutoff,

Z = 1 {X � c} .

For instance, schools may recommend students for promotion to the next grade if
they score above c on an end-of-year exam but parents may choose otherwise. Given
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imperfect compliance, encouragement Z may differ from treatment W . Let W (z) be
the treatment the unit would receive given encouragement z. Under a monotonicity
assumption that there are no defiers—no units with W (1) = 0 and W (0) = 1—the
fuzzy RD estimate is

⌧FRD =

limx#c E [Y | X = x]� limx"c E [Y | X = x]

limx#c E [W | X = x]� limx"c E [W | X = x]

(2.2)

= E [Y (1)� Y (0) | W (1) > W (0), X = c] ,

which takes the form a Wald estimate (Hahn et al., 2001).
The identified parameter has the standard local average treatment effect (LATE)

interpretation of the average treatment effect for units that comply with the encour-
agement Z and therefore have W (1) > W (0). The only difference compared to a
standard encouragement design setup is that the estimate is local to the encour-
agement cutoff c. The locality restriction arises because there is no overlap in the
covariate distribution for units that receive and do not receive the encouragement and
encouragement is only ignorable conditional on X. Under continuity, we can replace
the exact conditioning with limits from above and below.

The practical problem is the same as for sharp RD but requires estimating the
four limits in (2.2) rather than two in (2.1). Using a single bandwidth for all four con-
ditional expectations, the local linear estimator can be implemented using weighted
2SLS with weights depending on the kernel (Imbens and Lemieux, 2008).

2.2.2 Boundary RD designs

Conceptually, boundary RD designs are similar to the scalar case except that the dis-
continuity cutoff becomes a boundary. In this section, we generalize the RD notation,
causal parameters, and identification results to account for more general assignment
rules that generate a boundary.
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FIGURE 1. STUDENT PROGRESS UNDER CHICAGO’S ACCOUNTABILITY POLICY
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δ1(X)=1{min(June Math, June Reading) < 2.8}

δ2(X)=1{min(max(June Math, August Math), max(June Reading, August Reading)) < 2.8}

Notes: Replicates Jacob and Lefgren (2004) Figure 1.  Chicago’s accountability policy is based on children math 
and reading grade equivalent (G.E.) scores on the Iowa Test of Basic Skills.  A G.E. score of 2.8 corresponds to 
roughly the 20th percentile in the national third grade achievement distribution (Jacob and Lefgren, 2004).

Figure 2.1: Student progress under Chicago’s accountability policy.

Let X be a vector of d covariates. An assignment rule, � : X 7! {0, 1}, is a
function that maps units with covariates X = x to treatment assignment z. In the
standard scalar case d = 1 and the assignment rule takes the simple form �(x1) =

1 {x1 � c}. Our attention is on more general assignment rules that depend on a vector
of covariates. For example, Chicago’s summer school policy, depicted in Figures 2.1
and 2.2, assigns treatment if the minimum of two scores falls below 2.8 or �(x1, x2) =

1 {min(x1, x2) < 2.8}.
The treatment assignment rule �(x) partitions the covariate space into a subset

where units are assigned to treatment and where units are assigned to the control.
We can therefore define the treatment assignment set T as

T ⌘ {x 2 X : �(x) = 1}.

The complement of the treatment assignment set is the control assignment set Tc.
Using this set notation, the treatment assignment rule can be written as

�(x) ⌘ 1 {x 2 T} . (2.3)
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Figure 2.2: June scores and summer school attendance for a random sample of 2,000
third graders.

The treatment assignment for any unit is Z = �(X). The assignment rule (2.3) is
completely flexible; units receive a treatment assignment if and only if their covariates
fall within an arbitrary set. For instance, Holmes (1998) estimates the effect of right-
to-work laws by comparing manufacturing activity on either side of state boundaries.
We could capture this identification strategy by defining T as the set of latitude and
longitude points corresponding to right-to-work states.

With treatment assignment determined by a generic assignment rule (2.3), the
discontinuity cutoff becomes a boundary. Specifically, the assignment boundary B is

B ⌘ bd(T) ⌘ T \ Tc

where overbars denote the closure of the set. A point x is in the assignment boundary
B if and only if every neighborhood around x contains points both in the treatment
assignment set T and the control assignment set Tc. For Holmes (1998) the assignment
boundary consists of the borders between states that differ in right-to-work laws. For
our application, the assignment boundary is illustrated in Figure 2.2.
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In scalar settings, sharp RD identifies a treatment effect for units at the cutoff
threshold, X = c. In vector settings, we can generally identify a wider set of param-
eters: functionals of the conditional treatment effect for units along the assignment
boundary. To take advantage of the possibilities the assignment boundary offers, we
study estimation of two related objects.

First, when all units comply with the treatment assignment, or when interest lies
in the intent to treat, define the sharp conditional treatment effect at every point in
the boundary set as

⌧SBRD(x) ⌘ E [Y (1)� Y (0) | X = x] , x 2 B. (2.4)

This parameter illustrate the advantage of having multiple dimensions: the ability
to estimate a treatment effect along the entire boundary rather than a single point.
Second, define the sharp average treatment effect as

⌧SBRD ⌘ E [Y (1)� Y (0) | X 2 B] (2.5)

by taking the expectation over the boundary. The average treatment effect yields
a single summary measure of the treatment effect along the boundary. In Holmes’s
(1998) application, the conditional sharp effect ⌧SBRD(x) measures the impact of right-
to-work laws at any geographic point along the boundaries between states with dif-
ferent right-to-work laws. The average effect ⌧SBRD measures the average effect along
the boundary.

For RD designs, identification arises by looking at observations near the boundary.
To formalize identification in higher dimensions, denote the ✏-neighborhood around
x as N✏(x). The ✏-neighborhood around x contains all points X within a sphere of
radius ✏ around x. That is, N✏(x) ⌘ {X 2 X : (X� x)0(X� x) < ✏

2}. Further, let
N

+
✏ (x) ⌘ N✏(x)\T be the points in ✏-neighborhood around x that receive treatment

and N

�
✏ (x) ⌘ N✏(x) \ Tc be the points the receive the control. For average effects,

it is convenient to define a neighborhood of the boundary set and let this neighbor-
hood contract. Let B✏ ⌘ {X 2 X : 9x 2 B s.t. X 2 N✏(x)} be points X within an
✏-neighborhood of any point x in the boundary B. Similarly, define B

+
✏ ⌘ B✏ \T and



CHAPTER 2. BOUNDARY REGRESSION DISCONINUITY DESIGN 55

B

�
✏ ⌘ B✏ \ Tc as the set of associated treatment and control points. Frölich (2007)

using similar notation to study regression discontinuity design with covariates.
To identify the sharp effects, we make two assumptions. First:

Assumption 2.2.1. (Boundary Positivity) For all x 2 B and ✏ > 0,
Pr(X 2N�

✏ (x)) > 0 and Pr(X 2N+
✏ (x)) > 0.

The boundary positivity assumption ensures that both treated and untreated units
exist along the boundary. Second:

Assumption 2.2.2. (Continuity) The conditional regression functions
E [Y (1) | X = x] and E [Y (0) | X = x] are continuous in x. Further, the marginal
density fX is continuous in x.

Continuity of the conditional regression functions ensures that units in the neigh-
borhood of the boundary have comparable potential outcomes. We could weaken this
assumptions to require continuity only near the boundary set B, however it is difficult
to imagine instances where one would hold without the other. While not required
for identification, continuity of the density ensures average effects do not depend on
which side of the boundary the integration is taken over. Combined, positivity and
continuity yield the standard RD identification result (Hahn et al., 2001) but for
boundary RD designs:

Theorem 2.2.3. (Sharp Boundary RD) Under Assumption 2.2.1 and 2.2.2, for
all x 2 B,

⌧SBRD(x) = lim

"!0
E
⇥

Y | X 2 N

+
✏ (x)

⇤� lim

"!0
E
⇥

Y | X 2 N

�
✏ (x)

⇤

. (2.6)

⌧SBRD = lim

"!0
E
⇥

Y | X 2 B

+
✏

⇤� lim

"!0
E
⇥

Y | X 2 B

�
✏

⇤

. (2.7)
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Proof. For all x 2 B,

⌧SBRD(x) = E [Y (1)� Y (0) | X = x]

= lim

"!0
E
⇥

Y (1) | X 2 N

+
✏ (x)

⇤� lim

"!0
E
⇥

Y (0) | X 2 N

�
✏ (x)

⇤

= lim

"!0
E
⇥

Y (1) | X 2 N

+
✏ (x),W = 1

⇤� lim

"!0
E
⇥

Y (0) | X 2 N

�
✏ (x),W = 0

⇤

= lim

"!0
E
⇥

Y | X 2 N

+
✏ (x)

⇤� lim

"!0
E
⇥

Y | X 2 N

�
✏ (x)

⇤

.

The average RD parameter ⌧VSRD follows immediately by taking expectation over
x 2 B or by the same argument with a different conditioning set.

In many applications, units do not perfectly comply with the assigned treatment.
For instance, some students receive discretionary waivers under the Chicago account-
ability policy we study. As in the scalar case, we can define a fuzzy effect following
the instrumental variables intuition. The fuzzy conditional treatment effect is

⌧FBRD(x) ⌘ E [Y (1)� Y (0) | X = x,W (1) > W (0)] , x 2 B. (2.8)

The fuzzy effect measures the treatment’s impact on units that comply with the as-
signment Z, W (1) > W (0), and have covariates X = x. Again, the average treatment
effect over the entire assignment boundary defines the fuzzy average treatment effect

⌧FBRD ⌘ E [Y (1)� Y (0) | X 2 B,W (1) > W (0)] . (2.9)

When compliance with the treatment is imperfect, we make the standard instru-
mental variables first-stage and monotonicity assumptions but applied to RD. The
first-stage assumption ensures that units assigned to treatment and control exist in
the neighborhood of the boundary and that a boundary discontinuity exists in the
probability of treatment.
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Assumption 2.2.4. (First Stage) For all x 2 B,

lim

"!0
E
⇥

W | X 2 N

+
✏ (x)

⇤

> lim

"!0
E
⇥

W | X 2 N

�
✏ (x)

⇤

.

We also impose a monotonicity or no defiers assumption that rules out units that take
the control when assigned to the treatment and take the treatment when assigned to
the control. For Chicago’s accountability policy, monotonicity implies no units would
attend summer school if they passed the end-of-year exam but would not attend
summer school if they failed.

Assumption 2.2.5. (Monotonicity/No Defiers) W (1) � W (0) for all units.

Finally, we assume that the conditional regression functions for compliance is
continuous.

Assumption 2.2.6. (Continuity of Compliance) The conditional regression
functions E [W (1) | X = x] and E [W (0) | X = x] are continuous in x.

Theorem 2.2.7 gives the key identification result for conditional fuzzy RD:

Theorem 2.2.7. Under Assumption 2.2.1, 2.2.2, 2.2.4, 2.2.5, and 2.2.6, for all
x 2 B

⌧FBRD(x) = lim

"!0

E [Y | X 2 N

+
✏ (x)]� E [Y | X 2 N

�
✏ (x)]

E [W | X 2 N

+
✏ (x)]� E [W | X 2 N

�
✏ (x)]

, (2.10)

⌧FBRD = lim

"!0

E [Y | X 2 B

+
✏ ]� E [Y | X 2 B

�
✏ ]

E [W | X 2 B

+
✏ ]� E [W | X 2 B

�
✏ ]

. (2.11)

Proof. The proof for the conditional effect follows directly from Hahn et al. (2001)
Theorem 3 but with alternate notation and generalized to vector x. The average
effect follows the same argument but with an different conditioning set. See appendix
for details.

For the conditional effect, Theorem 2.2.7 is simply the standard instrumental vari-
ables analogy laid out by Hahn et al. (2001) for scalar fuzzy regression discontinuity
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design. However, rather than defining a limit from above and below we instead con-
sider an "-neighborhood around the boundary point x and let "! 0. The “above” and
“below” that was central to the identification in the scalar case effectively comes from
conditioning on the assignment Z. Conditional on Z = 1, or, equivalently, X 2 T,
all observations in the "-neighborhood around x receive treatment W (1) and have
outcome Y = Y (0) · (1�W (1))+Y (1) ·W (1). The average effect looks at points near
the boundary rather than a single point.

2.3 Estimation

2.3.1 Local linear estimation of conditional effects

2.3.1.1 Sharp conditional effect

The sharp conditional effect is a simple functional of the two limits

m0(x) = lim

"!0
E
⇥

Y | X 2 N

�
✏ (x)

⇤

,

and

m1(x) = lim

"!0
E
⇥

Y | X 2 N

+
✏ (x)

⇤

.

Specifically, ⌧SBRD(x) = m1(x) � m0(x). Estimation of the two limits m0(x) and
m1(x) is a standard nonparametric regression problem at the boundary. As such,
estimation of the conditional RD parameter ⌧SBRD(x) is not fundamentally different
than when x is scalar. For the scalar case, Hahn et al. (2001) suggest estimating the
limits using local linear regression. Local linear regression has appealing boundary
properties (Fan, 1992; Fan and Gijbels, 1996) and is rate optimal for the regression
discontinuity problem (Porter, 2003). These optimality properties extend to boundary
RD design. Ruppert and Wand (1994) study the multivariate version of local linear
regression that we apply.
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Consider estimation of m0(x). Let KH(x) = |H|�1/2
K(H�1/2x) be a d-variate

kernel with positive definite bandwidth matrix H1/2. The local linear estimator for
m0(x) solves

min

↵0,�0

X

i2{i:Wi=0}
KH0(Xi � x) · �Yi � ↵0 + (Xi � x)0 �0

�2

and returns ↵̂0 as the estimate for m0(x). The solution takes the form of a weighted
least squares estimate

m̂0(x) = ↵̂0 = e01

0

@

X

{i:Wi=0}
VibiV

0
i

1

A

�1
X

{i:Wi=0}
VibiYi, (2.12)

where Vi = [

1 (Xi � x)0 ]0, e1 is a (d+1)⇥ 1 vector of zeros with the first element
equal to one, and bi are weights equal to KH0(Xi � x). The limit m1(x) can be
estimated following (2.12) but with the summation over treated units Wi = 1 and
bandwidth matrix H

1/2
1 . A plug-in estimator for the sharp conditional effect is then

⌧̂VSRD(x) = m̂1(x) � m̂0(x). A plug-in estimator for the estimator’s variance can be
calculated using the estimated residuals in the same manner as Imbens and Lemieux
(2008) give for the scalar case.

While the plug-in approach is relatively simple, it is computationally convenient
to frame the conditional sharp RD effect as ordinary least squares (OLS). Let

Ri =

2

6

6

6

6

4

1

Wi

Zi · (Xi � x)

(1� Zi) · (Xi � x)

3

7

7

7

7

5

(2.13)
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be a vector of regressors for unit i, where Zi = Wi in the sharp RD case considered
here. Then the local linear estimate for ⌧SBRD(x) can be written in terms of weighted
OLS as

⌧̂SBRD(x) = e02 (R
0BR)

�1
R0BY, (2.14)

where e2 is (2d+2)⇥ 1 vector of zeros with the second element equal to one and B is
an n⇥ n weight matrix with diagonal elements equal to KH1(Xi � x) for units with
Zi = 1 and KH0(Xi � x) for units with Zi = 0. Intuitively, the estimator (2.14) fits
two weighted regressions with differing slopes on either side of the boundary. Given
the re-centering (Xi � x), the coefficient on the second covariate Wi provides the
local linear estimate for the discontinuous increase or decrease in the outcome Y at
the point x. The estimator (2.14) can easily be implemented in any major statistical
package. Assuming the bandwidth matrices H1 and H0 are selected such that the
asymptotic bias disappears, valid inference is based on the robust OLS standard
errors. That is, ˆV (⌧̂VFRD(x) | R) = Pˆ

⌦P0 where P = e02 (R
0BR)

�1 R0B and ˆ

⌦ is a
diagonal matrix of squared residuals "̂ = Y �R (R0BR)

�1 R0BY.
The estimator (2.14) requires a bandwidth matrix for treated and untreated units,

H1 and H0. We discuss the choice of bandwidth matrices in Section 2.4. In general,
is is usually adequate to use a simple kernel with equivalent bandwidths matrices
for H1 and H0. However, the weighted OLS perspective does not enforce restrictive
choices for the bandwidth matrices or kernel.
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2.3.1.2 Fuzzy conditional effect

The fuzzy conditional effect ⌧FBRD(x) is a functional of the four limits

n0(x) = lim

"!0
E
⇥

Y | X 2 N

�
✏ (x)

⇤

,

n1(x) = lim

"!0
E
⇥

Y | X 2 N

+
✏ (x)

⇤

,

p0(x) = lim

"!0
E
⇥

W | X 2 N

�
✏ (x)

⇤

,

and

p1(x) = lim

"!0
E
⇥

W | X 2 N

+
✏ (x)

⇤

.

Specifically,

⌧FBRD(x) =
n1(x)� n0(x)

p1(x)� p0(x)
. (2.15)

An intuitive strategy would be to estimate the limits using four local linear re-
gression with bandwidth matrices Hn1 , Hn1 , Hp1 and Hp1 . Plugging these estimates
into (2.15) would give an estimate of the fuzzy conditional effect. However, following
the instrumental variables intuition, it is convenient to frame fuzzy RD as two-stage
least squares (TSLS). Let S be an n⇥ (2d+2) matrix of instruments with rows equal
to

Si =

2

6

6

6

6

4

1

Zi

Zi · (Xi � x)

(1� Zi) · (Xi � x)

3

7

7

7

7

5

(2.16)
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and Ri be defined as in (2.13), now with Zi 6= Wi for some i. Thus, Zi in Si is the
excluded instrument and Wi in Ri is the endogenous variable. The weighted TSLS
estimator for ⌧VFRD(x) is then

⌧̂FBRD(x) = e02
�

R0B2S(S
0B1S)

�1S0B1R
��1

R0B2S(S
0B1S)

�1S0B1Y (2.17)

where e2 is (2d + 2) ⇥ 1 vector of zeros with the second element equal to one, and
B1 and B2 are n ⇥ n weight matrices for the first and second stages. To make
the estimator (2.17) equivalent to the plug-in estimator, the weight matrices would
depend on all four bandwidth matrices. Specifically, the first stage B1 would have
diagonal elements KHp0(Xi � x) and KHp1(Xi � x) and the second stage B2 would
have diagonal elements KHn0(Xi � x) and KHn1(Xi � x) for units with Zi = 0 and
Zi = 1, respectively. In general, defining a single bandwidth matrix for both the first
and second stage and units assigned to the treatment and control is usually adequate.
Section 2.4 discusses bandwidth and kernel selection in detail.

The estimate of the conditional fuzzy RD parameter ⌧̂FBRD(x) given in (2.14) is
a weighted TSLS estimate of the coefficient on the endogenous variable Wi with an
excluded instrument Zi. When the discontinuity is sharp and Zi = Wi the prediction
reduces to weighted OLS.

Assuming suitable under-smoothing, inference follows from the robust TSLS stan-
dard errors. That is,

ˆV (⌧̂VFRD(x) | R,S) = Qˆ

⌦Q0

where
Q = e02

�

R0B2S(S
0B1S)

�1S0B1R
��1

R0B2S(S
0B1S)

�1S0B1

and ˆ

⌦ is a diagonal matrix of squared TSLS residuals. This is a weighted version of
the standard robust variance estimator for TSLS. The robust TSLS variance is numer-
ically identical to the plug-in estimator. When the discontinuity is sharp, the robust
TSLS variance reduces to the robust OLS variance. Both can be straightforwardly
estimated using standard statistical packages provided B1 = B2.
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2.3.2 Estimation of average effects

A natural approach to estimating the average effects, as written in Theorems 2.2.3
and 2.2.7, is to take points near the boundary as estimates of the associated limits.
In finite samples, however, adjusting for how far points are from the boundary can
reduce bias. This has led many researchers, particularly in geographic applications,
to estimate average effects by reducing the two-dimensional RD problem to scalar
RD with “distance to the nearest boundary” as the univariate forcing variable (e.g.,
Holmes, 1998; Black, 1999; Kane et al., 2006; Davidoff and Leigh, 2008; Lalive, 2008;
Dell, 2010).

Regression discontinuity designs with “distance to the nearest boundary” as the
univariate forcing variable can be estimated by the methods reviewed in Imbens and
Lemieux (2008) and Lee and Lemieux (2009). Scalar RD consistently estimates both
the sharp and average effects, and the scalar setup simplifies the graphical presen-
tation. Bandwidth selection options include cross-validation methods proposed by
Ludwig and Miller (2007) and plug-in rules proposed by Imbens and Kalyanaraman
(2008).

An alternative to reducing the problem to scalar RD is to integrate the conditional
effects explicitly over the boundary. For instance, the sharp average effect can be
written as

⌧SBRD =

Z

x2B
⌧SBRD(x)f(x | X 2 B)dx =

R

x2B ⌧SBRD(x)f(x)dx
R

x2B f(x)dx
. (2.18)

This path integral suggests estimating the conditional effect and density at each
point along the boundary and integrating explicitly. Combining multiple local linear
regressions for the conditional effects and kernel density estimates for the density
will generally have better finite sample properties than just using distance to the
boundary in one dimension.

A simple approach to numerically integrate over the boundary is a fixed design.
Choose K evenly spaced points xk along the boundary, indexed by k = 1, . . . , K.
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Then, estimate the average sharp effect as

⌧̂SBRD =

PK
k=1 ⌧̂SBRD(xk) · ˆf(xk)
PK

k=1
ˆ

f(xk)

. (2.19)

As K increases, the summation over (2.19) will approach the integrals in (2.18). In
most applications, a modest K will suffice provided that the conditional effects and
density are smooth. A good rule-of-thumb is to choose K such that the boundary is
reasonably well covered and then check that the estimated effect and standard errors
do not change if K doubles.

After explicitly integrating over the boundary, a final step is to derive a consistent
estimate for the variance of average effect ⌧̂VSRD. One possibility would be to use
resampling methods. In Appendix 2.A.2, we derive the influence function for the
average effect estimated using a kernel density and multiple local linear regression
and give a variance estimate based the nonparametric delta method (Huber, 1981;
Newey, 1994; Davison and Hinkley, 1997). Intuitively, the variance depends both on
the uncertainty involved in estimating the density and conditional expectation.

The average fuzzy effect, ⌧FBRD, requires integration over the density of X for
compliers f(x | W (1) > W (0),X 2 B) not the density for all units f(x | X 2 B).
Abadie (2003) shows that all functions of the joint distribution of (Y, Z,X), including
the marginal density of X, are identified for compliers. We can therefore estimate the
average effect as

⌧̂FBRD =

PK
k=1 ⌧̂FBRD(xk) · ˆ�(x)
PK

k=1
ˆ

�(x)
(2.20)

where �(x) is defined by (2.23) in Appendix 2.A.1 and expresses f(x | W (1) >

W (0),X 2 B) in terms of the observed joint distribution of (Y, Z,X). A influence
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function based variance estimate could be calculated similarly to the sharp effect,
although with additional terms.

We expect that explicitly integrating over the boundary will rarely differ from
reducing the problem to one dimension and using distance to the nearest boundary
as a scalar forcing variable. Given the additional complexity involved in integrating
explicitly, we recommend estimating average effects using scalar RD methods reviewed
in Imbens and Lemieux (2008) and Lee and Lemieux (2009). By using distance to
the nearest boundary the scalar forcing variable binds along the entire boundary.

2.3.3 Graphical approaches to boundary RD designs

A major appeal of RD is the ability to visualize the identification strategy and re-
sulting estimate. It is now standard practice report both the specific point estimates
and give visual evidence of the discontinuity in treatment and outcomes. In higher
dimensions, equivalent graphs can be difficult to construct. With two forcing vari-
ables, such as reading and math scores, the boundary discontinuity can be visualized
using three-dimensional or contour plots. However, in our experience, it is difficult
to construct such graphs that are informative about inference. For instance, a visual
break near the discontinuity almost always occurs even if it is not statistically sig-
nificant, due to the boundary nature of the estimation. But model and estimation
uncertainty is hard to report graphically in three dimensions.

An alternative approach is to base the visual RD evidence on the average effect.
The average effect can be estimated consistently using distance to the nearest bound-
ary as a scalar forcing variable. This suggest using the standard RD graphs (e.g.,
Imbens and Lemieux, 2008) with distance to the nearest boundary as the forcing
variable. Specifically, we suggest plotting the average outcome or treatment proba-
bility and confidence intervals for under-smoothed bins of distance on each side of the
discontinuity, along with the local linear or series regression fitted values and confi-
dence intervals. Many researchers in geographic applications have used this strategy
successfully. The downside of this approach is that the average effect may mask dis-
continuities at certain points along the boundary. However, if interest lies primarily in
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the average effect, reducing boundary RD designs into the scalar framework enables
the standard RD graphs that are central to RD designs’ appeal.

2.4 Bandwidth Selection

A major remaining issue is the choice of bandwidth matrices. We consider this choice
for two-dimensional boundary RD designs. Following Imbens and Kalyanaraman
(2008), we derive a plug-in bandwidth selection rule that minimizes the asymptotic
conditional mean square error (AMSE) of the sharp RD estimate. The conditional
MSE for the sharp estimates is E

⇥

(⌧̂SBRD(x1, x2)� ⌧SBRD(x1, x2))
2 | X⇤, which we

take as the objective function. In most fuzzy RD applications it is more difficult to
estimate the jump in outcome rather than jump in treatment probability. An optimal
bandwidth for the sharp effect is therefore likely to perform well for the fuzzy effect
as well.

Under regularity conditions given in Appendix 2.A.3, Ruppert and Wand (1994)
give the conditional asymptotic bias and variance for multiple local linear regression
estimates of boundary points such as m0(x) and m1(x) where x 2 B. The conditional
asymptotic bias and variance can be combined to form an estimate of the AMSE of
⌧SBRD(x).

There are a number of practical difficulties in this approach. First, in general,
there is no closed form solution for the optimal choice of the bandwidth matrix H1/2.
Second, for points on the boundary, the optimal bandwidth depends the boundary’s
precise shape. In scalar RD, the kernel is always cut in half by the boundary, which
simplifies calculations. In higher dimensions, however, the treatment assignment
boundary can cut through the kernel in an arbitrary fashion. Third, the optimal
bandwidth requires estimates of the Hessians of m0(x) and m1(x). If estimated
by local polynomial regression, these estimates require pilot bandwidths. Finally,
the optimal bandwidth expression suffers from two instabilities. As in Imbens and
Kalyanaraman (2008), the the first-order asymptotic biases of m0(x) and m1(x) cancel
when the Hessians take specific forms, leading to an infinite optimal bandwidth.
Unlike Imbens and Kalyanaraman (2008), the asymptotic bias of m0(x) and m1(x)
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can also both equal zero independently in multivariate problems. Moreover, these
bias cancellations depend both on the Hessian and the precise shape of the boundary,
implying the shape the boundary can lead to an arbitrary large change in the optimal
bandwidth.

To address these difficulties, we make a number of simplifying assumptions. First,
we consider a two-dimensional problem with diagonal bandwidth matrix H1/2

=

diag([

�1h �2h ]), where �1 and �2 are the standard deviations for each dimensions
and h is a common scalar bandwidth. While the choice of a single bandwidth h signifi-
cantly limits the kernel’s flexibility, we have found it performs reasonably if the forcing
variables are normalized onto the same scale. Second, we use a two-dimensional edge
product kernel

K(u1, u2) = (1� |u1|) · (1� |u2|) · 1{|u2|  1, |u2|  1},

which has boundary optimality properties in the scalar case (Cheng et al., 1997).
Third, we assume the conditional variance function �(x) = V(Yi | Xi = x) and the
density f(x) is continuous across the boundary and are bounded away from zero over
the support of B.

Finally, the primary difficulty in multivariate settings is the interaction between
the the boundary and the kernel. As shown in Appendix 2.A.3, the conditional AMSE
depends on how the boundary cuts through the kernel at any given point. Figure 2.3
illustrates this phenomenon. To circumvent the need to calculate an AMSE expression
for every type of boundary, we consider two special cases: vertical and horizontal
boundaries in two dimensions estimated at points away from vertices. For other
types of boundary points, we recommend choosing one of these two special types as
an approximation.
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Figure 2.3: Interaction between treatment boundary and kernel. In two dimensions,
the volume under the kernel on each side of the boundary depends on the boundary’s
precise shape.
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Given regularity conditions and assumptions stated in Appendix 2.A.3, the AMSE
of ⌧SBRD(x1, x2) for such points is

AMSE(h;x) =
h

4

3600

· �C1 · �2
1 ·
⇥

m

11
0 (x)�m

11
1 (x)

⇤

+ C2 · �2
2 ·
⇥

m

22
1 (x)�m

22
0 (x)

⇤�2

+

32 · �(x)
5 · f(x) · h2 · �1 · �2 · n + op{ 1

nh

2
+ h

4},

where C1 = 5 and C2 = 3 for points on a horizontal boundary and C1 = 3 and
C2 = 5 for points on a vertical boundary; and m

11
w (x1, x2) and m

22
w (x1, x2) denote the

diagonal elements of the Hessian for mw(x1, x2) with w = 0, 1.
Intuitively, the squared bias component of the AMSE depends on the curvature of

the conditional regression functions on either side of the boundary and the variance
component of the AMSE depends on the conditional variance, density, and bandwidth.
The constants C1 and C2 in the bias term arise from how we assume the boundary
cuts through the kernel. For horizontal and vertical boundaries, the cross-derivative
terms in the Hessians to not appear in the AMSE.

Minimizing the AMSE by differentiating and solving for h yields the optimal plug-
in bandwidth for ⌧VSRD(x1, x2)

hopt(x) ⇡ 4.75·
✓

�(x)/(f(x) · �1 · �2)
(C1 · �2

1 · [m11
0 (x)�m

11
1 (x)] + C2 · �2

2 · [m22
1 (x)�m

22
0 (x)])

2

◆1/6

·n�1/6
.

(2.21)
There are eight unknowns: the standard deviations of the forcing variables �1 and
�2, the conditional outcome variance �(x), the density f(x), and the four second
derivatives m

11
0 (x), m11

1 (x), m22
0 (x), and m

22
1 (x).

The optimal bandwidth is potentially unstable because the denominator may be
close to zero. This instability arises because the first-order asymptotic biases can
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cancel, leaving only the asymptotic variance term that is minimized by an infinite
bandwidth. Unlike Imbens and Kalyanaraman (2008), the bias cancellation is not
unique to the RD setup and also arises because of the multivariate nature of the
estimation. Imbens and Kalyanaraman (2008) and Kalyanaraman (2009) propose
regularization strategies to overcome ill-posedness in bandwidth selection problems.
Here we suggest an alternative, simpler, strategy.

Unlike the scalar RD case for which there is a single optimal bandwidth, the op-
timal bandwidth (2.21) varies along the boundary. Instead of formal regularization,
we suggest calculating hopt(x) for a set of evenly spaced points along the bound-
ary and then taking the minimum as the final bandwidth choice for each direction.
Selecting the minimum bandwidth will also generally ensure a suitable degree of
under-smoothing that justifies robust standard errors.

Following this strategy, a rule-of-thumb bandwidth selection rule can be derived by
plugging in estimated values for the unknown quantities in (2.21) for each candidate
point and then taking the minimum bandwidths as the final choice. More precisely,
we

1. Estimate the standard deviations �1 and �2, conditional variance �(x), and
density f(x).

2. Estimate the second derivatives m

11
0 (x), m11

1 (x), m22
0 (x), and m

22
1 (x).

3. Calculate ˆ

hopt(xk) for K evenly spaced points.

4. Select the minimum ˆ

hopt(xk) as the rule-of-thumb bandwidth hROT.

We now describe each step in more detail.

Step 1: Estimate the standard deviations �1 and �2, conditional variance

�(x) , and density f(x):

First, calculate the standard deviations of the forcing variables �̂1 and �̂2. To esti-
mate the conditional variance �(x) and density f(x), we use very simple, consistent,
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estimators. For pilot bandwidths, we use Scott’s rule with d = 2 for j = 1, 2,

ˆ

hj = �̂j · n�1/6
, (2.22)

which is roughly optimal for a normal kernel and multivariate normal data. The
optimal bandwidth for a uniform kernel would be slightly higher, however some under-
smoothing is desirable given that data are rarely as smooth as a multivariate normal.

Denote the set of treated and untreated units within the uniform kernel as Hw ⌘
{i : |X1i � x1|  h1, |X2i � x2|  h2,Wi = w} for w 2 {0, 1}. Further, let Nw ⌘
P

i2Hw
1 denote the number of units in Hw. Following the same approach as Imbens

and Kalyanaraman (2008), estimate the density at (x1, x2) as

ˆ

f(x1, x2) =
N0 +N1

N · h1 · h2

and the conditional variance at (x1, x2) as

�̂(x1, x2) =
1

N0 +N1

 

X

i2H0

(Yi � 1

N0

X

j2H0

Yj)
2
+

X

i2H1

(Yi � 1

N1

X

j2H1

Yj)
2

!

.

Both estimators are consistent, although not necessarily efficient.

Step 2: Estimation the second derivatives m

11
0 (x), m

11
1 (x), m

22
0 (x), and

m

22
1 (x):

In the scalar case, Imbens and Kalyanaraman (2008) suggest estimating the second
derivatives using local quadratic regression. However, to obtain an optimal pilot
bandwidth for this initial estimate requires an estimate a cubic local regression. Yang
and Tschernig (1999) confront the same difficulty applied to bandwidth selection rules
for multivariate regression problems at interior points.
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To simplify, we estimate the control and treatment (w = 0, 1) Hessian terms
using local quadratic regression with a simple rule-of-thumb pilot bandwidth hj,w =

4 ·�1/4
j n

�1/8
w and bandwidth matrix H

1/2
w = diag[

h1,w h2,w ]. With a uniform kernel,
the local quadratic regression is

Yi = �0+�1(X1�x1)+�2(X2�x2)+�3(X1�x1)
2
+�4(X2�x2)

2
+�5(X1�x1)(X2�x2)+⌫i

for units with Wi = 1 and, separately, Wi = 0. Using the coefficients based on units
with Wi = w, we obtain estimates of the second derivatives as m̂

11
w (x) = 2 · �̂3 and

m̂

22
w (x) = 2 · �̂4. At the expense of additional complexity, a more careful strategy

for estimating the Hessians terms could be constructed following Yang and Tschernig
(1999).

Step 3: Calculate

ˆ

hopt(xk) for K evenly spaced points.

Choose K points along the boundary. Plugging in the estimates �̂1, �̂2, �̂(xk), ˆ

f(xk),
m̂

11
0 (xk), m̂11

1 (xk), m̂22
0 (xk), and m̂

22
1 (xk) into the optimal bandwidth expression (2.21)

yields ˆ

hopt(xk) for each candidate point on the boundary.

Step 4: Select the rule-of-thumb bandwidth hROT.

Select the minimum ˆ

hopt(xk) as the final rule-of-thumb bandwidth hROT.

2.5 Application

2.5.1 Data

To demonstrate these methods, we use data from Jacob and Lefgren (2004) on a
summer school and grade retention accountability policy instituted in 1996 by the
Chicago Public Schools (CPS). This data has also been used by Frandsen and Guiteras
(2010) to estimate distributional effects from RD designs. The CPS policy assigned
children who failed either a June math or reading exam to a six-week summer school.
At the end of the summer, in August, children retook the exams to determine whether
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they should be retained or promoted. Students that scored below a cutoff in either
reading or math using the best score they obtained across their August or June tests
were recommended for retention.

Children in third, sixth, and eighth grade faced the accountability policy. We use
data for third graders only, from 1997 to 1999. Jacob and Lefgren (2004) also study
the accountability policy’s impact on sixth graders and include pre-accountability
policy data as an additional control in their analysis. For third graders, the cutoff for
both summer school and retention was 2.8 grade equivalents on the reading and math
components of the Iowa Test of Basic Skills (ITBS), which corresponds to roughly
the 20th percentile in the national achievement distribution. Figure 2.1 illustrates
the resulting treatment assignment trajectories. We consider the summer school as-
signment only. The estimated effects on test scores one year later are therefore the
cumulative effect of summer school enrollment and potentially being retained.

After dropping children with missing information, there are 70,831 third graders
exposed to the accountability policy. Outcomes one year later are reported as Rasch
test scores rather than grade equivalents. Rasch test scores are normalized for the
population of third-grade students from 1997 to 1999. To counteract rounding, we
add 0.1 of uniform noise to each score when calculating the optimal bandwidth. Jacob
and Lefgren (2004) also consider test scores measured two years after summer school
and sixth graders. For brevity, we do not report fuller results.

2.5.2 Results

2.5.2.1 First stage

Most students comply with the accountability policy. Figure 2.2 plots June reading
and math scores for 2,000 random students that attend summer school (left) or don’t
(right). While some students do not follow the assignment policy, particularly if
assigned to summer school, the treatment assignment rule is quite sharp.

Figure 2.4 performs the same type of analysis on the full sample but uses local
linear regression to estimate the probability of attending summer school on a grid of
points. The estimated optimal kernel bandwidth, calculated using the rule of thumb
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Figure 2.4: Local linear estimates of summer school attendance by June test scores.
The local linear estimates use a product edge kernel with bandwidth h = 0.65, chosen
by the rule of thumb selection rule.

selection rule with K = 36, is h = 0.65. To visualize higher-dimensional RD designs,
we experiment with both a three-dimensional plot (left) and a heatmap (right). Both
representations show a sharp jump in the probability of attending summer schools
for students that fail one or more subjects.

2.5.2.2 Conditional effects

Figure 2.5 plots local linear estimates of test scores one year later as a function of
baseline scores in reading and math. The optimal bandwidth selection rule yields
h = 0.55 for math and h = 0.62 for reading. The small downward dip along the
boundary suggests that summer school has a positive effect for students along the
boundary.

While three-dimensional plots and heatmaps can help visualize RD outcomes given
a two-dimensional boundary, it is difficult to see heterogeneity along the boundary
or estimation uncertainty. Figure 2.6 plots the estimated sharp conditional effect,
⌧SBRD(x), on reading and and math scores a year later as a function of baseline
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Figure 2.5: Math and reading outcomes one year later by baseline reading and math
score. Local linear regression estimates use a product edge kernel with a bandwidth
h = 0.55 for math and h = 0.62 for reading, chosen using the rule-of-thumb selection
rule.
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scores. The left panel shows the effect of failing reading for students that pass math;
the right panel shows the effect of failing math for students that pass reading. While
we split the graphs for presentational purposes, all estimates are based on the full
data.

Students along both boundary segments score roughly 0.1 to 0.2 standard devia-
tions higher in math a year later. For reading, the results are more mixed. Students
that score well in math but just fail reading appear to benefit more in terms of read-
ing outcomes than students that score poorly in math. As seen in the right panel of
Figure 2.6, we cannot reject zero effect on reading outcomes for children who just fail
math but already score well in reading, although the confidence intervals are wide.

Figure 2.7 plots the fuzzy conditional effects, ⌧FBRD(x), for reading and math
scores one year later. The only difference between Figure 2.6 and 2.7 is that Figure
2.7 corrects for different levels of compliance along the boundary whereas Figure 2.6
reports the intent-to-treat effect. Given the high compliance rate, Figures 2.6 and 2.7
are similar. Higher performing math students that just fail reading (bottom, left),
seem to gain more in terms reading. Students that just fail math (right), experience
statistically significant positive gains provided they don’t score too highly on the non-
failing reading dimension. The large confidence intervals for high performing reading
students (right) is due to the sparsity on this part of the boundary (see Figure 2.2).

2.5.2.3 Average effects

We estimate average effects first using “distance to the nearest boundary” as a scalar
forcing variable and select the optimal bandwidth following Imbens and Kalyanara-
man (2008). Figure 2.8 gives the standard scalar RD graphs, including both binned
means and the local linear fit, for the first-stage treatment probability, and reading
and math outcomes one year later. Averaged over the boundary, students just failing
either subject are 66 percentage points more likely to attend summer school. Most
noncompliance occurs near the boundary. One year later, students that just fail un-
der the accountability policy score 0.14 standard deviations higher in math and 0.07
standard deviations higher in reading. Both effects are statistically significant.
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Figure 2.6: Math (top) and reading (bottom) outcomes one year later, ⌧SBRD(x), con-
ditional on baseline math (left) and reading (right) score. The left column represents
children on the failing reading boundary; the right column represents children on the
failing math boundary. Dotted lines give 95% pointwise confidence intervals.
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Figure 2.7: Complier math (top) and reading (bottom) outcomes one year later,
⌧FBRD(x), by baseline math (left) and reading (right) score.
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Figure 2.8: Sharp average effects, ⌧SBRD, for treatment and math and reading scores
one year later. Estimates use distance to the nearest boundary as a scalar forcing
variable and an edge kernel with bandwidths htreat = 0.14, hmath = 0.24, and hread =

0.62, selected following Imbens and Kalyanaraman (2008).

As a sensitivity check, Figure 2.9 graphs the fuzzy average effect for different
bandwidth choices. The fuzzy effect estimates the average effect along the boundary
for students that comply with the accountability policy. For math, the estimated
effect drops somewhat as the bandwidth increases but is consistently between 0.15
and 0.2 standard deviations. For reading, the estimated average fuzzy effect stays
constant at 0.09 for bandwidths ranging from 0.2 to 1.5.

As an alternative to using distance to the nearest boundary as a scalar forcing
variable, we average the conditional effect over the boundary explicitly, following
(2.19), and calculate a standard error using the nonparametric delta method variance
estimate given by Theorem 2.A.4. We integrate along the boundary between 2.8 and
5.5 in both directions in intervals of 0.5 (K = 11), 0.25 (K = 21), and 0.1 (K = 55).
For scalar RD, we use the optimal bandwidth selected following Imbens and Kalya-
naraman (2008); for the averaged conditional effects we use the optimal bandwidth
selected following Section 2.4. Table 2.1 compares these different estimates of average
effects. All the procedures yield similar results for the sharp average treatment effect.
Given the added complexity of averaging explicitly and the importance of presenting
RD estimates graphically, we therefore recommend using distance to the boundary to
compute average effects.
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Figure 2.9: Fuzzy average effects, ⌧FBRD, for math and reading scores one year later
using different bandwidths and distance to the nearest boundary as a scalar forcing
variable.

TABLE 9. COMPARISON BETWEEN AVERAGING CONDITIONAL EFFECTSAND SCALAR RD

Averaged Conditional EffectsAveraged Conditional EffectsAveraged Conditional Effects
Sharp Average Treatment Effect Scalar RD K = 11 K = 21 K = 55
Math one year later 0.14

(0.025)
0.15

(0.015)
0.15

(0.014)
0.15

(0.014)
Reading one year later 0.07

(0.014)
0.09

(0.015)
0.09

(0.014)
0.09

(0.014)
Notes: K denotes the number of integration points.

Table 2.1: Comparison between averaging conditional effects explicitly and using
distance to the nearest boundary as a scalar forcing variable. Explicit averaging
uses the nonparametric delta method to calculate standard errors; scalar local linear
regression uses robust standard errors. K denotes the number of integration points
along the boundary.
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2.6 Conclusion

Treatment assignment rules often depend on a vector of forcing variables. Policies
with vector forcing variables, or a continuous non-forcing covariate, provide the op-
portunity to estimate credible causal effects along the entire treatment assignment
boundary and explore treatment effect heterogeneity.

We apply simple extensions of ideas developed in the context of scalar RD design
to boundary RD designs. We discuss estimation of both conditional sharp and fuzzy
effects using multiple local linear regression. As in the scalar case, multiple local
linear regression for conditional effects can be framed as weighted OLS or weighted
TSLS, making both estimation and inference straightforward. A major issue for all
nonparametric techniques is the degree of smoothing. We derive an optimal, data-
dependent, bandwidth selection rule for the leading two-dimensional RD case.

We also discuss estimating average effects by integrating the conditional effects
along the boundary or by reducing higher-dimensional RD designs to their scalar
counterpart. We recommend the latter approach because RD graphs are central to
RD design’s appeal but become cumbersome in higher dimensions. For the explic-
itly integrated average effect, we give an estimator for the variance based on the
nonparametric delta method.

Our application to Chicago’s remedial education policy demonstrates how bound-
ary RD designs can exploit variation along the entire boundary to obtain more detailed
knowledge of treatment effect heterogeneity.
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2.A Appendix

2.A.1 Proofs

Proof of Theorem 2.2.7.

Proof. Follows directly as in Hahn et al. (2001) but with alternate notation. Consider
the numerator and denominator. First,

lim
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⇥

W | X 2 N

+
✏ (x)

⇤� lim

"!0
E
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W | X 2 N

�
✏ (x)
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"!0
E
⇥

W (1) | X 2 N

+
✏ (x)

⇤� lim

"!0
E
⇥

W (0) | X 2 N

�
✏ (x)

⇤

= E [W (1)�W (0) | X = x] .

Second,

lim

"!0
E
⇥

Y | X 2 N

+
✏ (x)

⇤� lim

"!0
E
⇥

Y | X 2 N

�
✏ (x)

⇤

= lim

"!0
E
⇥

Y | X 2 N

+
✏ (x), Z = 1

⇤� lim

"!0
E
⇥

Y | X 2 N

�
✏ (x), Z = 0

⇤

= lim

"!0
E
⇥

Y (0) · (1�W (1)) + Y (1) ·W (1) | X 2 N

+
✏ (x)

⇤

� lim

"!0
E
⇥

Y (0) · (1�W (0)) + Y (1) ·W (0) | X 2 N

�
✏ (x)

⇤

= E [(Y (1)� Y (0)) · (W (1)�W (0)) | X = x] .
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Finally, by the fact that monotonicity rules out W (1)�W (0) = �1,

E [(Y (1)� Y (0)) · (W (1)�W (0)) | X = x]

E [W (1)�W (0) | X = x]

=

E [Y (1)� Y (0) | X = x,W (1)�W (0) = 1]

E [W (1)�W (0) | X = x]
Pr (W (1)�W (0) = 1 | X = x)

= E [Y (1)� Y (0) | X = x,W (1) > W (0)] ⌘ ⌧VFRD(x).

Identification boundary density for compliers �(x).

Proof. By the law of total probability and monotonicity (no defiers),

f (x | W (1) > W (0),X 2 B) = 1

Pr (W (1) > W (0) | X 2 B) · [f(x | X 2 B)

� f(x | W (0) = W (1) = 0,X 2 B) · Pr(W (0) = W (1) = 0 | X 2 B)

� f(x | W (0) = W (1) = 1,X 2 B) · Pr(W (0) = W (1) = 1,X 2 B)].

Following the same logic as, for instance, Abadie (2003) Lemma 3.1, the proportion
of compliers, always-takers, and never-takers along the boundary are identified as

Pr (W (1) > W (0) | X 2 B) = lim

✏!0
E[W | X 2 B

+
✏ ]� lim

✏!0
E[W | X 2 B

�
✏ ],

Pr (W (1) = W (0) = 0 | X 2 B) = 1� lim

✏!0
E[W | X 2 B

+
✏ ]

Pr (W (1) = W (0) = 1 | X 2 B) = lim

✏!0
E[W | X 2 B

�
✏ ]
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The conditional densities can be identified similarly. However, both densities are at
boundary points. Let x1 be a sequence that converges to x from within N

+
✏ and x0

be a sequence that converges to x from within N

�
✏ . Then, for all x 2 B,

f(x | W (0) = W (1) = 0) = lim

x1!x
f(x1 | W (0) = W (1) = 0)

= lim

x1!x
f(x1 | W = 0),

f(x | W (0) = W (1) = 1) = lim

x0!x
f(x0 | W (0) = W (1) = 1)

= lim

x0!x
f(x0 | W = 1).

The conditional densities follow from

f (x | X 2 B) = f (x)
R

x2B f (x) dx
.

Specifically,

f (x | W (1) > W (0),X 2 B) = 1

lim✏!0 E[W | X 2 B

+
✏ ]� lim✏!0 E[W | X 2 B

�
✏ ]

·[ f (x)
R

x2B f (x) dx

� limx1!x f(x1 | W = 0)

R

x2B limx1!x f(x1 | W = 0)dx
·
⇣

1� lim

✏!0
E[W | X 2 B

+
✏ ]

⌘

� limx0!x f(x0 | W = 1)

R

x2B limx0!x f(x0 | W = 1)dx
· lim
✏!0

E[W | X 2 B

�
✏ ]] ⌘ �(x). (2.23)
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In practice, �(x) can be estimated by a combination of local averages and kernel
density estimates with potential boundary corrections (e.g., Jones, 1993; Hjort and
Jones, 1996; Loader, 1996).

2.A.2 Nonparametric delta method variance estimator

Consider a statistical functional ✓(x) = T (x;F ) where T is a function of the cumu-
lative distribution function F (z) and can be indexed by a parameter x. For instance
T (x;F ) could be a mean, T (x;F ) =

R

z1dF (z), or a kernel density estimate at x,
T (x;F ) =

R

KH(z�x)dF (z). A plug-in estimator for ✓ is ˆ

✓n(x) = T (x; ˆFn) where ˆ

Fn

is the empirical CDF of z. In what follows we sometimes suppress x for notational
convenience. However, it is helpful to explicitly indicate the parameter x for kernel
density and local linear regression estimates evaluated at a specific point.

The influence function for T (F ) is defined as

LT (z;F ) = lim

✏!0

T ((1� ✏)F + ✏�z) + T (F )

✏

=

@T ((1� ✏)F + ✏�z)

@✏

�

�

�

�

✏=0

,

where �z is a point mass at z. The empirical influence function is LT (Zi;
ˆ

Fn). The
nonparametric delta method variance estimate for ✓ is then

⌫̂

2
=

1

n

n
X

i=1

LT (Zi;
ˆ

Fn)
2

Asymptotically valid 1�↵ confidence intervals are given by T (

ˆ

Fn)± z↵/2 · ⌫̂/
p
n. For

reviews of this influence function approach to variance estimation see, for instance,
Davison and Hinkley (1997) or Wasserman (2006).
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The sharp average RD parameter can be expressed explicitly in terms of kernel
estimators

⌧SBRD(F (Y,X,W )) =

Z

x2B
⌧SBRD(x;F ) · f(x;F | x 2 B)dx

=

✓

Z

x2B
f(x;F )dx

◆�1 Z

x2B
⌧SBRD(x;F ) · f(x;F )dx,

where ⌧VSRD(x;F ) and f(x;F ) are the population quantities for the local linear regres-
sion and kernel density at x over F (Y,X,W ). The influence function for the average
effect ⌧SBRD(F (Y,X,W )) depends on the influence functions for the conditional effect
⌧SBRD(x;F ) and density f(x;F ). We therefore consider these first:

Lemma 2.A.1. (Influence function of a Kernel Density Estimate)

The empirical influence function for a kernel density estimate at x, f(x;F ) =

E [KH(Xi � x)], is

Lf(x)(Xi;
ˆ

F ) = KH(Xi � x)� 1

n

n
X

i=1

KH(Xi � x) = KH(Xi � x)� ˆ

f(x).

Proof. Follows immediately from definition or from that kernel densities are linear
statistics (e.g., Davison and Hinkley, 1997, p. 47).

Lemma 2.A.2. (Influence Function of Conditional Sharp Treatment

Effect) Let Ri be the vector of covariates defined in (2.13) and B be the n ⇥ n

diagonal weight matrix with diagonal elements bi = KH(Xi � x), both functions of x.
Then the empirical influence function for the conditional sharp treatment effect at x
is

L⌧SBRD(x)(Yi,Ri, bi;
ˆ

F ) = n · e02 (R0BR)

�1
Ribi

⇣

Yi �R0
i
ˆ�
⌘

,

where ˆ� = (R0BR)

�1 R0BY.
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Proof. From the definition of a local linear estimation and influence function,

L⌧SBRD(x)(Yi,Ri, bi; F̂ ) =

✓

@

@✏
e

0
2

⇥

n�1(1� ✏) ·R0
BR+ ✏ ·RbiR

0
i

⇤�1 ⇥
n�1(1� ✏) ·R0

BY + ✏ ·R0
ibiYi

⇤

◆

�

�

�

�

✏=0

= e

0
2

⇣

�n [R0
BR]

�1 ⇥�n�1
R

0
BR+RibiR

0
i

⇤

n [R0
BR]

�1
n�1

R

0
BY + n [R0

BR]
�1 ⇥�n�1

R

0
BY +R

0
ibiYi

⇤

⌘

= e

0
2

⇣h

I� n [R0
BR]

�1
RibiR

0
i

i

�̂ +
h

��̂ + n [R0
BR]

�1
R

0
ibiYi

i⌘

= n · e02 [R0
BR]

�1
Ribi

⇣

Yi �R

0
i�̂
⌘

.

Theorem 2.A.3. (Influence Function of Sharp average Treatment Ef-

fect) Let z = (y, r, b) and ⇡ =

R

x2B f(x;F )dx. The influence function for the sharp
average treatment effect ⌧VSRD is

L⌧SBRD(z;F ) =

1

⇡

Z

x2B

�

L⌧SBRD(x)(z;F ) · f(x;F ) + [⌧SBRD(x;F )� ⌧SBRD(F )] · Lf(x)(z;F )

�

dx.



CHAPTER 2. BOUNDARY REGRESSION DISCONINUITY DESIGN 88

Proof. Follows from the influence function definition:

L⌧SBRD(z;F ) =

@

@✏

R

x2B ⌧SBRD(x; (1� ✏) · F + ✏ · �z) · f(x; (1� ✏) · F + ✏ · �z)dx
R

x2B f(x; (1� ✏) · F + ✏ · �z)dx

�

�

�

�

�

✏=0

= � 1

⇡

2
·
Z

x2B
Lf(x)(z;F )dx ·

Z

x2B
⌧SBRD(x;F ) · f(x;F )dx

+

1

⇡

Z

x2B

�

L⌧SBRD(x)(z;F ) · f(x;F ) + ⌧SBRD(x;F ) · Lf(x)(z;F )

�

dx

=

1

⇡

Z

x2B

�

L⌧SBRD(x)(z;F ) · f(x;F ) + ⌧SBRD(x;F ) · Lf(x)(z;F )� ⌧SBRD(F ) · Lf(x)(z;F )

�

dx

=

1

⇡

Z

x2B

�

L⌧SBRD(x)(z;F ) · f(x;F ) + [⌧SBRD(x;F )� ⌧SBRD(F )] · Lf(x)(z;F )

�

dx.

Here L⌧SBRD(x)(z;F ) and Lf(x)(z;F ) are the influence functions the conditional effect
and density.

The influence function of the average effect, and therefore the variance, does not
depend on the influence function of the density if there is no treatment heterogene-
ity and ⌧SBRD(x;F ) = ⌧SBRD(F ). Intuitively, it doesn’t matter how we weight the
conditional effects if they are constant.

Theorem 2.A.4. (Variance Estimate of Sharp average Treatment Ef-

fect) Let k = 1, . . . , K index evenly spaced points xk on the boundary and k sub-
scripts denote definitions relative to xk, e.g., bk,i = KH(Xi � xk). Then, as K

becomes large, an estimate for the empirical influence function of the sharp average
effect ⌧̂VSRD is

 i =
1

⇡̂

k
X

k=1

h

n · e02 (R0
kBkRk)

�1
Rk,ibk,i

⇣

Yi �Rk,i�̂k

⌘

· f̂(xk) + (⌧̂SBRD(xk)� ⌧̂SBRD) ·
⇣

bk,i � f̂(xk)
⌘i
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where

⇡̂ =

K
X

k=1

ˆ

f(xk),

ˆ

f(xk) = n

�1
n
X

i=1

bk,i,

ˆ�k = (R0
kBkRk)

�1
R0

kBkY,

⌧̂SBRD(xk) = e02 ˆ�k,

⌧̂SBRD = ⇡̂

�1
K
X

k=1

⌧̂SBRD(xk) · ˆf(xk).

An estimate of the variance is

ˆV(⌧̂SBRD | R) =

1

n

n
X

i=1

 

2
i .

2.A.3 Optimal bandwidth selection

Ruppert and Wand (1994) derive the properties of multivariate local linear regres-
sion. Here we apply their results to the vector-valued RD problem. Consider the
nonparametric regression

Yi = m(Xi) + �

1/2
(Xi)"i

where �(x) = V(Yi | Xi = x) and "i are i.i.d. random variables with mean zero and
unit variance and are independent of Xi. The sharp conditional effect is a simple
functional of two such regressions at a boundary point.
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To analyze the asymptotic properties of multivariate locally weighted least
squares, Ruppert and Wand (1994, p. 1349) give regularity conditions that are satis-
fied by spherically symmetric compact kernels or product kernels based on symmetric
univariate kernels. We use an two-dimensional edge kernel

K(u1, u2) = (1� |u1|) · (1� |u2|) · 1{|u2|  1, |u2|  1}

with H0 = H1 = diag([

�1h �2h ]). We also make the RD assumption 2.2.1, which
replaces Ruppert and Wand’s Assumption A4. Finally, to avoid the degeneracy that
arises if the bias for m1 and m0 cancel, we assume

Assumption 2.A.5. The boundary B consist of vertical and horizontal segments and

�

C1 · �2
1 ·
⇥

m

11
0 (x)�m

11
1 (x)

⇤

+ C2 · �2
2 ·
⇥

m

22
1 (x)�m

22
0 (x)

⇤� 6= 0

for horizontal segments when C1 = 5 and C2 = 3 or for vertical segments when C1 = 3

and C2 = 5.

Now consider a boundary point x 2 B. Let D1
x,H1

= {z : (x + H
1/2
1 z) 2 T} \

supp(K) and, likewise, D0
x,H0

= {z : (x+H
1/2
0 z) 2 Tc}\supp(K). That is, D1

x,H1
and

D0
x,H0

give the treatment and control points within a bandwidth from x and within
the support of the kernel K. Further, let v = [

1 u0
]

0 where u = [

u1 · · · ud ]

0.
Then:

Theorem 2.A.6. Under regularity conditions (Ruppert and Wand, 1994, p. 1349)
and Assumptions 2.2.1 the conditional asymptotic MSE for ⌧SBRD(x) is

AMSE(h;x) =
h

4

3600

· �C1 · �2
1 ·
⇥

m

11
0 (x)�m

11
1 (x)

⇤

+ C2 · �2
2 ·
⇥

m

22
1 (x)�m

22
0 (x)

⇤�2

+

32 · �(x)
5 · f(x) · h2 · �1 · �2 · n + op{ 1

nh

2
+ h

4}. (2.24)
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with C1 = 5 and C2 = 3 for horizontal boundaries and C1 = 3 and C2 = 5 for
vertical boundaries.

Proof. By Ruppert and Wand (1994) Theorem 2.2 the conditional bias for each limit
is

E [m̂j(x)�mj(x) | X] =

e01N
�1
j,x

2

Z

Dj
x,Hj

vK(u)u0H1/2
j Mj(x)H

1/2
j udu+ op(tr(Hj)),

and the conditional variance is

V [m̂j(x) | X] =

⇣

n

�1 |H|�1/2 e01N
�1
j,xTj,xN

�1
j,xe1/f(x)

⌘

�(x) (1 + op(1)) ,

where

Nj,x =

Z

Dj
x,Hj

v0
K(u)du,

Tj,x =

Z

Dj
x,Hj

v0
K

2
(u)du.

Under our specialized assumptions the squared bias for the conditional sharp effect is

E [⌧̂SBRD(x)� ⌧SBRD(x) | X]

2
=

h

4

3600

· �C1 · �2
1 ·
⇥

m

11
0 (x)�m

11
1 (x)

⇤

+ C2 · �2
2 ·
⇥

m

22
1 (x)�m

22
0 (x)

⇤�2
, (2.25)

and the conditional variance is

V [⌧̂SBRD(x) | X] =

32 · �(x)
5 · f(x) · h2 · n · �1 · �2 . (2.26)
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Combining squared bias (2.25) and variance (2.26) yields the conditional asymptotic
MSE (2.24).



Chapter 3

Do Value-Added Estimates Add

Value? Accounting for Learning

Dynamics

1

Evaluations of educational programs commonly assume that children’s learning per-
sists over time. We illustrate the central role of persistence in estimating and in-
terpreting value-added models of learning. Using data from Pakistani public and
private schools, we apply dynamic panel methods that address three key empirical
challenges to widely used value-added models: imperfect persistence, unobserved stu-
dent heterogeneity, and measurement error. Our estimates suggest that only a fifth
to a half of learning persists between grades and that private schools increase average
achievement by 0.25 standard deviations each year. In contrast, value-added models
that assume perfect persistence yield severely downwardly biased and occasionally
wrong-signed estimates of the private school effect. Models that ignore unobserved
heterogeneity or measurement error produce biased estimates of persistence. These

1This chapter is coauthored with Tahir Andrabi, Jishnu Das, and Asim Khwaja. We are grateful
to Alberto Abadie, Chris Avery, David Deming, Pascaline Dupas, Brian Jacob, Dale Jorgenson,
Elizabeth King, Karthik Muralidharan, David McKenzie, Rohini Pande, Lant Pritchett, Jesse Roth-
stein, Douglas Staiger, Tara Vishwanath, an anonymous referee, and seminar participants at Har-
vard, NEUDC and BREAD for helpful comments on drafts of this paper. This research was funded
by grants from the Poverty and Social Impact Analysis and Knowledge for Change Program Trust
Funds and the South Asia region of the World Bank. The findings, interpretations, and conclusions
expressed here are those of the authors and do not necessarily represent the views of the World
Bank, its Executive Directors, or the governments they represent.

93



CHAPTER 3. DO VALUE-ADDED ESTIMATES ADD VALUE? 94

results have implications for program evaluation and value-added acountability sys-
tem design.

3.1 Introduction

Models of learning often assume that a child’s achievement persists between grades—
what a child learns today largely stays with her tomorrow. Yet recent research sug-
gests that treatment effects measured by test scores fade rapidly, both in randomized
interventions and observational studies. Kane and Staiger (2008), Jacob et al. (2010),
and Rothstein (2010) find that teacher effects dissipate by between 50 and 80 percent
over one year. The same pattern holds in several studies of supplemental education
programs in developed and developing countries. Currie and Thomas (1995) docu-
ment the rapid fade out of Head Start’s impact in the United States, and Glewwe
et al. (2003) and Banerjee et al. (2007) report on education experiments in Kenya and
India where over 70 percent of the one-year treatment effect is lost after an additional
year. Low persistence may in fact be the norm rather than the exception. It appears
to be a central feature of learning.

Low persistence has critical implications for commonly used program evaluation
strategies that rest heavily on assumptions about or estimation of persistence. Using
primary data on public and private schools in Pakistan, this paper addresses the
challenges to value-added evaluation strategies posed by (1) imperfect persistence of
achievement, (2) heterogeneity in learning, and (3) measurement error in test scores.
We find that ignoring any of these learning dynamics biases estimates of persistence
and can dramatically affect estimates of the value-added of private schools.

To fix concepts, consider a simple model of learning, y⇤it = ↵Tit+�y
⇤
i,t�1+ ⌘i+�it,

where y

⇤
it is child true (unobserved) achievement in period t, Tit is the treatment or

program effect in period t, and ⌘i is unobserved student ability that speeds learning
each period. We refer to �, the parameter that links achievement across periods, as
persistence. The canonical restricted value-added or gain-score model assumes that
� = 1 (for examples, see Hanushek (2003)). When � < 1, achievement exhibits
conditional mean reversion. Estimates of the treatment or program effect, ↵, that
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assume � = 1 will be biased if the baseline achievement of the treatment and control
groups differs and persistence is imperfect. This has led many researchers to advocate
leaving lagged achievement on the right-hand side. However, doing so is not entirely
straightforward: if estimated by OLS, omitted heterogeneity that speeds learning, ⌘i,
will generally bias � upward and any measurement error in test scores yi,t�1 that proxy
true achievement y⇤i,t�1 will bias � downward. Both the estimate of persistence � and
the treatment effect ↵ may remain biased when estimated by standard methods.

To address these concerns, we use three years of data on a panel of children to
jointly estimate � and the treatment effect ↵ using techniques from the dynamic panel
literature (Arellano and Honore, 2001; Arellano, 2003). There are several findings.
First, we find that learning persistence is low: only a fifth to a half of achievement
persists between grades. That is, � is between 0.2 and 0.5 rather than closer to 1.
These estimates are remarkably similar to those obtained in the United States (Kane
and Staiger, 2008; Jacob et al., 2010; Rothstein, 2010). The low persistence we find
implies that long-run extrapolations from short-run impacts are fraught with danger.
In the model above, the long-run impact of continued treatment is ↵/(1 � �); with
estimates of � around 0.2 to 0.5, these gains may be much smaller than those obtained
by assuming that � is close to 1.2

Second, OLS estimates of � are contaminated both by measurement error in test
scores and unobserved student-level heterogeneity in learning. Ignoring both biases
leads to higher persistence estimates between 0.5 and 0.6; correcting only for mea-
surement error results in estimates between 0.7 and 0.8. In our data, the upward bias
on persistence from omitted heterogeneity outweighs measurement error attenuation.

Third, the private schooling effect is highly sensitive to the persistence parameter.
Since private schooling is a school input that is continually applied and leads to a
large baseline gap in achievement, this is expected. We find that incorrectly assuming

2For example, Krueger and Whitmore (2001), Angrist et al. (2002), Krueger (2003), and Gordon
et al. (2006) calculate the economic return of various educational interventions by citing research
linking test scores to earnings of young adults (e.g. Murnane et al., 1995; Neal and Johnson, 1996).
Although effects on learning as measured by test-scores may fade, non-cognitive skills that are
rewarded in the labor market could persist. For instance, Currie and Thomas (1995), Schweinhart
et al. (2005), and Deming (2009) provide evidence of long run effects of Head Start and the Perry
Preschool Project, even though cognitive gains largely fade after children enroll in regular classes.
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� = 1 significantly understates and occasionally yields the wrong sign for private
schools’ impact on achievement—providing a compelling example of Lord’s paradox
(Lord, 1967). Whereas the restricted value-added model suggests that private schools
contribute no more than public schools, our dynamic panel estimates suggest large
and significant contributions ranging from 0.19 to 0.32 standard-deviations a year.
From a public finance point of view, these different estimates matter particularly
since per pupil expenditures are lower in private relative to public schools.3 Our
results are consistent with growing evidence that relatively inexpensive, mainstream,
private schools hold potential in the developing country context (Emmanuel Jimenez
and Paqueo, 1991; Alderman et al., 2001; Angrist et al., 2002; Alderman et al., 2003;
Tooley and Dixon, 2003; Andrabi et al., 2008).

Our results illustrate the danger of failing to properly specify and estimate value-
added models. Yet the results are not entirely negative. Despite ignoring measure-
ment error and unobserved heterogeneity, the lagged value-added model estimated by
OLS gives similar results for the private school effect as our more data intensive dy-
namic panel methods, although persistence remains overstated. The relative success
of the lagged value-added model can be explained by the countervailing heterogene-
ity and measurement error biases on � and because lagged achievement can also act
as a partial proxy for omitted heterogeneity in learning.4 More generally, the bias
introduced by assuming perfect persistence may not always be as severe as in our
application. Both Harris and Sass (2006) and Kane and Staiger (2008), for instance,
find that the persistence parameter makes little difference when estimating teacher
effects. This can be explained by the small gap in baseline achievement. Children
with different teachers often do not differ substantially in their baseline test scores. In
contrast, given that there is little switching across school types, children currently in

3For details on the costs of private schooling in Pakistan see Andrabi et al. (2008).
4This results suggests that correcting for measurement error alone may do more harm than good.

For example, Ladd and Walsh (2002) correct for measurement error in the lagged value-added model
of school effects by instrumenting using double-lagged test scores but don’t address potential omitted
heterogeneity. They show this correction significantly changes school rankings and benefits poorly
performing districts. Given that we find unobserved heterogeneity in learning rates, rankings that
correct for measurement error may be poorer than those that do not.
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different schools differ substantially in baseline scores. Despite this apparent robust-
ness to different specifications when estimating teacher effects, both Kane and Staiger
(2008) and Jacob et al. (2010) find that the teacher effects fade rapidly, suggesting
that getting persistence right is still important to understanding long-run impacts.

The remainder of the paper is organized as follows: Section 2 presents the basic
education production function analogy and discusses the specification and estimation
of the value-added approximations to it. Section 3 summarizes our data. Section
4 reports our main results and several robustness checks. Section 5 concludes by
discussing implications for experimental and non-experimental program evaluation.

3.2 Empirical Learning Framework

The “education production function” approach to learning relates current achievement
to all previous inputs. Boardman and Murnane (1979) and Todd and Wolpin (2003)
provide two accounts of this approach and the assumptions it requires; the following
is a brief summary.5 Using notation consistent with the dynamic panel literature, we
aggregate all inputs into a single vector xit and exclude interactions between past and
present inputs. Achievement for child i at time (grade) t is therefore

y

⇤
it = ↵0

1xit +↵0
2xi,t�1 + · · ·+↵0

txi1 +

s=t
X

s=1

✓t+1�sµis, (3.1)

where y

⇤
it is true achievement, measured without error, and the summed µis are cu-

mulative productivity shocks.6 Estimating (3.1) is generally impossible because re-
searchers do not observe the full set of inputs, past and present. The value-added

5Researchers generally assume that the model is additively separable across time and that input
interactions can be captured by separable linear interactions. Cunha and Heckman (2008) and
Cunha et al. (2010) are two exceptions to this pattern, where dynamic complementarity between
early and late investments and between cognitive and non-cognitive skills are permitted.

6This starting point is more restrictive than the more general starting framework presented by
Todd and Wolpin (2003). In particular, it assumes an input applied in first grade has the same effect
on first grade scores as an input applied in second grade has on second grade scores.
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strategy makes estimation feasible by rewriting (3.1) to avoid the need for past inputs.
Adding and subtracting �y⇤it, normalizing ✓1 to unity, and assuming that coefficients
decline geometrically (↵j = �↵j�1 and ✓j = �✓j�1 for all j) yields the lagged value-
added model

y

⇤
it = ↵0xit + �y

⇤
i,t�1 + µit. (3.2)

The basic idea behind this specification is that lagged achievement will capture the
contribution of all previous inputs and any past unobservable endowments or shocks.
As before, we refer to ↵ as the input coefficient and � as the persistence coefficient.
Finally, imposing the restriction that � = 1 yields the gain-score or restricted value-
added model that is often used in the education literature:

y

⇤
it � y

⇤
i,t�1 = ↵0xit + µit.

This model asserts that past achievement contains no information about future gains,
or equivalently, that an input’s effect on any subsequent level of achievement does
not depend on how long ago it was applied. As we will see from our results, the
assumption that � = 1 is clearly violated in the data, and increasingly, it appears, in
the literature as well. As a result, we will focus primarily on estimating (3.2).

There are two potential problems with estimating (3.2). First, the error term µit

could include individual (child-level) heterogeneity in learning (i.e., µit ⌘ ⌘i + �it).
Lagged achievement only captures individual heterogeneity if it enters through a one-
time process or endowment, but talented children may also learn faster. Since this
unobserved heterogeneity enters in each period, Cov(y

⇤
i,t�1, µit) > 0 and � will be

biased upwards.
The second likely problem is that test scores are inherently a noisy measure of

latent achievement. Letting yit = y

⇤
it+"it denote observed achievement, we can rewrite

the latent lagged value-added model (3.2) in terms of observables. The full error term
now includes measurement error, µit + "it � �"i,t�1 .
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Dropping all the inputs to focus solely on the persistence coefficient, the expected
bias due to both of these sources is

plim �OLS = � +

✓

Cov(⌘i, y
⇤
i,t�1)

�

2
y⇤ + �

2
"

◆

�
✓

�

2
"

�

2
y⇤ + �

2
"

◆

�. (3.3)

The coefficient is biased upward by learning heterogeneity and downward by measure-
ment error. These effects only cancel exactly when Cov(⌘i, y

⇤
i,t�1) = �

2
"� (Arellano,

2003).
Furthermore, bias in the persistence coefficient leads to bias in the input coef-

ficients, ↵. To see this, consider imposing a biased ˆ

� and estimating the resulting
model

yit � ˆ

�yi,t�1 = ↵0xit + [(� � ˆ

�)yi,t�1 + µit + "it � �"i,t�1].

The error term now includes (� � ˆ

�)yi,t�1. Since inputs and lagged achievement
are generally positively correlated, the input coefficient will, in general, by biased
downward if ˆ

� > �. The precise bias, however, depends on the degree of serial
correlation of inputs and on the potential correlation between inputs and learning
heterogeneity that remains in µit.

This is more clearly illustrated in the case of the restricted value-added model
(assuming that � = 1) where:

plim ↵̂OLS = ↵� (1� �)

Cov(xit, yi,t�1)

Var(xit)
+

Cov(xit, ⌘i)

Var(xit)
. (3.4)

Therefore, if indeed there is perfect persistence as assumed and if inputs are uncor-
related with ⌘i, OLS yields consistent estimates of the parameters ↵. However, if
� < 1, OLS estimation of ↵ now results in two competing biases. By assuming an
incorrect persistence coefficient we leave a portion of past achievement in the error
term. This misspecification biases the input coefficient downward by the first term
in (3.4). The second term captures possible correlation between current inputs and
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omitted learning heterogeneity. If there is none, then the second term is zero, and
the bias will be unambiguously negative.

3.2.1 Addressing Child-Level Heterogeneity: Dynamic Panel

Approaches to the Education Production Function

Dynamic panel approaches can address omitted child-level heterogeneity in value-
added approximations of the education production function. We interpret the
value-added model (3.2) as an autoregressive dynamic panel model with unobserved
student-level effects:

y

⇤
it = ↵0xit + �y

⇤
i,t�1 + µit, (3.5)

µit ⌘ ⌘i + �it. (3.6)

Identification of � and ↵ is achieved by imposing appropriate moment conditions.
Following Arellano and Bond (1991), we focus on linear moment conditions after
differencing (3.5). In Appendix 3.A, we consider “differences and levels” GMM and
“levels only” GMM, which respectively refer to whether the estimates are based on
the undifferenced “levels” equation (3.5), a differenced equation (see equation (3.7)
below), or both (Arellano and Bover, 1995). For more complete descriptions, Arellano
and Honore (2001) and Arellano (2003) provide excellent reviews of these and other
panel models.

As noted previously, the value-added model differences out omitted endowments
that might be correlated with the inputs. It does not, however, difference out het-
erogeneity that speeds learning. To accomplish this, the basic intuition behind the
Arellano and Bond (1991) difference GMM estimator is to difference again. Differ-
encing the dynamic panel specification of the lagged value-added model (3.5) yields

y

⇤
it � y

⇤
i,t�1 = ↵0

(xit � xi,t�1) + �(y

⇤
i,t�1 � y

⇤
i,t�2) + [�it � �i,t�1]. (3.7)

Here, the differenced model eliminates the unobserved fixed effect ⌘i. However, (3.7)
cannot be estimated by OLS because y

⇤
i,t�1 is correlated by construction with �i,t�1



CHAPTER 3. DO VALUE-ADDED ESTIMATES ADD VALUE? 101

in the error term. Arellano and Bond (1991) propose instrumenting for y

⇤
i,t�1 �

y

⇤
i,t�2 using two or more period lags, such as y

⇤
i,t�2, or certain inputs, depending

on the exogeneity conditions. These lags are uncorrelated with the error term but
are correlated with the change in lagged achievement, provided � < 1. The input
coefficient, in our case the added contribution of private schools, is primarily identified
from the set of children who switch schools in the observation period.

The implementation of the difference GMM approach depends on the precise as-
sumptions about inputs. We consider two candidate assumptions: strictly exogenous
inputs and predetermined inputs. Strict exogeneity assumes past disturbances do
not affect current and future inputs, ruling out feedback effects. In the educational
context, this is a strong assumption. A child who experiences a positive or negative
shock may adjust inputs in response. In our case, a shock may cause a child to switch
schools.

To account for this possibility, we also consider the weaker case where inputs
are predetermined but not strictly exogenous. Specifically, the predetermined inputs
case assumes that inputs are uncorrelated with present and future disturbances but
are potentially correlated with past disturbances. This case also assumes lagged
achievement is uncorrelated with present and future disturbances. Compared to strict
exogeneity, this approach uses only lagged inputs as instruments. Switching schools
is instrumented by the original school type, allowing switches to depend on previous
shocks. This estimator remains consistent if a child switches school at the same time
as an achievement shock but still rules out parents anticipating and adjusting to
future expected shocks.

Given the centrality of switchers, it is natural to consider whether the private
school effect and persistence can be estimated using a differences-in-differences (DD)
strategy, and how such an approach relates to our dynamic panel estimators and the
differenced equation (3.7). To estimate the short-run effect ↵, a DD strategy could
compare switchers to stayers and examine changes in test scores over two years, third
and fourth grade in our data. Extending this difference-in-differences an additional
year, i.e. fifth grade, gives the two year effect ↵(1 + �). Combined, we can recover ↵
and � under the standard DD assumption of parallel trends.
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This DD approach is related to our basic model but is not identical. The first
one-year difference is similar to the differenced equation (3.7) but does not include
�4y

⇤
i,t�1 because t � 2 is unavailable. The two-year differences follows by taking

the two-year difference of the lagged value-added model (3.2) and expanding the
terms. If we exclude fourth-to-fifth grade switchers, i.e., keep only students for whom
xit � xi,t�2 = xi,t�1 � xi,t�2, the two year difference reduces to

y

⇤
it � y

⇤
i,t�2 = ↵0

(xit � xi,t�2) + �

�

y

⇤
i,t�1 � �y

⇤
i,t�3

�

+ µit � µi,t�2

= ↵0
(xit � xi,t�2) + �

�

↵0xi,t�1 + �y

⇤
i,t�2 + µi,t�1 � �y

⇤
i,t�3

�

+ µit � µi,t�2

= ↵0
(1 + �)�xi,t�1 + �↵0xi,t�2 +

⇥

�

�

�y

⇤
i,t�2 + µi,t�1 � �y

⇤
i,t�3

�

+ µit � µi,t�2

⇤

,

where the final equation follows from excluding fourth-to-fifth grade switchers and
adding and subtracting �↵0xi,t�2. If we focus just on private schools and incorporate
the terms in the brackets into the error term, we are left with our second difference-in-
differences estimate. Assuming the term in the brackets is uncorrelated with �xi,t�1

and xi,t�2, the two year difference returns ↵(1 + �).
While the DD intuition can be clarifying, our dynamic panel estimators start

from the model (3.5) and estimation relies on the moment conditions explicit in the
modelling; the DD approach, by comparison, makes a parallel trends assumption and
estimates � indirectly. A major conclusion of this paper is that parallel trends do not
imply no treatment effect if persistence is imperfect and gaps exist in baseline scores.
What makes DD potentially believable it not the act of differencing but the choice
of control group. The restricted value-added model, after all, can also be called a
DD estimate with children in public schools forming the control group for children in
private schools.

3.2.2 Addressing Measurement Error in Test Scores

Measurement error in test scores is a central feature of educational program evalua-
tion. Ladd and Walsh (2002), Kane and Staiger (2002), and Chay et al. (2005) all
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document how test-score measurement error can pose difficulties for program eval-
uation and value-added accountability systems. In the context of value-added esti-
mation, measurement error attenuates the coefficient on lagged achievement and can
bias the input coefficient in the process. Dynamic panel estimators do not address
measurement error on their own. For instance, if we replace true achievement with
observed achievement in the standard Arellano and Bond (1991) setup, (3.7) becomes

4yit = ↵04xit + �4yi,t�1 + [4�it +4"i,t � �4"i,t�1]. (3.8)

The standard potential instrument, yi,t�2, is uncorrelated with 4�it but is correlated
with 4"i,t�1 = "i,t�1 � "i,t�2 by construction.

The easiest solution is to use either three-period lagged test scores or alternate
subjects as instruments. In the dynamic panel models discussed above, correcting for
measurement error using additional lags requires four years of data for each child—a
difficult requirement in most longitudinal datasets, including ours. We therefore use
alternate subjects, although doing so does not address the possibility of correlated
measurement error across subjects.e7

3.3 Data

To demonstrate these issues, we use data collected by the authors as part of the
Learning and Educational Achievement in Punjab Schools (LEAPS) project, an on-
going survey of learning in Pakistan. The sample comprises 112 villages in 3 districts
of Punjab: Attock, Faisalabad, and Rahim Yar Khan. Because the project was en-
visioned in part to study the dramatic rise of private schools in Pakistan, the 112
villages in these districts were chosen randomly from the list of all villages with an
existing private school. As would be expected given the presence of a private school,

7An alternative to instrumental variables strategies is to correct for measurement error analyt-
ically using the standard error of each test score. In a working paper version of this paper we
followed this strategy, using the heteroskedastic standard errors returned by Item Response Theory,
and found similar results. Due to the simplicity of instrumenting using alternate subjects, we only
report IV corrected estimates here.
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the sample villages are generally larger, wealthier, and more educated than the av-
erage rural village. Nevertheless, at the time of the survey, more than 50 percent of
the province’s population resided in such villages (Andrabi et al., 2006).

The survey covers all schools within the sample village boundaries and within a
short walk of any village household. Including schools that opened and closed over
the three rounds, 858 schools were surveyed, while three refused to cooperate. Sample
schools account for over 90 percent of enrollment in the sample villages.

The first panel of children consists of 13,735 third-graders, 12,110 of which were
tested in Urdu, English, and mathematics. These children were subsequently followed
for two years and retested in each period. Every effort was made to track children
across rounds, even when they were not promoted. Nevertheless, in the tested sample,
18 percent of children were not re-tested in the second round. By the third round,
32 percent of the original tested sample is missing a fourth or fifth grade score. This
is partly due to children dropping out of school (5.5 percent dropout between years
1 and 2 and another 3.2 percent between years 2 and 3) but also because of high
absenteeism–just under 10 percent of children tested in the first year are absent on
the day of the test in years 2 and 3. Attrition in private schools is two percentage
points higher than in public schools. Children who drop out between rounds one
and two have scores roughly 0.2 s.d. lower than children that don’t. Controlling
for school type and drop out status, drop outs in private schools are slightly better
(0.05 sd) than children in public schools, although the difference is only statistically
significant for math. It is plausible that the small relative differences in attrition
between public and private schools imply that additional corrections for attrition are
unlikely to significantly affect our results. Indeed, we explore formal corrections for
attrition in Section 4.3 and find no significant changes.

In addition to being tested, 6,379 children—up to ten in each school—were ran-
domly administered a survey including anthropometrics (height and weight) and de-
tailed family characteristics such parental education and wealth, as measured by prin-
cipal components analysis of 20 assets. When exploring the economic interpretation
of persistence, we also use a smaller subsample of approximately 650 children that
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can be matched to a detailed household survey that includes, among other things,
child and parental time use and educational spending.

For our analysis, we use two subsamples of the data: all children who were tested
in all three years (N=8120) and children who were tested and given a detailed child
survey in all three years (N=4031). Table 3.1 presents the characteristics of these
children split by whether they attend public or private schools. The patterns across
each subsample are relatively stable. Children attending privates schools are slightly
younger, have fewer elder siblings, and come from wealthier and more educated house-
holds. Years of schooling, which largely captures grade retention, are lower in private
schools. Children in private schools are also less likely to have a father living at home,
perhaps due to a migration or remittance effect on private school attendance.

The measures of achievement are based on exams in English, Urdu (the vernacu-
lar), and Mathematics. The tests were relatively long (over 40 questions per subject)
and were designed to maximize the precision over a range of abilities in each grade.
While a fraction of questions changed over the years, the content covered remained
consistent, and a significant portion of questions appeared across all years. To avoid
the possibility of cheating, the tests were administered directly by our project staff and
not by classroom teachers. The tests were scored and equated across years by the au-
thors using Item Response Theory so that the scale has cardinal meaning. Preserving
cardinality is important for longitudinal analysis since many other transformations,
such as the percent correct score or percentile rank, are bounded artificially by the
transformations that describe them. By comparison, IRT scores attempt to ensure
that change in one part of the distribution is equal to a change in another, in terms
of the latent trait captured by the test. Children were tested in third, fourth, and
fifth grades during the winter at roughly one year intervals. Because the school year
ends in the early spring, the test scores gains from third to fourth grade are largely
attributable to the fourth grade school.
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TABLE 1.  BASELINE CHARACTERISTICS OF CHILDREN IN PUBLIC AND PRIVATE SCHOOLS

Variable Private School Public School Difference
Panel A: Full SamplePanel A: Full SamplePanel A: Full SamplePanel A: Full Sample

Age 9.58 9.63 -0.04
[1.49] [1.35] (0.08)

Female 0.45 0.47 -0.02
(0.03)

English score (third grade) 0.74 -0.23 0.97***
[0.61] [0.94] (0.05)

Urdu score (third grade) 0.52 -0.12 0.63***
[0.78] [0.98] (0.05)

Math score (third grade) 0.39 -0.07 0.46***
[0.81] [1.00] (0.05)

N 2337 5783
Panel B: Surveyed Child SamplePanel B: Surveyed Child SamplePanel B: Surveyed Child SamplePanel B: Surveyed Child Sample

Age 9.63 9.72 -0.09
[1.49] [1.34] (0.08)

Female 0.47 0.48 -0.02
(0.03)

Years of schooling 3.39 3.75 -0.35***
[1.57] [1.10] (0.08)

Weight z-score (normalized to U.S.) -0.75 -0.64 -0.10
[4.21] [1.71] (0.13)

Height z-score (normalized to U.S.) -0.42 -0.22 -0.20
[3.32] [2.39] (0.13)

Number of elder brothers 0.98 1.34 -0.36***
[1.23] [1.36] (0.05)

Number of elder sisters 1.08 1.27 -0.19***
[1.27] [1.30] (0.05)

Father lives at home 0.88 0.91 -0.04***
(0.01)

Mother lives at home 0.98 0.98 0.00
(0.01)

Father educated past elementary 0.64 0.46 0.18***
(0.02)

Mother educated past elementary 0.36 0.18 0.18***
(0.02)

Asset index (PCA) 0.78 -0.30 1.08***
[1.50] [1.68] (0.07)

English score (third grade) 0.74 -0.24 0.99***
[0.62] [0.95] (0.05)

Urdu score (third grade) 0.53 -0.14 0.67***
[0.78] [0.98] (0.05)

Math score (third grade) 0.42 -0.09 0.51***
[0.80] [1.02] (0.05)

N 1374 2657

* Significant at the 10%; ** significant at the 5%; *** significant at 1%.

Notes:  Cells contain means, brackets contain standard deviations, and parentheses contain standard errors.  
Standard errors for the private-public difference are clustered at the school level.  Sample includes only those 
children tested (A) and surveyed (B) in all three years.

Table 3.1: Baseline characteristic of children in public and private schools. Cells con-
tain means, brackets contain standard deviations, and parentheses contain standard
errors. Standard errors for the private-public difference are clustered at the school
level. Sample includes only those children tested (A) and surveyed (B) in all three
years.
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3.4 Results

3.4.1 Cross-sectional and Graphical Results

Before presenting our estimates of learning persistence and the implied private school
effect, we provide some rough evidence for a significant private school effect using
cross-sectional and graphical evidence. These results do not take advantage of the
more sophisticated specifications above but nevertheless provide initial evidence that
the value-added of private schools is large and significant.

3.4.1.1 Baseline estimates from cross-section data

Table 3.2 presents results for a cross-section regression of third grade achievement on
child, household, and school characteristics. These regressions provide some initial
evidence that the public-private gap is due to more than omitted variables and selec-
tion. Adding a comprehensive set of child and family controls reduces the estimated
coefficient on private schools only slightly. Adding village fixed effects also does not
change the coefficient, even though the R

2 increases substantially. Across all baseline
specifications, the gap remains large: over 0.9 standard deviations in English, 0.5
standard deviations in Urdu, and 0.4 standard deviations in mathematics.

Besides the coefficient on school type, few controls are strongly associated with
achievement. By far, the largest other effect is for females, who outperform their
male peers in English and Urdu. However, even for Urdu, where the female effect is
largest, the private school effect is still nearly three times as large. Height, assets, and
whether the father (and for Column 3, mother) is educated past elementary school
also enter the regression as positive and significant. More elder brothers and more
years of schooling (i.e. being previously retained) correlates with lower achievement.
Children with a mother living at home perform worse although this result is driven by
an abnormal subpopulation of two percent of children with absent mothers. Overall,
these results confirm mild positive selection into private schools but also suggest that,
controlling for a host of other observables typically not available in other datasets
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TABLE 2.  THIRD GRADE ACHIEVEMENT AND CHILD, HOUSEHOLD AND SCHOOL CHARACTERISTICS

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Dependent variable 
(third grade): English English English Urdu Urdu Urdu Math Math Math
Private School 0.985 0.907 0.916 0.670 0.595 0.575 0.512 0.446 0.451

(0.047)***(0.048)***(0.048)***(0.049)***(0.050)***(0.047)***(0.051)***(0.053)***(0.052)***
Age 0.004 0.015 0.013 0.013 0.033 0.048

(0.013) (0.012) (0.013) (0.012) (0.014)** (0.013)***
Female 0.125 0.133 0.209 0.205 -0.040 -0.057

(0.047)***(0.041)*** (0.046)***(0.040)*** (0.051) (0.043)
Years of schooling -0.029 -0.019 -0.039 -0.028 -0.038 -0.025

(0.013)** (0.012) (0.014)*** (0.014)** (0.015)** (0.014)*
Number of elder 

brothers
-0.030 -0.035 -0.020 -0.025 -0.020 -0.023Number of elder 

brothers (0.011)***(0.010)*** (0.012)* (0.011)** (0.012)* (0.011)**
Number of elder sisters 0.008 0.013 0.001 -0.001 -0.002 -0.006

(0.011) (0.010) (0.012) (0.012) (0.013) (0.012)
Height z-score 

(normalized to U.S.)
0.027 0.016 0.017 0.012 0.034 0.024Height z-score 

(normalized to U.S.) (0.007)***(0.006)*** (0.006)*** (0.006)** (0.008)***(0.007)***
Weight z-score 

(normalized to U.S.)
-0.005 -0.001 -0.004 0.001 -0.009 -0.002Weight z-score 

(normalized to U.S.) (0.008) (0.006) (0.005) (0.005) (0.007) (0.006)
Asset index 0.041 0.050 0.043 0.045 0.030 0.034

(0.012)***(0.009)*** (0.011)***(0.010)*** (0.011)***(0.010)***
Mother educated past 

elementary
0.048 0.062 0.014 0.011 0.023 -0.006Mother educated past 

elementary (0.036) (0.031)** (0.040) (0.035) (0.040) (0.037)
Father educated past 

elementary
0.061 0.066 0.062 0.049 0.069 0.053Father educated past 

elementary (0.033)* (0.028)** (0.034)* (0.031) (0.035)** (0.032)*
Mother lives at home -0.131 -0.025 -0.174 -0.108 -0.210 -0.091

(0.095) (0.081) (0.102)* (0.092) (0.097)** (0.090)
Father lives at home 0.006 -0.038 0.019 0.005 -0.009 -0.026

(0.049) (0.044) (0.053) (0.048) (0.057) (0.051)
Survey Date 0.003 0.000 0.001 0.004 0.003 0.003

(0.002) (0.004) (0.002) (0.003) (0.002) (0.003)
Constant -0.243 -49.721 -3.690 -0.137 -23.750 -59.528 -0.095 -56.196 -51.248

(0.038)*** (38.467) (62.432) (0.035)*** (31.915) (45.357) (0.038)** (35.415) (50.310)
Village Fixed Effects No No Yes No No Yes No No Yes
Observations 4031 4031 4031 4031 4031 4031 4031 4031 4031
R-squared 0.23 0.25 0.37 0.11 0.13 0.25 0.06 0.08 0.21

* significant at 10%; ** significant at 5%; *** significant at 1%

Notes:  Standard errors clustered at the school level.  Sample includes only those children tested and 
surveyed in all three years.Table 3.2: Third grade achievement and child, household, and school characteristics.

Standard errors clustered at the school level. Sample includes only those children
tested and surveyed in all three years.
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FIGURE 1.  EVOLUTION OF TEST SCORES IN PUBLIC AND PRIVATE SCHOOLS
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subsequently followed and counted as being in fourth or fifth grade regardless of whether they were actually 
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Figure 3.1: Evolution of test scores in public and private schools. Vertical bars
represent 95% confidence intervals around the group means, allowing for arbitrary
clustering within schools. The graph’s sample is limited to children who were tested
in all three periods.

(such as child height and household assets) does not alter significantly the size of the
private schooling coefficient.

3.4.1.2 Graphical and reduced-form evidence

Figure 3.1 plots learning levels in the tested subjects (English, mathematics, and
the vernacular, Urdu) over three years. While, levels are always higher for children
in private schools, there is little difference in learning gains (the gradient) between
public and private schools. This illustrates why a specification that uses learning
gains (i.e., assumes perfect persistence) would conclude that private schools add no
greater value to learning than their public counterparts.
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FIGURE 2.  ACHIEVEMENT OVER TIME FOR CHILDREN WHO SWITCHED SCHOOL TYPES
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Figure 3.2: Achievement over time for children who switched school types. Lines
connect group means for children who were enrolled in all three periods and have a
particular private/public enrollment pattern. Children were tested in the second half
of the school year; most of the gains from a child in a third grade government school
and fourth grade private school should be attributed to the private school.
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The dynamic panel estimators that we explore identify the private school effect
using children who switch schools. Figure 3.2 illustrates the patterns of achievement
for these children. For each subject we plot two panels: the first containing children
who start in public school and the second containing those who start in private school.
We then graph achievement patterns for children who never switch, switch after third
grade, and switch after fourth grade. For simplicity, we exclude children who switch
back and forth between school types.

As the table at the bottom of the figure shows, very few children change schools.
Only 48 children move from public to private schools in fourth grade, while 40 move
in fifth grade. Consistent with the role of private schools serving primarily younger
children, 167 children switch to public schools in fourth grade, and 160 switch in fifth
grade. These numbers are roughly double the number of children available for our
estimates that include controls, since only a random subset of children were surveyed
regarding their family characteristics.

Even given the small number of children switching school types, Figure 3.2 pro-
vides preliminary evidence that the private school effect is not simply a cross-sectional
phenomenon. In all three subjects, children who switch to private schools between
third and fourth grade experience large achievement gains. Children switching from
private schools to public schools exhibit similar achievement patterns, except reversed.
Moving to a public school is associated with slower learning or even learning losses.
Most gains or losses occur immediately after moving; once achievement converges to
the new level, children experience parallel growth in public and private schools.

These results are consistent with low persistence and a large private school effect.
Consider, for instance, the panel for Urdu and children starting in public schools
(middle, left). Children who switch to private schools in fourth grade experience large
immediate gains compared to children that stay in public schools. A difference-in-
differences analysis would therefore indicate a large private school effect ↵. However,
if we extend this difference-in-differences an additional year to include fifth grade, the
estimate remains virtually unchanged. That is, Figure 2 suggests the two year effect
is roughly the same as the one year effect, or, equivalently, that ↵ ⇡ ↵(1 + �). If
↵ > 0, this is only possible if � ⇡ 0.
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TABLE 3.DIFFERENCE-IN-DIFFERENCES ESTIMATES OF SHORT AND LONG-RUN PRIVATE SCHOOL 

EFFECT

One and two-year treatment effectOne and two-year treatment effectOne and two-year treatment effect
Length of treatment English Urdu Math
One year (gain between third and fourth) 0.31***

(0.05)
0.26***
(0.07)

0.26***
(0.06)

Two years (gain between third and fifth) 0.33***
(0.05)

0.28***
(0.05)

0.31***
(0.06)

* significant at 10%; ** significant at 5%; *** significant at 1%

Notes: Standard errors clustered at the school level. The coefficients are from a regression of the change in 
scores between third and fourth grade (first line) and between third and fifth grade (second line) on third 
grade school type, and switching (treatment), pooled by defining switchers as 1 for public-private, 0 for 
public-public and private-private, and -1 for private-public. The sample excludes children who switched 
between fourth and fifth grade, making students that stay in public or private school the comparison group 
for students switching between third and fourth grade.

Table 3.3: Differences-in-differences estimates of short- and long-run private school
effect. Standard errors clustered at the school level. The coefficients are from a
regression of the change in scores between third and fourth grade (first line) and
between third and fifth grade (second line) on third grade school type, and switching
(treatment), pooled by defining switchers as 1 for public-private, 0 for public-public
and private-private, and -1 for private-public. The sample excludes children who
switched between fourth and fifth grade, making students that stay in public or
private school the comparison group for students switching between third and fourth
grade.

Table 3.3 confirms this difference-in-differences intuition. We regress changes in
achievement between third and fourth grade (column one) and between third and
fifth grade (column two) on third grade school type and switching between third and
fourth grade (the treatment). We pool switchers so that -1 denotes switchers from
private to public, 0 denotes stayers, and 1 denotes switchers from public to private,
and exclude children that switch between fourth and fifth grade. Students that stay
in public or private schools therefore form the comparison group for students that
switched between third and fourth grade. As Table 3.3 shows, the estimated two year
treatment effect ↵(1+�) is only slightly higher than the estimated one year treatment
effect ↵, consistent with low persistence. Our subsequent results, which use the full
dynamic panel setup, yield similar estimates to this simpler difference-in-differences
approach.

The results in Table 3.3 and dynamic panel estimators rely on children that switch
school types. A potential concern is that children who switch schools are more likely to
have experienced changes in their family circumstances during the year. To the extent
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that changes in household circumstances impact family’s investment in children, our
coefficients could be biased.

To examine this issue further, we examine the correlation between switching to
or from a private school—again defined as 1, 0, and -1—and changes in the family’s
assets and wealth, the presence of parents, and child height, weight, and health. Our
dynamic panel estimates control for these observable changes, but large comovements
with school switching would be worrying. Table 3.4 reports both changes in char-
acteristics for future and contemporaneous switchers. We include three samples: :
surveyed children (Table 3.1, Panel B), surveyed children matched to a household sur-
vey, and any child found in the household survey. We include this final group, which
includes all grades, to increase the sample size for the child health and household
asset questions.

Across these three samples, and for both pre-trend and contemporaneous switch-
ing, we find that household characteristics do not comove with school switches in a
direction that would favor private schools. The only large and statistically significant
correlation is a negative correlation between contemporaneous switching to a private
school and child height and weight. These coefficients are of the order of 0.2 standard
deviations and significant at the 1 percent (weight) and 5 percent (height) level. Child
health is also negatively correlated with switching to a private school, although is not
statistically significant. The correlations with child health and anthropometrics are
puzzling. One possibility is that households compensated for greater educational in-
vestments in children (enrolling them in private school) by reducing their investments
in health. To the extent that this is a causal impact, it suggests that the benefits
of private schooling are somewhat reduced due to household compensations on other
dimensions, in particular, child nutrition. The results that follow are essentially a
more careful analysis that includes the possibility of unobserved heterogeneity and
corrects for measurement error, both of which we find are central complications in
value-added models.
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TABLE 4. SCHOOL TYPE SWITCHERS AND TIME-VARYING CHILD CHARACTERISTICS

Changes in Time-Varying Child 
Characteristics

Contemporaneous 
Switcher

Future 
Switcher

Weight z-score -.25***
(0.07)

0.11
(0.09)

Height z-score -.19**
(0.09)

0.15
(0.12)

Asset index (PCA) .13
(0.08)

-0.05
(0.09)

Mother lives at home -0.00
(0.01)

-0.03*
(0.02)

Father lives at home 0.00
(0.02)

-0.04
(0.03)

Relative wealth (household survey) 2.08
(3.77)

3.04
(6.02)

Asset index (household survey) 0.22
(0.40)

-0.57
(0.68)

Child health (household survey) -0.40
(0.27)

-0.17
(0.34)

Child health (household survey, all grades) -0.14
(0.09)

(0.05)
(0.08)

Relative wealth (household survey, all grades) -1.33
(2.11)

2.20
(1.83)

* significant at 10%; ** significant at 5%; *** significant at 1%

Notes: Numbers are coefficients from a regression of changes in time-varying child characteristics (dependent 
variable) on pooled school switching (defined as public-private = 1, public-public or private-private = 0, 
private-public = -1).  Contemporaneous switchers use changes in characteristics and school type in the same 
period, whereas future switchers compares switching with changes in the preceding year. Standard errors are 
clustered at the school level.  Household survey variables include matched children (household survey) and, 
separately, children switching in any grade (household survey, all grades).  Height and weight -z-scores are 
normalized to the US average; asset indices are from a PCA analysis of household assets; relative wealth is a 
subjective question asked so that 100 represents the average village wealth; health is measured on a scale 
from 1 (bad) to 16 (perfect) health.

Table 3.4: School type switchers and time-varying child characteristics. Numbers are
coefficients from a regression of changes in time-varying child characteristics (depen-
dent variable) on pooled school switching (defined as public-private = 1, public-public
or private-private = 0, private-public = -1). Contemporaneous switchers use changes
in characteristics and school type in the same period, whereas future switchers com-
pares switching with changes in the preceding year. Standard errors are clustered at
the school level. Household survey variables include matched children (household sur-
vey) and, separately, children switching in any grade (household survey, all grades).
Height and weight -z-scores are normalized to the US average; asset indices are from
a PCA analysis of household assets; relative wealth is a subjective question asked so
that 100 represents the average village wealth; health is measured on a scale from 1
(bad) to 16 (perfect) health.
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TABLE 5. RESTRICTED VALUE-ADDED, LAGGED VALUE-ADDED, LAGGED VALUE ADDED WITH MEASUREMENT ERROR CORRECTION, 
AND DIFFERENCED DYNAMIC PANEL MODELS

EnglishEnglishEnglish UrduUrduUrdu MathMathMath

Model (Key Assumption, Estimator) Persistence Private 
School

Hansen’s 
J Persistence Private 

School
Hansen’s 

J Persistence Private 
School

Hansen’s 
J

M1. Restricted value-added (perfect persistence 
β=1, OLS)

1.00 -0.08 1.00 0.01 1.00 0.05M1. Restricted value-added (perfect persistence 
β=1, OLS) (0.02) (0.02) (0.02)
M2. Lagged value-added (no effects, no 
measurement error, OLS)

0.52 0.31 0.58 0.26 0.57 0.27M2. Lagged value-added (no effects, no 
measurement error, OLS) (0.02) (0.02) (0.01) (0.02) (0.02) (0.03)
M3. Lagged value-added with measurement error 
correction (no effects, 2SLS)

0.70 0.16 4.69 0.73 0.17 3.67 0.76 0.17 0.02M3. Lagged value-added with measurement error 
correction (no effects, 2SLS) (0.02) (0.02) (0.03) (0.02) (0.02) (0.06) (0.02) (0.03) (0.89)
M4. Differenced dynamic panel, strictly exogenous 
inputs (GMM)

0.19 0.25 25.44 0.21 0.29 49.50 -0.00 0.26 33.97M4. Differenced dynamic panel, strictly exogenous 
inputs (GMM) (0.10) (0.07) (0.02) (0.09) (0.07) (0.00) (0.09) (0.08) (0.00)
M5. Differenced dynamic panel, predetermined 
inputs (GMM)

0.19 1.15 16.82 0.35 0.90 18.90 0.12 0.46 12.06M5. Differenced dynamic panel, predetermined 
inputs (GMM) (0.10) (0.39) (0.02) (0.11) (0.48) (0.01) (0.12) (0.50) (0.10)

Notes: Cells contain estimates for the key parameters and standard errors clustered by school.  M3 corrects for measurement error using alternate 
subjects. M4 and M5 use instruments use twice lagged alternate scores and differenced (strictly exogenous) or lagged (predetermined) covariates. Hansen’s 
J reports the chi2 and associated p-value with df=1, 13 and 7 for models M3-M5.

Table 3.5: Restricted value-added, lagged value-added, lagged value-added with mea-
surement error correction, and differenced dynamic panel models.

3.4.2 OLS and Dynamic Panel Value-Added Estimates

Tables 3.5 summarize our main value-added results. All estimates include the full set
of controls in the child survey sample, the survey date, round (grade) dummies, and
village fixed effects. For brevity, we only report the persistence and private school
coefficients.8 We group the discussion of our results in three domains: estimates of the
persistence coefficient, estimates of the private schooling coefficient, and regression
diagnostics.

3.4.2.1 The persistence parameter

We immediately reject the hypothesis of perfect persistence (� = 1). Across all speci-
fications and all subjects (except M1 which imposes � = 1), the estimated persistence
coefficient is significantly lower than one, even in the specifications that correct for
measurement error only and should be biased upward (M3 and M4). The typical
lagged value-added model (M2), which assumes no omitted student heterogeneity and
no measurement error, returns estimates between 0.52 and 0.58 for the persistence
coefficient. Correcting only for measurement error by instrumenting using the two
alternate subjects (M3) increases the persistence coefficient to between 0.70 and 0.79,

8As discussed, time-invariant controls drop out of the differenced models. For the system and
levels estimators reported in Appendix 3.A we also assume, by necessity, that time-invariant controls
are uncorrelated with the fixed effect or act as proxy variables.
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consistent with significant measurement error attenuation. This estimate, however,
remains biased upward by omitted heterogeneity.

Moving to our dynamic panel estimators, Table 3.5 gives the Arellano and Bond
(1991) difference GMM estimates under the assumption that inputs are strictly exoge-
nous (M4) or predetermined (M5). In English and Urdu, the persistence parameter
falls to between 0.19 and 0.35. The estimates are (statistically) different from mod-
els that correct for measurement error only. In other words, omitted heterogeneity
in learning exists, and biases the static estimates upward. For mathematics, the es-
timated persistence coefficient is indistinguishable from zero, considerably below all
the other estimates. These estimates are higher and somewhat more stable in the
systems GMM approach summarized in Appendix 3.A.

3.4.2.2 The contribution of private schools

Assuming perfect persistence biases the private school coefficient downward. For
English, the estimated private school effect in the restricted model that incorrectly
assumes � = 1 is negative and significant. For Urdu and mathematics, the private
school coefficient is small and insignificant or marginally significant. By comparison,
the dynamic panel estimates are positive and statistically significant, with the ex-
ception of one of the predetermined difference GMM estimates, which is too weak
to identify the private school effect with any precision. The additional estimators in
Appendix A follow a similar pattern.

An overarching theme in this analysis is that the persistence parameter influences
the estimated private school effect, but that low precision makes it difficult to distin-
guish estimates based on different exogeneity conditions. This is largely due to the
small number of children switching between public and private schools in our sam-
ple. Rather than estimating the persistence coefficient, we could assume a specific
rate and then estimate the value-added model. That is, we use yit� �yi,t�1 as the
dependent variable. This provides a robustness check for any estimated effects, re-
quires only two years of data, and eliminates the need for complicated measurement
error corrections. (It assumes, however, that inputs are uncorrelated with the omitted
learning heterogeneity.) Moving from the restricted value-added model (� = 1) to
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the pooled cross-section model (� = 0) increases the estimated effect from negative
or insignificant to large and significant. For most of the range of the persistence
parameter, the private school effect is positive and significant, but pinning down the
precise yearly contribution of private schooling depends on our assumptions about
how children learn.

A couple of natural questions are how these estimates compare to the private-
public differences reported in the cross-section and why the trajectories in Figure
1 are parallel even though the private school effect is positive. Controlling for ob-
servables suggests that, after three years, children in private schools are 0.9 (En-
glish), 0.5 (Urdu), and 0.45 (mathematics) standard deviations ahead of their public
school counterparts. If persistence is 0.4 and the yearly private school effect is 0.3,
children’s trajectories will become parallel when that achievement gap reaches 0.5
(= 0.3/(1 � 0.4)). This is roughly the gap we find in Urdu and mathematics. Any
small disagreement, including the larger gap in English, may be attributable to base-
line selection effects. Thus, our results can consistently explain the large baseline gap
in achievement, the parallel achievement trajectories in public and private schools,
and the significant and ongoing positive private school effect.

3.4.2.3 Regression diagnostics

For many of the GMM estimates, Hansen’s J test rejects the overidentifying restric-
tions implied by the model. This is troubling but not entirely unexpected. Different
instruments may be identifying different local average treatment effects in the ed-
ucation context. For example, the portion of third grade achievement that remains
correlated with fourth grade achievement may decay at a different rate than what was
learned most recently. This is particularly true in an optimizing model of skill forma-
tion where parents smooth away shocks to achievement. In such a model, unexpected
shocks to achievement, beyond measurement error, would fade more quickly than
expected gains. Instrumenting using contemporaneous alternate subject scores will
therefore more likely identify different parameters than instrumenting using previous
year scores. Likewise, instrumenting using alternate lags, differenced achievement
and/or inputs may also identify different effects. One result of note is that dropping
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the overidentifying inputs typically raises the the persistence coefficient slightly, to
roughly 0.25 for math. This type of heterogeneity is important and suggests that a
richer model than a constant coefficient lagged value-added may be warranted. 9

3.5 Conclusion

In the absence of randomized studies, the value-added approach to estimating educa-
tion production functions has gained momentum as a valid methodology for removing
unobserved individual heterogeneity in assessing the contribution of specific programs
or in understanding the contribution of school-level factors for learning (e.g. Board-
man and Murnane, 1979; Hanushek, 1979; Todd and Wolpin, 2003; Hanushek, 2003;
Doran and Izumi, 2004; McCaffrey, 2004; Gordon et al., 2006). In such models,
assumptions about learning persistence and unobserved heterogeneity play central
roles. Our results reject both the assumption of perfect persistence required for the
restricted value-added model and of no learning heterogeneity required for the lagged
value-added model. Our results for Pakistan should illustrate the danger of incor-
rectly modeling or estimating education production functions: the restricted value-
added model is fundamentally misspecified and can even yield wrong-signed estimates
of a program’s impact. Underscoring the potential of affordable, mainstream private
schools in developing countries, we find that Pakistan’s private schools contribute
roughly 0.25 standard deviations more to achievement each year than government
schools, an effect greater than the average yearly gain between third and fourth grade.

Our estimates of low persistence are consistent with recent work on teacher effects
and with experimental evidence of program fade out in developing and developed
countries. Table 3.6 summarizes eight randomized (or quasi-randomized) interven-
tions that followed children after the program ended. This follow-up enables esti-
mation of both immediate and extended treatment effects. For the interventions
summarized, the extended treatment effect represents test scores roughly one year

9In a working paper version of this paper, we performed a series of additional robustness checks to
test the plausibility of low persistence. The rates we find are consistent other work in the literature,
with the expected bias under plausible parametrization of the lagged value-added model, and with
the expected bias under the assumption of equal selection on observables and unobservables.
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TABLE 6.  EXPERIMENTAL ESTIMATES OF PROGRAM FADE OUT

Program Subject
Immediate 

Treatment Effect

Extended 
Treatment 

Effect

Implied 
Persistence 
Coefficient Source

Balsakhi Program Math
Verbal

0.348
0.227

0.030
0.014

0.086
0.062

Banerjee et al (2007)

CAL Program Math
Verbal

0.366
0.014

0.097
-0.078

0.265
∼0.0

Banerjee et al (2007)

Learning Incentives Multi-subject 0.23 0.16 0.70 Kremer et al (2003)
Teacher Incentives Multi-subject 0.139 -0.008 ∼0.0 Glewwe et al (2003)
Tracked Classes Multi-subject 0.138 0.163 1.2 Duflo, Dupas, and 

Kremer(2009)
Contract Teachers Multi-subject 0.181 0.094 0.52 Duflo, Dupas, and 

Kremer(2009)
STAR Class Size 
Experiment

Stanford-9 and 
CTBS

∼5 percentile 
points

∼2 percentile 
points

∼ .25 to .5 Krueger and Whitmore 
(2001)

Summer School and 
Grade Retention

Math
Reading

0.136
0.104

0.095
0.062

0.70
0.60

Jacob and Lefgren 
(2004)

Notes:  Extended treatment effect is achievement approximately one year after the treatment ended.  Unless 
otherwise noted, effects are expressed in standard deviations.  Results for Kremer et al. (2003) are averaged 
across boys and girls.  Estimated effects for Jacob and Lefgren (2004) are taken for the third grade sample. 

Table 3.6: Experimental estimates of program fade out. Extended treatment effect
is achievement approximately one year after the treatment ended. Unless otherwise
noted, effects are expressed in standard deviations. Results for Kremer et al. (2003)
are averaged across boys and girls. Estimated effects for Jacob and Lefgren (2004)
are taken for the third grade sample.

after the particular program ended. For a number of the interventions, the persis-
tence coefficient is less than 0.10. In two interventions—learning incentives and grade
retention—the coefficient is between 0.6 and 0.7. However, this higher level of persis-
tence may in part be explained by the specific nature of these interventions.10 Perhaps
most interestingly, Duflo et al. (2010) report results from an experiment providing
both additional contract teachers and tracking students. While the impact of contract
teachers fades out, consistent with our , the effect of thetracking treatment increases
over time in the same experimental context, even though children returned to the
same classes after the experiment concluded. Although the link between fade out
in experimental studies and the persistence parameter is not always exact, the evi-
dence from several randomized studies suggests that current learning does not always

10In the case of grade retention, there is no real “post treatment” period since children always
remain one grade behind after being retained. If one views grade retention as an ongoing multi-
period treatment, then lasting effects can be consistent with low persistence. In the case of learning
incentives, Kremer et al. (2003) argue that student incentives increased effort (not just achievement)
even after the program ended, leading to ongoing learning.
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carry over to future learning without loss, and in fact, these losses may be substan-
tial for most treatments. The results of Duflo et al. (2010) suggest that evaluating
long-run outcomes is critical to understanding the ultimate efficacy of educational
interventions.

But the economic interpretation of low persistence still remains area open to en-
quiry. Our context and test largely rule out mechanical explanations of low persistence
such as psychometric bounding effects, cheating, or changing content. In a prelim-
inary exploration reported in a working paper version of this paper, we also found
little evidence that low persistence results from substitution by parents and teachers.
Simple forgetting, consistent with a large body of memory research in psychology,
appears to be a likely explanation and hence a core component of education produc-
tion functions. But more research is needed to provide direct evidence for it, and to
understand whether the inability to perform on a test implies that the underlying
knowledge has been truly lost.

Our results also suggest that short evaluations, even when experimental, may yield
little information about the cost-effectiveness of a program. Using the one or two year
increase from a program gives an upper-bound on the longer term achievement gains.
As our estimates suggest, and Table 6 confirms, we should expect program impacts
to fade quickly. Calculating the internal rate of return by citing research linking test
scores to earnings of young adults is therefore a doubtful proposition. The techniques
described here, with three periods of data, can theoretically obtain a lower bound on
cost-effectiveness by assuming exponential fade out. At the same time, the causes
of fade out are equally important: if parents no longer need to hire tutors or buy
textbooks (the substitution interpretation of imperfect persistence), a program may
be cost-effective even if test scores fade out.

Moving forward, empirical estimates of education production functions may ben-
efit from further unpacking persistence. Overall, the agenda pleads for a richer model
of education and for empirical techniques for modelling the broader learning process,
not simply to add nuance to our understanding of learning, but to get the most basic
parameters right.
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3.A Additional Estimation Strategies

3.A.1 System GMM

3.A.1.1 Uncorrelated or constantly correlated effects

One difficulty with the differences GMM approach (M4 and M5) is that time-invariant
inputs drop out of the estimated equation and their effects are therefore not identified.
In our case, this means that the identification of the private school effect is based on
the five percent of children who switch between public and private schools. This leads
to large standard errors in Table 3.5. We address the limited time-series variation
using the levels and differences GMM framework proposed by Arellano and Bover
(1995) and extended by Blundell and Bond (1998). Levels and differences GMM
estimates a system of equations, one for the undifferenced levels equation (3.5) and
another for the differenced equation (3.7). Further assumptions regarding the correla-
tion between inputs and heterogeneity (though not necessarily between heterogeneity
and lagged achievement) yield additional instruments.

We first consider predetermined inputs that have a constant correlation with the
individual effects (M6). While inputs may be correlated with the omitted effects,
constant correlation implies switching is not. The constant correlation assumption
implies that 4xit are available as instruments in the levels equation (Arellano and
Bover, 1995). In the context of estimating school type, this estimator can be viewed
as a levels and differences switching estimator since it relies on children switching
school types in both the levels and differences equations. In practice, we often must
assume that any time-invariant inputs are uncorrelated with the fixed effect or the
levels equation, which includes the time-invariant inputs, is not fully identified.

A second possibility is that inputs are predetermined but are also uncorrelated
with the omitted effects (M7). This allows using inputs xt

i as instruments in the levels
model (3.5). The required assumption is fairly strong; it is natural to believe that
inputs are correlated with the omitted effect. Certainly, the decision to attend private
school may be correlated with the child’s ability to learn although a rich enough set
of controls may make the assumption plausible. The assumption is weaker than OLS
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estimation of lagged value-added model since the model (M7) allows for the omitted
fixed effect to be correlated with lagged achievement.

3.A.1.2 Conditional mean stationarity

In some instances, it may be reasonable to assume that, while learning heterogeneity
exists, it does not affect achievement gains. A talented child may be so far ahead
that imperfect persistence cancels the benefit of faster learning. That is, individual
heterogeneity may be uncorrelated with gains, y⇤it � y

⇤
it�1, but not necessarily with

learning, y⇤it � �y

⇤
it�1. This situation arises when the initial conditions have reached

a convergent level with respect to the fixed effect such that

y

⇤
i1 =

⌘i

1� �

+ di, (3.9)

where t = 1 is the first observed period and not the first period in the learning life-
cycle. Blundell and Bond (1998) discuss this type of conditional mean stationarity
restriction in considerable depth. As they point out, the key assumption is that
initial deviations, di, are uncorrelated with the level of ⌘i/(1� �). It does not imply
that the achievement path, {y⇤i1, y⇤i2, . . . , y⇤iT}, is stationary; inputs, including time
dummies, continue to spur achievement and can be nonstationary. The assumption
only requires that, conditional on the full set of controls and common time dummies,
the individual effect does not influence achievement gains.

While this assumption seems too strong in the context of education, we discuss it
because the dynamic panel literature has documented large downward biases of other
estimators when the instruments are weak (e.g. Blundell and Bond, 1998). This
occurs when persistence is perfect (� = 1) since the lagged value-added model then
exhibits a unit root and lagged test scores become weak instruments in the differenced
model. The conditional mean stationarity assumption provides an additional T � 2

non-redundant moment conditions that can augment the system GMM estimators.
While a fully efficient approach uses these additional moments along with typical
moments in the differenced equation, the conditional mean stationarity assumption
ensures strong instruments in the levels equation to identify �. Thus, if we prefer
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TABLE A1. SYSTEM AND LEVELS ONLY DYNAMIC PANEL MODELS
EnglishEnglishEnglish UrduUrduUrdu MathMathMath

Model (Key Assumption, Estimator) Persistence Private 
School

Hansen’s 
J Persistence Private 

School
Hansen’s 

J Persistence Private 
School

Hansen’s 
J

Levels and Difference SGMM
M6. Predetermined inputs, constantly correlated 
effects

0.36 0.21 45.50 0.26 0.22 66.58 0.12 0.19 57.63M6. Predetermined inputs, constantly correlated 
effects (0.07) (0.06) 0.00 (0.08) (0.06) (0.00) (0.10) (0.08) (0.00)
M7. Predetermined inputs, uncorrelated effects 0.53 0.32 79.08 0.51 0.30 81.89 0.51 0.30 82.19M7. Predetermined inputs, uncorrelated effects

(0.05) (0.04) 0.00 (0.06) (0.04) (0.00) (0.08) (0.05) (0.00)
Levels Only GMM
M8. Predetermined inputs, constantly correlated 
effects, conditional stationarity

0.40 0.29 24.74 0.55 0.31 13.49 0.51 0.30 29.45M8. Predetermined inputs, constantly correlated 
effects, conditional stationarity (0.05) (0.07) (0.02) (0.05) (0.07) (0.33) (0.06) (0.07) (0.00)
M9. Predetermined inputs, uncorrelated effects, 
conditional stationarity

0.39 0.24 23.43 0.56 0.27 13.30 0.53 0.27 28.36M9. Predetermined inputs, uncorrelated effects, 
conditional stationarity (0.05) (0.04) (0.02) (0.05) (0.03) (0.27) (0.06) (0.04) (0.00)

Notes:  Cells contain estimates for the key parameters and standard errors clustered by school.  M6 and M7 are a system estimators, including both a 
difference and levels equation with differenced (M6) or undifferenced (M7) covariates as additional instruments in the levels equation.. M8 and M9 use 
only the levels equation for simplicity and included differenced scores as an additional instrument. Hansen’s J reports the chi2 and associated p-value with 
df=23, 29, 12, and 11.

Table 3.7: System and levels-only dynamic panel models. Cells contain estimates for
the key parameters and standard errors clustered by school. M6 and M7 are a system
estimators, including both a difference and levels equation with differenced (M6) or
undifferenced (M7) covariates as additional instruments in the levels equation.. M8
and M9 use only the levels equation for simplicity and included differenced scores as
an additional instrument. Hansen’s J reports the chi2 and associated p-value with
df=23, 29, 12, and 11.

simplicity over efficiency, we can estimate the model using levels GMM or 2SLS and
avoid the need to use a system estimator. In this simpler approach, we instrument the
undifferenced value-added model (3.5) using lagged changes in achievement, 4y

⇤t�1
i ,

and either changes in inputs, 4xt
i, or inputs directly, xt

i, depending on whether inputs
are constantly correlated (M8) or are uncorrelated with the individual effect (M9).

3.A.1.3 Results

Table 3.7 reports the persistence and private school effect for these additional estima-
tors. Most estimators have higher, but still lower the the lagged model, persistence
estimates. With the addition of a conditional mean stationarity assumption, we can
more precisely estimate the persistence coefficient. In this model, we only use mo-
ments in levels to illustrate a dynamic panel estimator that improves over the lagged
value-added model estimated by OLS but doesn’t require estimating a system of equa-
tions. The persistence coefficient rises substantially to between 0.39 and 0.56. This
upward movement is consistent with a violation of the stationarity assumption (the
fixed-effect still contributes to achievement growth) but an overall reduction in the
omitted heterogeneity bias. Across the various dynamic panel models and subjects,
estimates of the persistence parameter vary from 0.2 to 0.55. However, the highest
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dynamic panel estimates come from assuming conditional mean stationary, which is
likely too strong an assumption in the context of learning.

Adding a levels equation and using the assumption that inputs are constantly cor-
related or uncorrelated with the omitted effects reduces the standard errors for the
private school coefficient while maintaining the assumption that inputs are predeter-
mined but not strictly exogenous. Under the scenario that private school enrollment
is constantly correlated with the omitted effect (M6), the private school coefficient is
large: 0.19 to 0.32 standard deviations (depending on the subject) and statistically
significant. This estimate allows for past achievement shocks to affect enrollment
decisions but assumes that switching school type is uncorrelated with unobserved
student heterogeneity. Within the systems context, this is our preferred estimate.

3.A.2 Attrition corrected estimators

One potential explanation for low persistence is attrition. Roughly a third of our
original tested sample cannot be included in our estimates due to missing intermediate
or final test scores. Lower scoring students are more likely to attrit and it is possible
that these students also experience little growth in learning from year to year. If so,
these students will display high persistence in test scores year to year and excluding
them from the analysis will bias our estimates downward. We find little evidence that
this is a significant source of bias. Using the sample of children that attrit in fifth
grade yields similar or even slightly lower estimates for persistence.

To fully correct for attrition in moment-based model such as ours, Abowd et al.
(2001) propose weighting by the estimated inverse probability that each observation
remains in the sample. Analogous to propensity score weighting in the program eval-
uation literature, inverse probability weighting eliminates potential attrition bias if
attrition is based on observables. To evaluate potential attrition bias, we estimate the
probability of attrition using all past test scores and child characteristics and report
our weighted results for two models in Table 3.8. Reassuringly, these corrections for
attrition make little difference. Both the private school coefficient and the persistence
coefficient change only slightly compared to Tables 3.5 and 3.7, and the direction of
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TABLE A2. CORRECTING FOR POTENTIAL ATTRITION BIAS USING INVERSE PROBABILITY 

WEIGHTING

Strategy English Urdu Math
M2. No effects, no measurement error (OLS)
Private school 0.28

(0.03)
0.22

(0.03)
0.22

(0.03)
Persistence 0.55

(0.02)
0.59

(0.02)
0.65

(0.02)
M8: Predetermined inputs, constantly correlated 

effects, conditional stationarity
Private school 0.25

(0.07)
0.28

(0.08)
0.30

(0.09)
Persistence 0.40

(0.05)
0.55

(0.05)
0.50

(0.06)
Notes: Cells give model coefficients and parenthesis give standard errors.  Models mirror Table 4, 5, and 6 
but weight the sample using the estimated inverse probability of an observation being observed.  The 
probability of attrition is estimated from two logit regressions for fourth and fifth grade including all 
previous data as controls and village fixed effects.  See Abowd, Crepon and Kramarz (2001) for details.

Table 3.8: Correcting for potential attrition bias with inverse probability weighting.
Cells give model coefficients and parenthesis give standard errors. Model mirrors the
uncorrected estimates but weight the sample using the estimated inverse probability
of an observation being observed. The probability of attrition is estimated from two
logit regressions for fourth and fifth grade including all previous data as controls and
village fixed effects. See Abowd, Crepon and Kramarz (2001) for details.

change differs across models and subjects. The likely explanation for why corrections
for attrition do not affect our estimates is that the bulk of children who are not tested
in any given year are not drop-outs but children absent on the day of the test, which
may be a largely random process. Indeed, simple OLS estimates of persistence based
on the sub-sample of children who report only 2 years of test-scores are within 0.05
standard deviations of estimates based on children who were present for all 3 tests,
and the difference is statistically insignificant.
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